WO2021245741A1 - ウェーハ外周歪みの評価方法 - Google Patents

ウェーハ外周歪みの評価方法 Download PDF

Info

Publication number
WO2021245741A1
WO2021245741A1 PCT/JP2020/021592 JP2020021592W WO2021245741A1 WO 2021245741 A1 WO2021245741 A1 WO 2021245741A1 JP 2020021592 W JP2020021592 W JP 2020021592W WO 2021245741 A1 WO2021245741 A1 WO 2021245741A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
outer peripheral
strain
polycrystalline film
evaluating
Prior art date
Application number
PCT/JP2020/021592
Other languages
English (en)
French (fr)
Inventor
裕士 安藤
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to PCT/JP2020/021592 priority Critical patent/WO2021245741A1/ja
Priority to CN202080101429.3A priority patent/CN115668470A/zh
Priority to EP20938747.1A priority patent/EP4160660A4/en
Priority to US17/925,417 priority patent/US20230197533A1/en
Publication of WO2021245741A1 publication Critical patent/WO2021245741A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9503Wafer edge inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers

Definitions

  • the present invention relates to a method for evaluating wafer peripheral strain.
  • the wafer in which the polycrystalline film (Poly film) is grown is also grown by using the single-wafer epitaxy wafer manufacturing apparatus, the outer peripheral portion of the wafer is distorted by the same principle as that of the epitaxial wafer in the growth process. ..
  • the same evaluation method as for epitaxial wafers was used in the strain evaluation of the wafer on which this polycrystalline film was grown, but the wafer on which the polycrystalline film was formed had irregular crystal orientations. In particular, it is easily affected by noise in the outer peripheral portion, and it is difficult to apply the conventional measuring method. Therefore, it has been necessary to establish a method for evaluating the strain of the wafer on which the polycrystalline film is formed.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a highly accurate evaluation method of outer peripheral strain of a wafer having a polycrystalline film formed on its surface.
  • the present invention has been made to achieve the above object, and is a method for evaluating an outer peripheral strain of a wafer having a polycrystalline film formed on its surface, as a wafer having a polycrystalline film formed on its surface.
  • a pretreatment for removing the surface of the polycrystalline film is performed, and then an infrared laser is incident on the back surface of the outer periphery of the wafer to make the wafer.
  • a method for evaluating the outer peripheral strain of a wafer which evaluates the outer peripheral strain of the wafer from the degree of polarization of the infrared laser after passing through the wafer.
  • the influence of noise on the outer peripheral portion at the time of measurement can be reduced, and the outer peripheral strain of the wafer on which the polycrystalline film is formed can be accurately evaluated.
  • the pretreatment can be performed by polishing and / or etching.
  • the surface of the polycrystalline film can be smoothed and / or the surface thickness of the polycrystalline film can be thinned, the influence of noise on the outer peripheral portion at the time of measurement can be reduced, and the polycrystalline film is formed.
  • the outer peripheral strain evaluation of the wafer can be performed effectively and with high accuracy.
  • the pretreatment can be performed by polishing to remove the surface by polishing to a thickness of 0.2 ⁇ m or more.
  • polishing amount within the above range, the influence of noise on the outer peripheral portion at the time of measurement can be reduced more effectively, and the outer peripheral strain evaluation of the wafer on which the polycrystalline film is formed can be performed with higher accuracy.
  • the pretreatment can be performed by etching to remove the surface by etching to a thickness of 0.5 ⁇ m or more.
  • the etching removal amount within the above range, the influence of noise on the outer peripheral portion at the time of measurement can be reduced more effectively, and the outer peripheral strain evaluation of the wafer on which the polycrystalline film is formed can be performed with higher accuracy.
  • the pretreatment can be performed by vapor phase etching and / or liquid phase etching.
  • the influence of noise on the outer peripheral portion at the time of measurement can be reduced by performing the pretreatment. It is possible to evaluate the outer peripheral strain of the wafer on which the crystal film is formed with high accuracy.
  • the outline of the single-wafer type epitaxial wafer manufacturing apparatus is shown.
  • the configuration of the strain measuring device is shown. It is a top view of the wafer, and shows the measurement exclusion area and the measurement area.
  • the present inventors are a method for evaluating the outer peripheral strain of a wafer having a polycrystalline film formed on the surface, and silicon is used as a wafer having a polycrystalline film formed on the surface.
  • silicon is used as a wafer having a polycrystalline film formed on the surface.
  • a pretreatment for removing the surface of the polycrystalline film is performed, and then an infrared laser is incident on the back surface of the outer periphery of the wafer to make the wafer.
  • the wafer on which the polycrystalline film is formed which is the target of the wafer peripheral strain evaluation method according to the present invention, may be manufactured by any method.
  • it can be manufactured by using the epitaxial wafer manufacturing apparatus described below.
  • the epitaxial wafer manufacturing apparatus 1 of FIG. 1 wafers W such as silicon single crystal substrates are loaded one by one, and a silicon single crystal film, a polycrystalline silicon film, or the like is placed on the main surface of the loaded single wafer W. It is a device that grows the vapor phase of the membrane.
  • the epitaxial wafer manufacturing apparatus 1 includes a reaction furnace 2 into which a wafer W to be processed is charged, a susceptor 3 arranged in the reaction furnace 2 and horizontally supporting the wafer W to be charged, and a reaction furnace 2. It is configured to include a heating unit 6 which is arranged so as to surround the reactor 2 and heats the inside of the reaction furnace 2.
  • the susceptor 3 is made of graphite coated with silicon carbide (SiC), for example, and has a disk-like shape.
  • SiC silicon carbide
  • the depth of the pocket portion 3a is about the same as the thickness of the wafer W.
  • the bottom surface of the pocket portion 3a is formed in a stepped shape so that the outer peripheral portion of the wafer W comes into contact with the outer peripheral portion but does not come into contact with the other portions, but the entire back surface of the wafer W is formed with the pocket portion 3a. It may be formed so as to be in contact with the bottom surface of the.
  • the susceptor 3 is rotatably provided around its central axis.
  • a gas supply port 4 for supplying various gases is formed on the main surface of the wafer W in the reactor 2. Further, on the side of the reactor 2 opposite to the gas supply port 4, a gas discharge port 5 for discharging the gas that has passed on the main surface of the wafer W is formed.
  • the heating unit 6 can be, for example, halogen lamps provided above and below the reaction furnace 2.
  • the measuring device 10 of FIG. 2 is configured as a device based on SIRD (Scanning Infrared Depolarization). Specifically, the measuring device 10 has a laser generating unit 11 for incident an infrared laser 31 on a strain measuring portion of the wafer W to be measured, and polarized light 32 transmitted from the wafer W to which the infrared laser 31 is incident.
  • the change in the degree of polarization (polarization displacement amount) is calculated based on the detection unit 12 that detects the components (P polarization component, S polarization component) and the polarization component detected by the detection unit 12, and based on the change in the degree of polarization. It is provided with a processing unit 13 that performs processing such as calculation of the position of distortion and the amount of distortion.
  • a wafer to be evaluated for distortion is prepared.
  • a wafer to be prepared a wafer having a polycrystalline silicon film formed on its surface is prepared.
  • the polycrystalline silicon film may be formed by using, for example, the single-wafer type epitaxial wafer manufacturing apparatus 1 illustrated in FIG. In this case, for example, in a state where the wafer W configured as a silicon single crystal substrate is placed in the pocket portion 3a of the susceptor 3, the wafer W is heated to a predetermined temperature by the heating portion 6, and the polycrystalline silicon is siliconized from the gas supply port 4.
  • a gas (for example, trichlorosilane) and a carrier gas (for example, hydrogen gas) as raw materials for the film are supplied into the reaction furnace 2 to grow a polycrystalline silicon film having a predetermined film thickness on the surface of the wafer W.
  • a wafer W having a polycrystalline silicon film on its surface can be obtained.
  • a pretreatment is performed to remove the surface of the polycrystalline silicon film of the wafer W.
  • the method of removal is not limited. By removing the surface of the polycrystalline silicon film of the wafer W, the influence of noise on the outer peripheral portion at the time of measurement can be reduced, and the outer peripheral distortion of the wafer can be accurately evaluated.
  • the surface of the polycrystalline silicon film of the wafer W is removed by polishing and / or etching, and strain measurement is performed.
  • polishing before strain measurement the surface of the polycrystalline silicon film can be smoothed, the influence of noise on the outer peripheral portion at the time of measurement can be reduced, and the outer peripheral strain of the wafer can be accurately evaluated.
  • etching before strain measurement the surface film thickness of the polycrystalline silicon film can be thinned, the influence of noise on the outer peripheral portion during measurement can be reduced, and the outer peripheral strain of the wafer can be evaluated accurately. can.
  • the thickness to be removed by polishing When removing the surface of the polycrystalline film by polishing, it is more effective to set the thickness to be removed by polishing to 0.2 ⁇ m or more, and when performing by etching, set the thickness to be removed by etching to 0.5 ⁇ m or more, which is more effective. The influence of noise can be reduced and the evaluation can be performed more accurately. Further, the upper limit of the amount of removal of the surface of the polycrystalline film is not particularly limited, but it is preferably about 10 ⁇ m from the viewpoint of throughput (productivity).
  • polishing method a known substrate polishing method can be adopted.
  • vapor phase etching or liquid phase etching can be adopted for etching, any method may be used as long as the surface can be removed.
  • hydrogen chloride can be used as the etching gas
  • hydrofluoric acid or nitric acid can be used as the etching solution.
  • distortion is likely to occur on the outer peripheral portion of the back surface that comes into contact with the susceptor 3, so the infrared laser 31 is incident on the outer peripheral portion of the back surface of the wafer W.
  • the strain measurement region 22 in the wafer W is a region including the outer peripheral portion of the wafer W, and specifically, a predetermined width (for example) in the radial direction from the boundary line on the inner peripheral side of the measurement exclusion region 21. Area of 4 mm width).
  • the strain measurement region 22 may be a region extending over the entire circumference in the circumferential direction inside the outermost circumference 20 of the wafer W (that is, a ring-shaped region), or may be a partial region in the circumferential direction. Then, the incident position of the infrared laser 31 is scanned in the strain measurement region 22 to evaluate the strain position and the strain amount in the strain measurement region 22.
  • Example 1 First, in the method of measuring the strain on the outer peripheral portion of the wafer by polishing the surface, the amount of outer peripheral strain of each of the epitaxial wafer, which was the conventional measurement target, and the wafer on which the polycrystalline film was removed by polishing was measured. , The matching rate of the strain amount was investigated.
  • the diameter of the wafer was 300 mm, and the epitaxial wafer was manufactured by reacting with a single-wafer epitaxial wafer manufacturing device. Wafers are put into the susceptor in the reaction furnace of the epitaxial wafer manufacturing equipment one by one, and the wafer is heated to a predetermined temperature (1100 ° C.) by the heating unit, and the raw material gas (trichlorosilane) and carrier gas are used from the gas supply port. By supplying (hydrogen), a silicon single crystal film having a thickness of 5 ⁇ m was vapor-deposited on the surface of the inserted wafer.
  • a wafer on which a polycrystalline film is formed also reacts using the same equipment as an epitaxial wafer, but is characterized in that the heating temperature is in two stages.
  • the reaction of the first layer was carried out at a low temperature (900 ° C.), and the second layer was carried out at a high temperature (1100 ° C.) to grow a polycrystalline film having a film thickness of 5 ⁇ m.
  • a pretreatment for polishing and removing the surface of the polycrystalline film was performed with the removal amount shown in Table 1 below.
  • the coincidence rate of strain of the epitaxial wafer and the wafer on which the polycrystalline film is formed is compared. It is known that the place of occurrence does not change depending on the difference. Therefore, it was evaluated how much the location where the polycrystal film was formed coincided with the location where the strain was generated in the epitaxial wafer. Table 1 shows the relationship between the amount of polishing and removal of the surface of the polycrystalline film and the concordance rate of the amount of strain.
  • the outermost circumference of 0.5 mm was set as the measurement exclusion region, and the strain measurement width was set to 4 mm.
  • the measurement interval is 2 mm in the circumferential direction and 1 mm in the radial direction.
  • Example 1 The evaluation was performed in the same manner as in Example 1 except that the surface of the polycrystalline film was not removed by polishing (removal amount: 0 ⁇ m). As a result, the concordance rate was 42%, which was not sufficient.
  • Example 2 The surface of the polycrystalline film was removed by vapor phase etching, and the strain on the outer peripheral portion of the wafer was evaluated.
  • the method for producing the wafer on which the polycrystalline film is formed is the same as that in the first embodiment, and the vapor phase etching is performed by etching gas (hydrogen chloride) in the reaction furnace after the polycrystalline film is grown in the reaction furnace of the epitaxial wafer manufacturing apparatus. ) was supplied.
  • Table 2 shows the relationship between the amount of vapor phase etching removed from the surface of the polycrystalline film and the concordance rate of the amount of strain.
  • the measurement area for measuring the strain on the outer peripheral portion is the same as that in the first embodiment.
  • Example 3 The surface of the polycrystalline film was removed by liquid phase etching, and the strain on the outer peripheral portion of the wafer was evaluated.
  • the amount of outer peripheral strain of each of the wafer on which the polycrystalline film was formed by polishing the surface of the polycrystalline film of Example 1 by 0.8 ⁇ m and the wafer on which the polycrystalline film was removed by etching was measured. We investigated the concordance rate of the amount of strain.
  • the method for producing the wafer on which the polycrystalline film was formed was the same as in Example 1, and the liquid phase etching was performed using an etching solution (fluoric acid) after the wafer was taken out from the reaction furnace.
  • Table 3 shows the relationship between the amount of liquid phase etching removed from the surface of the polycrystalline film and the concordance rate of the amount of strain.
  • the measurement area for measuring the strain on the outer peripheral portion is the same as that in the first embodiment.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本発明は、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法であって、前記表面に多結晶膜が形成されたウェーハとして、シリコン単結晶基板の表面に多結晶膜が形成されたウェーハを用い、前記多結晶膜の表面を除去する前処理をし、その後、前記ウェーハの外周の裏面から赤外レーザーを入射させ、前記ウェーハを透過した後の前記赤外レーザーの偏光度から前記ウェーハの外周歪みを評価するウェーハの外周歪みの評価方法である。これにより、表面に多結晶膜が形成されたウェーハの外周歪みを高精度で評価する方法が提供される。

Description

ウェーハ外周歪みの評価方法
 本発明は、ウェーハ外周歪みの評価方法に関する。
 一般的に枚葉式エピタキシャルウェーハ製造装置を用いて、研磨後のウェーハ上にエピタキシャル層を成長する場合、ウェーハとサセプタの接触部にかかる熱応力などによってウェーハ外周部に歪みが生じる。この歪みの評価方法として、ウェーハの裏面から赤外レーザーを入射し、ウェーハ透過後の偏光度から歪みを検出する手法が用いられている(特許文献1)。本評価において、ウェーハに歪みがある場合入射光の偏光度は大きくなるため、その偏光度から歪みを検出できる。これまで、エピタキシャルウェーハで本測定を行う際、エピタキシャル層を成長したウェーハをそのまま測定を行っていた。
特開2012-019216号公報
 一方、多結晶膜(Poly膜)を成長させたウェーハにおいても枚葉式エピタキシャルウェーハ製造装置を用いて成長を行うため、その成長過程においてエピタキシャルウェーハと同様の原理でウェーハの外周部に歪みが生じる。この多結晶膜を成長させたウェーハの歪み評価においてもエピタキシャルウェーハと同様の評価方法を用いたが、多結晶膜が形成されたウェーハは多結晶膜の結晶方位が不規則であることなどから、特に外周部でのノイズの影響を受けやすく、従来の測定方法の適用が困難であった。そのため、多結晶膜が形成されたウェーハの歪みの評価手法の確立を要していた。
 本発明は、上記問題を解決するためになされたものであり、表面に多結晶膜が形成されたウェーハの外周歪みの高精度な評価方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法であって、前記表面に多結晶膜が形成されたウェーハとして、シリコン単結晶基板の表面に多結晶膜が形成されたウェーハを用い、前記多結晶膜の表面を除去する前処理をし、その後、前記ウェーハの外周の裏面から赤外レーザーを入射させ、前記ウェーハを透過した後の前記赤外レーザーの偏光度から前記ウェーハの外周歪みを評価するウェーハの外周歪みの評価方法を提供する。
 このような評価方法によれば、測定時の外周部のノイズの影響を低減でき、多結晶膜が形成されたウェーハの外周歪みを正確に評価することができる。
 このとき、前記前処理を、研磨、及び/又は、エッチングにより行うことができる。
 これにより、前記多結晶膜表面の平滑化、及び/又は、前記多結晶膜の表面膜厚の薄膜化ができ、測定時の外周部のノイズの影響を低減でき、多結晶膜が形成されたウェーハの外周歪み評価を効果的かつ高精度で実施できる。
 このとき、前記前処理を、研磨により行い、表面を厚さ0.2μm以上研磨除去することとすることができる。
 研磨量を前記範囲にすることで、測定時の外周部のノイズの影響をより効果的に低減でき、多結晶膜が形成されたウェーハの外周歪み評価をより高精度で実施できる。
 また、前記前処理を、エッチングにより行い、表面を厚さ0.5μm以上エッチング除去することとすることができる。
 エッチング除去量を前記範囲にすることで、測定時の外周部のノイズの影響をより効果的に低減でき、多結晶膜が形成されたウェーハの外周歪み評価をより高精度で実施できる。
 前記前処理を、気相エッチング、及び/又は、液相エッチングで行うことができる。
 これにより、測定時の外周部のノイズの影響を低減でき、多結晶膜が形成されたウェーハの外周歪み評価を簡便に実施できる。
 以上のように、本発明の、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法によれば、前処理を行うことにより、測定時の外周部のノイズの影響を低減でき、多結晶膜が形成されたウェーハの外周歪み評価を高精度で実施することが可能になる。
枚葉式エピタキシャルウェーハ製造装置の概略を示す。 歪み測定装置の構成を示す。 ウェーハの平面図であり、測定除外領域と、測定領域とを示す。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法において、測定時の外周部のノイズの影響を低減し、多結晶膜が形成されたウェーハの外周歪みを正確に評価する方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、表面に多結晶膜が形成されたウェーハの外周歪みの評価方法であって、前記表面に多結晶膜が形成されたウェーハとして、シリコン単結晶基板の表面に多結晶膜が形成されたウェーハを用い、前記多結晶膜の表面を除去する前処理をし、その後、前記ウェーハの外周の裏面から赤外レーザーを入射させ、前記ウェーハを透過した後の前記赤外レーザーの偏光度から前記ウェーハの外周歪みを評価するウェーハの外周歪みの評価方法により、外周部のノイズの影響を低減し、多結晶膜が形成されたウェーハの外周歪みを正確に評価できることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 本発明に係るウェーハ外周歪みの評価方法が対象とする多結晶膜が形成されたウェーハはどのような方法で製造されたものでもよい。例えば、以下に述べるエピタキシャルウェーハ製造装置を用いて製造することができる。
 先ず、図1を参照して枚葉式エピタキシャルウェーハ製造装置の構成を説明する。図1のエピタキシャルウェーハ製造装置1は、シリコン単結晶基板等のウェーハWが1枚ずつ投入されて、投入された1枚のウェーハWの主表面上にシリコン単結晶膜や多結晶シリコン膜等の膜を気相成長させる装置である。詳しくは、エピタキシャルウェーハ製造装置1は、処理対象となるウェーハWが投入される反応炉2と、反応炉2内に配置されて投入されたウェーハWを水平に支持するサセプタ3と、反応炉2を囲むように配置されて反応炉2内を加熱する加熱部6とを含んで構成される。
 サセプタ3は例えば炭化ケイ素(SiC)によりコーティングされた黒鉛からなり、円盤状の形状である。サセプタ3の上面には、ウェーハWを水平に載置するための、ウェーハWの径よりも数ミリ程度大きい凹形状(平面視で円状)のポケット部3aが形成されている。ポケット部3aの深さは、ウェーハWの厚さと同程度となっている。図1の例では、ポケット部3aは、ウェーハWの外周部は接触するがそれ以外の部分は接触しないように底面が段差形状に形成されているが、ウェーハWの裏面の全部がポケット部3aの底面に接触するように形成されてもよい。サセプタ3はその中心軸回りに回転可能に設けられる。
 反応炉2の一端側には、反応炉2内のウェーハWの主表面上に各種ガスを供給するためのガス供給口4が形成されている。また、反応炉2の、ガス供給口4と反対側には、ウェーハWの主表面上を通過したガスを排出するためのガス排出口5が形成されている。加熱部6は、例えば反応炉2の上下それぞれに設けられたハロゲンランプとすることができる。
 次に、図2を参照して、ウェーハの外周歪みを測定する装置の構成を説明する。図2の測定装置10は、SIRD(Scanning Infrared Depolarization)を原理とした装置として構成されている。詳しくは、測定装置10は、測定対象のウェーハWの歪み測定部位に赤外レーザー31を入射させるレーザー発生部11と、赤外レーザー31が入射されたウェーハWから透過してくる光32の偏光成分(P偏光成分、S偏光成分)を検出する検出部12と、検出部12で検出した偏光成分に基づいて偏光度の変化(偏光変位量)を算出し、その偏光度の変化に基づいて歪みの位置及び歪み量の算出等の処理を行う処理部13とを備えている。
 次に、本実施形態の歪み評価の手順を説明する。先ず、歪みの評価対象のウェーハを準備する。準備するウェーハとして表面に多結晶シリコン膜を形成したウェーハを準備する。多結晶シリコン膜は例えば図1に例示する枚葉式エピタキシャルウェーハ製造装置1を用いて形成すればよい。この場合、例えばシリコン単結晶基板として構成されたウェーハWをサセプタ3のポケット部3aに載置した状態で、加熱部6によりウェーハWを所定温度に加熱しつつ、ガス供給口4から多結晶シリコン膜の原料となるガス(例えばトリクロロシラン)及びキャリアガス(例えば水素ガス)を反応炉2内に供給して、ウェーハWの表面に所定膜厚の多結晶シリコン膜を成長させる。これにより、表面に多結晶シリコン膜を有したウェーハWが得られる。
 次に、ウェーハWの多結晶シリコン膜の表面を除去する、前処理を行う。除去の方法は限定されない。ウェーハWの多結晶シリコン膜の表面を除去することによって、測定時の外周部のノイズの影響を低減でき、ウェーハの外周歪みの評価を正確に行うことができる。
 例えば、ウェーハWの多結晶シリコン膜の表面を研磨、及び/又は、エッチングにより除去し、歪み測定を行う。歪み測定の前に研磨を行うことで、多結晶シリコン膜の表面を平滑化し、測定時の外周部のノイズの影響を低減でき、ウェーハの外周歪みの評価を正確に行うことができる。また、歪み測定の前にエッチングを行うことで、多結晶シリコン膜の表面膜厚を薄膜化し、測定時の外周部のノイズの影響を低減でき、ウェーハの外周歪みの評価を正確に行うことができる。
 研磨により多結晶膜の表面の除去を行う場合、研磨で除去する厚さを0.2μm以上とし、エッチングにより行う場合、エッチングで除去する厚さを0.5μm以上とすることで、より効果的にノイズの影響を低減でき、評価をより正確に行うことができる。また、多結晶膜表面の除去量の上限は特に限定されないが、スループット(生産性)の観点から10μm程度とすることが好ましい。
 ここで、研磨の方法は、公知の基板研磨方法を採用することができる。また、エッチングは、気相エッチングや液相エッチングを採用することができるが、表面を除去することができれば、どのような方法で実施してもよい。例えば、気相エッチングの場合、エッチングガスとして塩化水素を使うことができ、液相エッチングの場合、エッチング液としてフッ酸や硝酸を使うことができる。
 歪みの測定においては、サセプタ3と接触する裏面外周部に歪みが発生しやすいので、赤外レーザー31をウェーハWの裏面外周部に入射させる。
 また、ウェーハWにおける歪み測定領域22(図3参照)は、ウェーハWの外周部を含む領域とし、具体的には、測定除外領域21の内周側の境界線から径方向に所定幅(例えば4mmの幅)の領域とする。歪み測定領域22は、ウェーハWの最外周20内部の円周方向に全周に亘る領域(つまりリング状の領域)としてもよいし、円周方向の一部領域としてもよい。そして、赤外レーザー31の入射位置を、歪み測定領域22内でスキャン(走査)することで、歪み測定領域22における歪み位置及び歪み量を評価する。
 以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。
 (実施例1)
 まず、表面の研磨によるウェーハ外周部の歪みの測定手法において、従来の測定対象であったエピタキシャルウェーハと多結晶膜を研磨によって除去した多結晶膜が形成されたウェーハそれぞれの外周歪み量を測定し、歪み量の一致率について調査した。
 ウェーハの直径は300mmであり、エピタキシャルウェーハは枚葉式エピタキシャルウェーハ製造装置によって反応し作製した。エピタキシャルウェーハ製造装置の反応炉内のサセプタにウェーハを1枚ずつ投入し、加熱部によりウェーハを所定温度(1100℃)に加熱しつつ、ガス供給口から原料となるガス(トリクロロシラン)やキャリアガス(水素)を供給することで、投入されたウェーハの表面上に膜厚が5μmのシリコン単結晶膜を気相成長させた。一方、多結晶膜が形成されたウェーハについてもエピタキシャルウェーハと同様の装置を用いて反応するが、加熱温度が2段階になっているのが特徴である。1層目の反応は低温(900℃)で行い、2層目は高温(1100℃)で行うことで膜厚が5μmの多結晶膜を成長させた。その後、下記表1に示す除去量で、多結晶膜の表面を研磨除去する前処理を行った。
 本実施例では、エピタキシャルウェーハと多結晶膜が形成されたウェーハの歪みの一致率を比較したが、ウェーハ外周部の歪みの発生場所はサセプタ等の部材に起因しているため、反応条件の多少の違いでは発生場所は変わらないことが分かっている。そのため、エピタキシャルウェーハで歪みが発生する場所に対して、多結晶膜が形成されたウェーハでの発生場所がどれくらい一致するかを評価した。表1に多結晶膜表面の研磨除去量と歪み量の一致率の関係を示す。
 外周部の歪みの測定での測定領域は、最外周の0.5mmを測定除外領域として歪み測定幅を4mmとした。測定間隔は周方向2mm、径方向1mmである。
 (比較例1)
 多結晶膜表面を研磨除去しなかった(除去量0μm)こと以外の条件は実施例1と同様として評価を行った。その結果、一致率は42%であり一致率が十分ではなかった。
 表1のように、研磨による多結晶膜の除去量を、0.1μm、0.2μm、0.4μm、0.8μm、1.6μm、4.0μmとしたウェーハを作製し、歪み発生量の一致率を比較した。その結果、多結晶膜表面の研磨除去量を0.1μmとすると一致率は78%となり、0.2μm以上にすることで一致率はさらに向上し、90%以上になった。多結晶膜表面の研磨除去量が0.2μm以上で一致率が90%以上となったことから、外周部のノイズが除去でき高精度に歪み量を評価可能である。
 以上のとおり、本発明の実施例によれば、多結晶膜が形成されたウェーハの外周歪み評価を高精度で実施できた。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 気相エッチングにより多結晶膜表面の除去を行い、ウェーハ外周部の歪みの評価を行った。実施例1の多結晶膜の表面を0.8μm研磨した多結晶膜が形成されたウェーハと、多結晶膜をエッチングによって除去した多結晶膜が形成されたウェーハそれぞれの外周歪み量を測定し、歪み量の一致率について調査した。
 多結晶膜が形成されたウェーハの作製方法は実施例1と同様であり、気相エッチングはエピタキシャルウェーハ製造装置の反応炉内での多結晶膜成長後に、上記反応炉内にエッチングガス(塩化水素)を供給することで行った。表2に多結晶膜表面の気相エッチング除去量と歪み量の一致率の関係を示す。
 外周部の歪みの測定での測定領域は、実施例1と同様である。
 (実施例3)
 液相エッチングにより多結晶膜表面の除去を行い、ウェーハ外周部の歪みの評価を行った。実施例1の多結晶膜の表面を0.8μm研磨した多結晶膜が形成されたウェーハと、多結晶膜をエッチングによって除去した多結晶膜が形成されたウェーハそれぞれの外周歪み量を測定し、歪み量の一致率について調査した。
 多結晶膜が形成されたウェーハの作製方法は実施例1と同様であり、液相エッチングはウェーハを反応炉から取り出した後にエッチング液(フッ酸)を用いて行った。表3に多結晶膜表面の液相エッチング除去量と歪み量の一致率の関係を示す。
 外周部の歪みの測定での測定領域は、実施例1と同様である。
 (比較例2)
 多結晶膜表面を除去しなかった(除去量0μm)こと以外の条件は実施例1と同様とした場合の一致率は45%であり一致率が十分ではなかった。
 表2のように、気相エッチングによる多結晶膜の除去量を0.2μm、0.4μm、0.5μm、1.0μm、1.5μm、3.0μmとしたウェーハを作製し、歪み発生量の一致率を比較した。その結果、多結晶膜表面のエッチング除去量を0.2μm以上とすると一致率は60%以上となり、0.5μm以上とすることで一致率はさらに向上し、90%以上となった。多結晶膜表面のエッチング除去量が0.5μm以上で一致率が90%以上となったことから、外周部のノイズが除去でき高精度に歪み量を評価可能である。
Figure JPOXMLDOC01-appb-T000002
 表3のように、液相エッチングによる多結晶膜の除去量を0.2μm、0.4μm、0.5μm、1.0μm、1.5μm、3.0μmとしたウェーハを作製し、歪み発生量の一致率を比較した。その結果、多結晶膜表面のエッチング除去量を0.2μm以上とすると一致率は60%以上となり、0.5μm以上とすることで一致率はさらに向上し、90%以上となった。多結晶膜表面のエッチング除去量が0.5μm以上で一致率が90%以上となったことから、外周部のノイズが除去でき高精度に歪み量を評価可能である。
Figure JPOXMLDOC01-appb-T000003
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  表面に多結晶膜が形成されたウェーハの外周歪みの評価方法であって、
     前記表面に多結晶膜が形成されたウェーハとして、シリコン単結晶基板の表面に多結晶膜が形成されたウェーハを用い、
     前記多結晶膜の表面を除去する前処理をし、
     その後、前記ウェーハの外周の裏面から赤外レーザーを入射させ、
     前記ウェーハを透過した後の前記赤外レーザーの偏光度から前記ウェーハの外周歪みを評価することを特徴とするウェーハの外周歪みの評価方法。
  2.  前記前処理を、研磨、及び/又は、エッチングにより行うことを特徴とする請求項1に記載のウェーハの外周歪みの評価方法。
  3.  前記前処理を、研磨により行い、表面を厚さ0.2μm以上研磨除去することを特徴とする請求項2に記載のウェーハの外周歪みの評価方法。
  4.  前記前処理を、エッチングにより行い、表面を厚さ0.5μm以上エッチング除去することを特徴とする請求項2に記載のウェーハの外周歪みの評価方法。
  5.  前記前処理を、気相エッチング、及び/又は、液相エッチングで行うことを特徴とする請求項2又は4に記載のウェーハの外周歪みの評価方法。
PCT/JP2020/021592 2020-06-01 2020-06-01 ウェーハ外周歪みの評価方法 WO2021245741A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/021592 WO2021245741A1 (ja) 2020-06-01 2020-06-01 ウェーハ外周歪みの評価方法
CN202080101429.3A CN115668470A (zh) 2020-06-01 2020-06-01 晶圆外周变形的评价方法
EP20938747.1A EP4160660A4 (en) 2020-06-01 2020-06-01 METHOD FOR EVALUATION OF THE OUTER PERIPHERAL DISTORTION OF A WAFER
US17/925,417 US20230197533A1 (en) 2020-06-01 2020-06-01 Method for evaluating peripheral strain of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021592 WO2021245741A1 (ja) 2020-06-01 2020-06-01 ウェーハ外周歪みの評価方法

Publications (1)

Publication Number Publication Date
WO2021245741A1 true WO2021245741A1 (ja) 2021-12-09

Family

ID=78830933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021592 WO2021245741A1 (ja) 2020-06-01 2020-06-01 ウェーハ外周歪みの評価方法

Country Status (4)

Country Link
US (1) US20230197533A1 (ja)
EP (1) EP4160660A4 (ja)
CN (1) CN115668470A (ja)
WO (1) WO2021245741A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019216A (ja) 2010-07-07 2012-01-26 Siltronic Ag 半導体ウェハを検査するための方法および半導体ウェハのエッジを検査するための装置
JP2019204912A (ja) * 2018-05-25 2019-11-28 信越半導体株式会社 評価方法
JP6702485B1 (ja) * 2019-05-27 2020-06-03 信越半導体株式会社 ウェーハ外周歪みの評価方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115870A (ja) * 2005-10-20 2007-05-10 Shin Etsu Handotai Co Ltd ウエーハのワレ検査装置およびワレ検査方法並びにウエーハの製造方法
JP6978928B2 (ja) * 2017-12-25 2021-12-08 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハの評価方法
WO2019182913A1 (en) * 2018-03-20 2019-09-26 Tokyo Electron Limited Self-aware and correcting heterogenous platform incorporating integrated semiconductor processing modules and method for using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019216A (ja) 2010-07-07 2012-01-26 Siltronic Ag 半導体ウェハを検査するための方法および半導体ウェハのエッジを検査するための装置
JP2019204912A (ja) * 2018-05-25 2019-11-28 信越半導体株式会社 評価方法
JP6702485B1 (ja) * 2019-05-27 2020-06-03 信越半導体株式会社 ウェーハ外周歪みの評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160660A4

Also Published As

Publication number Publication date
CN115668470A (zh) 2023-01-31
US20230197533A1 (en) 2023-06-22
EP4160660A1 (en) 2023-04-05
EP4160660A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
US8021968B2 (en) Susceptor and method for manufacturing silicon epitaxial wafer
US7922813B2 (en) Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
JP5092975B2 (ja) エピタキシャルウェーハの製造方法
US8372298B2 (en) Method for producing epitaxially coated silicon wafers
KR101516164B1 (ko) 에피텍셜 성장용 서셉터
US9273414B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP2017109900A (ja) エピタキシャル成長装置、エピタキシャル成長方法及び半導体素子の製造方法
JP2009272633A (ja) エピタキシャル被覆された半導体ウェハの製造方法
TWI672402B (zh) 經磊晶塗布的單晶矽半導體晶圓以及其製造方法
JP4599816B2 (ja) シリコンエピタキシャルウェーハの製造方法
JP3004846B2 (ja) 気相成長装置用サセプタ
JP7083699B2 (ja) 評価方法
JP3911518B2 (ja) 気相成長装置用サセプターと気相成長方法
JP6702485B1 (ja) ウェーハ外周歪みの評価方法
WO2021245741A1 (ja) ウェーハ外周歪みの評価方法
JP2000355766A (ja) 基板処理装置及び基板処理方法
JPH0758029A (ja) サセプタ
JPWO2009060914A1 (ja) エピタキシャルウェーハ
TW202146845A (zh) 晶圓外周變形之評價方法
JP7294021B2 (ja) 黒鉛製支持基板の表面処理方法、炭化珪素多結晶膜の成膜方法および炭化珪素多結晶基板の製造方法
JP7400337B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7143638B2 (ja) 炭化珪素エピタキシャル基板の製造方法
JPH1116991A (ja) 半導体製造装置用カーボン支持体
WO2022153951A1 (ja) エッチング量の測定方法及びその測定システム
JP2020088322A (ja) エピタキシャルウェーハの製造方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020938747

Country of ref document: EP

Effective date: 20230102

NENP Non-entry into the national phase

Ref country code: JP