WO2021241543A1 - Method of manufacturing paper-containing three-dimensional structure - Google Patents

Method of manufacturing paper-containing three-dimensional structure Download PDF

Info

Publication number
WO2021241543A1
WO2021241543A1 PCT/JP2021/019718 JP2021019718W WO2021241543A1 WO 2021241543 A1 WO2021241543 A1 WO 2021241543A1 JP 2021019718 W JP2021019718 W JP 2021019718W WO 2021241543 A1 WO2021241543 A1 WO 2021241543A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
containing sheet
water
dimensional structure
sheet
Prior art date
Application number
PCT/JP2021/019718
Other languages
French (fr)
Japanese (ja)
Inventor
宏毅 重宗
真吾 前田
直基 細矢
優弥 三枝
Original Assignee
学校法人芝浦工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人芝浦工業大学 filed Critical 学校法人芝浦工業大学
Priority to JP2022526561A priority Critical patent/JPWO2021241543A1/ja
Publication of WO2021241543A1 publication Critical patent/WO2021241543A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/16Models made by folding paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D5/00Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles
    • B31D5/04Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles including folding or pleating, e.g. Chinese lanterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/36Moistening and heating webs to facilitate mechanical deformation and drying deformed webs

Definitions

  • the present invention relates to a method for manufacturing a paper-containing three-dimensional structure.
  • Origami technology has the advantage of being able to form a variety of three-dimensional structures by folding a single sheet of paper, and by devising a folding pattern, it is possible to repeatedly use the functions of unfolding and storing. Since it is possible to form a structure having relatively high mechanical strength, it is expected to be applied in various fields. For example, the application of origami technology is expected to be applied to the manufacture of three-dimensional electronic devices, the manufacture of lightweight and inexpensive impact cushioning materials, the space saving by folding sheets, and the like.
  • a material that responds to an external stimulus is placed on the paper, and the response of this material when the stimulus is applied is used to autonomously fold the paper.
  • the technology has been reported so far.
  • examples of the stimulus include electric current, heat, and the like.
  • such bending technology requires the supply of some energy such as electric current and heat, so there is a problem that the usage environment may be limited, and the paper is also modified with a special material. There was a problem that it was expensive because it had to be done.
  • Non-Patent Document 1 a method of discharging an aqueous solution containing 2-propanol onto paper and drying it using an inkjet printer is disclosed (see Non-Patent Document 1).
  • This method has the advantage of high practicality because it does not require the supply of energy such as electric current and heat to the paper and it is not necessary to modify the paper with a special material.
  • Non-Patent Document 1 The method disclosed in Non-Patent Document 1 is useful in that it can solve the problems of other methods so far, but further improvements are made in order to apply it to a practical method for manufacturing a three-dimensional structure. desired. Further, if such a folding technique can be applied not only to paper but also to composite paper in which paper and other materials are used in combination, its usefulness is further enhanced.
  • An object of the present invention is to provide a highly practical method for manufacturing a new three-dimensional structure using origami technology.
  • the present invention is a method for manufacturing a paper-containing three-dimensional structure, which is made of paper or is formed by folding a paper-containing sheet containing paper as a main component, which is one of the paper-containing sheets.
  • a paper-containing three-dimensional structure comprising a step (B) of autonomously bending the paper-containing sheet at a portion having a concentration gradient of the water by drying the paper-containing sheet in a holding state. Provides a method of manufacturing a body.
  • the paper-containing sheet is formed with the side of both sides of the paper-containing sheet facing inward where the water concentration is high. It is preferable to bend it autonomously.
  • the amount of the water to be permeated into the paper-containing sheet may be 1.0 ⁇ 10-12 to 10 g / mm 3. preferable.
  • the paper-containing sheet having the water concentration gradient is heated at a temperature of -273.15 to 1.0 ⁇ under normal pressure. 10 5 ° C., it is preferable to dry under a relative humidity of 0-100%.
  • the portion having the water concentration gradient in which the permeation amount of the water is different from each other is 2. It is preferable to prepare the above.
  • step (A) in the step (A), two or more different aqueous solutions are separately adhered to different regions of the paper-containing sheet. In the surface direction of the paper-containing sheet, two or more portions having the water concentration gradients in which the permeation amount of the water is different from each other may be prepared.
  • the two or more kinds of aqueous solutions those having different hydration parameters of solutes may be used.
  • FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention.
  • FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention.
  • FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention.
  • FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention.
  • FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention.
  • It is sectional drawing for schematically explaining an example of the step (B) in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention.
  • a portion having a water concentration gradient is produced, and another example of the paper-containing sheet, the target paper-containing three-dimensional structure, and the like is schematically. It is a cross-sectional view shown in.
  • a portion having a water concentration gradient is produced, and another example of the paper-containing sheet, the target paper-containing three-dimensional structure, and the like is schematically. It is a cross-sectional view shown in.
  • a portion having a water concentration gradient is produced, and another example of the paper-containing sheet, the target paper-containing three-dimensional structure, and the like is schematically. It is a cross-sectional view shown in.
  • a portion having a water concentration gradient is produced, and another example of the paper-containing sheet, the target paper-containing three-dimensional structure, and the like is schematically. It is a cross-sectional view shown in. It is a top view which shows the paper-containing sheet after performing the step (A) in Example 1.
  • Example 1 it is a graph which shows the measurement result of the bending angle of a paper-containing sheet after performing a step (B). It is a graph which shows the measurement result of the bending angle of the paper-containing sheet measured in Example 1 together with the standardized ink ejection amount. It is a graph which shows an example of the measurement result of the angle of the bent part of the paper-containing three-dimensional structure in Example 1.
  • FIG. It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 2.
  • FIG. It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 3.
  • Example 4 It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 4.
  • FIG. It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 5.
  • FIG. It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 6.
  • 3 is a graph showing the relationship between the concentration of the aqueous electrolyte solution and the easiness of expansion of the paper-containing sheet when the aqueous electrolyte solution is permeated into the paper-containing sheet in Test Example 1.
  • 3 is a graph showing the relationship between the concentration of the aqueous electrolyte solution and the ease of drying of the paper-containing sheet when the aqueous electrolyte solution is permeated into the paper-containing sheet in Test Example 2.
  • Example 3 is a graph showing the relationship between the type of electrolyte and the easiness of expansion of the paper-containing sheet when the aqueous electrolyte solution is permeated into the paper-containing sheet in Test Example 3. It is a graph which shows the relationship between the type of an electrolyte, and the easiness of drying of a paper-containing sheet when the aqueous electrolyte solution is permeated into a paper-containing sheet in Test Example 4.
  • 8 is a graph showing the relationship between the concentration of the aqueous electrolyte solution and the bending angle of the paper-containing sheet when the aqueous electrolyte solution is permeated into the paper-containing sheet in Example 8.
  • FIG. 9 is a graph showing the relationship between the concentration of the aqueous electrolyte solution when the aqueous electrolyte solution is permeated into the paper-containing sheet in Example 9, the width of the permeated region, and the bending angle of the paper-containing sheet.
  • the method for manufacturing a paper-containing three-dimensional structure is a method for manufacturing a paper-containing three-dimensional structure made of paper or formed by folding a paper-containing sheet containing paper as a main component. By infiltrating the paper-containing sheet with water from one surface thereof, one or two or more portions having a water concentration gradient in the thickness direction of the paper-containing sheet are produced on the paper-containing sheet. By drying the paper-containing sheet having the water concentration gradient in the step (A), the paper-containing sheet is autonomously bent at the portion having the water concentration gradient. It has a step (B) and.
  • the paper-containing sheet is practically and efficiently used without using a special material and without requiring the supply of energy to the paper-containing sheet.
  • a paper-containing three-dimensional structure can be manufactured.
  • 1A to 1C are cross-sectional views for schematically explaining an example of the step (A) in the method for manufacturing a paper-containing three-dimensional structure of the present embodiment.
  • step (A) water is infiltrated into the paper-containing sheet from one surface thereof.
  • water 9 is adhered to one surface 1a of the paper-containing sheet 1.
  • an appropriate amount of water 9 not be the excess, by attaching to one surface 1a of the paper-containing sheet 1, FIG. 1B or FIG. 1C
  • the paper-containing sheet 1 can be infiltrated with water 9 from one of the surfaces 1a.
  • FIG. 1B shows a state in which the paper-containing sheet 1 is warped so that one surface 1a thereof is convex, and typically, after passing through such a state, the paper-containing sheet 1 is warped as shown in FIG. 1C. It will be in a resolved state.
  • the reason why the paper-containing sheet 1 warps is that the paper-containing sheet 1 permeates from one surface 1a of the paper-containing sheet 1 toward the other surface 1b. This is because one surface 1a side of the paper-containing sheet 1 expands due to a higher concentration (higher content) of water 9 on one surface 1a side than on the other surface 1b side. With the passage of time, as the concentration difference of the water 9 becomes smaller, the influence of the expansion of the paper-containing sheet 1 is alleviated, and as shown in FIG. 1C, the warp of the paper-containing sheet 1 is eliminated.
  • the paper-containing sheet 1 is a sheet made of paper (that is, a sheet made of paper) or a sheet containing paper as a main component, and contains cellulose as a main component.
  • paper sheet examples include tracing paper and the like.
  • a sheet containing paper as a main component contains paper and other components.
  • the other components can be arbitrarily selected depending on the intended purpose as long as the effects of the present invention are not impaired. More specifically, examples of the other components include resins, silica gel and the like.
  • the other components contained in the sheet containing paper as a main component may be only one kind, two or more kinds, and when two or more kinds, the combination and ratio thereof are arbitrary. Can be selected.
  • the ratio of the content of the other components to the total mass of this sheet ([amount of the other components in a sheet containing paper as a main component (parts by mass)] / [paper The total mass (parts by mass) of the sheet containing It may be any of the following.
  • the ratio is not more than the upper limit value, the paper-containing sheet can be bent more efficiently than 1.
  • the ratio is more than 0% by mass, and may be, for example, 1% by mass or more. The larger the lower limit of the ratio, the higher the effect obtained by containing the other components.
  • the paper-containing sheet (sheet made of paper, sheet containing paper as a main component) 1 may be made of one layer (single layer) or may be made of two or more layers. ..
  • the paper-containing sheet is composed of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the thickness T 1 of the paper-containing sheet 1 can be arbitrarily selected depending on the purpose, but is preferably 1.0 ⁇ 10 -6 to 1,0 ⁇ 10 4 ⁇ m, and more preferably 1 to 1000 ⁇ m. preferable. When T 1 is in such a range, the paper-containing sheet 1 can be bent with higher accuracy.
  • the "thickness of the paper-containing sheet” means the thickness of the entire paper-containing sheet, and for example, the thickness of the paper-containing sheet composed of a plurality of layers is the total of all the layers constituting the paper-containing sheet. Means the thickness of.
  • the shape of the paper-containing sheet 1 is not particularly limited as long as it is in the form of a sheet, and can be arbitrarily selected according to the structure of the target paper-containing three-dimensional structure. These shapes and structures will be described in detail later.
  • the water 9 can be attached (discharged) to one surface 1a of the paper-containing sheet 1 as water droplets by, for example, an inkjet printing method.
  • the amount (adhesion amount) of the water 9 permeated into the paper-containing sheet 1 is not particularly limited as long as the effect of the present invention is not impaired, but is 1.0 ⁇ 10-12 to 10 g / mm 3 . It is preferably 1.0 ⁇ 10 -6 to 1 g / mm 3, and more preferably 1.0 ⁇ 10 -6 to 1 g / mm 3.
  • the paper-containing sheet 1 can be bent more efficiently.
  • the thickness T 1 direction of the paper-containing sheet 1 One or two or more portions 11 having a concentration gradient of water 9 are prepared on the paper-containing sheet 1. In FIG. 1, only 1 is shown for convenience in the portion 11 having a water concentration gradient.
  • the paper-containing sheet has a concentration gradient of water in the thickness direction thereof, that is, the content of water per unit volume (water) in the direction in which the paper-containing sheet connects both sides at the shortest distance. Concentration) has different regions.
  • 1B and 1C show a state in which the content of water 9 in the paper-containing sheet 1 gradually decreases from one surface 1a of the paper-containing sheet 1 toward the other surface 1b.
  • the permeation direction of the water 9 that is, the surface of the paper-containing sheet 1 to which the water 9 is adhered (the one surface 1a) to the opposite surface (the one surface).
  • the amount of water 9 in the paper-containing sheet 1 decreases in the direction toward the surface 1b).
  • the water 9 permeated into the paper-containing sheet 1 does not reach the other surface 1b of the paper-containing sheet 1, but in the step (A), the water 9 is as described above. If a concentration gradient is generated, for example, as shown in FIG. 2, the water 9 permeated into the paper-containing sheet 1 may reach the other surface 1b of the paper-containing sheet 1.
  • the same components as those shown in the already explained figures are designated by the same reference numerals as in the case of the already explained figures, and detailed description thereof will be omitted.
  • one or two or more portions 11 having such a water concentration gradient are produced on the paper-containing sheet 1.
  • the portion 11 having a water concentration gradient is prepared at a portion of the paper-containing sheet 1 to be bent. For example, when the paper-containing sheet 1 is viewed in a plan view from above on the one side of the surface 1a, the shape, size, and number of the portions 11 having a water concentration gradient are the target paper-containing three-dimensional structure. Determined according to the body.
  • 3A to 3D are plan views schematically showing an example of the shape of the portion 11 having a water concentration gradient.
  • the shape of the portion 11 having a water concentration gradient when the paper-containing sheet 1 is viewed in a plan view from above on the one surface 1a side thereof is shown.
  • the portion 11 having the water concentration gradient is formed linearly in a direction parallel to the one surface 1a of the paper-containing sheet 1 (in other words, the surface direction). That is, the portion 11 having the water concentration gradient shown here is provided in a continuous manner in a direction parallel to the one surface 1a of the paper-containing sheet 1.
  • the portion 11 having a water concentration gradient is formed in a dotted line in a direction parallel to the one surface 1a of the paper-containing sheet 1. That is, in the portion 11 having the water concentration gradient shown here, the individual local portions having the water concentration gradient (the portions indicated by dots in FIG. 3B) are close to each other, and the paper-containing sheet 1 has a portion 11. It is provided in a direction parallel to the one surface 1a while being intermittently connected to each other. In the present embodiment, when the local sites having a water concentration gradient are provided close to each other and form some shape as a whole, one "water concentration gradient is obtained". It may be treated as a "site”.
  • the portion 11 having a water concentration gradient is formed in a dashed line in a direction parallel to the one surface 1a of the paper-containing sheet 1.
  • the part 11 having a water concentration gradient shown here is the same as the part 11 having a water concentration gradient shown in FIG. 3B, except that some of the local parts have different shapes. Is.
  • the portion 11 having a water concentration gradient is formed in a solid line in a direction parallel to the one surface 1a of the paper-containing sheet 1, and further, from one end of the solid line, the portion 11 is formed. It is continuously formed in a dotted line.
  • the solid linear portion is designated by reference numeral 111
  • the dotted line portion is designated by reference numeral 112.
  • the portion having a water concentration gradient in the present embodiment may be formed by combining different shapes or patterns in this way.
  • FIG. 3D there are two types of shapes or patterns that are combined, but in this embodiment, there are three types of shapes or patterns that are combined to form a portion having one water concentration gradient. It may be the above.
  • step (A) it is preferable to prepare the portion 11 having the water concentration gradient on the paper-containing sheet 1 in a solid line shape or a dotted line shape.
  • a so-called origami type structure having creases can be easily manufactured as the paper-containing three-dimensional structure.
  • the line width is 1.0 ⁇ 10 -6 to It is preferably 1.0 ⁇ 10 9 ⁇ m, more preferably 1.0 ⁇ 10 -3 to 1.0 ⁇ 10 6 ⁇ m, and more preferably 1.0 to 1.0 ⁇ 10 5 ⁇ m. More preferred. When the line width is in such a range, the paper-containing sheet 1 can be bent more efficiently.
  • the line width when the portion having the water concentration gradient is linear, the line width may change with time.
  • the line width means a line width having a constant value when the line width does not change with time, and when the line width changes with time, it means the line width. It means the maximum value of the line width.
  • the line width W 1 shown in FIG. 1B is a numerical range described above.
  • the line width W 1 shown in FIG. 1C is a numerical range described above.
  • the line width can be measured, for example, by looking down at the paper-containing sheet 1 from above on the one side of the surface 1a and looking at it in a plan view.
  • FIG. 4 shows an example of a paper-containing sheet 1 in which a first portion 12 and a second portion 13 in which the amount of water permeated is larger than that of the first portion 12 are prepared as portions having such a water concentration gradient. Is a cross-sectional view schematically showing.
  • the only difference between the first site 12 having a water concentration gradient and the second site 13 having a water concentration gradient is the permeation amount of water 9, and these sites are the same except for this difference. ..
  • the sites (the first site 12 and the second site 13) in which the permeation amount of the water 9 is different from each other, in the step (B) described later, based on the difference in the permeation amount of the water 9. It is possible to make a difference in the bending speed at these sites. Then, by making a difference in the bending speed in this way, a paper-containing three-dimensional structure having a more complicated shape can be manufactured. Further, as a paper-containing three-dimensional structure, those having different bending angles at these sites can be manufactured.
  • Both the first part 12 and the second part 13 having the water concentration gradient can have the same form as the above-mentioned part 11 having the water concentration gradient.
  • the first part 12 and the second part 13 having a water concentration gradient can be produced by changing the amount of water 9 attached to one surface 1a of the paper-containing sheet 1 to each other.
  • an aqueous solution (not shown) may be used. That is, as the water 9, the water in the aqueous solution may be attached to one surface 1a of the paper-containing sheet 1. In this case as well, the water 9 can be permeated into the paper-containing sheet 1 in the same manner as when only water is used. In this case, the solute in the aqueous solution may also permeate the paper-containing sheet 1.
  • water and an aqueous solution may be collectively referred to as an "aqueous medium".
  • solute in the aqueous solution examples include an electrolyte such as a salt and a dye.
  • the solute in the aqueous solution may be only one kind, two or more kinds, or two or more kinds, and the combination and ratio thereof can be arbitrarily selected according to the purpose.
  • the concentration of the components other than water, which is liquid at room temperature, in the aqueous solution is preferably as low as possible, for example, preferably 5% by mass or less, more preferably 3% by mass or less, and 1% by mass or less. Is even more preferable.
  • the term "normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • the paper-containing sheet 1 is autonomously bent by adhering the aqueous solution in which most of the solvent component is water or only water as the solvent component to the paper-containing sheet 1. , Faster and can be done with larger bending angles.
  • a technique for autonomously folding a sheet is disclosed.
  • lower alcohols such as 2-propanol are miscible with water, they do not have the effect of autonomously bending the paper-containing sheet, or even if they do, the effect is significantly inferior to that of water. Therefore, when compared in the same amount, when the above-mentioned aqueous solution containing 2-propanol is used, the above-mentioned aqueous solution in which most of the solvent components are water, or when only water is used as the solvent component.
  • the method for manufacturing the paper-containing three-dimensional structure of the present embodiment has a remarkable effect in that the paper-containing sheet can be autonomously bent at a faster speed and a larger bending angle than in the conventional case. Play.
  • step (A) when the aqueous solution containing the additive is adhered to one surface 1a of the paper-containing sheet 1, two kinds of aqueous solutions having different concentrations of the additive are applied to each other of the paper-containing sheet 1. It may be attached separately to different regions.
  • step (A) when an aqueous solution is used and the water in the aqueous solution is attached to one surface 1a of the paper-containing sheet 1 as water 9, two different aqueous solutions are applied to the paper-containing sheet 1. It may be attached separately to different regions. By doing so, in the direction parallel to the one surface 1a of the paper-containing sheet 1 (in other words, the surface direction), the permeation amounts of the water 9 are different from each other (the first part 12 and the second part). 13) can be produced in the paper-containing sheet 1.
  • the solutes in the two aqueous solutions used to prepare the first site 12 and the second site 13 having a water concentration gradient may be the same or different from each other. That is, these two aqueous solutions may contain the same solute and have different solute concentrations, or may contain different solutes and have different solute concentrations. They may contain different solutes and have the same concentration of solutes. When either or both of these two aqueous solutions contains two or more salts, the concentration of the salt is the total concentration of all the salts contained.
  • the water 9 in the attached aqueous solution is attached. Since the amounts are different, the amounts of water 9 in these aqueous solutions that permeate into the paper-containing sheet 1 are different from each other. The lower the concentration of the solute in the aqueous solution, the greater the permeation amount of water 9 in the aqueous solution into the paper-containing sheet 1. Further, in this case, the permeation rate of the water 9 into the paper-containing sheet 1 is also different between these aqueous solutions. The lower the concentration of the solute in the aqueous solution, the faster the permeation rate of water 9 tends to be.
  • aqueous solutions having different solute types and the same solute concentration (M) are attached to the one surface 1a of the paper-containing sheet 1 in the same amount.
  • solutes of these solutes are attached. If the hydration parameters are different from each other, the amount of water 9 in these aqueous solutions permeating into the paper-containing sheet 1 will be different from each other. This is because the amount of water molecules that hydrate the solute differs due to the different hydration parameters of the solute, and the ease of permeation of water 9 into the paper-containing sheet 1 (water permeation rate) also differs. Is.
  • the smaller the hydration parameter of the solute the smaller the amount of water molecules that hydrate the solute, the easier it is for water 9 to permeate the paper-containing sheet 1, and the water in the aqueous solution into the paper-containing sheet 1.
  • the permeation amount of 9 tends to increase. Further, in this case, the permeation rate of the water 9 into the paper-containing sheet 1 is also different between these aqueous solutions.
  • the smaller the hydration parameter of the solute the faster the permeation rate of water 9 tends to be.
  • the first portion 12 is described. And the second part 13 can be easily produced.
  • the solute is not particularly limited as long as it has water solubility (in other words, is hydrateable), and can be arbitrarily selected.
  • the aqueous solution is preferably neutral.
  • the salt may be either an organic salt or an inorganic salt, but is preferably an inorganic salt.
  • the inorganic salt include lithium chloride (LiCl, hydration parameter: 7.1), sodium chloride (NaCl, hydration parameter: 3.5), potassium chloride (KCl, hydration parameter: 1.9), and the like.
  • Chloride of alkali metals such as rubidium chloride (RbCl, hydration parameter: 1.2); lithium bromide (LiBr, hydration parameter: 7.6), sodium bromide (NaBr, hydration parameter: 4.2).
  • Bromide of alkali metals such as potassium bromide (KBr, hydration parameter: 2.1), rubidium bromide (RbBr, hydration parameter: 0.9); lithium iodide (LiI, hydration parameter: 9.0) ), Sodium iodide (NaI, hydration parameter: 5.5), potassium iodide (KI, hydration parameter: 2.5), rubidium iodide (RbI, hydration parameter: 0.6) and other alkali metals.
  • alkali metals such as potassium bromide (KBr, hydration parameter: 2.1), rubidium bromide (RbBr, hydration parameter: 0.9); lithium iodide (LiI, hydration parameter: 9.0) ), Sodium iodide (NaI, hydration parameter: 5.5), potassium iodide (KI, hydration parameter: 2.5), rubidium iodide (RbI, hydration parameter:
  • magnesium chloride MgCl 2 , hydration parameter: 13.7), calcium chloride (CaCl 2 , hydration parameter: 12.0), strontium chloride (SrCl 2 , hydration parameter: 10.7), etc. chloride group 2 metal; magnesium bromide (MgBr 2, hydration parameters: 17.0), calcium bromide (CaBr 2, hydration parameters: 14.6), strontium bromide (SrBr 2, hydration parameters: Bromide of Group 2 metals such as 12.7); magnesium iodide (MgI 2 , hydration parameter: 19.0), calcium chloride (CaI 2 , hydration parameter: 17.0), strontium chloride (SrI) 2.
  • magnesium bromide MgBr 2, hydration parameters: 17.0
  • calcium bromide CaBr 2, hydration parameters: 14.6
  • strontium bromide SrBr 2, hydration parameters: Bromide of Group 2 metals such as 12.7
  • Hydrate of Group 2 metal such as hydration parameter: 15.5); manganese chloride (MnCl 2 , hydration parameter: 11.0), ferrous chloride (FeCl 2 , hydration parameter: 12.0) ), Chloride of transition metal such as cobalt chloride (CoCl 2 , hydration parameter: 13.0), nickel chloride (NiCl 2 , hydration parameter: 13.0) and the like.
  • the solute preferably has a hydration parameter of 0.5 to 20.0, for example, in terms of availability and suitability for use.
  • a solute having a hydration parameter of 0.5 to 9 can be selected.
  • a solute having a hydration parameter of 15 to 20 can be selected.
  • the concentration of the solute in the aqueous solution is not particularly limited and may be any longer than the saturation concentration.
  • the concentration of the solute in the aqueous solution may be, for example, 1 to 20 M, but when it is 1 to 7 M, the step (A) and the step (B) described later should be performed more stably. Can be done.
  • a case has been described in which a first site 12 having a water concentration gradient and a second site 13 having a water concentration gradient are produced by using two different aqueous solutions, but they are used in the present embodiment.
  • the types of different aqueous solutions can be arbitrarily selected according to the number of sites having a water concentration gradient in which the permeation amount of water 9 is different from each other, and may be 3 or more. That is, in the step (A), by separately adhering two or more different aqueous solutions to different regions of the paper-containing sheet, the amount of water permeating each other in the surface direction of the paper-containing sheet is increased. Two or more sites with different water concentration gradients may be prepared. In this case, for example, as the two or more kinds of aqueous solutions, those having different hydration parameters of the solute can be used.
  • the environmental pressure when the water 9 is adhered to and permeated into the paper-containing sheet 1 is preferably 0 to 1.0 ⁇ 10 12 Pa, and 1.0 ⁇ 10 2 to 1. It is more preferably 0.0 ⁇ 10 9 Pa, further preferably 1.0 ⁇ 10 6 to 1.0 ⁇ 10 7 Pa, and may be, for example, under normal pressure (atmospheric pressure). Under such pressure conditions, the water 9 can be better permeated into the paper-containing sheet 1.
  • step (A) the paper-containing sheet 1 to adhere the water 9, the temperature at which to permeate is preferably -273.15 ⁇ 1.0 ⁇ 10 5 °C, -10 ⁇ 1.0 ⁇ 10
  • the temperature is more preferably 3 ° C, more preferably 1.0 ⁇ 10-12 to 100 ° C, and may be, for example, 10 to 35 ° C. Under such temperature conditions, the water 9 can be better permeated into the paper-containing sheet 1.
  • the relative humidity when the water 9 is adhered to and permeated into the paper-containing sheet 1 is preferably 0 to 100%, more preferably 10 to 80%, for example, 20 to 20 to. It may be either 65% and 20-40%. Under such relative humidity conditions, the water 9 can be better permeated into the paper-containing sheet 1.
  • the time for infiltrating the paper-containing sheet 1 after the water 9 is attached can be arbitrarily set according to other conditions at this time, and is not particularly limited.
  • the time may be within 100,000 minutes.
  • step (A) two or more selected from the group consisting of environmental pressure, temperature, relative humidity and time when water 9 is adhered to the paper-containing sheet 1 and then permeated are set as the above-mentioned conditions.
  • the above conditions may be set for all of the environmental pressure, temperature, relative humidity and time when water 9 is adhered to the paper-containing sheet 1 and then permeated.
  • step (A) were allowed to adhere to water 9 to the paper containing sheets 1, when infiltrating, these steps, under normal pressure, the temperature -273.15 ⁇ 1.0 ⁇ 10 5 °C, relative It is preferably performed under a humidity of 0 to 100%, and may be performed under normal pressure, a temperature of 10 to 35 ° C., and a relative humidity of 20 to 65%, for example. However, this is an example of favorable conditions for the adhesion and permeation of water 9.
  • the paper-containing sheet having the water concentration gradient is dried.
  • the paper-containing sheet 1 begins to bend and dries (in other words, water 9) so that one surface 1a becomes concave at the portion 11 having the water concentration gradient.
  • the bending angle increases, and for example, as shown in FIG. 5B, the target paper-containing three-dimensional structure 10 is formed in a state where drying is completed.
  • the paper-containing sheet 1 is dried by drying the paper-containing sheet 1 having the water concentration gradient (in other words, the portion 11 having the water concentration gradient is present). It bends autonomously at the portion 11'that had the concentration gradient of the water.
  • the cellulose molecules are initially bonded to each other by hydrogen bonds.
  • step (A) when water 9 is impregnated into the paper-containing sheet 1, one surface 1a side expands as described above, but in the paper-containing sheet 1, water molecules are interspersed with cellulose molecules. It is presumed that the hydrogen bond is cleaved and the water molecule is interposed between the cellulose molecules, and the intermolecular bond of the cellulose molecule-water molecule-cellulose molecule is formed.
  • the paper-containing sheet 1 is manufactured in a state of being strained by an external force due to the manufacturing method thereof.
  • step (B) When the step (B) is performed on such a paper-containing sheet 1 after the step (A), as the water 9 in the paper-containing sheet 1 is reduced by drying, the paper-containing sheet 1 is again subjected to the step (B). , Cellulose molecules are bonded to each other by hydrogen bonds. At this time, it is presumed that the paper-containing sheet 1 is in a stable state with the strain reduced or eliminated from the initial state, and shrinks more than before the water 9 permeates. It is presumed that the paper-containing sheet 1 finally bends autonomously at the portion 11'that had the concentration gradient of the water, as shown in FIG. 5B, due to the shrinkage force generated at this time.
  • the step (B) thus, of both sides of the paper-containing sheet 1 (that is, one side 1a and the other side 1b), the side having a high concentration of water 9 (that is, one side 1a). Is inward (that is, the other surface 1b is outward), and the paper-containing sheet 1 is bent autonomously.
  • the bent portion When the paper-containing sheet is bent autonomously, the bent portion does not always have a clear crease, and the surface of the bent portion is often curved.
  • the bending angle of the paper-containing sheet can be easily measured when the bent portion has a clear crease, but when the surface of the bent portion has a curved surface, the same method as when the folded portion has a crease can be used. It is difficult to measure.
  • the bending angle of the paper-containing sheet can be measured by the following method.
  • 6A to 6B are schematic views for explaining a method of measuring the bending angle of the paper-containing sheet in such a case, and FIG. 6A is a plan view showing the paper-containing sheet before bending. 6B is a front view showing a paper-containing sheet (that is, a paper-containing three-dimensional structure) after bending.
  • the paper containing sheet 8 shown in FIG. 6A, the step (A), a linear width W 81 of the (thick line-like), portions 81 having a concentration gradient of water are produced.
  • the portion on the right side of the portion 81 having the water concentration gradient in the width W 81 direction is the first portion 802, which is on the left side.
  • the site is the second site 803.
  • a width W 802 of the first portion 802, the width W 803 of the second portion 803 are in a relationship of W 802 ⁇ W 803.
  • the paper-containing three-dimensional structure 80 is formed as shown in FIG. 6B by autonomously bending the paper-containing sheet 8 in the step (B).
  • the portion 81'in the paper-containing three-dimensional structure 80 (paper-containing sheet 8) having a water concentration gradient one surface 8a is a concave surface (the other surface 8b is a convex surface). ing.
  • the length of 1 / 2W 81 is the surface direction of the first portion 802. in the same direction, extending the line to the tip and the virtual end P 1.
  • the end opposite the first end portion P 2 and the side portions had a concentration gradient of water 81 ', chromatic of the second portion 803, the concentration gradient of water the side portions 81 'which has been a end opposite the second end P 3.
  • the virtual end portion P 1 , the first end portion P 2, and the second end portion P 3 are shown with black dots for convenience in order to make them easy to understand.
  • an extension line segment connecting the first end portion P 2 and the virtual end portion P 1 is further extended beyond the virtual end portion P 1, and the extension portion of this extension line segment and the second end portion are formed.
  • the angle ⁇ 1 (°) formed by the line segment connecting the end portion P 3 and the virtual end portion P 1 is adopted as the bending angle of the paper-containing sheet 8.
  • ⁇ 1 usually satisfies the condition of 0 ° ⁇ 1 ⁇ 180 °, and here exemplifies the case where ⁇ 1> 90 °.
  • the angle ⁇ 2 (°) formed by the line segment connecting the first end portion P 2 and the virtual end portion P 1 and the line segment connecting the second end portion P 3 and the virtual end portion P 1 contains paper.
  • ⁇ 2 also normally satisfies the condition of 0 ° ⁇ 2 ⁇ 180 °, and here, the case where ⁇ 2 ⁇ 90 ° is illustrated.
  • the pressure at which the paper-containing sheet 1 is dried is preferably 0 to 1.0 ⁇ 10 12 Pa, and is preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 9 Pa. Is more preferable, and 1.0 ⁇ 10 6 to 1.0 ⁇ 10 7 Pa is further preferable, and for example, it may be under normal pressure (atmospheric pressure). By drying the paper-containing sheet 1 under such pressure, the paper-containing sheet 1 can be bent more efficiently.
  • the temperature at which drying of paper containing sheet 1 (drying temperature) is preferably -273.15 ⁇ 1.0 ⁇ 10 5 °C, -10 ⁇ 1.0 ⁇ 10 3 °C It is more preferably 1.0 ⁇ 10-12 to 100 ° C., and may be, for example, 20 to 70 ° C. By drying the paper-containing sheet 1 under such temperature conditions, the paper-containing sheet 1 can be bent more efficiently.
  • the relative humidity when the paper-containing sheet 1 is dried is preferably 0 to 100%, more preferably 10 to 80%, and for example, 20 to 65% and 20 to 20 to. It may be any of 40%. By drying the paper-containing sheet 1 under such a relative humidity condition, the paper-containing sheet 1 can be bent more efficiently.
  • the time (drying time) for drying the paper-containing sheet 1 can be arbitrarily set according to other conditions at the time of drying, and is not particularly limited.
  • the time for drying the paper-containing sheet 1 may be 1.0 ⁇ 10 30 minutes or less, 100,000 minutes or less, or 10,000 minutes or less.
  • step (B) it is preferable to set two or more selected from the group consisting of the pressure, temperature, relative humidity and time when the paper-containing sheet 1 is dried under the above-mentioned conditions, and the paper-containing sheet 1 is used.
  • the pressure, temperature, relative humidity and time for drying may all be set to the above conditions.
  • a state having a concentration gradient of water paper containing sheets 1, under normal pressure, the temperature -273.15 ⁇ 1.0 ⁇ 10 5 °C, relative humidity of 0% to 100% under conditions For example, it may be dried under normal pressure at a temperature of 20 to 70 ° C. and a relative humidity of 20 to 65%.
  • this is an example of preferable drying conditions for the paper-containing sheet 1.
  • the step (B) may be started, for example, in a state where the paper-containing sheet 1 is warped as shown in FIG. 1B, or may be started in a state where the paper-containing sheet 1 is not warped as shown in FIG. 1C. You may.
  • the environmental conditions pressure, temperature, relative humidity, etc.
  • the step (B) is started when the decrease in the amount of water 9 in the paper-containing sheet 1 can be clearly confirmed.
  • the step (at the time when this condition is changed) B) can be assumed to have started.
  • the decrease in the amount of water 9 in the paper-containing sheet 1 can be confirmed, for example, by measuring the mass of the paper-containing sheet 1 in which water 9 has permeated.
  • step (A) two or more different aqueous solutions are separately adhered to different regions of the paper-containing sheet 1, so that the amount of water 9 permeating each other in the surface direction of the paper-containing sheet 1 is increased.
  • step (B) paper is contained between the two or more parts in the step (B) depending on the method of using the two or more kinds of aqueous solutions. Differences can be made in the autonomous bending mode of the sheet 1.
  • the concentration of the solute in the aqueous solution is adjusted, or the type of the solute is adjusted to be the same as described in 2 above.
  • the step (B) it is possible to make a difference in the autonomous bending angle or speed of the paper-containing sheet 1 between the two or more parts.
  • the paper-containing sheet 1 is provided with two or more autonomous bent portions having different modes. , Can be formed more easily.
  • Shape of paper-containing sheet The shape of the paper-containing sheet can be arbitrarily selected according to the structure of the target paper-containing three-dimensional structure.
  • 7A to 7C are perspective views schematically showing an example of the paper-containing sheet used in the present embodiment and the target paper-containing three-dimensional structure.
  • the paper-containing sheet 2 shown in FIG. 7A has a cross-shaped shape in which one of the two sides has a long length.
  • the paper-containing sheet 2 is subjected to step (A), and as shown in FIG. 7B, these square-shaped sheets are formed.
  • Sites 21, 22, 23, 24 and 25 having a water concentration gradient can be produced at the sites corresponding to the joints of the sheets.
  • the portions 21, 22, 23, 24, and 25 having a concentration gradient of water are all produced by infiltrating water from the same side surface of the paper-containing sheet 2, that is, one surface 2a side. can do.
  • the paper-containing sheet 2 is placed on the one surface 2a side in the portions 21', 22', 23', 24'and 25'that had the water concentration gradient. Bend autonomously. As described above, as shown in FIG. 7C, the cubic paper-containing three-dimensional structure 20 can be manufactured.
  • FIG. 8 is a plan view schematically showing another example of the paper-containing sheet used in the method for manufacturing the paper-containing three-dimensional structure of the present embodiment.
  • the paper-containing sheet 200 shown here has an arc shape corresponding to about 3/4 of the circumference in the four corners of the paper-containing sheet 2 shown in FIG. 7A whose outer circumference forms an angle of 90 °.
  • Notch 29 is provided, and is located on the outer circumference of the straight line, and corresponds to about 1/2 of the circumference at two places that can be regarded as the joints of the above-mentioned two square sheets. Corresponds to the one provided with the arcuate notch 28.
  • the paper-containing sheet 200 is provided with notches (four notches 29 and two notches 28) on the outer periphery thereof overlapping the planned bending points.
  • autonomous bending in the step (B) is easier than in the case of the paper-containing sheet 2 shown in FIG. 7A.
  • the method for producing a paper-containing three-dimensional structure according to the present embodiment is not limited to the above-mentioned embodiment, and a part of the configuration is changed, deleted or added within a range not deviating from the gist of the present invention. There may be.
  • FIG. 9A to 9B are cross-sectional views schematically showing another example of the paper-containing sheet in which the portion having the water concentration gradient is produced, the target paper-containing three-dimensional structure, and other examples in the present embodiment. ..
  • the paper-containing sheet 3 shown in FIG. 9A has a rectangular planar shape, and by performing step (A), a portion 31 having a linear water concentration gradient at two locations on one surface 3a side thereof. Is produced, and sites 32 having a linear water concentration gradient are produced at three locations on the other side of the surface 3b.
  • step (B) the paper-containing sheet 3 is autonomously bent toward the one surface 3a at the portion 31'that has the water concentration gradient, and the water concentration gradient is set. At the portion 32'that it had, it is autonomously bent toward the other surface 3b.
  • the corrugated paper-containing three-dimensional structure 30 can be manufactured.
  • the part having the water concentration gradient in the paper-containing sheet is made as one independent linear shape, and the flat paper-containing sheet is autonomously and linearly bent along this part.
  • the arrangement of the portion having the water concentration gradient in the paper-containing sheet and the autonomous folding method of the paper-containing sheet are not limited to this.
  • FIG. 10A to 10B are cross-sectional views schematically showing another example of the paper-containing sheet in which the portion having the water concentration gradient is produced, the target paper-containing three-dimensional structure, and other examples in the present embodiment. ..
  • the paper-containing sheet 4 shown in FIG. 10A has a rectangular planar shape, and by performing step (A), a portion 41 having a large number of linear water concentration gradients on one surface 4a side thereof. However, they are manufactured parallel to each other with a slight gap. On the other hand, on the other surface 4b side of the paper-containing sheet 4, a portion having a water concentration gradient is not formed.
  • the paper-containing sheet 4 is autonomously bent toward the one surface 4a at the portion 41'that has the water concentration gradient.
  • the paper-containing sheet 4 has the same number of portions 41'that have a water concentration gradient as the portions 41 that have a water concentration gradient. Therefore, as shown in FIG. 10B, the semi-cylindrical paper.
  • the contained three-dimensional structure 40 can be manufactured.
  • the paper-containing three-dimensional structure 40 can be used. It is also possible to have a shape other than the semi-cylindrical shape. For example, by increasing the amount of water permeation or widening the width of the portion 41 having the water concentration gradient as compared with the case of FIG. 10B, a cylindrical paper-containing three-dimensional structure or a roll-shaped wound shape can be obtained. It is possible to manufacture a paper-containing three-dimensional structure of the above.
  • the part having a water concentration gradient in the paper-containing sheet is generally shown to have a linear shape, but if a water concentration gradient can be formed, the part having a water concentration gradient is shown.
  • the shape of is, for example, some filled shape (eg, polygonal, circular, elliptical, and indefinite shape that does not fall under any of these, and one or more of these shapes, whose surface area is clearly larger than the line. It may be a composite shape in which the above are combined).
  • the method for manufacturing the paper-containing three-dimensional structure of the present embodiment does not require the supply of energy such as electric current and heat to the paper-containing sheet, and does not require the paper to be modified with a special material. It has the advantage of high practicality. Further, the method for manufacturing the paper-containing three-dimensional structure of the present embodiment has an advantage that the paper-containing sheet can be autonomously bent at a higher speed and a larger bending angle than the conventional method.
  • the manufacturing method of this embodiment is useful for manufacturing a three-dimensional electronic device, manufacturing a shock absorbing material, folding a sheet, and the like.
  • the unit of concentration "M” means "mol / L”.
  • a test piece having a size of 95 mm in length and 65 mm in width (hereinafter, may be referred to as "TP1 test piece") is cut out from TP1 and stored in a storage chamber in which the relative humidity is maintained at 30%. , The state of the TP1 test piece was stabilized. Next, the TP1 test piece was taken out from the storage, and the TP1 test piece was attached and fixed to the center of the surface of A4 size paper using a removable spray glue. Then, under the conditions of a temperature of 24 ° C.
  • the ejection amount of the water-based black ink is 0.0017 g, 0.0043 g, 0.0093 g, 0.0172 g and 0.0314 g in five ways using an inkjet printer.
  • the black print density can be adjusted in 5 ways of 20%, 40%, 60%, 80%, and 100%, and for each level of black ink ejection amount, the above-mentioned fixed TP1 test piece can be used.
  • inkjet printing was performed (step (A)).
  • FIG. 11 is a plan view showing a paper-containing sheet (TP1 test piece after printing black ink) after performing the step (A) in this embodiment.
  • the printed TP1 test piece was allowed to stand for 10 seconds under the conditions of a temperature of 24 ° C. and a relative humidity of 47% to allow the black ink to permeate the TP1 test piece.
  • the TP1 test piece was peeled off from the A4 size paper on which it was fixed, and the peeled TP1 was placed on a thermoplate whose temperature was adjusted to 60 ° C. in an environment of 30% relative humidity.
  • the TP1 test piece was dried and the TP1 test piece was autonomously bent (step (B)).
  • the TP1 test piece was placed on the thermoplate so that the side opposite to the printed surface of the TP1 test piece faces the thermoplate side. By the time the drying was finished, the autonomous bending of the TP1 test piece had already stopped.
  • the bending angle ( ⁇ 1 ) of the TP1 test piece (paper-containing three-dimensional structure) obtained in this manner after bending was measured by the method described with reference to FIGS. 6A to 6B. At this time, the imaging data of the TP1 test piece after bending was acquired, and the bending angle ( ⁇ 1 ) was measured by using the imaging data and software. The results are shown in Table 2 and FIG.
  • TP2 test piece, TP3 test piece, TP4 test piece, TP5 test piece, TP6 test piece, and TP7 are used in the same manner as in the case of the above TP1 test piece except that TP2 to TP7 are used instead of TP1.
  • the bending angle ( ⁇ 1 ) of each of the test pieces was measured. The results are shown in Table 2 and FIG. In FIG. 12, the results of the TP4 test piece, the TP5 test piece, and the TP6 test piece are not shown.
  • FIG. 13 shows a graph in which the results (bending angles) obtained above are plotted for each standardized ink ejection amount.
  • the thickness of the tracing paper is 97 ⁇ m or less (that is, TP3 test piece, TP4 test piece, TP5 test piece, TP6 test piece, TP7 test piece), the bending angle is almost close. It was confirmed that it was a value. This meant that a relatively thin tracing paper having a thickness of about 97 ⁇ m or less could easily achieve the desired bending angle regardless of the thickness.
  • the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 22 ° C. and a relative humidity of 54%.
  • the amount of the aqueous medium discharged to the tracing paper (synonymous with the amount of water to be infiltrated; the same applies hereinafter) was 0.000140823 g / mm 3, and the line width of the solid line was 6 mm.
  • the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
  • the tracing paper was dried under the conditions of a temperature of 22 ° C., a relative humidity of 54%, and a time of 10 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped. All the steps up to this point were performed under normal pressure.
  • Example 3 Using tracing paper (thickness 89.2 ⁇ m, size 210 mm ⁇ 297 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, a substantially spherical paper-containing three-dimensional structure is manufactured as shown in FIG. bottom.
  • the fine solid line in the left figure shows the cutting part of the tracing paper
  • the solid line in the figure near the center shows the ejection part of the aqueous medium in the tracing paper by the inkjet printing method.
  • the figure on the right is the imaging data of the manufactured paper-containing three-dimensional structure.
  • the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 22 ° C. and a relative humidity of 54%.
  • the amount of the aqueous medium discharged to the tracing paper was 0.000140823 g / mm 3 .
  • the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
  • the tracing paper was dried under the conditions of a temperature of 22 ° C., a relative humidity of 54%, and a time of 30 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped. All the steps up to this point were performed under normal pressure.
  • Example 4 Using tracing paper (thickness 89.2 ⁇ m, size 210 mm ⁇ 297 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, as shown in FIG. 17, a soccer ball-shaped paper-containing three-dimensional structure was formed. Manufactured. In FIG. 17, the fine solid line in the figure on the left side shows the cutting part of the tracing paper, and the thick solid line in the figure near the center indicates the ejection part of the aqueous medium in the tracing paper by the inkjet printing method. The figure on the right is the imaging data of the manufactured paper-containing three-dimensional structure.
  • the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 22 ° C. and a relative humidity of 54%.
  • the amount of the aqueous medium discharged to the tracing paper was 0.000140823 g / mm 3, and the line width of the solid line was 5 mm.
  • the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
  • the tracing paper was dried under the conditions of a temperature of 22 ° C., a relative humidity of 54%, and a time of 30 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped. All the steps up to this point were performed under normal pressure.
  • Example 5 Using tracing paper (thickness 89.2 ⁇ m, size 210 mm ⁇ 297 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, as shown in FIG. 18, a paper airplane-shaped paper-containing three-dimensional structure was formed. Manufactured. In FIG. 18, the fine solid line in the left figure shows the cut portion of the tracing paper, and the thick solid line in the two figures near the center is the water-based by the inkjet printing method on both sides of the tracing paper. The figure on the right shows the ejection site of the medium, and the figure on the right is the imaging data of the manufactured paper-containing three-dimensional structure.
  • the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 22 ° C. and a relative humidity of 54%.
  • the amount of the aqueous medium discharged to the tracing paper was 0.000140823 g / mm 3, and the line widths of the solid lines were 7 mm and 15 mm.
  • the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
  • the tracing paper was dried under the conditions of a temperature of 22 ° C., a relative humidity of 54%, and a time of 30 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped. All the steps up to this point were performed under normal pressure.
  • Example 6 Using tracing paper (thickness 89.2 ⁇ m, size 40 mm ⁇ 50 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, as shown in FIG. 19, it is substantially cylindrical and has a convex surface thereof.
  • a three-dimensional wiring board provided with silver wiring was manufactured as a paper-containing three-dimensional structure. More specifically, by using an inkjet printer to eject an ink composition containing silver nanoparticles onto one surface of tracing paper before bending, printing is performed so as to obtain the print data shown in FIG. A pattern was formed, and then the printed pattern was heated and dried at 60 ° C. to form silver wiring on tracing paper.
  • step (A) was performed. That is, an inkjet printer is used on the other surface of the tracing paper on which the silver wiring is formed (the surface opposite to the side on which the silver wiring is formed), and ion-exchanged water is used as an aqueous medium.
  • the aqueous medium was discharged so as to obtain the print data shown in 19.
  • the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 24 ° C. and a relative humidity of 48%.
  • the amount of the aqueous medium discharged to the tracing paper was 0.000140823 g / mm 3, and the line width of the solid line was 8 mm.
  • the inkjet printer As the inkjet printer, the one used for ejecting the ink composition containing the silver nanoparticles described above was used as it was.
  • the aqueous medium was filled in a cartridge different from the cartridge filled with the ink composition.
  • the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
  • step (B) was performed. That is, the tracing paper impregnated with water was dried under the conditions of a temperature of 24 ° C., a relative humidity of 48%, and a time of 30 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped.
  • the three-dimensional wiring board could be manufactured by a simplified method without the ink composition and the aqueous medium interfering with each other.
  • Example 7 As shown in FIG. 20, it is substantially cylindrical and convex in the same manner as in Example 6 except that the printing pattern of the ink composition containing silver nanoparticles and the aqueous medium is changed.
  • a wearable device provided with silver wiring on the surface was manufactured as a paper-containing three-dimensional structure.
  • Tracing paper (thickness 125 ⁇ m, size 15 mm ⁇ 15 mm) was used as the paper-containing sheet, and the tracing paper was separately immersed in each of the above-mentioned lithium chloride aqueous solutions. Then, t seconds after the start of immersion (0 ⁇ t ⁇ 1800), using a microscope (“SZX16” manufactured by Olympus Corporation), the tracing paper being immersed is observed from directly above the surface of the tracing paper. The length L t (mm) of the tracing paper was measured in a direction orthogonal to the length direction of the cellulose fibers constituting the above (hereinafter referred to as "direction orthogonal to the fiber length direction").
  • the concentration was 12 M
  • the LR remained less than 1 from the middle of the lapse of time, but when the immersion time was extended to more than 1800 seconds, it was estimated that the LR became more than 1.
  • the concentrations were 15M and 18M
  • the concentration was 12M.
  • the LR may be more than 1 as in the case of the above concentration of 12M.
  • the concentration of the lithium chloride aqueous solution the faster the tracing paper tended to expand.
  • the tracing paper was taken out from the lithium chloride aqueous solution. Then, after another 50 seconds have passed, the water in the tracing paper is used under the conditions of a temperature of 20 to 22 ° C. and a relative humidity of 53 to 55% using an electronic balance (“GH-252” manufactured by A & D Co., Ltd.). The amount was measured. This measurement was performed until 12000 seconds (200 minutes) had passed since the tracing paper was placed on the electronic balance.
  • GH-252 manufactured by A & D Co., Ltd.
  • the concentration of the lithium chloride aqueous solution was in this range (9 to 18M), the higher the concentration, the faster the moisture was absorbed.
  • the concentration of the lithium chloride aqueous solution was low, the lower the concentration, the faster the tracing paper tended to dry. This is because the smaller the amount of lithium chloride (mol) in the tracing paper, the smaller the amount of water molecules that hydrate the lithium chloride in the tracing paper, and the easier it is for water to vaporize from the tracing paper. It was speculated that there was.
  • Tracing paper (thickness 125 ⁇ m, size 15 mm ⁇ 15 mm) was used as the paper-containing sheet, and the tracing paper was separately immersed in the three aqueous solutions and water obtained above. Then, t seconds after the start of immersion (0 ⁇ t ⁇ 5), the tracing paper being immersed was observed from directly above the surface of the tracing paper using a microscope (“SZX16” manufactured by Olympus Corporation), and the fiber length was observed. The length L t (mm) of the tracing paper in the direction orthogonal to the direction was measured.
  • the tracing paper in the case of water, the tracing paper swelled fastest. Then, in the three kinds of aqueous electrolyte solutions, the tracing paper expanded rapidly in the order of the smaller hydration parameters of the electrolyte, that is, the aqueous solution of potassium chloride, the aqueous solution of sodium bromide, and the aqueous solution of lithium chloride.
  • the smaller the hydration parameter of the electrolyte the faster the tracing paper tended to expand. It was speculated that this is because the smaller the hydration parameter of the electrolyte, the smaller the amount of water molecules that hydrate the electrolyte, and the easier it is for water to permeate the tracing paper.
  • Tracing paper (thickness 125 ⁇ m, size 40 mm ⁇ 40 mm) was used as the paper-containing sheet, and the tracing paper was separately immersed in the four aqueous solutions and water obtained above. Then, immediately after 1800 seconds (30 minutes) from the start of immersion, tracing paper was taken out from these four aqueous solutions or water. Then, after another 50 seconds have passed, the water in the tracing paper is used under the conditions of a temperature of 20 to 22 ° C. and a relative humidity of 48 to 51% using an electronic balance (“GH-252” manufactured by A & D Co., Ltd.). The amount was measured. This measurement was performed until 12000 seconds (200 minutes) had passed since the tracing paper was placed on the electronic balance. Then, the drying rate DR of the tracing paper was calculated by the same method as in the case of Test Example 2. The results are shown in FIG.
  • the tracing paper dried fastest.
  • the hydration parameters of the electrolytes are in ascending order, that is, potassium bromide (KBr) aqueous solution, sodium bromide (NaBr) aqueous solution, lithium chloride (LiCl) aqueous solution and calcium chloride (CaCl 2 ) aqueous solution.
  • the tracing paper dried quickly in this order.
  • the aqueous electrolyte solution the smaller the hydration parameter of the electrolyte, the faster the tracing paper tended to dry. It was speculated that this is because the smaller the hydration parameter of the electrolyte, the smaller the amount of water molecules that hydrate the electrolyte in the tracing paper, and the easier it is for water to vaporize from the tracing paper.
  • Example 8 ⁇ Confirmation of the relationship between the concentration of the aqueous electrolyte solution and the bending angle of the paper-containing sheet when the aqueous electrolyte solution is infiltrated into the paper-containing sheet >> Lithium chloride (LiCl) aqueous solutions having concentrations of 0M, 6M, 12M and 18M were prepared.
  • Use tracing paper (thickness 60 ⁇ m, size 65 mm ⁇ 95 mm) as a paper-containing sheet, and attach this tracing paper to the center of the surface of A4 size paper using a removable spray glue. Attached and fixed. Then, under the conditions of a temperature of 20 to 22 ° C.
  • each lithium chloride aqueous solution obtained above was separately printed on tracing paper using an inkjet printer (step (A)). .. At this time, printing was performed on the central portion of the tracing paper in the longitudinal direction in a thick line having a width of 15 mm along the lateral direction. Next, the printed tracing paper was peeled off from the A4 size paper to which it was fixed, placed in a closed container, and allowed to stand. Then, the tracing paper was dried in this state and bent autonomously (step (B)). During this time, the relative humidity in the closed container was adjusted to 55-60%. Then, the bending angle of the tracing paper during this period ( ⁇ 1 in FIG. 6B) (°) was measured. The results are shown in FIG.
  • Example 9 ⁇ Confirmation of the relationship between the concentration of the aqueous electrolyte solution when the aqueous electrolyte solution is infiltrated into the paper-containing sheet, the width of the infiltrated area, and the bending angle of the paper-containing sheet >> Lithium chloride (LiCl) aqueous solutions having concentrations of 0M, 6M, 12M and 18M were prepared.
  • Use tracing paper (thickness 60 ⁇ m, size 65 mm ⁇ 95 mm) as a paper-containing sheet, and attach this tracing paper to the center of the surface of A4 size paper using a removable spray glue. Attached and fixed. Then, under the conditions of a temperature of 20 to 22 ° C.
  • each lithium chloride aqueous solution obtained above was separately printed on tracing paper using an inkjet printer (step (A)). .. At this time, printing was performed on the central portion of the tracing paper in the longitudinal direction along the lateral direction in thick lines having widths d of 1 mm, 3 mm, 5 mm, and 7 mm, respectively.
  • the printed tracing paper was peeled off from the A4 size paper to which it was fixed, placed in a closed container, and allowed to stand. Then, the tracing paper was dried in this state for 2 days and bent autonomously (step (B)). During this time, the relative humidity in the closed container was adjusted to 64%. Then, the bending angle of the tracing paper during this period ( ⁇ 1 in FIG. 6B) (°) was measured. The results are shown in FIG.
  • the present invention can be used in all fields to which origami technology can be applied, such as manufacturing of three-dimensional electronic devices, manufacturing of shock-cushioning materials, folding of sheets, and the like.
  • Paper-containing sheet 1a, 2a, 3a, 4a One side of the paper-containing sheet 1b, 3b, 4b ... The other side of the paper-containing sheet 11 , 21, 22, 23, 24, 25, 31, 32, 41, 81 ... Parts having a water concentration gradient on the paper-containing sheet 12 . Parts having a water concentration gradient on the paper-containing sheet (1st Part) 13 ... A portion of the paper-containing sheet having a water concentration gradient (second portion) 111 ... A part of the paper-containing sheet having a water concentration gradient (solid line part) 112 ...
  • a part of the paper-containing sheet having a water concentration gradient (dotted part) 11', 21', 22', 23', 24', 25', 31', 32', 41', 81'...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Paper (AREA)

Abstract

The purpose of the present invention is to provide a method of manufacturing a novel three-dimensional structure that uses an origami technique and that has high practical utility. This method, for manufacturing a paper-containing three-dimensional structure configured by folding a paper-containing sheet that is formed from paper or that has paper as the primary component, involves a step (A) in which, by permeating the paper-containing sheet with water from one side thereof, an area of the paper-containing sheet having a water concentration gradient in the thickness direction is made into one or more paper-containing sheets, and a step (B) in which, by drying the paper-containing sheet in a state having the aforementioned water concentration gradient, the paper-containing sheet automatically folds in the area having said water concentration gradient.

Description

紙含有立体構造体の製造方法Manufacturing method of paper-containing three-dimensional structure
 本発明は、紙含有立体構造体の製造方法に関する。 The present invention relates to a method for manufacturing a paper-containing three-dimensional structure.
 折り紙技術は、1枚の紙を折ることによって、多様な立体構造を形成できる利点を有しており、折り曲げのパターンを工夫することによって、展開と収納の機能の繰り返し利用が可能となったり、機械的強度が比較的高い構造体の形成が可能となることから、種々の分野での応用が期待されている。例えば、3次元電子デバイスの製造、軽量かつ安価な衝撃緩衝材の製造、シートの折り畳みによる省スペース化等に、折り紙技術の適用が想定される。 Origami technology has the advantage of being able to form a variety of three-dimensional structures by folding a single sheet of paper, and by devising a folding pattern, it is possible to repeatedly use the functions of unfolding and storing. Since it is possible to form a structure having relatively high mechanical strength, it is expected to be applied in various fields. For example, the application of origami technology is expected to be applied to the manufacture of three-dimensional electronic devices, the manufacture of lightweight and inexpensive impact cushioning materials, the space saving by folding sheets, and the like.
 このような中、紙に対して、その外部から何らかの働きかけを行うことにより、紙が自ら折れ曲がるようにする、自律的な紙の折り曲げ技術が注目されており、このような技術は、“self-folding”(自己折り畳み)という用語で語られることもある。このような紙の自律的な折り曲げ技術の開発によって、上記のような折り紙の特性の利用が大きく進展することが期待される。 Under these circumstances, an autonomous paper folding technology that allows the paper to bend by itself by exerting some action on the paper from the outside is drawing attention, and such a technology is called "self-". Sometimes referred to by the term "folding". It is expected that the development of such autonomous folding technology for paper will greatly advance the utilization of the above-mentioned characteristics of origami.
 このような折り曲げ技術としては、紙に、その外部からの刺激に対して応答する材料を配置しておき、刺激を加えたときのこの材料の応答を利用することで、紙を自律的に折り曲げる技術が、これまでに報告されている。ここで刺激としては、電流、熱等が挙げられる。
 しかし、このような折り曲げ技術では、電流、熱等の、何らかのエネルギーの供給が必要であるため、利用環境が制限される可能性があるという問題点があり、さらに、紙も特殊な材料で修飾する必要があるため、高コストであるという問題点があった。
As such a folding technique, a material that responds to an external stimulus is placed on the paper, and the response of this material when the stimulus is applied is used to autonomously fold the paper. The technology has been reported so far. Here, examples of the stimulus include electric current, heat, and the like.
However, such bending technology requires the supply of some energy such as electric current and heat, so there is a problem that the usage environment may be limited, and the paper is also modified with a special material. There was a problem that it was expensive because it had to be done.
 このような問題点を解決できる手法として、インクジェットプリンターを用いて、2-プロパノールを含有する水溶液を紙に吐出し、乾燥させる手法が開示されている(非特許文献1参照)。この手法では、電流、熱等のエネルギーの紙への供給も不要であり、紙を特殊な材料で修飾する必要もないため、実用性が高いという利点を有する。 As a method that can solve such a problem, a method of discharging an aqueous solution containing 2-propanol onto paper and drying it using an inkjet printer is disclosed (see Non-Patent Document 1). This method has the advantage of high practicality because it does not require the supply of energy such as electric current and heat to the paper and it is not necessary to modify the paper with a special material.
 非特許文献1で開示されている手法は、これまでのその他の手法の問題点を解決できる点で有用であるが、実用的な立体構造体の製造方法へと適用するために、さらなる改良が望まれる。また、このような折り曲げ技術は、紙だけでなく、紙と他の材料を併用した複合紙へも適用できれば、有用性がさらに高まる。 The method disclosed in Non-Patent Document 1 is useful in that it can solve the problems of other methods so far, but further improvements are made in order to apply it to a practical method for manufacturing a three-dimensional structure. desired. Further, if such a folding technique can be applied not only to paper but also to composite paper in which paper and other materials are used in combination, its usefulness is further enhanced.
 本発明は、折り紙技術を利用した、実用性が高い、新規の立体構造体の製造方法を提供することを課題とする。 An object of the present invention is to provide a highly practical method for manufacturing a new three-dimensional structure using origami technology.
 本発明は、紙からなるか、又は紙を主成分とする紙含有シートが折り曲げられて構成された、紙含有立体構造体の製造方法であって、前記紙含有シートに対して、その一方の面から水を浸透させることにより、前記紙含有シートの厚さ方向に水の濃度勾配を有する部位を、前記紙含有シートに1又は2以上作製する工程(A)と、前記水の濃度勾配を有する状態の前記紙含有シートを乾燥させることにより、前記紙含有シートを、その前記水の濃度勾配を有していた部位において、自律的に折り曲げる工程(B)と、を有する、紙含有立体構造体の製造方法を提供する。 The present invention is a method for manufacturing a paper-containing three-dimensional structure, which is made of paper or is formed by folding a paper-containing sheet containing paper as a main component, which is one of the paper-containing sheets. The step (A) of forming one or two or more portions having a water concentration gradient in the thickness direction of the paper-containing sheet on the paper-containing sheet by infiltrating water from the surface, and the water concentration gradient. A paper-containing three-dimensional structure comprising a step (B) of autonomously bending the paper-containing sheet at a portion having a concentration gradient of the water by drying the paper-containing sheet in a holding state. Provides a method of manufacturing a body.
 本発明の紙含有立体構造体の製造方法においては、前記工程(B)において、前記紙含有シートの両面のうち、前記水の濃度が高い側の面を内向きにして、前記紙含有シートを自律的に折り曲げることが好ましい。
 本発明の紙含有立体構造体の製造方法においては、前記工程(A)において、前記紙含有シートに浸透させる前記水の量を、1.0×10-12~10g/mmとすることが好ましい。
 本発明の紙含有立体構造体の製造方法においては、前記工程(A)において、前記水の濃度勾配を有する部位を、前記紙含有シートに、実線状又は点線状に作製することが好ましい。
In the method for producing a paper-containing three-dimensional structure of the present invention, in the step (B), the paper-containing sheet is formed with the side of both sides of the paper-containing sheet facing inward where the water concentration is high. It is preferable to bend it autonomously.
In the method for producing a paper-containing three-dimensional structure of the present invention, in the step (A), the amount of the water to be permeated into the paper-containing sheet may be 1.0 × 10-12 to 10 g / mm 3. preferable.
In the method for producing a paper-containing three-dimensional structure of the present invention, it is preferable to prepare the portion having the water concentration gradient on the paper-containing sheet in a solid line shape or a dotted line shape in the step (A).
 本発明の紙含有立体構造体の製造方法においては、前記工程(B)において、前記水の濃度勾配を有する状態の前記紙含有シートを、常圧下で、温度-273.15~1.0×10℃、相対湿度0~100%の条件下で乾燥させることが好ましい。
 本発明の紙含有立体構造体の製造方法においては、前記工程(A)において、前記紙含有シートの表面方向において、前記水の浸透量が互いに異なる、前記水の濃度勾配を有する部位を、2以上作製することが好ましい。
 本発明の紙含有立体構造体の製造方法においては、前記工程(A)において、互いに異なる2種以上の水溶液を、前記紙含有シートの互いに異なる領域に対して、別々に付着させることによって、前記紙含有シートの表面方向において、前記水の浸透量が互いに異なる、前記水の濃度勾配を有する部位を、2以上作製してもよい。
 本発明の紙含有立体構造体の製造方法においては、前記2種以上の水溶液として、溶質の水和パラメーターがすべて互いに異なるものを用いてもよい。
In the method for producing a paper-containing three-dimensional structure of the present invention, in the step (B), the paper-containing sheet having the water concentration gradient is heated at a temperature of -273.15 to 1.0 × under normal pressure. 10 5 ° C., it is preferable to dry under a relative humidity of 0-100%.
In the method for producing a paper-containing three-dimensional structure of the present invention, in the step (A), in the surface direction of the paper-containing sheet, the portion having the water concentration gradient in which the permeation amount of the water is different from each other is 2. It is preferable to prepare the above.
In the method for producing a paper-containing three-dimensional structure of the present invention, in the step (A), two or more different aqueous solutions are separately adhered to different regions of the paper-containing sheet. In the surface direction of the paper-containing sheet, two or more portions having the water concentration gradients in which the permeation amount of the water is different from each other may be prepared.
In the method for producing a paper-containing three-dimensional structure of the present invention, as the two or more kinds of aqueous solutions, those having different hydration parameters of solutes may be used.
 本発明によれば、折り紙技術を利用した、実用性が高い、新規の立体構造体の製造方法が提供される。 According to the present invention, a highly practical method for manufacturing a new three-dimensional structure using origami technology is provided.
本発明の一実施形態に係る紙含有立体構造体の製造方法における、工程(A)の一例を、模式的に説明するための断面図である。It is sectional drawing for schematically explaining an example of the step (A) in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、工程(A)の一例を、模式的に説明するための断面図である。It is sectional drawing for schematically explaining an example of the step (A) in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、工程(A)の一例を、模式的に説明するための断面図である。It is sectional drawing for schematically explaining an example of the step (A) in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、工程(A)の一例を、模式的に説明するための断面図である。It is sectional drawing for schematically explaining an example of the step (A) in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法において、紙含有シートに対して形成する、水の濃度勾配を有する部位の形状の一例を、模式的に示す平面図である。FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法において、紙含有シートに対して形成する、水の濃度勾配を有する部位の形状の一例を、模式的に示す平面図である。FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法において、紙含有シートに対して形成する、水の濃度勾配を有する部位の形状の一例を、模式的に示す平面図である。FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法において、紙含有シートに対して形成する、水の濃度勾配を有する部位の形状の一例を、模式的に示す平面図である。FIG. 3 is a plan view schematically showing an example of the shape of a portion having a water concentration gradient formed on a paper-containing sheet in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法において、水の濃度勾配を有し、水の浸透量が互いに異なる部位を作製した紙含有シートの一例を、模式的に示す断面図である。A cross-sectional view schematically showing an example of a paper-containing sheet in which a portion having a water concentration gradient and different amounts of water permeation are produced in the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention. Is. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、工程(B)の一例を、模式的に説明するための断面図である。It is sectional drawing for schematically explaining an example of the step (B) in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、工程(B)の一例を、模式的に説明するための断面図である。It is sectional drawing for schematically explaining an example of the step (B) in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention. 紙含有シートの折れ曲がりの角度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of measuring the bending angle of a paper-containing sheet. 紙含有シートの折れ曲がりの角度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of measuring the bending angle of a paper-containing sheet. 本発明の一実施形態に係る紙含有立体構造体の製造方法で用いる紙含有シートと、目的とする紙含有立体構造体と、の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the paper-containing sheet used in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention, and the target paper-containing three-dimensional structure. 本発明の一実施形態に係る紙含有立体構造体の製造方法で用いる紙含有シートと、目的とする紙含有立体構造体と、の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the paper-containing sheet used in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention, and the target paper-containing three-dimensional structure. 本発明の一実施形態に係る紙含有立体構造体の製造方法で用いる紙含有シートと、目的とする紙含有立体構造体と、の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the paper-containing sheet used in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention, and the target paper-containing three-dimensional structure. 本発明の一実施形態に係る紙含有立体構造体の製造方法で用いる、紙含有シートの他の例を、模式的に示す平面図である。It is a top view schematically showing another example of the paper-containing sheet used in the manufacturing method of the paper-containing three-dimensional structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、水の濃度勾配を有する部位が作製され紙含有シートと、目的とする紙含有立体構造体と、の他の例を模式的に示す断面図である。In the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention, a portion having a water concentration gradient is produced, and another example of the paper-containing sheet, the target paper-containing three-dimensional structure, and the like is schematically. It is a cross-sectional view shown in. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、水の濃度勾配を有する部位が作製され紙含有シートと、目的とする紙含有立体構造体と、の他の例を模式的に示す断面図である。In the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention, a portion having a water concentration gradient is produced, and another example of the paper-containing sheet, the target paper-containing three-dimensional structure, and the like is schematically. It is a cross-sectional view shown in. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、水の濃度勾配を有する部位が作製され紙含有シートと、目的とする紙含有立体構造体と、の他の例を模式的に示す断面図である。In the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention, a portion having a water concentration gradient is produced, and another example of the paper-containing sheet, the target paper-containing three-dimensional structure, and the like is schematically. It is a cross-sectional view shown in. 本発明の一実施形態に係る紙含有立体構造体の製造方法における、水の濃度勾配を有する部位が作製され紙含有シートと、目的とする紙含有立体構造体と、の他の例を模式的に示す断面図である。In the method for producing a paper-containing three-dimensional structure according to an embodiment of the present invention, a portion having a water concentration gradient is produced, and another example of the paper-containing sheet, the target paper-containing three-dimensional structure, and the like is schematically. It is a cross-sectional view shown in. 実施例1において、工程(A)を行った後の紙含有シートを示す平面図である。It is a top view which shows the paper-containing sheet after performing the step (A) in Example 1. FIG. 実施例1において、工程(B)を行った後の、紙含有シートの折れ曲がりの角度の測定結果を示すグラフである。In Example 1, it is a graph which shows the measurement result of the bending angle of a paper-containing sheet after performing a step (B). 実施例1で測定された紙含有シートの折れ曲がりの角度の測定結果を、規格化したインク吐出量とともに示すグラフである。It is a graph which shows the measurement result of the bending angle of the paper-containing sheet measured in Example 1 together with the standardized ink ejection amount. 実施例1における、紙含有立体構造体の折れ曲がり部の角度の測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result of the angle of the bent part of the paper-containing three-dimensional structure in Example 1. FIG. 実施例2における、紙含有立体構造体とその製造工程を説明するための概略図である。It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 2. FIG. 実施例3における、紙含有立体構造体とその製造工程を説明するための概略図である。It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 3. FIG. 実施例4における、紙含有立体構造体とその製造工程を説明するための概略図である。It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 4. FIG. 実施例5における、紙含有立体構造体とその製造工程を説明するための概略図である。It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 5. FIG. 実施例6における、紙含有立体構造体とその製造工程を説明するための概略図である。It is a schematic diagram for demonstrating the paper-containing three-dimensional structure and its manufacturing process in Example 6. 実施例7で製造した紙含有立体構造体の撮像データである。It is the image pickup data of the paper-containing three-dimensional structure produced in Example 7. 試験例1における、紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の濃度と、紙含有シートの膨張し易さと、の関係を示すグラフである。3 is a graph showing the relationship between the concentration of the aqueous electrolyte solution and the easiness of expansion of the paper-containing sheet when the aqueous electrolyte solution is permeated into the paper-containing sheet in Test Example 1. 試験例2における、紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の濃度と、紙含有シートの乾燥し易さと、の関係を示すグラフである。3 is a graph showing the relationship between the concentration of the aqueous electrolyte solution and the ease of drying of the paper-containing sheet when the aqueous electrolyte solution is permeated into the paper-containing sheet in Test Example 2. 試験例3における、紙含有シートへ電解質水溶液を浸透させたときの、電解質の種類と、紙含有シートの膨張し易さと、の関係を示すグラフである。3 is a graph showing the relationship between the type of electrolyte and the easiness of expansion of the paper-containing sheet when the aqueous electrolyte solution is permeated into the paper-containing sheet in Test Example 3. 試験例4における、紙含有シートへ電解質水溶液を浸透させたときの、電解質の種類と、紙含有シートの乾燥し易さと、の関係を示すグラフである。It is a graph which shows the relationship between the type of an electrolyte, and the easiness of drying of a paper-containing sheet when the aqueous electrolyte solution is permeated into a paper-containing sheet in Test Example 4. 実施例8における、紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の濃度と、紙含有シートの折れ曲がりの角度と、の関係を示すグラフである。8 is a graph showing the relationship between the concentration of the aqueous electrolyte solution and the bending angle of the paper-containing sheet when the aqueous electrolyte solution is permeated into the paper-containing sheet in Example 8. 実施例9における、紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の濃度と、浸透させた領域の幅と、紙含有シートの折れ曲がりの角度と、の関係を示すグラフである。9 is a graph showing the relationship between the concentration of the aqueous electrolyte solution when the aqueous electrolyte solution is permeated into the paper-containing sheet in Example 9, the width of the permeated region, and the bending angle of the paper-containing sheet.
<<紙含有立体構造体の製造方法>>
 本発明の一実施形態に係る紙含有立体構造体の製造方法は、紙からなるか又は紙を主成分とする紙含有シートが折り曲げられて構成された、紙含有立体構造体の製造方法であって、前記紙含有シートに対して、その一方の面から水を浸透させることにより、前記紙含有シートの厚さ方向に水の濃度勾配を有する部位を、前記紙含有シートに1又は2以上作製する工程(A)と、前記水の濃度勾配を有する状態の前記紙含有シートを乾燥させることにより、前記紙含有シートを、その前記水の濃度勾配を有していた部位において、自律的に折り曲げる工程(B)と、を有する。
<< Manufacturing method of paper-containing three-dimensional structure >>
The method for manufacturing a paper-containing three-dimensional structure according to an embodiment of the present invention is a method for manufacturing a paper-containing three-dimensional structure made of paper or formed by folding a paper-containing sheet containing paper as a main component. By infiltrating the paper-containing sheet with water from one surface thereof, one or two or more portions having a water concentration gradient in the thickness direction of the paper-containing sheet are produced on the paper-containing sheet. By drying the paper-containing sheet having the water concentration gradient in the step (A), the paper-containing sheet is autonomously bent at the portion having the water concentration gradient. It has a step (B) and.
 本実施形態の紙含有立体構造体の製造方法によれば、特殊な材料を用いることなく、紙含有シートへのエネルギーの供給も必要とせず、実用的かつ効率的に、紙含有シートを用いて紙含有立体構造体を製造できる。 According to the method for producing a paper-containing three-dimensional structure of the present embodiment, the paper-containing sheet is practically and efficiently used without using a special material and without requiring the supply of energy to the paper-containing sheet. A paper-containing three-dimensional structure can be manufactured.
 以下、図面を参照しながら、本発明について詳細に説明する。なお、以降の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
 図1A~図1Cは、本実施形態の紙含有立体構造体の製造方法における、工程(A)の一例を、模式的に説明するための断面図である。
Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, in the figure used in the following description, in order to make it easy to understand the features of the present invention, the main part may be enlarged and shown, and the dimensional ratio of each component is the same as the actual one. Is not always the case.
1A to 1C are cross-sectional views for schematically explaining an example of the step (A) in the method for manufacturing a paper-containing three-dimensional structure of the present embodiment.
<工程(A)>
 前記工程(A)においては、紙含有シートに対して、その一方の面から水を浸透させる。そのためには、例えば、図1Aに示すように、紙含有シート1の一方の面1aに、水9を付着させる。このとき、紙含有シート1の厚さTを考慮して、過剰量とはならない適切な量の水9を、紙含有シート1の一方の面1aに付着させることにより、図1B又は図1Cに示すように、紙含有シート1に対して、その一方の面1aから水9を浸透させることができる。図1Bは、紙含有シート1が、その一方の面1aが凸状となるように反った状態であり、典型的には、このような状態を経た後、図1Cに示すように、反りが解消された状態となる。
<Process (A)>
In the step (A), water is infiltrated into the paper-containing sheet from one surface thereof. For that purpose, for example, as shown in FIG. 1A, water 9 is adhered to one surface 1a of the paper-containing sheet 1. In this case, in consideration of the thickness T 1 of the paper-containing sheet 1, an appropriate amount of water 9 not be the excess, by attaching to one surface 1a of the paper-containing sheet 1, FIG. 1B or FIG. 1C As shown in the above, the paper-containing sheet 1 can be infiltrated with water 9 from one of the surfaces 1a. FIG. 1B shows a state in which the paper-containing sheet 1 is warped so that one surface 1a thereof is convex, and typically, after passing through such a state, the paper-containing sheet 1 is warped as shown in FIG. 1C. It will be in a resolved state.
 図1Bに示すように、紙含有シート1が反る理由は、紙含有シート1の一方の面1aから、他方の面1bへ向けて、水9が浸透して行く過程で、紙含有シート1の一方の面1a側が、他方の面1b側よりも、水9の濃度が高く(含有量が多く)なることによって、紙含有シート1の一方の面1a側が膨張するためである。時間の経過とともに、この水9の濃度差が小さくなるにしたがって、紙含有シート1の膨張の影響が緩和され、図1Cに示すように、紙含有シート1の反りが解消される。 As shown in FIG. 1B, the reason why the paper-containing sheet 1 warps is that the paper-containing sheet 1 permeates from one surface 1a of the paper-containing sheet 1 toward the other surface 1b. This is because one surface 1a side of the paper-containing sheet 1 expands due to a higher concentration (higher content) of water 9 on one surface 1a side than on the other surface 1b side. With the passage of time, as the concentration difference of the water 9 becomes smaller, the influence of the expansion of the paper-containing sheet 1 is alleviated, and as shown in FIG. 1C, the warp of the paper-containing sheet 1 is eliminated.
 紙含有シート1は、紙からなるシート(すなわち紙製シート)、又は紙を主成分とするシートであり、主成分としてセルロースを含有する。 The paper-containing sheet 1 is a sheet made of paper (that is, a sheet made of paper) or a sheet containing paper as a main component, and contains cellulose as a main component.
 前記紙からなるシート(紙製シート)としては、例えば、トレーシングペーパー等が挙げられる。 Examples of the sheet made of the paper (paper sheet) include tracing paper and the like.
 紙を主成分とするシートは、紙と、それ以外の他の成分を含有する。
 前記他の成分は、本発明の効果を損なわない範囲内で、目的に応じて任意に選択できる。
 前記他の成分として、より具体的には、例えば、樹脂、シリカゲル等が挙げられる。
A sheet containing paper as a main component contains paper and other components.
The other components can be arbitrarily selected depending on the intended purpose as long as the effects of the present invention are not impaired.
More specifically, examples of the other components include resins, silica gel and the like.
 紙を主成分とするシートが含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、任意に選択できる。 The other components contained in the sheet containing paper as a main component may be only one kind, two or more kinds, and when two or more kinds, the combination and ratio thereof are arbitrary. Can be selected.
 紙を主成分とするシートにおいて、このシートの総質量に対する、前記他の成分の含有量の割合([紙を主成分とするシート中の前記他の成分の量(質量部)]/[紙を主成分とするシートの総質量(質量部)]×100)は、40質量%以下であることが好ましく、例えば、30質量%以下、20質量%以下、10質量%以下、及び5質量%以下のいずれかであってもよい。前記割合が前記上限値以下であることで、紙含有シートを1より効率的に折り曲げることができる。
 一方、前記割合は0質量%超であり、例えば、1質量%以上であってもよい。前記割合の下限値が大きいほど、前記他の成分を含んでいることにより得られる効果が、より高くなる。
In a sheet containing paper as a main component, the ratio of the content of the other components to the total mass of this sheet ([amount of the other components in a sheet containing paper as a main component (parts by mass)] / [paper The total mass (parts by mass) of the sheet containing It may be any of the following. When the ratio is not more than the upper limit value, the paper-containing sheet can be bent more efficiently than 1.
On the other hand, the ratio is more than 0% by mass, and may be, for example, 1% by mass or more. The larger the lower limit of the ratio, the higher the effect obtained by containing the other components.
 紙含有シート(紙からなるシート、紙を主成分とするシート)1は、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。紙含有シートが複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The paper-containing sheet (sheet made of paper, sheet containing paper as a main component) 1 may be made of one layer (single layer) or may be made of two or more layers. .. When the paper-containing sheet is composed of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
 本明細書においては、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよいし、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。 In the present specification, "a plurality of layers may be the same or different from each other" means "all layers may be the same, all layers may be different, or some layers may be different". "Only may be the same", and "multiple layers are different from each other" means "at least one of the constituent materials and thicknesses of each layer is different from each other".
 紙含有シート1の厚さTは、目的に応じて任意に選択できるが、1.0×10-6~1,0×10μmであることが好ましく、1~1000μmであることがより好ましい。Tがこのような範囲であることで、紙含有シート1をより高精度に折り曲げることができる。
 ここで、「紙含有シートの厚さ」とは、紙含有シート全体の厚さを意味し、例えば、複数層からなる紙含有シートの厚さとは、紙含有シートを構成するすべての層の合計の厚さを意味する。
The thickness T 1 of the paper-containing sheet 1 can be arbitrarily selected depending on the purpose, but is preferably 1.0 × 10 -6 to 1,0 × 10 4 μm, and more preferably 1 to 1000 μm. preferable. When T 1 is in such a range, the paper-containing sheet 1 can be bent with higher accuracy.
Here, the "thickness of the paper-containing sheet" means the thickness of the entire paper-containing sheet, and for example, the thickness of the paper-containing sheet composed of a plurality of layers is the total of all the layers constituting the paper-containing sheet. Means the thickness of.
 紙含有シート1の形状は、シート状であれば特に限定されず、目的とする紙含有立体構造体の構造に応じて、任意に選択できる。これらの形状及び構造については、後ほど詳細に説明する。 The shape of the paper-containing sheet 1 is not particularly limited as long as it is in the form of a sheet, and can be arbitrarily selected according to the structure of the target paper-containing three-dimensional structure. These shapes and structures will be described in detail later.
 水9は、例えば、インクジェット印刷法等により、水滴として、紙含有シート1の一方の面1aに付着させる(吐出する)ことができる。 The water 9 can be attached (discharged) to one surface 1a of the paper-containing sheet 1 as water droplets by, for example, an inkjet printing method.
 工程(A)において、紙含有シート1に浸透させる水9の量(付着量)は、本発明の効果を損なわない限り特に限定されないが、1.0×10-12~10g/mmとすることが好ましく、1.0×10-6~1g/mmとすることがより好ましい。浸透させる水9の量を、紙含有シート1の単位体積あたり、このような範囲とすることで、紙含有シート1をより効率的に折り曲げることができる。 In the step (A), the amount (adhesion amount) of the water 9 permeated into the paper-containing sheet 1 is not particularly limited as long as the effect of the present invention is not impaired, but is 1.0 × 10-12 to 10 g / mm 3 . It is preferably 1.0 × 10 -6 to 1 g / mm 3, and more preferably 1.0 × 10 -6 to 1 g / mm 3. By setting the amount of water 9 to be permeated within such a range per unit volume of the paper-containing sheet 1, the paper-containing sheet 1 can be bent more efficiently.
 工程(A)においては、紙含有シート1に対して、その一方の面1aから水9を浸透させることにより、図1B又は図1Cに示すように、紙含有シート1の厚さT方向に水9の濃度勾配を有する部位11を、紙含有シート1に1又は2以上作製する。図1では、水の濃度勾配を有する部位11を、便宜上、1だけ示している。 In the step (A), with respect to the paper-containing sheet 1, by penetration of water 9 from one surface 1a, as shown in FIG. 1B or FIG. 1C, the thickness T 1 direction of the paper-containing sheet 1 One or two or more portions 11 having a concentration gradient of water 9 are prepared on the paper-containing sheet 1. In FIG. 1, only 1 is shown for convenience in the portion 11 having a water concentration gradient.
 本明細書において、紙含有シートが、その厚さ方向に水の濃度勾配を有する、とは、紙含有シートが、その両面を最短距離で結ぶ方向において、単位体積あたりの水の含有量(水の濃度)が異なる領域を有する、ということを意味する。図1B及び図1Cにおいては、紙含有シート1の一方の面1aから他方の面1bへ向かって、紙含有シート1の水9の含有量が徐々に少なくなっていく状態を示している。本実施形態においては、通常はこのように、水9の浸透方向、すなわち、紙含有シート1の水9を付着させた面(前記一方の面1a)から、その反対側の面(前記一方の面1b)へ向かう方向において、紙含有シート1中の水9の量が減少していく。ただし、ここに示すのは、紙含有シート1中での水9の量の変化の一例である。
 工程(A)においては、紙含有シート1の厚さTを考慮して、過剰量とはならない適切な量の水9を、紙含有シート1の一方の面1aに付着させることにより、このような水の濃度勾配を容易に形成できる。
In the present specification, the paper-containing sheet has a concentration gradient of water in the thickness direction thereof, that is, the content of water per unit volume (water) in the direction in which the paper-containing sheet connects both sides at the shortest distance. Concentration) has different regions. 1B and 1C show a state in which the content of water 9 in the paper-containing sheet 1 gradually decreases from one surface 1a of the paper-containing sheet 1 toward the other surface 1b. In the present embodiment, normally, in this way, from the permeation direction of the water 9, that is, the surface of the paper-containing sheet 1 to which the water 9 is adhered (the one surface 1a) to the opposite surface (the one surface). The amount of water 9 in the paper-containing sheet 1 decreases in the direction toward the surface 1b). However, what is shown here is an example of a change in the amount of water 9 in the paper-containing sheet 1.
In the step (A), in consideration of the thickness T 1 of the paper-containing sheet 1, an appropriate amount of water 9 that does not become an excessive amount is adhered to one surface 1a of the paper-containing sheet 1. Such a water concentration gradient can be easily formed.
 図1B及び図1Cでは、紙含有シート1に浸透させた水9は、紙含有シート1の他方の面1bには到達していないが、工程(A)においては、上記のように水9の濃度勾配が生じていれば、例えば、図2に示すように、紙含有シート1に浸透させた水9は、紙含有シート1の他方の面1bに到達していてもよい。
 なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。
In FIGS. 1B and 1C, the water 9 permeated into the paper-containing sheet 1 does not reach the other surface 1b of the paper-containing sheet 1, but in the step (A), the water 9 is as described above. If a concentration gradient is generated, for example, as shown in FIG. 2, the water 9 permeated into the paper-containing sheet 1 may reach the other surface 1b of the paper-containing sheet 1.
In addition, in the drawings after FIG. 2, the same components as those shown in the already explained figures are designated by the same reference numerals as in the case of the already explained figures, and detailed description thereof will be omitted.
 工程(A)においては、このような水の濃度勾配を有する部位11を、紙含有シート1に1又は2以上作製する。
 水の濃度勾配を有する部位11は、紙含有シート1の折り曲げたい箇所に作製する。例えば、紙含有シート1を、その前記一方の面1a側の上方から見下ろして平面視したときの、水の濃度勾配を有する部位11の形状、大きさ及び数は、目的とする紙含有立体構造体に応じて決定する。
In the step (A), one or two or more portions 11 having such a water concentration gradient are produced on the paper-containing sheet 1.
The portion 11 having a water concentration gradient is prepared at a portion of the paper-containing sheet 1 to be bent. For example, when the paper-containing sheet 1 is viewed in a plan view from above on the one side of the surface 1a, the shape, size, and number of the portions 11 having a water concentration gradient are the target paper-containing three-dimensional structure. Determined according to the body.
 図3A~図3Dは、水の濃度勾配を有する部位11の形状の一例を、模式的に示す平面図である。ここでは、紙含有シート1を、その前記一方の面1a側の上方から見下ろして平面視したときの、水の濃度勾配を有する部位11の形状を示している。 3A to 3D are plan views schematically showing an example of the shape of the portion 11 having a water concentration gradient. Here, the shape of the portion 11 having a water concentration gradient when the paper-containing sheet 1 is viewed in a plan view from above on the one surface 1a side thereof is shown.
 図3Aにおいて、水の濃度勾配を有する部位11は、紙含有シート1の前記一方の面1aに対して平行な方向(換言すると表面方向)に、直線状に形成されている。すなわち、ここに示す水の濃度勾配を有する部位11は、紙含有シート1の前記一方の面1aに対して平行な方向に、一繋がりとなって設けられている。 In FIG. 3A, the portion 11 having the water concentration gradient is formed linearly in a direction parallel to the one surface 1a of the paper-containing sheet 1 (in other words, the surface direction). That is, the portion 11 having the water concentration gradient shown here is provided in a continuous manner in a direction parallel to the one surface 1a of the paper-containing sheet 1.
 図3Bにおいて、水の濃度勾配を有する部位11は、紙含有シート1の前記一方の面1aに対して平行な方向に、点線状に形成されている。すなわち、ここに示す水の濃度勾配を有する部位11は、水の濃度勾配を有する個々の局所的な部位(図3B中、点で示している部位)が、互いに近接し、紙含有シート1の前記一方の面1aに対して平行な方向に、相互に間欠的に繋がりながら設けられている。本実施形態においては、このように、水の濃度勾配を有する局所的な部位が、互いに近接して設けられ、全体として何らかの形状を形成している場合に、1つの「水の濃度勾配を有する部位」として取り扱うことがある。 In FIG. 3B, the portion 11 having a water concentration gradient is formed in a dotted line in a direction parallel to the one surface 1a of the paper-containing sheet 1. That is, in the portion 11 having the water concentration gradient shown here, the individual local portions having the water concentration gradient (the portions indicated by dots in FIG. 3B) are close to each other, and the paper-containing sheet 1 has a portion 11. It is provided in a direction parallel to the one surface 1a while being intermittently connected to each other. In the present embodiment, when the local sites having a water concentration gradient are provided close to each other and form some shape as a whole, one "water concentration gradient is obtained". It may be treated as a "site".
 図3Cにおいて、水の濃度勾配を有する部位11は、紙含有シート1の前記一方の面1aに対して平行な方向に、一点鎖線状に形成されている。ここに示す、水の濃度勾配を有する部位11は、個々の局所的な部位のうち、一部の形状が異なっている点を除けば、図3Bに示す水の濃度勾配を有する部位11と同じである。 In FIG. 3C, the portion 11 having a water concentration gradient is formed in a dashed line in a direction parallel to the one surface 1a of the paper-containing sheet 1. The part 11 having a water concentration gradient shown here is the same as the part 11 having a water concentration gradient shown in FIG. 3B, except that some of the local parts have different shapes. Is.
 図3Dにおいて、水の濃度勾配を有する部位11は、紙含有シート1の前記一方の面1aに対して平行な方向に、実線状に形成され、さらに、その実線の一方の端部からは、連続して点線状に形成されている。ここでは、水の濃度勾配を有する部位11のうち、実線状の部位には符号111を付し、点線状の部位には符号112を付している。 In FIG. 3D, the portion 11 having a water concentration gradient is formed in a solid line in a direction parallel to the one surface 1a of the paper-containing sheet 1, and further, from one end of the solid line, the portion 11 is formed. It is continuously formed in a dotted line. Here, among the portions 11 having a water concentration gradient, the solid linear portion is designated by reference numeral 111, and the dotted line portion is designated by reference numeral 112.
 本実施形態における、水の濃度勾配を有する部位は、このように、異なる形状又はパターンが組み合わされて、形成されていてもよい。
 図3Dにおいては、組み合わされている形状又はパターンが2種であるが、本実施形態において、1つの水の濃度勾配を有する部位を構成するのに組み合わされている、形状又はパターンは、3種以上であってもよい。
The portion having a water concentration gradient in the present embodiment may be formed by combining different shapes or patterns in this way.
In FIG. 3D, there are two types of shapes or patterns that are combined, but in this embodiment, there are three types of shapes or patterns that are combined to form a portion having one water concentration gradient. It may be the above.
 工程(A)においては、水の濃度勾配を有する部位11を、紙含有シート1に、実線状又は点線状に作製することが好ましい。このようにすることで、紙含有立体構造体として、折り目を有する、所謂折り紙式のものを、容易に製造できる。 In the step (A), it is preferable to prepare the portion 11 having the water concentration gradient on the paper-containing sheet 1 in a solid line shape or a dotted line shape. By doing so, a so-called origami type structure having creases can be easily manufactured as the paper-containing three-dimensional structure.
 工程(A)において、水の濃度勾配を有する部位11を、紙含有シート1に、実線状、点線状等の線状に作製する場合には、線幅は、1.0×10-6~1.0×10μmであることが好ましく、1.0×10-3~1.0×10μmであることがより好ましく、1.0~1.0×10μmであることがさらに好ましい。前記線幅がこのような範囲であることにより、紙含有シート1の自律的な折り曲げを、より効率的に行うことができる。 In the step (A), when the portion 11 having the concentration gradient of water is formed on the paper-containing sheet 1 in a linear shape such as a solid line or a dotted line, the line width is 1.0 × 10 -6 to It is preferably 1.0 × 10 9 μm, more preferably 1.0 × 10 -3 to 1.0 × 10 6 μm, and more preferably 1.0 to 1.0 × 10 5 μm. More preferred. When the line width is in such a range, the paper-containing sheet 1 can be bent more efficiently.
 工程(A)において、水の濃度勾配を有する部位が線状である場合の線幅は、経時と共に変化する可能性がある。本実施形態においては、特に断りのない限り、前記線幅とは、線幅が経時と共に変化しない場合には、その一定値の線幅を意味し、線幅が経時と共に変化する場合には、線幅の最大値を意味する。
 例えば、図1Bに示すように、紙含有シート1が反った状態で、前記線幅が最大となる場合には、図1Bに示す線幅Wが上述の数値範囲であることが好ましい。一方、図1Cに示すように、紙含有シート1が反っていない状態で、前記線幅が最大となる場合には、図1Cに示す線幅Wが上述の数値範囲であることが好ましい。
 前記線幅は、例えば、紙含有シート1を、その前記一方の面1a側の上方から見下ろして平面視することで、測定できる。
In the step (A), when the portion having the water concentration gradient is linear, the line width may change with time. In the present embodiment, unless otherwise specified, the line width means a line width having a constant value when the line width does not change with time, and when the line width changes with time, it means the line width. It means the maximum value of the line width.
For example, as shown in FIG. 1B, in a state in which the paper-containing sheet 1 is warped, when the line width is maximized, it is preferable that the line width W 1 shown in FIG. 1B is a numerical range described above. On the other hand, as shown in Figure 1C, in a state in which the paper-containing sheet 1 is not warped, when the line width is maximized, it is preferable that the line width W 1 shown in FIG. 1C is a numerical range described above.
The line width can be measured, for example, by looking down at the paper-containing sheet 1 from above on the one side of the surface 1a and looking at it in a plan view.
 工程(A)においては、紙含有シート1の前記一方の面1aに対して平行な方向(換言すると表面方向)において、水9の浸透量が互いに異なる、水の濃度勾配を有する部位を、2以上作製してもよい。図4は、このような水の濃度勾配を有する部位として、第1部位12と、水の浸透量が前記第1部位12よりも多い第2部位13と、を作製した紙含有シート1の一例を、模式的に示す断面図である。 In the step (A), the portion having a water concentration gradient in which the permeation amount of the water 9 is different from each other in the direction parallel to the one surface 1a of the paper-containing sheet 1 (in other words, the surface direction) is 2 The above may be produced. FIG. 4 shows an example of a paper-containing sheet 1 in which a first portion 12 and a second portion 13 in which the amount of water permeated is larger than that of the first portion 12 are prepared as portions having such a water concentration gradient. Is a cross-sectional view schematically showing.
 水の濃度勾配を有する第1部位12と、水の濃度勾配を有する第2部位13と、の相違点は、水9の浸透量だけであり、これら部位は、この相違点以外は同じである。
 このように、水9の浸透量が互いに異なる部位(前記第1部位12及び第2部位13)を作製することにより、水9の浸透量の違いに基づいて、後述する工程(B)において、これら部位での折り曲げの速度に差をつけることができる。そして、このように折り曲げの速度に差をつけることによって、より複雑な形状の紙含有立体構造体を製造できる。さらに、紙含有立体構造体として、これら部位での折り曲げの角度が互いに異なるものを製造できる。
The only difference between the first site 12 having a water concentration gradient and the second site 13 having a water concentration gradient is the permeation amount of water 9, and these sites are the same except for this difference. ..
In this way, by producing the sites (the first site 12 and the second site 13) in which the permeation amount of the water 9 is different from each other, in the step (B) described later, based on the difference in the permeation amount of the water 9. It is possible to make a difference in the bending speed at these sites. Then, by making a difference in the bending speed in this way, a paper-containing three-dimensional structure having a more complicated shape can be manufactured. Further, as a paper-containing three-dimensional structure, those having different bending angles at these sites can be manufactured.
 水の濃度勾配を有する第1部位12と第2部位13は、いずれも、上述の水の濃度勾配を有する部位11と同様の形態とすることができる。 Both the first part 12 and the second part 13 having the water concentration gradient can have the same form as the above-mentioned part 11 having the water concentration gradient.
 水の濃度勾配を有する第1部位12と第2部位13は、紙含有シート1の一方の面1aに付着させる水9の量を、互いに変えることで作製できる。 The first part 12 and the second part 13 having a water concentration gradient can be produced by changing the amount of water 9 attached to one surface 1a of the paper-containing sheet 1 to each other.
 紙含有シート1の一方の面1aに、水9を付着させるときには、水溶液(図示略)を用いてもよい。すなわち、水9として、水溶液中の水を、紙含有シート1の一方の面1aに付着させてもよい。この場合も、水のみを用いた場合と同様に、紙含有シート1に対して水9を浸透させることができる。この場合、水溶液中の溶質も、紙含有シート1に浸透することがある。
 本明細書においては、水と水溶液を包括して「水性媒体」と称することがある。
When water 9 is attached to one surface 1a of the paper-containing sheet 1, an aqueous solution (not shown) may be used. That is, as the water 9, the water in the aqueous solution may be attached to one surface 1a of the paper-containing sheet 1. In this case as well, the water 9 can be permeated into the paper-containing sheet 1 in the same manner as when only water is used. In this case, the solute in the aqueous solution may also permeate the paper-containing sheet 1.
In the present specification, water and an aqueous solution may be collectively referred to as an "aqueous medium".
 前記水溶液中の溶質としては、例えば、塩等の電解質、染料等が挙げられる。
 前記水溶液中の溶質は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は、目的に応じて任意に選択できる。
Examples of the solute in the aqueous solution include an electrolyte such as a salt and a dye.
The solute in the aqueous solution may be only one kind, two or more kinds, or two or more kinds, and the combination and ratio thereof can be arbitrarily selected according to the purpose.
 前記水溶液中の、常温で液状の水以外の成分の濃度は、低いほど好ましく、例えば、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
 本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
The concentration of the components other than water, which is liquid at room temperature, in the aqueous solution is preferably as low as possible, for example, preferably 5% by mass or less, more preferably 3% by mass or less, and 1% by mass or less. Is even more preferable.
As used herein, the term "normal temperature" means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
 本実施形態においては、このように溶媒成分の大部分が水である前記水溶液、又は、溶媒成分として水のみ、を紙含有シート1に付着させることによって、紙含有シート1の自律的な折り曲げを、より速く、より大きな折り曲げ角度で行うことができる。 In the present embodiment, the paper-containing sheet 1 is autonomously bent by adhering the aqueous solution in which most of the solvent component is water or only water as the solvent component to the paper-containing sheet 1. , Faster and can be done with larger bending angles.
 例えば、上述の非特許文献1には、2-プロパノールを含有する水溶液として、水と2-プロパノールを「水:2-プロパノール=90:10」の質量比で含有するものを用いて、紙からなるシートを自律的に折り曲げる技術が開示されている。しかし、2-プロパノールのような低級アルコールは、水とよく混和するものの、紙含有シートを自律的に折り曲げる作用を有しないか、又は有していても、作用が水よりも著しく劣っている。そのため、同量で比較した場合、上述の2-プロパノールを含有する水溶液を用いた場合には、上述の溶媒成分の大部分が水である水溶液、又は、溶媒成分として水のみ、を用いた場合よりも、紙含有シートの自律的な折り曲げは、速度が遅く、小さな折り曲げ角度にとどまる。
 すなわち、本実施形態の紙含有立体構造体の製造方法は、従来よりも、紙含有シートの自律的な折り曲げを、より速い速度、より大きな折り曲げ角度で行うことができる点で、顕著な効果を奏する。
For example, in Non-Patent Document 1 described above, an aqueous solution containing 2-propanol containing water and 2-propanol in a mass ratio of "water: 2-propanol = 90: 10" is used from paper. A technique for autonomously folding a sheet is disclosed. However, although lower alcohols such as 2-propanol are miscible with water, they do not have the effect of autonomously bending the paper-containing sheet, or even if they do, the effect is significantly inferior to that of water. Therefore, when compared in the same amount, when the above-mentioned aqueous solution containing 2-propanol is used, the above-mentioned aqueous solution in which most of the solvent components are water, or when only water is used as the solvent component. Rather, the autonomous bending of the paper-containing sheet is slower and stays at a smaller bending angle.
That is, the method for manufacturing the paper-containing three-dimensional structure of the present embodiment has a remarkable effect in that the paper-containing sheet can be autonomously bent at a faster speed and a larger bending angle than in the conventional case. Play.
 工程(A)において、添加物を含有する水溶液を、紙含有シート1の一方の面1aに付着させる場合には、前記添加物の濃度が互いに異なる2種の水溶液を、紙含有シート1の互いに異なる領域に対して、別々に付着させてもよい。 In the step (A), when the aqueous solution containing the additive is adhered to one surface 1a of the paper-containing sheet 1, two kinds of aqueous solutions having different concentrations of the additive are applied to each other of the paper-containing sheet 1. It may be attached separately to different regions.
 工程(A)においては、水溶液を用い、水9として、水溶液中の水を、紙含有シート1の一方の面1aに付着させる場合には、互いに異なる2種の水溶液を、紙含有シート1の互いに異なる領域に対して、別々に付着させてもよい。このようにすることで、紙含有シート1の前記一方の面1aに対して平行な方向(換言すると表面方向)において、水9の浸透量が互いに異なる部位(前記第1部位12及び第2部位13)を、紙含有シート1中に作製できる。 In the step (A), when an aqueous solution is used and the water in the aqueous solution is attached to one surface 1a of the paper-containing sheet 1 as water 9, two different aqueous solutions are applied to the paper-containing sheet 1. It may be attached separately to different regions. By doing so, in the direction parallel to the one surface 1a of the paper-containing sheet 1 (in other words, the surface direction), the permeation amounts of the water 9 are different from each other (the first part 12 and the second part). 13) can be produced in the paper-containing sheet 1.
 水の濃度勾配を有する第1部位12と第2部位13の作製に用いる2種の水溶液中の溶質は、互いに同一でも異なっていてもよい。
 すなわち、これら2種の水溶液は、互いに同一の溶質を含有し、かつ溶質の濃度が互いに異なっていてもよいし、互いに異なる溶質を含有し、かつ溶質の濃度が互いに異なっていてもよいし、互いに異なる溶質を含有し、かつ溶質の濃度が互いに同一であってもよい。
 これら2種の水溶液のいずれか一方又は両方が、2種以上の塩を含有する場合には、前記塩の濃度とは、含有する全ての塩の合計濃度である。
The solutes in the two aqueous solutions used to prepare the first site 12 and the second site 13 having a water concentration gradient may be the same or different from each other.
That is, these two aqueous solutions may contain the same solute and have different solute concentrations, or may contain different solutes and have different solute concentrations. They may contain different solutes and have the same concentration of solutes.
When either or both of these two aqueous solutions contains two or more salts, the concentration of the salt is the total concentration of all the salts contained.
 例えば、紙含有シート1の前記一方の面1aに、溶質の種類が同じで、溶質の濃度が異なる2種の水溶液を、同量付着させた場合には、付着させた水溶液中の水9の量が異なるために、紙含有シート1中に浸透する、これら水溶液中の水9の量は、互いに異なる。水溶液の溶質の濃度が低いほど、紙含有シート1中への、水溶液中の水9の浸透量が多くなる傾向にある。また、この場合には、紙含有シート1中への水9の浸透速度も、これら水溶液同士の間で、互いに異なる。水溶液の溶質の濃度が低いほど、水9の浸透速度が速くなる傾向にある。 For example, when the same amount of two aqueous solutions having the same solute type but different solute concentrations is attached to the one surface 1a of the paper-containing sheet 1, the water 9 in the attached aqueous solution is attached. Since the amounts are different, the amounts of water 9 in these aqueous solutions that permeate into the paper-containing sheet 1 are different from each other. The lower the concentration of the solute in the aqueous solution, the greater the permeation amount of water 9 in the aqueous solution into the paper-containing sheet 1. Further, in this case, the permeation rate of the water 9 into the paper-containing sheet 1 is also different between these aqueous solutions. The lower the concentration of the solute in the aqueous solution, the faster the permeation rate of water 9 tends to be.
 また、例えば、紙含有シート1の前記一方の面1aに、溶質の種類が異なり、溶質の濃度(M)が同じである2種の水溶液を、同量付着させた場合には、これら溶質の水和パラメーターが互いに異なっていれば、紙含有シート1中に浸透する、これら水溶液中の水9の量は、互いに異なる。これは、溶質の水和パラメーターが異なることで、溶質を水和する水分子の量が異なり、紙含有シート1中への水9の浸透し易さ(水の浸透速度)が異なってくるからである。通常は、溶質の水和パラメーターが小さいほど、溶質を水和する水分子の量が少なくなり、紙含有シート1へ水9が浸透し易くなり、紙含有シート1中への、水溶液中の水9の浸透量が多くなる傾向にある。また、この場合には、紙含有シート1中への水9の浸透速度も、これら水溶液同士の間で、互いに異なる。溶質の水和パラメーターが小さいほど、水9の浸透速度が速くなる傾向にある。 Further, for example, when two kinds of aqueous solutions having different solute types and the same solute concentration (M) are attached to the one surface 1a of the paper-containing sheet 1 in the same amount, the solutes of these solutes are attached. If the hydration parameters are different from each other, the amount of water 9 in these aqueous solutions permeating into the paper-containing sheet 1 will be different from each other. This is because the amount of water molecules that hydrate the solute differs due to the different hydration parameters of the solute, and the ease of permeation of water 9 into the paper-containing sheet 1 (water permeation rate) also differs. Is. Normally, the smaller the hydration parameter of the solute, the smaller the amount of water molecules that hydrate the solute, the easier it is for water 9 to permeate the paper-containing sheet 1, and the water in the aqueous solution into the paper-containing sheet 1. The permeation amount of 9 tends to increase. Further, in this case, the permeation rate of the water 9 into the paper-containing sheet 1 is also different between these aqueous solutions. The smaller the hydration parameter of the solute, the faster the permeation rate of water 9 tends to be.
 このように、互いに異なる2種の水溶液を、又は、水と水溶液を、併用することで、紙含有シート1中への水9の浸透速度及び浸透量を調節することで、前記第1部位12及び第2部位13を、容易に作製できる。 In this way, by adjusting the permeation rate and the permeation amount of the water 9 into the paper-containing sheet 1 by using two different aqueous solutions or by using water and the aqueous solution in combination, the first portion 12 is described. And the second part 13 can be easily produced.
 前記溶質は、水溶性を有する(換言すると、水和可能である)ものであれば特に限定されず、任意に選択できる。
 前記水溶液は、中性であることが好ましい。
The solute is not particularly limited as long as it has water solubility (in other words, is hydrateable), and can be arbitrarily selected.
The aqueous solution is preferably neutral.
 前記溶質のうち、前記塩は、有機塩及び無機塩のいずれであってもよいが、無機塩であることが好ましい。
 前記無機塩としては、例えば、塩化リチウム(LiCl、水和パラメーター:7.1)、塩化ナトリウム(NaCl、水和パラメーター:3.5)、塩化カリウム(KCl、水和パラメーター:1.9)、塩化ルビジウム(RbCl、水和パラメーター:1.2)等のアルカリ金属の塩化物;臭化リチウム(LiBr、水和パラメーター:7.6)、臭化ナトリウム(NaBr、水和パラメーター:4.2)、臭化カリウム(KBr、水和パラメーター:2.1)、臭化ルビジウム(RbBr、水和パラメーター:0.9)等のアルカリ金属の臭化物;ヨウ化リチウム(LiI、水和パラメーター:9.0)、ヨウ化ナトリウム(NaI、水和パラメーター:5.5)、ヨウ化カリウム(KI、水和パラメーター:2.5)、ヨウ化ルビジウム(RbI、水和パラメーター:0.6)等のアルカリ金属の臭化物;塩化マグネシウム(MgCl、水和パラメーター:13.7)、塩化カルシウム(CaCl、水和パラメーター:12.0)、塩化ストロンチウム(SrCl、水和パラメーター:10.7)等の第2族金属の塩化物;臭化マグネシウム(MgBr、水和パラメーター:17.0)、臭化カルシウム(CaBr、水和パラメーター:14.6)、臭化ストロンチウム(SrBr、水和パラメーター:12.7)等の第2族金属の臭化物;ヨウ化マグネシウム(MgI、水和パラメーター:19.0)、ヨウ化カルシウム(CaI、水和パラメーター:17.0)、ヨウ化ストロンチウム(SrI、水和パラメーター:15.5)等の第2族金属のヨウ化物;塩化マンガン(MnCl、水和パラメーター:11.0)、塩化第一鉄(FeCl、水和パラメーター:12.0)、塩化コバルト(CoCl、水和パラメーター:13.0)、塩化ニッケル(NiCl、水和パラメーター:13.0)等の遷移金属の塩化物等が挙げられる。
Of the solutes, the salt may be either an organic salt or an inorganic salt, but is preferably an inorganic salt.
Examples of the inorganic salt include lithium chloride (LiCl, hydration parameter: 7.1), sodium chloride (NaCl, hydration parameter: 3.5), potassium chloride (KCl, hydration parameter: 1.9), and the like. Chloride of alkali metals such as rubidium chloride (RbCl, hydration parameter: 1.2); lithium bromide (LiBr, hydration parameter: 7.6), sodium bromide (NaBr, hydration parameter: 4.2). , Bromide of alkali metals such as potassium bromide (KBr, hydration parameter: 2.1), rubidium bromide (RbBr, hydration parameter: 0.9); lithium iodide (LiI, hydration parameter: 9.0) ), Sodium iodide (NaI, hydration parameter: 5.5), potassium iodide (KI, hydration parameter: 2.5), rubidium iodide (RbI, hydration parameter: 0.6) and other alkali metals. Bromide; magnesium chloride (MgCl 2 , hydration parameter: 13.7), calcium chloride (CaCl 2 , hydration parameter: 12.0), strontium chloride (SrCl 2 , hydration parameter: 10.7), etc. chloride group 2 metal; magnesium bromide (MgBr 2, hydration parameters: 17.0), calcium bromide (CaBr 2, hydration parameters: 14.6), strontium bromide (SrBr 2, hydration parameters: Bromide of Group 2 metals such as 12.7); magnesium iodide (MgI 2 , hydration parameter: 19.0), calcium chloride (CaI 2 , hydration parameter: 17.0), strontium chloride (SrI) 2. Hydrate of Group 2 metal such as hydration parameter: 15.5); manganese chloride (MnCl 2 , hydration parameter: 11.0), ferrous chloride (FeCl 2 , hydration parameter: 12.0) ), Chloride of transition metal such as cobalt chloride (CoCl 2 , hydration parameter: 13.0), nickel chloride (NiCl 2 , hydration parameter: 13.0) and the like.
 前記溶質は、例えば、入手性及び使用適性の点で、水和パラメーターが0.5~20.0であるものが好ましい。 The solute preferably has a hydration parameter of 0.5 to 20.0, for example, in terms of availability and suitability for use.
 紙含有シート1に対して、水溶液中の水9を浸透し易くするためには、溶質として、例えば、その水和パラメーターが0.5~9であるものを選択できる。
 紙含有シート1に対して、水溶液中の水9の浸透を抑制気味にするためには、溶質として、例えば、その水和パラメーターが15~20であるものを選択できる。
In order to facilitate the permeation of water 9 in the aqueous solution into the paper-containing sheet 1, for example, a solute having a hydration parameter of 0.5 to 9 can be selected.
In order to suppress the permeation of water 9 in the aqueous solution with respect to the paper-containing sheet 1, for example, a solute having a hydration parameter of 15 to 20 can be selected.
 前記水溶液中の溶質の濃度は、特に限定されず、飽和濃度以下であればよい。前記水溶液中の溶質の濃度は、例えば、1~20Mであってもよいが、1~7Mである場合には、工程(A)と、後述する工程(B)を、より安定して行うことができる。 The concentration of the solute in the aqueous solution is not particularly limited and may be any longer than the saturation concentration. The concentration of the solute in the aqueous solution may be, for example, 1 to 20 M, but when it is 1 to 7 M, the step (A) and the step (B) described later should be performed more stably. Can be done.
 ここでは、互いに異なる水溶液を2種用いて、水の濃度勾配を有する第1部位12と、水の濃度勾配を有する第2部位13と、を作製する場合について説明したが、本実施形態で用いる、互いに異なる水溶液の種類は、水9の浸透量が互いに異なる、水の濃度勾配を有する部位の作製数に応じて、任意に選択でき、3種以上であってもよい。
 すなわち、工程(A)においては、互いに異なる2種以上の水溶液を、紙含有シートの互いに異なる領域に対して、別々に付着させることによって、紙含有シートの表面方向において、水の浸透量が互いに異なる、水の濃度勾配を有する部位を、2以上作製してもよい。
 この場合、例えば、前記2種以上の水溶液としては、溶質の水和パラメーターがすべて互いに異なるものを用いることができる。
Here, a case has been described in which a first site 12 having a water concentration gradient and a second site 13 having a water concentration gradient are produced by using two different aqueous solutions, but they are used in the present embodiment. The types of different aqueous solutions can be arbitrarily selected according to the number of sites having a water concentration gradient in which the permeation amount of water 9 is different from each other, and may be 3 or more.
That is, in the step (A), by separately adhering two or more different aqueous solutions to different regions of the paper-containing sheet, the amount of water permeating each other in the surface direction of the paper-containing sheet is increased. Two or more sites with different water concentration gradients may be prepared.
In this case, for example, as the two or more kinds of aqueous solutions, those having different hydration parameters of the solute can be used.
 工程(A)において、紙含有シート1に水9を付着させ、浸透させるときの、環境の圧力は、0~1.0×1012Paであることが好ましく、1.0×10~1.0×10Paであることがより好ましく、1.0×10~1.0×10Paであることがさらに好ましく、例えば常圧(大気圧)下であってもよい。このような圧力条件下においては、水9をより良好に紙含有シート1に浸透させることができる。 In the step (A), the environmental pressure when the water 9 is adhered to and permeated into the paper-containing sheet 1 is preferably 0 to 1.0 × 10 12 Pa, and 1.0 × 10 2 to 1. It is more preferably 0.0 × 10 9 Pa, further preferably 1.0 × 10 6 to 1.0 × 10 7 Pa, and may be, for example, under normal pressure (atmospheric pressure). Under such pressure conditions, the water 9 can be better permeated into the paper-containing sheet 1.
 工程(A)において、紙含有シート1に水9を付着させ、浸透させるときの温度は、-273.15~1.0×10℃であることが好ましく、-10~1.0×10℃であることがより好ましく、1.0×10-12~100℃であることがさらに好ましく、例えば、10~35℃であってもよい。このような温度条件下においては、水9をより良好に紙含有シート1に浸透させることができる。 In step (A), the paper-containing sheet 1 to adhere the water 9, the temperature at which to permeate is preferably -273.15 ~ 1.0 × 10 5 ℃, -10 ~ 1.0 × 10 The temperature is more preferably 3 ° C, more preferably 1.0 × 10-12 to 100 ° C, and may be, for example, 10 to 35 ° C. Under such temperature conditions, the water 9 can be better permeated into the paper-containing sheet 1.
 工程(A)において、紙含有シート1に水9を付着させ、浸透させるときの相対湿度は、0~100%であることが好ましく、10~80%であることがより好ましく、例えば、20~65%、及び20~40%のいずれかであってもよい。このような相対湿度の条件下においては、水9をより良好に紙含有シート1に浸透させることができる。 In the step (A), the relative humidity when the water 9 is adhered to and permeated into the paper-containing sheet 1 is preferably 0 to 100%, more preferably 10 to 80%, for example, 20 to 20 to. It may be either 65% and 20-40%. Under such relative humidity conditions, the water 9 can be better permeated into the paper-containing sheet 1.
 工程(A)において、紙含有シート1に水9を付着させてから、浸透させるときの時間は、このときのその他の条件に応じて、任意に設定でき、特に限定されない。例えば、前記時間は、100000分以内であってもよい。 In the step (A), the time for infiltrating the paper-containing sheet 1 after the water 9 is attached can be arbitrarily set according to other conditions at this time, and is not particularly limited. For example, the time may be within 100,000 minutes.
 工程(A)においては、紙含有シート1に水9を付着させてから、浸透させるときの環境の圧力、温度、相対湿度及び時間からなる群より選択される2以上を、上述の条件に設定することが好ましく、紙含有シート1に水9を付着させてから、浸透させるときの環境の圧力、温度、相対湿度及び時間のすべてを、上述の条件に設定してもよい。
 例えば、工程(A)においては、紙含有シート1に水9を付着させてから、浸透させるとき、これらの工程を、常圧下で、温度-273.15~1.0×10℃、相対湿度0~100%の条件下で行うことが好ましく、例えば、常圧下で、温度10~35℃、相対湿度20~65%の条件下で行ってもよい。ただし、これは、水9の付着及び浸透の好ましい条件の一例である。
In the step (A), two or more selected from the group consisting of environmental pressure, temperature, relative humidity and time when water 9 is adhered to the paper-containing sheet 1 and then permeated are set as the above-mentioned conditions. The above conditions may be set for all of the environmental pressure, temperature, relative humidity and time when water 9 is adhered to the paper-containing sheet 1 and then permeated.
For example, in the step (A), were allowed to adhere to water 9 to the paper containing sheets 1, when infiltrating, these steps, under normal pressure, the temperature -273.15 ~ 1.0 × 10 5 ℃, relative It is preferably performed under a humidity of 0 to 100%, and may be performed under normal pressure, a temperature of 10 to 35 ° C., and a relative humidity of 20 to 65%, for example. However, this is an example of favorable conditions for the adhesion and permeation of water 9.
<工程(B)>
 前記工程(A)の後、前記工程(B)においては、前記水の濃度勾配を有する状態の前記紙含有シートを乾燥させる。これにより、例えば、図5Aに示すように、紙含有シート1は、その水の濃度勾配を有する部位11において、一方の面1aが凹状となるように、折れ曲がりはじめ、乾燥(換言すると水9の除去)が進行するとともに、折れ曲がりの角度が大きくなり、例えば、図5Bに示すように、乾燥が終了した状態で、目的とする紙含有立体構造体10が形成される。
 本実施形態においては、このように、水の濃度勾配を有する状態の(換言すると、水の濃度勾配を有する部位11が存在する)紙含有シート1を乾燥させることにより、紙含有シート1を、その水の濃度勾配を有していた部位11’において、自律的に折り曲げる。
<Process (B)>
After the step (A), in the step (B), the paper-containing sheet having the water concentration gradient is dried. As a result, for example, as shown in FIG. 5A, the paper-containing sheet 1 begins to bend and dries (in other words, water 9) so that one surface 1a becomes concave at the portion 11 having the water concentration gradient. As the removal) progresses, the bending angle increases, and for example, as shown in FIG. 5B, the target paper-containing three-dimensional structure 10 is formed in a state where drying is completed.
In the present embodiment, the paper-containing sheet 1 is dried by drying the paper-containing sheet 1 having the water concentration gradient (in other words, the portion 11 having the water concentration gradient is present). It bends autonomously at the portion 11'that had the concentration gradient of the water.
 紙含有シート1中では、当初、セルロース分子同士が水素結合によって結合している。 前記工程(A)において、紙含有シート1に水9を浸透させると、先の説明のように、その一方の面1a側が膨張するが、紙含有シート1中では、水分子がセルロース分子間の水素結合を切断し、セルロース分子間に水分子が介在した状態となり、セルロース分子-水分子-セルロース分子の分子間結合が形成されると推測される。
 一方、紙含有シート1は、その製造方法に起因して、外力によってひずみが生じた状態のまま製造されている。このような紙含有シート1に対して、工程(A)に次いで工程(B)を行うと、乾燥によって、紙含有シート1中の水9が低減されるに従って、紙含有シート1中では、再度、セルロース分子同士が水素結合によって結合する。このとき、紙含有シート1は、当初の状態よりも、ひずみが低減又は解消されて安定した状態となり、水9の浸透前よりも収縮すると推測される。このとき生じる収縮力によって、紙含有シート1は、最終的に図5Bに示すように、その水の濃度勾配を有していた部位11’において、自律的に折れ曲がると推測される。
In the paper-containing sheet 1, the cellulose molecules are initially bonded to each other by hydrogen bonds. In the step (A), when water 9 is impregnated into the paper-containing sheet 1, one surface 1a side expands as described above, but in the paper-containing sheet 1, water molecules are interspersed with cellulose molecules. It is presumed that the hydrogen bond is cleaved and the water molecule is interposed between the cellulose molecules, and the intermolecular bond of the cellulose molecule-water molecule-cellulose molecule is formed.
On the other hand, the paper-containing sheet 1 is manufactured in a state of being strained by an external force due to the manufacturing method thereof. When the step (B) is performed on such a paper-containing sheet 1 after the step (A), as the water 9 in the paper-containing sheet 1 is reduced by drying, the paper-containing sheet 1 is again subjected to the step (B). , Cellulose molecules are bonded to each other by hydrogen bonds. At this time, it is presumed that the paper-containing sheet 1 is in a stable state with the strain reduced or eliminated from the initial state, and shrinks more than before the water 9 permeates. It is presumed that the paper-containing sheet 1 finally bends autonomously at the portion 11'that had the concentration gradient of the water, as shown in FIG. 5B, due to the shrinkage force generated at this time.
 工程(B)においては、このように、紙含有シート1の両面(すなわち、一方の面1aと他方の面1b)のうち、水9の濃度が高い側の面(すなわち、一方の面1a)を内向き(すなわち、他方の面1bを外向き)にして、紙含有シート1を自律的に折り曲げる。 In the step (B), thus, of both sides of the paper-containing sheet 1 (that is, one side 1a and the other side 1b), the side having a high concentration of water 9 (that is, one side 1a). Is inward (that is, the other surface 1b is outward), and the paper-containing sheet 1 is bent autonomously.
 紙含有シートを自律的に折り曲げたとき、折り曲げ部位は、必ずしも明確な折り目を有するとはいえず、折り曲げ部位の表面は曲面となっていることが多い。紙含有シートの折れ曲がりの角度は、折り曲げ部位が明確な折り目を有する場合には容易に測定できるが、折り曲げ部位の表面が曲面となっている場合には、折り目を有する場合と同様の方法では、測定が困難である。このような場合、紙含有シートの折れ曲がりの角度は、以下の方法で測定できる。図6A~図6Bは、このような場合の、紙含有シートの折れ曲がりの角度の測定方法を説明するための模式図であり、図6Aは折り曲げる前の紙含有シートを示す平面図であり、図6Bは折り曲げた後の紙含有シート(すなわち紙含有立体構造体)を示す正面図である。 When the paper-containing sheet is bent autonomously, the bent portion does not always have a clear crease, and the surface of the bent portion is often curved. The bending angle of the paper-containing sheet can be easily measured when the bent portion has a clear crease, but when the surface of the bent portion has a curved surface, the same method as when the folded portion has a crease can be used. It is difficult to measure. In such a case, the bending angle of the paper-containing sheet can be measured by the following method. 6A to 6B are schematic views for explaining a method of measuring the bending angle of the paper-containing sheet in such a case, and FIG. 6A is a plan view showing the paper-containing sheet before bending. 6B is a front view showing a paper-containing sheet (that is, a paper-containing three-dimensional structure) after bending.
 図6Aに示す紙含有シート8には、工程(A)により、幅W81の線状(太線状)の、水の濃度勾配を有する部位81が作製されている。紙含有シート8のうち、前記幅W81方向(換言すると、紙含有シート8の幅方向)において、水の濃度勾配を有する部位81よりも右側の部位は、第1部位802であり、左側の部位は、第2部位803である。前記第1部位802の幅W802と、前記第2部位803の幅W803は、W802≧W803の関係にある。 The paper containing sheet 8 shown in FIG. 6A, the step (A), a linear width W 81 of the (thick line-like), portions 81 having a concentration gradient of water are produced. Of the paper-containing sheet 8, the portion on the right side of the portion 81 having the water concentration gradient in the width W 81 direction (in other words, the width direction of the paper-containing sheet 8) is the first portion 802, which is on the left side. The site is the second site 803. Wherein a width W 802 of the first portion 802, the width W 803 of the second portion 803 are in a relationship of W 802W 803.
 工程(B)により、紙含有シート8を自律的に折り曲げることで、図6Bに示すように、紙含有立体構造体80が形成された場合を考える。
 紙含有立体構造体80(紙含有シート8)中の、水の濃度勾配を有していた部位81’においては、その一方の面8aが凹状(他方の面8bが凸状)の曲面となっている。
Consider a case where the paper-containing three-dimensional structure 80 is formed as shown in FIG. 6B by autonomously bending the paper-containing sheet 8 in the step (B).
In the portion 81'in the paper-containing three-dimensional structure 80 (paper-containing sheet 8) having a water concentration gradient, one surface 8a is a concave surface (the other surface 8b is a convex surface). ing.
 ここで、紙含有シート8の第1部位802のうち、水の濃度勾配を有していた部位81’との境界から、1/2W81の長さだけ、前記第1部位802の表面方向と同じ方向に、線分を伸ばし、その先端部を仮想端部Pとする。
 前記第1部位802の、水の濃度勾配を有していた部位81’の側とは反対側の端部を第1端部Pとし、前記第2部位803の、水の濃度勾配を有していた部位81’の側とは反対側の端部を第2端部Pとする。
 図6Bにおいては、仮想端部P、第1端部P及び第2端部Pを、これらを判り易くするために、便宜上、黒点を付して示している。
Here, in the first portion 802 of the paper-containing sheet 8, from the boundary with the portion 81'that had the water concentration gradient, the length of 1 / 2W 81 is the surface direction of the first portion 802. in the same direction, extending the line to the tip and the virtual end P 1.
Of the first portion 802, the end opposite the first end portion P 2 and the side portions had a concentration gradient of water 81 ', chromatic of the second portion 803, the concentration gradient of water the side portions 81 'which has been a end opposite the second end P 3.
In FIG. 6B, the virtual end portion P 1 , the first end portion P 2, and the second end portion P 3 are shown with black dots for convenience in order to make them easy to understand.
 この場合、第1端部Pと仮想端部Pを結ぶ線分を、さらに仮想端部Pを超えて延長した延長線分を作製し、この延長線分の延長部分と、第2端部Pと仮想端部Pを結ぶ線分と、の為す角度θ(°)を、紙含有シート8の折れ曲がりの角度として採用する。θは、通常、0°<θ<180°の条件を満たし、ここではθ>90°である場合を例示している。
 一方、第1端部Pと仮想端部Pを結ぶ線分と、第2端部Pと仮想端部Pを結ぶ線分と、の為す角度θ(°)は、紙含有立体構造体80の折れ曲がり部の角度であり、180-θ(°)と同義である。θも、通常、0°<θ<180°の条件を満たし、ここではθ<90°である場合を例示している。
In this case, an extension line segment connecting the first end portion P 2 and the virtual end portion P 1 is further extended beyond the virtual end portion P 1, and the extension portion of this extension line segment and the second end portion are formed. The angle θ 1 (°) formed by the line segment connecting the end portion P 3 and the virtual end portion P 1 is adopted as the bending angle of the paper-containing sheet 8. θ 1 usually satisfies the condition of 0 ° <θ 1 <180 °, and here exemplifies the case where θ 1> 90 °.
On the other hand, the angle θ 2 (°) formed by the line segment connecting the first end portion P 2 and the virtual end portion P 1 and the line segment connecting the second end portion P 3 and the virtual end portion P 1 contains paper. It is the angle of the bent portion of the three-dimensional structure 80, and is synonymous with 180-θ 1 (°). θ 2 also normally satisfies the condition of 0 ° <θ 2 <180 °, and here, the case where θ 2 <90 ° is illustrated.
 工程(B)において、紙含有シート1を乾燥させるときの圧力は、0~1.0×1012Paであることが好ましく、1.0×10~1.0×10Paであることがより好ましく、1.0×10~1.0×10Paであることがさらに好ましく、例えば常圧(大気圧)下であってもよい。このような圧力下で紙含有シート1を乾燥させることにより、紙含有シート1の自律的な折り曲げを、より効率的に行うことができる。 In the step (B), the pressure at which the paper-containing sheet 1 is dried is preferably 0 to 1.0 × 10 12 Pa, and is preferably 1.0 × 10 2 to 1.0 × 10 9 Pa. Is more preferable, and 1.0 × 10 6 to 1.0 × 10 7 Pa is further preferable, and for example, it may be under normal pressure (atmospheric pressure). By drying the paper-containing sheet 1 under such pressure, the paper-containing sheet 1 can be bent more efficiently.
 工程(B)において、紙含有シート1を乾燥させるときの温度(乾燥温度)は、-273.15~1.0×10℃であることが好ましく、-10~1.0×10℃であることがより好ましく、1.0×10-12~100℃であることがさらに好ましく、例えば、20~70℃であってもよい。このような温度条件下で紙含有シート1を乾燥させることにより、紙含有シート1の自律的な折り曲げを、より効率的に行うことができる。 In step (B), the temperature at which drying of paper containing sheet 1 (drying temperature) is preferably -273.15 ~ 1.0 × 10 5 ℃, -10 ~ 1.0 × 10 3 ℃ It is more preferably 1.0 × 10-12 to 100 ° C., and may be, for example, 20 to 70 ° C. By drying the paper-containing sheet 1 under such temperature conditions, the paper-containing sheet 1 can be bent more efficiently.
 工程(B)において、紙含有シート1を乾燥させるときの相対湿度は、0~100%であることが好ましく、10~80%であることがより好ましく、例えば、20~65%、及び20~40%のいずれかであってもよい。このような相対湿度の条件下で紙含有シート1を乾燥させることにより、紙含有シート1の自律的な折り曲げを、より効率的に行うことができる。 In the step (B), the relative humidity when the paper-containing sheet 1 is dried is preferably 0 to 100%, more preferably 10 to 80%, and for example, 20 to 65% and 20 to 20 to. It may be any of 40%. By drying the paper-containing sheet 1 under such a relative humidity condition, the paper-containing sheet 1 can be bent more efficiently.
 工程(B)において、紙含有シート1を乾燥させる時間(乾燥時間)は、乾燥時のその他の条件に応じて、任意に設定でき、特に限定されない。例えば、紙含有シート1を乾燥させる時間は、1.0×1030分以内であってもよいし、100000分以内であってもよいし、10000分以内であってもよい。 In the step (B), the time (drying time) for drying the paper-containing sheet 1 can be arbitrarily set according to other conditions at the time of drying, and is not particularly limited. For example, the time for drying the paper-containing sheet 1 may be 1.0 × 10 30 minutes or less, 100,000 minutes or less, or 10,000 minutes or less.
 工程(B)においては、紙含有シート1を乾燥させるときの圧力、温度、相対湿度及び時間からなる群より選択される2以上を、上述の条件に設定することが好ましく、紙含有シート1を乾燥させるときの圧力、温度、相対湿度及び時間のすべてを、上述の条件に設定してもよい。
 例えば、工程(B)においては、水の濃度勾配を有する状態の紙含有シート1を、常圧下で、温度-273.15~1.0×10℃、相対湿度0~100%の条件下で乾燥させることが好ましく、例えば、常圧下で、温度20~70℃、相対湿度20~65%の条件下で乾燥させてもよい。ただし、これは、紙含有シート1の好ましい乾燥条件の一例である。
In the step (B), it is preferable to set two or more selected from the group consisting of the pressure, temperature, relative humidity and time when the paper-containing sheet 1 is dried under the above-mentioned conditions, and the paper-containing sheet 1 is used. The pressure, temperature, relative humidity and time for drying may all be set to the above conditions.
For example, In step (B), a state having a concentration gradient of water paper containing sheets 1, under normal pressure, the temperature -273.15 ~ 1.0 × 10 5 ℃, relative humidity of 0% to 100% under conditions For example, it may be dried under normal pressure at a temperature of 20 to 70 ° C. and a relative humidity of 20 to 65%. However, this is an example of preferable drying conditions for the paper-containing sheet 1.
 工程(B)は、例えば、図1Bに示すように、紙含有シート1が反った状態で開始してもよいし、図1Cに示すように、紙含有シート1が反っていない状態で開始してもよい。
 本実施形態においては、工程(A)を行った後、紙含有シート1を置く環境の条件(圧力、温度及び相対湿度等)を、乾燥を行うように人為的に変化させていない(すなわち、放置している)場合であれば、紙含有シート1中の水9の量の減少が明確に確認できた時点で、工程(B)を開始したものとすることができる。また、例えば、工程(A)を行った後、紙含有シート1を置く環境の条件を、乾燥を行うように人為的に変化させた場合には、この条件を変化させた時点で、工程(B)を開始したものとすることができる。
 紙含有シート1中の水9の量の減少は、例えば、水9が浸透している紙含有シート1の質量を測定することで、確認できる。
The step (B) may be started, for example, in a state where the paper-containing sheet 1 is warped as shown in FIG. 1B, or may be started in a state where the paper-containing sheet 1 is not warped as shown in FIG. 1C. You may.
In the present embodiment, after the step (A) is performed, the environmental conditions (pressure, temperature, relative humidity, etc.) on which the paper-containing sheet 1 is placed are not artificially changed so as to perform drying (that is,). In the case of leaving it unattended), it can be assumed that the step (B) is started when the decrease in the amount of water 9 in the paper-containing sheet 1 can be clearly confirmed. Further, for example, when the condition of the environment in which the paper-containing sheet 1 is placed is artificially changed so as to perform drying after the step (A) is performed, the step (at the time when this condition is changed) B) can be assumed to have started.
The decrease in the amount of water 9 in the paper-containing sheet 1 can be confirmed, for example, by measuring the mass of the paper-containing sheet 1 in which water 9 has permeated.
 工程(A)において、互いに異なる2種以上の水溶液を、紙含有シート1の互いに異なる領域に対して、別々に付着させることによって、紙含有シート1の表面方向において、水9の浸透量が互いに異なる、水9の濃度勾配を有する部位を、2以上作製した場合には、前記2種以上の水溶液の使用方法に依存して、工程(B)において、前記2以上の部位間では、紙含有シート1の自律的な折れ曲がりの態様に、差を生じさせることができる。 In the step (A), two or more different aqueous solutions are separately adhered to different regions of the paper-containing sheet 1, so that the amount of water 9 permeating each other in the surface direction of the paper-containing sheet 1 is increased. When two or more parts having different concentration gradients of water 9 are prepared, paper is contained between the two or more parts in the step (B) depending on the method of using the two or more kinds of aqueous solutions. Differences can be made in the autonomous bending mode of the sheet 1.
 例えば、先の説明のとおり、工程(A)において、紙含有シート1へ水9を浸透させるときに、水溶液の溶質の濃度を調節するか、又は、溶質の種類を調節することにより、前記2以上の部位を作製し、次いで工程(B)を行うことにより、前記2以上の部位間で、紙含有シート1の自律的な折り曲げの角度又は速度に差を生じさせることが可能である。 For example, as described above, in the step (A), when the water 9 is permeated into the paper-containing sheet 1, the concentration of the solute in the aqueous solution is adjusted, or the type of the solute is adjusted to be the same as described in 2 above. By producing the above-mentioned parts and then performing the step (B), it is possible to make a difference in the autonomous bending angle or speed of the paper-containing sheet 1 between the two or more parts.
 このように、互いに異なる2種以上の水溶液を、又は、水と水溶液を合計で2種以上、併用することで、紙含有シート1に、態様が互いに異なる、2以上の自律的な折れ曲がり部位を、より容易に形成できる。 In this way, by using two or more different aqueous solutions or two or more aqueous solutions in total, the paper-containing sheet 1 is provided with two or more autonomous bent portions having different modes. , Can be formed more easily.
◎紙含有シートの形状
 紙含有シートの形状は、目的とする紙含有立体構造体の構造に応じて、任意に選択できる。
 図7A~図7Cは、本実施形態で用いる紙含有シートと、目的とする紙含有立体構造体と、の一例を模式的に示す斜視図である。
◎ Shape of paper-containing sheet The shape of the paper-containing sheet can be arbitrarily selected according to the structure of the target paper-containing three-dimensional structure.
7A to 7C are perspective views schematically showing an example of the paper-containing sheet used in the present embodiment and the target paper-containing three-dimensional structure.
 図7Aに示す紙含有シート2は、2辺のうちの1辺の長さが長い十字型の形状を有している。
 紙含有シート2を、同じ大きさの6枚の正方形状のシートの接合体とみなした場合、紙含有シート2に対して、工程(A)を行い、図7Bに示すように、これら正方形状のシートの接合部に相当する部位に、水の濃度勾配を有する部位21、22、23、24及び25を作製することができる。このとき、これら水の濃度勾配を有する部位21、22、23、24及び25は、すべて、紙含有シート2の同じ側の面、すなわち、一方の面2a側から水を浸透させることにより、作製することができる。
 次いで、工程(B)を行うことにより、紙含有シート2を、その水の濃度勾配を有していた部位21’、22’、23’、24’及び25’において、前記一方の面2a側に自律的に折り曲げる。
 以上により、図7Cに示すように、立方体状の紙含有立体構造体20を製造できる。
The paper-containing sheet 2 shown in FIG. 7A has a cross-shaped shape in which one of the two sides has a long length.
When the paper-containing sheet 2 is regarded as a bonded body of six square-shaped sheets of the same size, the paper-containing sheet 2 is subjected to step (A), and as shown in FIG. 7B, these square-shaped sheets are formed. Sites 21, 22, 23, 24 and 25 having a water concentration gradient can be produced at the sites corresponding to the joints of the sheets. At this time, the portions 21, 22, 23, 24, and 25 having a concentration gradient of water are all produced by infiltrating water from the same side surface of the paper-containing sheet 2, that is, one surface 2a side. can do.
Next, by performing the step (B), the paper-containing sheet 2 is placed on the one surface 2a side in the portions 21', 22', 23', 24'and 25'that had the water concentration gradient. Bend autonomously.
As described above, as shown in FIG. 7C, the cubic paper-containing three-dimensional structure 20 can be manufactured.
 図8は、本実施形態の紙含有立体構造体の製造方法で用いる、紙含有シートの他の例を、模式的に示す平面図である。
 ここに示す紙含有シート200は、図7Aに示す紙含有シート2において、その外周が90°の角度を成している4箇所の角部に、円周の約3/4に相当する円弧状の切欠き部29が設けられ、その直線状の外周上に位置し、かつ、上述の2枚の正方形状のシートの接合部と見做せる2箇所に、円周の約1/2に相当する円弧状の切欠き部28が設けられたものに相当する。
 紙含有シート200は、このように、その外周のうち、折り曲げ予定箇所と重複する箇所に、切欠き部(4箇所の切欠き部29と、2箇所の切欠き部28)が設けられていることにより、図7Aに示す紙含有シート2の場合よりも、工程(B)における自律的な折り曲げが、より容易である。紙含有シート200を用いて、工程(B)を行うことにより、略立方体状の紙含有立体構造体を製造できる。
FIG. 8 is a plan view schematically showing another example of the paper-containing sheet used in the method for manufacturing the paper-containing three-dimensional structure of the present embodiment.
The paper-containing sheet 200 shown here has an arc shape corresponding to about 3/4 of the circumference in the four corners of the paper-containing sheet 2 shown in FIG. 7A whose outer circumference forms an angle of 90 °. Notch 29 is provided, and is located on the outer circumference of the straight line, and corresponds to about 1/2 of the circumference at two places that can be regarded as the joints of the above-mentioned two square sheets. Corresponds to the one provided with the arcuate notch 28.
In this way, the paper-containing sheet 200 is provided with notches (four notches 29 and two notches 28) on the outer periphery thereof overlapping the planned bending points. As a result, autonomous bending in the step (B) is easier than in the case of the paper-containing sheet 2 shown in FIG. 7A. By performing the step (B) using the paper-containing sheet 200, a substantially cubic paper-containing three-dimensional structure can be manufactured.
◎変形例
 本実施形態の紙含有立体構造体の製造方法は、上述の態様に限定されず、本発明の趣旨を逸脱しない範囲内において、一部の構成が変更、削除又は追加されたものであってもよい。
◎ Modification Example The method for producing a paper-containing three-dimensional structure according to the present embodiment is not limited to the above-mentioned embodiment, and a part of the configuration is changed, deleted or added within a range not deviating from the gist of the present invention. There may be.
 例えば、ここまでは、紙含有シートに対して、水の濃度勾配を有する部位を複数作製するときに、すべての水の濃度勾配を有する部位を、紙含有シートの同じ面(前記一方の面)側に作製する場合について説明したが、本実施形態においては、紙含有シートの両面(前記一方の面と前記他方の面)側に、それぞれ、1又は2以上の、水の濃度勾配を有する部位を作製してもよい。 For example, up to this point, when a plurality of parts having a water concentration gradient are produced on a paper-containing sheet, all the parts having a water concentration gradient are formed on the same surface of the paper-containing sheet (one surface thereof). Although the case of producing on the side has been described, in the present embodiment, a portion having one or more water concentration gradients on both sides (one surface and the other surface) of the paper-containing sheet, respectively. May be produced.
 図9A~図9Bは、本実施形態における、水の濃度勾配を有する部位が作製され紙含有シートと、目的とする紙含有立体構造体と、の他の例を模式的に示す断面図である。
 図9Aに示す紙含有シート3は、その平面形状が矩形状であり、工程(A)を行うことにより、その一方の面3a側の2箇所に、直線状の水の濃度勾配を有する部位31が作製されており、その他方の面3b側の3箇所に、直線状の水の濃度勾配を有する部位32が作製されている。
 次いで、工程(B)を行うことにより、紙含有シート3を、その水の濃度勾配を有していた部位31’において、前記一方の面3a側に自律的に折り曲げ、その水の濃度勾配を有していた部位32’において、前記他方の面3b側に自律的に折り曲げる。
 以上により、図9Bに示すように、波型の紙含有立体構造体30を製造できる。
9A to 9B are cross-sectional views schematically showing another example of the paper-containing sheet in which the portion having the water concentration gradient is produced, the target paper-containing three-dimensional structure, and other examples in the present embodiment. ..
The paper-containing sheet 3 shown in FIG. 9A has a rectangular planar shape, and by performing step (A), a portion 31 having a linear water concentration gradient at two locations on one surface 3a side thereof. Is produced, and sites 32 having a linear water concentration gradient are produced at three locations on the other side of the surface 3b.
Next, by performing the step (B), the paper-containing sheet 3 is autonomously bent toward the one surface 3a at the portion 31'that has the water concentration gradient, and the water concentration gradient is set. At the portion 32'that it had, it is autonomously bent toward the other surface 3b.
As described above, as shown in FIG. 9B, the corrugated paper-containing three-dimensional structure 30 can be manufactured.
 ここまでは、紙含有シート中の水の濃度勾配を有する部位を、1本の独立した線状として作製し、この部位に沿って平面状の紙含有シートを、自律的に直線的に折り曲げる場合について説明したが、本実施形態においては、紙含有シート中の水の濃度勾配を有する部位の配置と、紙含有シートの自律的な折り曲げ方は、これに限定されない。 Up to this point, the case where the part having the water concentration gradient in the paper-containing sheet is made as one independent linear shape, and the flat paper-containing sheet is autonomously and linearly bent along this part. However, in the present embodiment, the arrangement of the portion having the water concentration gradient in the paper-containing sheet and the autonomous folding method of the paper-containing sheet are not limited to this.
 図10A~図10Bは、本実施形態における、水の濃度勾配を有する部位が作製され紙含有シートと、目的とする紙含有立体構造体と、の他の例を模式的に示す断面図である。
 図10Aに示す紙含有シート4は、その平面形状が矩形状であり、工程(A)を行うことにより、その一方の面4a側には、直線状の多数の水の濃度勾配を有する部位41が、僅かな隙間を空けて、互いに平行に作製されている。これに対して、紙含有シート4の他方の面4b側には、水の濃度勾配を有する部位は作製されていない。
10A to 10B are cross-sectional views schematically showing another example of the paper-containing sheet in which the portion having the water concentration gradient is produced, the target paper-containing three-dimensional structure, and other examples in the present embodiment. ..
The paper-containing sheet 4 shown in FIG. 10A has a rectangular planar shape, and by performing step (A), a portion 41 having a large number of linear water concentration gradients on one surface 4a side thereof. However, they are manufactured parallel to each other with a slight gap. On the other hand, on the other surface 4b side of the paper-containing sheet 4, a portion having a water concentration gradient is not formed.
 次いで、工程(B)を行うことにより、紙含有シート4を、その水の濃度勾配を有していた部位41’において、前記一方の面4a側に自律的に折り曲げる。
 以上により、紙含有シート4には、水の濃度勾配を有していた部位41’が、水の濃度勾配を有する部位41と同数存在するため、図10Bに示すように、半円筒状の紙含有立体構造体40を製造できる。
Next, by performing the step (B), the paper-containing sheet 4 is autonomously bent toward the one surface 4a at the portion 41'that has the water concentration gradient.
As described above, the paper-containing sheet 4 has the same number of portions 41'that have a water concentration gradient as the portions 41 that have a water concentration gradient. Therefore, as shown in FIG. 10B, the semi-cylindrical paper. The contained three-dimensional structure 40 can be manufactured.
 なお、紙含有シート4への水の浸透量、又は水の濃度勾配を有する部位41の幅を調節することで、紙含有シート4の折り曲げの角度を調節できるため、紙含有立体構造体40を半円筒状以外の形状とすることも可能である。例えば、図10Bの場合よりも水の浸透量を増やすか、又は水の濃度勾配を有する部位41の幅を広くすることで、円筒状の紙含有立体構造体や、ロール状に巻き取った形状の紙含有立体構造体を製造することが可能である。 Since the bending angle of the paper-containing sheet 4 can be adjusted by adjusting the amount of water permeating into the paper-containing sheet 4 or the width of the portion 41 having the water concentration gradient, the paper-containing three-dimensional structure 40 can be used. It is also possible to have a shape other than the semi-cylindrical shape. For example, by increasing the amount of water permeation or widening the width of the portion 41 having the water concentration gradient as compared with the case of FIG. 10B, a cylindrical paper-containing three-dimensional structure or a roll-shaped wound shape can be obtained. It is possible to manufacture a paper-containing three-dimensional structure of the above.
 ここまでは、概ね、紙含有シート中の水の濃度勾配を有する部位として、形状が線状であるもの示しているが、水の濃度勾配を形成可能であれば、水の濃度勾配を有する部位の形状は、例えば、線よりも表面積が明確に大きい何らかの塗り潰し形状(例えば、多角形状、円状、楕円状、及びこれらのいずれにも該当しない不定形状、並びにこれら形状の1種又は2種以上が組み合わされた複合形状等)であってもよい。 Up to this point, the part having a water concentration gradient in the paper-containing sheet is generally shown to have a linear shape, but if a water concentration gradient can be formed, the part having a water concentration gradient is shown. The shape of is, for example, some filled shape (eg, polygonal, circular, elliptical, and indefinite shape that does not fall under any of these, and one or more of these shapes, whose surface area is clearly larger than the line. It may be a composite shape in which the above are combined).
 本実施形態の紙含有立体構造体の製造方法は、従来とは異なり、紙含有シートへの電流、熱等のエネルギーの供給が不要であり、紙を特殊な材料で修飾する必要もないため、実用性が高いという利点を有する。
 さらに、本実施形態の紙含有立体構造体の製造方法は、従来法よりも、紙含有シートの自律的な折り曲げを、より速い速度、より大きな折り曲げ角度で行うことができるという利点を有する。
Unlike the conventional method, the method for manufacturing the paper-containing three-dimensional structure of the present embodiment does not require the supply of energy such as electric current and heat to the paper-containing sheet, and does not require the paper to be modified with a special material. It has the advantage of high practicality.
Further, the method for manufacturing the paper-containing three-dimensional structure of the present embodiment has an advantage that the paper-containing sheet can be autonomously bent at a higher speed and a larger bending angle than the conventional method.
 このような特性を生かし、本実施形態の製造方法は、3次元電子デバイスの製造、衝撃緩衝材の製造、シートの折り畳み等への適用に有用である。 Taking advantage of these characteristics, the manufacturing method of this embodiment is useful for manufacturing a three-dimensional electronic device, manufacturing a shock absorbing material, folding a sheet, and the like.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples shown below.
 なお、本明細書において、濃度の単位「M」とは、「mol/L」を意味する。 In the present specification, the unit of concentration "M" means "mol / L".
[実施例1]
<<紙含有立体構造体の製造(紙含有シートに対する水の付着量を変化させたときの、紙含有シートの折れ曲がりの角度の調査)>>
<紙含有シートの厚さの測定>
 紙含有シートとして、A4サイズ(210mm×297mm)の7種のトレーシングペーパー(以下、それぞれ、「TP1」、「TP2」、「TP3」、「TP4」、「TP5」、「TP6」、「TP7」と称することがある)を用意した。
 温度24℃、相対湿度52%の条件下で、マイクロメータを用いて、これらトレーシングペーパー(TP1~TP7)の任意に選択した2箇所において、厚さを測定した。このような厚さの測定を、トレーシングペーパー1種ごとに、10枚ずつ行い、7種のトレーシングペーパーごとに、20の測定値の平均値を算出し、これをトレーシングペーパーの厚さとして採用した。結果を表1に示す。
[Example 1]
<< Manufacture of paper-containing three-dimensional structure (investigation of bending angle of paper-containing sheet when the amount of water adhered to the paper-containing sheet is changed) >>
<Measurement of thickness of paper-containing sheet>
As paper-containing sheets, 7 types of A4 size (210 mm x 297 mm) tracing paper (hereinafter, "TP1", "TP2", "TP3", "TP4", "TP5", "TP6", "TP7", respectively. May be called).
Thickness was measured at two arbitrarily selected parts of these tracing papers (TP1 to TP7) using a micrometer under the conditions of a temperature of 24 ° C. and a relative humidity of 52%. Such thickness measurement is performed for each type of tracing paper, 10 sheets each, and for each type of 7 types of tracing paper, the average value of 20 measured values is calculated, and this is used as the thickness of the tracing paper. Adopted as. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<紙含有立体構造体の製造>
 TP1から、縦95mm、横65mmの大きの試験片(以下、「TP1試験片」と称することがある)を切り出し、相対湿度を30%に保持した保管庫内で、このTP1試験片を保管し、TP1試験片の状態を安定化させた。
 次いで、前記保管庫からTP1試験片を取り出し、A4サイズの紙の表面のうち、中心部に、再剥離可能なスプレー糊を用いて、このTP1試験片を貼り付けて固定した。そして、温度24℃、相対湿度47%の条件下で、インクジェットプリンターを用い、水性黒色インクの吐出量を0.0017g、0.0043g、0.0093g、0.0172g及び0.0314gの5通りとすることで、黒色印刷濃度を20%、40%、60%、80%、100%の5通りに調節し、黒色インクの吐出量1水準ごとに、上記の固定後のTP1試験片に対して、図11に示すように、インクジェット印刷を行った(工程(A))。図11は、本実施例で工程(A)を行った後の紙含有シート(黒色インクを印刷後のTP1試験片)を示す平面図である。
<Manufacturing of paper-containing three-dimensional structures>
A test piece having a size of 95 mm in length and 65 mm in width (hereinafter, may be referred to as "TP1 test piece") is cut out from TP1 and stored in a storage chamber in which the relative humidity is maintained at 30%. , The state of the TP1 test piece was stabilized.
Next, the TP1 test piece was taken out from the storage, and the TP1 test piece was attached and fixed to the center of the surface of A4 size paper using a removable spray glue. Then, under the conditions of a temperature of 24 ° C. and a relative humidity of 47%, the ejection amount of the water-based black ink is 0.0017 g, 0.0043 g, 0.0093 g, 0.0172 g and 0.0314 g in five ways using an inkjet printer. By doing so, the black print density can be adjusted in 5 ways of 20%, 40%, 60%, 80%, and 100%, and for each level of black ink ejection amount, the above-mentioned fixed TP1 test piece can be used. , As shown in FIG. 11, inkjet printing was performed (step (A)). FIG. 11 is a plan view showing a paper-containing sheet (TP1 test piece after printing black ink) after performing the step (A) in this embodiment.
 次いで、この印刷後のTP1試験片を、そのまま温度24℃、相対湿度47%の条件下で10秒静置することで、黒色インクをTP1試験片に浸透させた。
 次いで、直ちに、TP1試験片を、これを固定していたA4サイズの紙から剥離させ、相対湿度30%の環境下で、温度を60℃に調節したサーモプレートの上に、この剥離後のTP1試験片を約5分静置することにより、TP1試験片を乾燥させ、TP1試験片を自律的に折り曲げた(工程(B))。このとき、TP1試験片の印刷面とは反対側の面がサーモプレート側を向くように、サーモプレートの上にTP1試験片を配置した。乾燥が終了する前の時点で、TP1試験片の自律的な折り曲げは、すでに停止していた。
Next, the printed TP1 test piece was allowed to stand for 10 seconds under the conditions of a temperature of 24 ° C. and a relative humidity of 47% to allow the black ink to permeate the TP1 test piece.
Immediately, the TP1 test piece was peeled off from the A4 size paper on which it was fixed, and the peeled TP1 was placed on a thermoplate whose temperature was adjusted to 60 ° C. in an environment of 30% relative humidity. By allowing the test piece to stand for about 5 minutes, the TP1 test piece was dried and the TP1 test piece was autonomously bent (step (B)). At this time, the TP1 test piece was placed on the thermoplate so that the side opposite to the printed surface of the TP1 test piece faces the thermoplate side. By the time the drying was finished, the autonomous bending of the TP1 test piece had already stopped.
 ここまでの全工程は、常圧下で行った。 The entire process up to this point was performed under normal pressure.
 このようにして得られた、折り曲げ後のTP1試験片(紙含有立体構造体)について、図6A~図6Bを参照して説明した方法により、その折れ曲がりの角度(θ)を測定した。このとき、折り曲げ後のTP1試験片の撮像データを取得し、この撮像データとソフトウエアを用いることで、折れ曲がりの角度(θ)を測定した。
 結果を表2及び図12に示す。
The bending angle (θ 1 ) of the TP1 test piece (paper-containing three-dimensional structure) obtained in this manner after bending was measured by the method described with reference to FIGS. 6A to 6B. At this time, the imaging data of the TP1 test piece after bending was acquired, and the bending angle (θ 1 ) was measured by using the imaging data and software.
The results are shown in Table 2 and FIG.
 さらに、TP1に代えてTP2~TP7を用いた点以外は、上記のTP1試験片の場合と同じ方法で、TP2試験片、TP3試験片、TP4試験片、TP5試験片、TP6試験片、及びTP7試験片の、それぞれの折れ曲がりの角度(θ)を測定した。
 結果を表2及び図12に示す。なお、図12においては、TP4試験片、TP5試験片及びTP6試験片での結果の図示を省略している。
Further, TP2 test piece, TP3 test piece, TP4 test piece, TP5 test piece, TP6 test piece, and TP7 are used in the same manner as in the case of the above TP1 test piece except that TP2 to TP7 are used instead of TP1. The bending angle (θ 1 ) of each of the test pieces was measured.
The results are shown in Table 2 and FIG. In FIG. 12, the results of the TP4 test piece, the TP5 test piece, and the TP6 test piece are not shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2及び図12から明らかなように、インク吐出量を同じとして比較すると、トレーシングペーパーの厚さが厚い方が、折れ曲がりの角度が小さい傾向にあり、インク吐出量が一定水準以上(例えば、0.0093g以上)の場合に、その傾向が顕著であった。また、インク吐出量の変化に伴う、折れ曲がりの角度の変化は、トレーシングペーパーの厚さが厚い方が、緩やかとなる傾向にあった。
 さらに、トレーシングペーパーの厚さが89μm以下(すなわち、TP4試験片、TP5試験片、TP6試験片、TP7試験片)の場合に、より折れ曲がり易い傾向がみられた。
As is clear from Table 2 and FIG. 12, when comparing the ink ejection amounts as the same, the thicker the tracing paper, the smaller the bending angle tends to be, and the ink ejection amount is above a certain level (for example,). In the case of 0.0093 g or more), the tendency was remarkable. Further, the change in the bending angle due to the change in the ink ejection amount tends to be gentler when the thickness of the tracing paper is thicker.
Furthermore, when the thickness of the tracing paper was 89 μm or less (that is, TP4 test piece, TP5 test piece, TP6 test piece, TP7 test piece), it tended to be more easily bent.
 TP1試験片~TP7試験片の各試験片の厚さを、試験片の番号に対応させて、h(iは1~7のいずれかの整数である)としたとき、試験片中の印刷対象部位の体積Vは、下記式:
 V=10×95×h(mm
で算出される。
 インク吐出量mを、この印刷対象部位の体積Vで規格化した規格化インク吐出量Mは、下記式:
 M=m/V(g/mm
で算出される。
 上記で得られた結果(折れ曲がりの角度)を、この規格化インク吐出量ごとにプロットしたグラフを、図13に示す。
The thickness of each test piece TP1 test piece ~ TP7 specimen, corresponding to the number of the test piece, when the h i (i is any integer of 1-7), printing in the test piece volume V i of the target site, the following formula:
V i = 10 × 95 × h i (mm 3)
It is calculated by.
Ink ejection amount m, normalized ink ejection amount M normalized by the volume V i of the printed site, the following formula:
M = m / V i (g / mm 3)
It is calculated by.
FIG. 13 shows a graph in which the results (bending angles) obtained above are plotted for each standardized ink ejection amount.
 図13から明らかなように、トレーシングペーパーの厚さが97μm以下(すなわち、TP3試験片、TP4試験片、TP5試験片、TP6試験片、TP7試験片)の場合に、折れ曲がりの角度が概ね近い値となることが確認された。これは、厚さが97μm以下程度の比較的薄いトレーシングペーパーであれば、その厚さによらず、目的とする折れ曲がりの角度を達成し易いことを意味していた。 As is clear from FIG. 13, when the thickness of the tracing paper is 97 μm or less (that is, TP3 test piece, TP4 test piece, TP5 test piece, TP6 test piece, TP7 test piece), the bending angle is almost close. It was confirmed that it was a value. This meant that a relatively thin tracing paper having a thickness of about 97 μm or less could easily achieve the desired bending angle regardless of the thickness.
 TP3試験片における、インク吐出量と、得られた紙含有立体構造体の折れ曲がり部の角度(θ=180-θ(°))と、の関係を図14に示す。 FIG. 14 shows the relationship between the ink ejection amount in the TP3 test piece and the angle (θ 2 = 180 − θ 1 (°)) of the bent portion of the obtained paper-containing three-dimensional structure.
<<紙含有立体構造体の製造>>
[実施例2]
 紙含有シートとしてトレーシングペーパー(厚さ89.2μm、大きさ105mm×148mm)を用い、水性媒体としてイオン交換水を用いて、図15に示すように、略立方体状の紙含有立体構造体を製造した。
 図15中、左側の図中の細実線は、トレーシングペーパーの切断部位を示しており、中央寄りの図中の太実線は、トレーシングペーパーにおける、インクジェット印刷法での水性媒体の吐出部位を示しており 右側の図は、製造された紙含有立体構造体の撮像データである。
<< Manufacture of paper-containing three-dimensional structure >>
[Example 2]
Using tracing paper (thickness 89.2 μm, size 105 mm × 148 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, as shown in FIG. 15, a substantially cubic paper-containing three-dimensional structure was formed. Manufactured.
In FIG. 15, the fine solid line in the left figure shows the cutting part of the tracing paper, and the thick solid line in the figure near the center shows the ejection part of the aqueous medium in the tracing paper by the inkjet printing method. The figure on the right is the imaging data of the manufactured paper-containing three-dimensional structure.
 工程(A)においては、温度22℃、相対湿度54%の条件下で、トレーシングペーパーに水性媒体を吐出した(付着させた)。トレーシングペーパーへの水性媒体の吐出量(浸透させる水の量と同義である。以下、同様。)は0.000140823g/mmとし、実線の線幅は6mmとした。トレーシングペーパーに水を浸透させるとき、温度と相対湿度は、水性媒体を吐出したときと同じとし、時間は300秒とした。
 工程(B)においては、トレーシングペーパーを、温度22℃、相対湿度54%、時間10分の条件で乾燥させた。乾燥が終了する前の時点で、トレーシングペーパーの自律的な折り曲げは、すでに停止していた。
 ここまでの全工程は、常圧下で行った。
In the step (A), the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 22 ° C. and a relative humidity of 54%. The amount of the aqueous medium discharged to the tracing paper (synonymous with the amount of water to be infiltrated; the same applies hereinafter) was 0.000140823 g / mm 3, and the line width of the solid line was 6 mm. When the tracing paper was infiltrated with water, the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
In the step (B), the tracing paper was dried under the conditions of a temperature of 22 ° C., a relative humidity of 54%, and a time of 10 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped.
All the steps up to this point were performed under normal pressure.
[実施例3]
 紙含有シートとしてトレーシングペーパー(厚さ89.2μm、大きさ210mm×297mm)を用い、水性媒体としてイオン交換水を用いて、図16に示すように、略球状の紙含有立体構造体を製造した。
 図16中、左側の図中の細実線は、トレーシングペーパーの切断部位を示しており、中央寄りの図中の実線は、トレーシングペーパーにおける、インクジェット印刷法での水性媒体の吐出部位を示しており 右側の図は、製造された紙含有立体構造体の撮像データである。
[Example 3]
Using tracing paper (thickness 89.2 μm, size 210 mm × 297 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, a substantially spherical paper-containing three-dimensional structure is manufactured as shown in FIG. bottom.
In FIG. 16, the fine solid line in the left figure shows the cutting part of the tracing paper, and the solid line in the figure near the center shows the ejection part of the aqueous medium in the tracing paper by the inkjet printing method. The figure on the right is the imaging data of the manufactured paper-containing three-dimensional structure.
 工程(A)においては、温度22℃、相対湿度54%の条件下で、トレーシングペーパーに水性媒体を吐出した(付着させた)。トレーシングペーパーへの水性媒体の吐出量は、0.000140823g/mmとした。トレーシングペーパーに水を浸透させるとき、温度と相対湿度は、水性媒体を吐出したときと同じとし、時間は300秒とした。 工程(B)においては、トレーシングペーパーを、温度22℃、相対湿度54%、時間30分の条件で乾燥させた。乾燥が終了する前の時点で、トレーシングペーパーの自律的な折り曲げは、すでに停止していた。
 ここまでの全工程は、常圧下で行った。
In the step (A), the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 22 ° C. and a relative humidity of 54%. The amount of the aqueous medium discharged to the tracing paper was 0.000140823 g / mm 3 . When the tracing paper was infiltrated with water, the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds. In the step (B), the tracing paper was dried under the conditions of a temperature of 22 ° C., a relative humidity of 54%, and a time of 30 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped.
All the steps up to this point were performed under normal pressure.
[実施例4]
 紙含有シートとしてトレーシングペーパー(厚さ89.2μm、大きさ210mm×297mm)を用い、水性媒体としてイオン交換水を用いて、図17に示すように、サッカーボール状の紙含有立体構造体を製造した。
 図17中、左側の図中の細実線は、トレーシングペーパーの切断部位を示しており、中央寄りの図中の太実線は、トレーシングペーパーにおける、インクジェット印刷法での水性媒体の吐出部位を示しており 右側の図は、製造された紙含有立体構造体の撮像データである。
[Example 4]
Using tracing paper (thickness 89.2 μm, size 210 mm × 297 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, as shown in FIG. 17, a soccer ball-shaped paper-containing three-dimensional structure was formed. Manufactured.
In FIG. 17, the fine solid line in the figure on the left side shows the cutting part of the tracing paper, and the thick solid line in the figure near the center indicates the ejection part of the aqueous medium in the tracing paper by the inkjet printing method. The figure on the right is the imaging data of the manufactured paper-containing three-dimensional structure.
 工程(A)においては、温度22℃、相対湿度54%の条件下で、トレーシングペーパーに水性媒体を吐出した(付着させた)。トレーシングペーパーへの水性媒体の吐出量は、0.000140823g/mmとし、実線の線幅は5mmとした。トレーシングペーパーに水を浸透させるとき、温度と相対湿度は、水性媒体を吐出したときと同じとし、時間は300秒とした。
 工程(B)においては、トレーシングペーパーを、温度22℃、相対湿度54%、時間30分の条件で乾燥させた。乾燥が終了する前の時点で、トレーシングペーパーの自律的な折り曲げは、すでに停止していた。
 ここまでの全工程は、常圧下で行った。
In the step (A), the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 22 ° C. and a relative humidity of 54%. The amount of the aqueous medium discharged to the tracing paper was 0.000140823 g / mm 3, and the line width of the solid line was 5 mm. When the tracing paper was infiltrated with water, the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
In the step (B), the tracing paper was dried under the conditions of a temperature of 22 ° C., a relative humidity of 54%, and a time of 30 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped.
All the steps up to this point were performed under normal pressure.
[実施例5]
 紙含有シートとしてトレーシングペーパー(厚さ89.2μm、大きさ210mm×297mm)を用い、水性媒体としてイオン交換水を用いて、図18に示すように、紙飛行機状の紙含有立体構造体を製造した。
 図18中、左側の図中の細実線は、トレーシングペーパーの切断部位を示しており、中央寄りの2枚の図中の太実線は、トレーシングペーパーの両面における、インクジェット印刷法での水性媒体の吐出部位を示しており 右側の図は、製造された紙含有立体構造体の撮像データである。
[Example 5]
Using tracing paper (thickness 89.2 μm, size 210 mm × 297 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, as shown in FIG. 18, a paper airplane-shaped paper-containing three-dimensional structure was formed. Manufactured.
In FIG. 18, the fine solid line in the left figure shows the cut portion of the tracing paper, and the thick solid line in the two figures near the center is the water-based by the inkjet printing method on both sides of the tracing paper. The figure on the right shows the ejection site of the medium, and the figure on the right is the imaging data of the manufactured paper-containing three-dimensional structure.
 工程(A)においては、温度22℃、相対湿度54%の条件下で、トレーシングペーパーに水性媒体を吐出した(付着させた)。トレーシングペーパーへの水性媒体の吐出量は、0.000140823g/mmとし、実線の線幅は7mm、15mmとした。トレーシングペーパーに水を浸透させるとき、温度と相対湿度は、水性媒体を吐出したときと同じとし、時間は300秒とした。
 工程(B)においては、トレーシングペーパーを、温度22℃、相対湿度54%、時間30分の条件で乾燥させた。乾燥が終了する前の時点で、トレーシングペーパーの自律的な折り曲げは、すでに停止していた。
 ここまでの全工程は、常圧下で行った。
In the step (A), the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 22 ° C. and a relative humidity of 54%. The amount of the aqueous medium discharged to the tracing paper was 0.000140823 g / mm 3, and the line widths of the solid lines were 7 mm and 15 mm. When the tracing paper was infiltrated with water, the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
In the step (B), the tracing paper was dried under the conditions of a temperature of 22 ° C., a relative humidity of 54%, and a time of 30 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped.
All the steps up to this point were performed under normal pressure.
[実施例6]
 紙含有シートとしてトレーシングペーパー(厚さ89.2μm、大きさ40mm×50mm)を用い、水性媒体としてイオン交換水を用いて、図19に示すように、略円筒状であり、その凸状面に銀配線が設けられている立体配線基板を、紙含有立体構造体として製造した。
 より具体的には、折り曲げ前のトレーシングペーパーの一方の面に、インクジェットプリンターを用いて、銀ナノ粒子を含むインク組成物を吐出することによって、図19中に示す印刷データとなるように印刷パターンを形成し、次いで、この印刷パターンを60℃で加熱乾燥させることにより、トレーシングペーパー上に銀配線を形成した。
[Example 6]
Using tracing paper (thickness 89.2 μm, size 40 mm × 50 mm) as the paper-containing sheet and ion-exchanged water as the aqueous medium, as shown in FIG. 19, it is substantially cylindrical and has a convex surface thereof. A three-dimensional wiring board provided with silver wiring was manufactured as a paper-containing three-dimensional structure.
More specifically, by using an inkjet printer to eject an ink composition containing silver nanoparticles onto one surface of tracing paper before bending, printing is performed so as to obtain the print data shown in FIG. A pattern was formed, and then the printed pattern was heated and dried at 60 ° C. to form silver wiring on tracing paper.
 次いで、工程(A)を行った。すなわち、この銀配線を形成済みのトレーシングペーパーの他方の面(銀配線が形成されている側とは反対側の面)に、インクジェットプリンターを用い、水性媒体としてイオン交換水を用いて、図19中に示す印刷データとなるように水性媒体を吐出した。このとき、温度24℃、相対湿度48%の条件下で、トレーシングペーパーに水性媒体を吐出した(付着させた)。トレーシングペーパーへの水性媒体の吐出量は、0.000140823g/mmとし、実線の線幅は8mmとした。インクジェットプリンターとしては、上記の銀ナノ粒子を含むインク組成物の吐出で用いたものを、そのまま用いた。水性媒体は、前記インク組成物を充填したカートリッジとは異なるカートリッジに充填した。トレーシングペーパーに水を浸透させるとき、温度と相対湿度は、水性媒体を吐出したときと同じとし、時間は300秒とした。 Then, step (A) was performed. That is, an inkjet printer is used on the other surface of the tracing paper on which the silver wiring is formed (the surface opposite to the side on which the silver wiring is formed), and ion-exchanged water is used as an aqueous medium. The aqueous medium was discharged so as to obtain the print data shown in 19. At this time, the aqueous medium was discharged (adhered) to the tracing paper under the conditions of a temperature of 24 ° C. and a relative humidity of 48%. The amount of the aqueous medium discharged to the tracing paper was 0.000140823 g / mm 3, and the line width of the solid line was 8 mm. As the inkjet printer, the one used for ejecting the ink composition containing the silver nanoparticles described above was used as it was. The aqueous medium was filled in a cartridge different from the cartridge filled with the ink composition. When the tracing paper was infiltrated with water, the temperature and relative humidity were the same as when the aqueous medium was discharged, and the time was set to 300 seconds.
 次いで、工程(B)を行った。すなわち、水を浸透させたトレーシングペーパーを、温度24℃、相対湿度48%、時間30分の条件で乾燥させた。乾燥が終了する前の時点で、トレーシングペーパーの自律的な折り曲げは、すでに停止していた。 Next, step (B) was performed. That is, the tracing paper impregnated with water was dried under the conditions of a temperature of 24 ° C., a relative humidity of 48%, and a time of 30 minutes. By the time the drying was finished, the autonomous bending of the tracing paper had already stopped.
 ここまでの全工程は、常圧下で行った。 The entire process up to this point was performed under normal pressure.
 以上により、1台のインクジェットプリンターを用いることで、前記インク組成物と水性媒体が相互に干渉することなく、簡略化された方法で、立体配線基板を製造できた。 From the above, by using one inkjet printer, the three-dimensional wiring board could be manufactured by a simplified method without the ink composition and the aqueous medium interfering with each other.
[実施例7]
 銀ナノ粒子を含むインク組成物と、水性媒体と、の印刷パターンを変更した点以外は、実施例6の場合と同様の方法で、図20に示すように、略円筒状であり、その凸状面に銀配線が設けられているウエアラブルデバイスを、紙含有立体構造体として製造した。
[Example 7]
As shown in FIG. 20, it is substantially cylindrical and convex in the same manner as in Example 6 except that the printing pattern of the ink composition containing silver nanoparticles and the aqueous medium is changed. A wearable device provided with silver wiring on the surface was manufactured as a paper-containing three-dimensional structure.
[試験例1]
<<紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の濃度と、紙含有シートの膨張し易さと、の関係の確認>>
 濃度が0M、3M、6M、9M、12M、15M及び18Mである、塩化リチウム(LiCl)水溶液を調製した。なお、本試験例と、これ以降の試験例及び実施例における、濃度が0Mの電解質水溶液とは、水を意味する。
 紙含有シートとしてトレーシングペーパー(厚さ125μm、大きさ15mm×15mm)を用い、このトレーシングペーパーを、上記で得られたそれぞれの塩化リチウム水溶液に別々に浸漬した。
 次いで、浸漬開始からt秒後(0<t≦1800)に、顕微鏡(オリンパス社製「SZX16」)を用いて、この浸漬中のトレーシングペーパーを、その表面の直上から観察し、トレーシングペーパーを構成しているセルロース繊維の長さ方向に対して直交する方向(以下、「繊維長方向に直交する方向」と称する)における、トレーシングペーパーの長さL(mm)を測定した。
 次いで、塩化リチウム水溶液へ浸漬する前の、前記繊維長方向に直交する方向における、トレーシングペーパーの長さL(=15mm)と、Lと、を用いて、塩化リチウム水溶液へ浸漬する前後での、前記繊維長方向に直交する方向における、トレーシングペーパーの長さの割合LRを下記式:
 LR=L/L
により算出した。
 このとき、塩化リチウム水溶液へ浸漬する前のトレーシングペーパーの、前記繊維長方向に直交する方向の両端部に、あらかじめ黒色のドットを印刷しておき、これらドット間の間隔を測定して、この測定値をL又はLとした。
 以上の測定及び算出を3回繰り返して行い、その平均値を正式なデータとして採用した。
 結果を図21に示す。
[Test Example 1]
<< Confirmation of the relationship between the concentration of the aqueous electrolyte solution and the easiness of expansion of the paper-containing sheet when the aqueous electrolyte solution is infiltrated into the paper-containing sheet >>
Lithium chloride (LiCl) aqueous solutions having concentrations of 0M, 3M, 6M, 9M, 12M, 15M and 18M were prepared. The aqueous electrolyte solution having a concentration of 0 M in this test example and the following test examples and examples means water.
Tracing paper (thickness 125 μm, size 15 mm × 15 mm) was used as the paper-containing sheet, and the tracing paper was separately immersed in each of the above-mentioned lithium chloride aqueous solutions.
Then, t seconds after the start of immersion (0 <t ≦ 1800), using a microscope (“SZX16” manufactured by Olympus Corporation), the tracing paper being immersed is observed from directly above the surface of the tracing paper. The length L t (mm) of the tracing paper was measured in a direction orthogonal to the length direction of the cellulose fibers constituting the above (hereinafter referred to as "direction orthogonal to the fiber length direction").
Next, before and after dipping in the lithium chloride aqueous solution using the tracing paper length L 0 (= 15 mm) and L t in the direction orthogonal to the fiber length direction before dipping in the lithium chloride aqueous solution. The ratio LR of the length of the tracing paper in the direction orthogonal to the fiber length direction in the following formula:
LR = L t / L 0
Calculated by
At this time, black dots are printed in advance on both ends of the tracing paper before being immersed in the lithium chloride aqueous solution in the direction orthogonal to the fiber length direction, and the distance between these dots is measured. The measured value was L 0 or L t .
The above measurement and calculation were repeated 3 times, and the average value was adopted as formal data.
The results are shown in FIG.
 図21から明らかなように、塩化リチウム水溶液の濃度が0M、すなわち水の場合に、トレーシングペーパーが最も速く膨張し、塩化リチウム水溶液の濃度が0~9Mの範囲では、前記濃度が低いほど、トレーシングペーパーが速く膨張した。前記濃度が9M及び12Mの場合には、経時の途中で、LRが1未満となっているが、これは、浸漬中のトレーシングペーパーがカールしたためであった。前記濃度が12Mの場合には、経時の途中からLRが1未満のままであったが、浸漬時間を1800秒超に延長した場合には、LRは1超になるものと推測された。前記濃度が15M及び18Mの場合には、LRが概ね1程度でほぼ不変、すなわち、概ねL=Lであったが、浸漬時間を1800秒超に延長した場合には、前記濃度が12Mの場合よりも長時間を要するものの、前記濃度が12Mの場合と同様に、LRは1超になる可能性があった。
 このように、塩化リチウム水溶液の濃度が低いほど、トレーシングペーパーが速く膨張する傾向が認められた。これは、塩化リチウム水溶液中の塩化リチウムの量(mol)が少ないほど、塩化リチウムを水和する水分子の量が少なくなり、トレーシングペーパーへ水が浸透し易くなるためであると推測された。
As is clear from FIG. 21, when the concentration of the aqueous lithium chloride solution is 0 M, that is, when the concentration of the aqueous solution of lithium chloride is 0 M, that is, the tracing paper expands fastest, and when the concentration of the aqueous solution of lithium chloride is in the range of 0 to 9 M, the lower the concentration, the more. The tracing paper swelled quickly. When the concentrations were 9M and 12M, the LR was less than 1 in the middle of the aging period, because the tracing paper being immersed was curled. When the concentration was 12 M, the LR remained less than 1 from the middle of the lapse of time, but when the immersion time was extended to more than 1800 seconds, it was estimated that the LR became more than 1. When the concentrations were 15M and 18M, the LR was about 1 and almost unchanged, that is, L t = L 0 , but when the immersion time was extended to more than 1800 seconds, the concentration was 12M. Although it takes a longer time than in the case of the above case, the LR may be more than 1 as in the case of the above concentration of 12M.
As described above, the lower the concentration of the lithium chloride aqueous solution, the faster the tracing paper tended to expand. It was speculated that this is because the smaller the amount (mol) of lithium chloride in the lithium chloride aqueous solution, the smaller the amount of water molecules that hydrate the lithium chloride, and the easier it is for water to penetrate into the tracing paper. ..
 以上の結果は、電解質水溶液を用いて、紙含有シートへ水を浸透させるときに、電解質水溶液の濃度を調節することで、紙含有シート中への水の浸透速度及び浸透量を調節できることを示していた。さらに、紙含有シートの乾燥によって、紙含有シートの自律的な折り曲げの角度に、差を生じさせることが可能であることを示していた。 The above results show that the permeation rate and permeation amount of water into the paper-containing sheet can be adjusted by adjusting the concentration of the electrolyte aqueous solution when the water is permeated into the paper-containing sheet using the electrolyte aqueous solution. Was there. Furthermore, it was shown that it is possible to make a difference in the autonomous bending angle of the paper-containing sheet by drying the paper-containing sheet.
[試験例2]
<<紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の濃度と、紙含有シートの乾燥し易さと、の関係の確認>>
 濃度が0M、3M、6M、9M、12M、15M及び18Mである、塩化リチウム(LiCl)水溶液を調製した。
 紙含有シートとしてトレーシングペーパー(厚さ125μm、大きさ40mm×40mm)を用い、このトレーシングペーパーを、上記で得られたそれぞれの塩化リチウム水溶液に別々に浸漬した。
 次いで、浸漬開始から1800秒(30分)経過直後に、トレーシングペーパーを塩化リチウム水溶液から取り出した。そして、さらに50秒経過後から、温度20~22℃、相対湿度53~55%の条件下で、電子天秤(A&D社製「GH-252」)を用いて、このトレーシングペーパー中の水の量を測定した。この測定は、電子天秤にトレーシングペーパーを載せてから12000秒(200分)が経過するまで行った。そして、測定開始からt秒後(0<t≦12000)の、トレーシングペーパー中の水の量の測定値Mと、測定開始時の、トレーシングペーパー中の水の量の測定値Mと、を用いて、トレーシングペーパーの乾燥率DRを下記式:
 DR=M/M
により算出した。結果を図22に示す。
[Test Example 2]
<< Confirmation of the relationship between the concentration of the aqueous electrolyte solution and the ease of drying of the paper-containing sheet when the aqueous electrolyte solution is infiltrated into the paper-containing sheet >>
Lithium chloride (LiCl) aqueous solutions having concentrations of 0M, 3M, 6M, 9M, 12M, 15M and 18M were prepared.
Tracing paper (thickness 125 μm, size 40 mm × 40 mm) was used as the paper-containing sheet, and the tracing paper was separately immersed in each of the above-mentioned lithium chloride aqueous solutions.
Then, immediately after 1800 seconds (30 minutes) from the start of immersion, the tracing paper was taken out from the lithium chloride aqueous solution. Then, after another 50 seconds have passed, the water in the tracing paper is used under the conditions of a temperature of 20 to 22 ° C. and a relative humidity of 53 to 55% using an electronic balance (“GH-252” manufactured by A & D Co., Ltd.). The amount was measured. This measurement was performed until 12000 seconds (200 minutes) had passed since the tracing paper was placed on the electronic balance. Then, the measured value M t of the amount of water in the tracing paper t seconds after the start of the measurement (0 <t ≦ 12000) and the measured value M 0 of the amount of water in the tracing paper at the start of the measurement. The following formula:
DR = M t / M 0
Calculated by The results are shown in FIG.
 図22から明らかなように、塩化リチウム水溶液の濃度が0M、すなわち水の場合に、トレーシングペーパーが最も速く乾燥し、塩化リチウム水溶液の濃度が0~6Mの範囲では、前記濃度が低いほど、トレーシングペーパーが速く乾燥した。前記濃度が9~18Mの場合には、経時に伴い、DRが1超となっていた。これは、塩化リチウムが吸湿性を有するため、電子天秤中で乾燥が進まずに、逆に吸湿が進行したためであると推測された。塩化リチウム水溶液の濃度がこの範囲(9~18M)では、前記濃度が高いほど、速く吸湿した。
 このように、塩化リチウム水溶液の濃度が低めの場合には、前記濃度が低いほど、トレーシングペーパーが速く乾燥する傾向が認められた。これは、トレーシングペーパー中の塩化リチウムの量(mol)が少ないほど、トレーシングペーパー中で塩化リチウムを水和する水分子の量が少なくなり、トレーシングペーパーから水が気化し易くなるためであると推測された。
As is clear from FIG. 22, when the concentration of the aqueous lithium chloride solution is 0 M, that is, when the concentration of the aqueous solution of lithium chloride is 0 M, that is, the tracing paper dries most quickly, and when the concentration of the aqueous solution of lithium chloride is in the range of 0 to 6 M, the lower the concentration is, the more. The tracing paper dried quickly. When the concentration was 9 to 18 M, the DR was more than 1 with time. It is presumed that this is because lithium chloride has hygroscopicity, so that drying did not proceed in the electronic balance, but rather hygroscopicity proceeded. When the concentration of the lithium chloride aqueous solution was in this range (9 to 18M), the higher the concentration, the faster the moisture was absorbed.
As described above, when the concentration of the lithium chloride aqueous solution was low, the lower the concentration, the faster the tracing paper tended to dry. This is because the smaller the amount of lithium chloride (mol) in the tracing paper, the smaller the amount of water molecules that hydrate the lithium chloride in the tracing paper, and the easier it is for water to vaporize from the tracing paper. It was speculated that there was.
 以上の結果は、電解質水溶液を用いて、紙含有シートへ水を浸透させるときに、電解質水溶液の濃度を調節することで、紙含有シートの乾燥速度を調節できることを示していた。さらに、紙含有シートの自律的な折り曲げの進行度に差を生じさせることが可能であることを示していた。 The above results showed that the drying speed of the paper-containing sheet can be adjusted by adjusting the concentration of the electrolyte aqueous solution when the water is permeated into the paper-containing sheet using the electrolyte aqueous solution. Furthermore, it was shown that it is possible to make a difference in the progress of autonomous bending of the paper-containing sheet.
[試験例3]
<<紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の種類と、紙含有シートの膨張し易さと、の関係の確認>>
 濃度が4Mである塩化カリウム(KCl)水溶液と、濃度が4Mである臭化ナトリウム(NaBr)水溶液と、濃度が4Mである塩化リチウム(LiCl)水溶液と、を調製し、さらに水を用意した。なお、これら電解質の水和パラメーターは、それぞれ、以下のとおりである。
 塩化カリウム(KCl):1.9
 臭化ナトリウム(NaBr):4.2
 塩化リチウム(LiCl):7.1
[Test Example 3]
<< Confirmation of the relationship between the type of electrolyte aqueous solution and the easiness of expansion of the paper-containing sheet when the electrolyte aqueous solution is infiltrated into the paper-containing sheet >>
An aqueous solution of potassium chloride (KCl) having a concentration of 4M, an aqueous solution of sodium bromide (NaBr) having a concentration of 4M, and an aqueous solution of lithium chloride (LiCl) having a concentration of 4M were prepared, and water was further prepared. The hydration parameters of these electrolytes are as follows.
Potassium chloride (KCl): 1.9
Sodium bromide (NaBr): 4.2
Lithium chloride (LiCl): 7.1
 紙含有シートとしてトレーシングペーパー(厚さ125μm、大きさ15mm×15mm)を用い、このトレーシングペーパーを、上記で得られた3種の水溶液と水に、別々に浸漬した。
 次いで、浸漬開始からt秒後(0<t≦5)に、顕微鏡(オリンパス社製「SZX16」)を用いて、この浸漬中のトレーシングペーパーを、その表面の直上から観察し、前記繊維長方向に直交する方向における、トレーシングペーパーの長さL(mm)を測定した。
 次いで、前記水溶液又は水へ浸漬する前の、前記繊維長方向に直交する方向における、トレーシングペーパーの長さL(=15mm)と、L(t=5のときのL)と、L以外のLと、を用いて、前記水溶液又は水へ浸漬中のトレーシングペーパーの膨張率ERを下記式:
 ER=(L-L)/(L-L
により算出した。
 このとき、前記水溶液又は水へ浸漬する前のトレーシングペーパーの、前記繊維長方向に直交する方向の両端部に、あらかじめ黒色のドットを印刷しておき、これらドット間の間隔を測定して、この測定値をL、L又はLとした。
 結果を図23に示す。
Tracing paper (thickness 125 μm, size 15 mm × 15 mm) was used as the paper-containing sheet, and the tracing paper was separately immersed in the three aqueous solutions and water obtained above.
Then, t seconds after the start of immersion (0 <t ≦ 5), the tracing paper being immersed was observed from directly above the surface of the tracing paper using a microscope (“SZX16” manufactured by Olympus Corporation), and the fiber length was observed. The length L t (mm) of the tracing paper in the direction orthogonal to the direction was measured.
Next, the length L 0 (= 15 mm) of the tracing paper and L 5 (L t when t = 5) in the direction orthogonal to the fiber length direction before being immersed in the aqueous solution or water, and L 5 than the L t, using the following equation expansion ER tracing paper in the immersion into the aqueous solution or water:
ER = (L 0- L t ) / (L 0- L 5 )
Calculated by
At this time, black dots are printed in advance on both ends of the tracing paper before being immersed in the aqueous solution or water in the direction orthogonal to the fiber length direction, and the distance between these dots is measured. This measured value was defined as L 0 , L t or L 5 .
The results are shown in FIG.
 図23から明らかなように、水の場合に、トレーシングペーパーが最も速く膨張した。そして、3種の電解質水溶液では、概ね、電解質の水和パラメーターが小さい順、すなわち、塩化カリウム水溶液、臭化ナトリウム水溶液及び塩化リチウム水溶液の順に、トレーシングペーパーが速く膨張した。
 このように、電解質水溶液の場合には、電解質の水和パラメーターが小さいほど、トレーシングペーパーが速く膨張する傾向が認められた。これは、電解質の水和パラメーターが小さいほど、電解質を水和する水分子の量が少なくなり、トレーシングペーパーへ水が浸透し易くなるためであると推測された。
As is clear from FIG. 23, in the case of water, the tracing paper swelled fastest. Then, in the three kinds of aqueous electrolyte solutions, the tracing paper expanded rapidly in the order of the smaller hydration parameters of the electrolyte, that is, the aqueous solution of potassium chloride, the aqueous solution of sodium bromide, and the aqueous solution of lithium chloride.
As described above, in the case of the aqueous electrolyte solution, the smaller the hydration parameter of the electrolyte, the faster the tracing paper tended to expand. It was speculated that this is because the smaller the hydration parameter of the electrolyte, the smaller the amount of water molecules that hydrate the electrolyte, and the easier it is for water to permeate the tracing paper.
 以上の結果は、電解質水溶液を用いて、紙含有シートへ水を浸透させるときに、電解質の種類を調節することで、紙含有シート中への水の浸透速度及び浸透量を調節できることを示していた。さらに、紙含有シートの乾燥によって、紙含有シートの自律的な折り曲げの角度に、差を生じさせることが可能であることを示していた。 The above results show that when water is permeated into a paper-containing sheet using an aqueous electrolyte solution, the permeation rate and permeation amount of water into the paper-containing sheet can be adjusted by adjusting the type of electrolyte. rice field. Furthermore, it was shown that it is possible to make a difference in the autonomous bending angle of the paper-containing sheet by drying the paper-containing sheet.
[試験例4]
<<紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の種類と、紙含有シートの乾燥し易さと、の関係の確認>>
 濃度が4Mである臭化カリウム(KBr)水溶液と、濃度が4Mである臭化ナトリウム(NaBr)水溶液と、濃度が4Mである塩化リチウム(LiCl)水溶液と、濃度が4Mである塩化カルシウム(CaCl)水溶液と、を調製し、さらに水を用意した。なお、これら電解質の水和パラメーターは、それぞれ、以下のとおりである。
 臭化カリウム(KBr):2.1
 臭化ナトリウム(NaBr):4.2
 塩化リチウム(LiCl):7.1
 塩化カルシウム(CaCl):12
[Test Example 4]
<< Confirmation of the relationship between the type of electrolyte aqueous solution and the ease of drying of the paper-containing sheet when the electrolyte aqueous solution is infiltrated into the paper-containing sheet >>
An aqueous solution of potassium bromide (KBr) having a concentration of 4M, an aqueous solution of sodium bromide (NaBr) having a concentration of 4M, an aqueous solution of lithium chloride (LiCl) having a concentration of 4M, and an aqueous solution of calcium chloride (CaCl) having a concentration of 4M. 2 ) An aqueous solution was prepared, and water was further prepared. The hydration parameters of these electrolytes are as follows.
Potassium bromide (KBr): 2.1
Sodium bromide (NaBr): 4.2
Lithium chloride (LiCl): 7.1
Calcium chloride (CaCl 2 ): 12
 紙含有シートとしてトレーシングペーパー(厚さ125μm、大きさ40mm×40mm)を用い、このトレーシングペーパーを、上記で得られた4種の水溶液と水に、別々に浸漬した。
 次いで、浸漬開始から1800秒(30分)経過直後に、トレーシングペーパーをこれら4種の水溶液又は水から取り出した。そして、さらに50秒経過後から、温度20~22℃、相対湿度48~51%の条件下で、電子天秤(A&D社製「GH-252」)を用いて、このトレーシングペーパー中の水の量を測定した。この測定は、電子天秤にトレーシングペーパーを載せてから12000秒(200分)が経過するまで行った。そして、試験例2の場合と同じ方法で、トレーシングペーパーの乾燥率DRを算出した。結果を図24に示す。
Tracing paper (thickness 125 μm, size 40 mm × 40 mm) was used as the paper-containing sheet, and the tracing paper was separately immersed in the four aqueous solutions and water obtained above.
Then, immediately after 1800 seconds (30 minutes) from the start of immersion, tracing paper was taken out from these four aqueous solutions or water. Then, after another 50 seconds have passed, the water in the tracing paper is used under the conditions of a temperature of 20 to 22 ° C. and a relative humidity of 48 to 51% using an electronic balance (“GH-252” manufactured by A & D Co., Ltd.). The amount was measured. This measurement was performed until 12000 seconds (200 minutes) had passed since the tracing paper was placed on the electronic balance. Then, the drying rate DR of the tracing paper was calculated by the same method as in the case of Test Example 2. The results are shown in FIG.
 図24から明らかなように、水の場合に、トレーシングペーパーが最も速く乾燥した。そして、4種の電解質水溶液では、電解質の水和パラメーターが小さい順、すなわち、臭化カリウム(KBr)水溶液、臭化ナトリウム(NaBr)水溶液、塩化リチウム(LiCl)水溶液及び塩化カルシウム(CaCl)水溶液の順に、トレーシングペーパーが速く乾燥した。
 このように、電解質水溶液の場合には、電解質の水和パラメーターが小さいほど、トレーシングペーパーが速く乾燥する傾向が認められた。これは、電解質の水和パラメーターが小さいほど、トレーシングペーパー中で電解質を水和する水分子の量が少なくなり、トレーシングペーパーから水が気化し易くなるためであると推測された。
As is clear from FIG. 24, in the case of water, the tracing paper dried fastest. In the four kinds of electrolyte aqueous solutions, the hydration parameters of the electrolytes are in ascending order, that is, potassium bromide (KBr) aqueous solution, sodium bromide (NaBr) aqueous solution, lithium chloride (LiCl) aqueous solution and calcium chloride (CaCl 2 ) aqueous solution. The tracing paper dried quickly in this order.
As described above, in the case of the aqueous electrolyte solution, the smaller the hydration parameter of the electrolyte, the faster the tracing paper tended to dry. It was speculated that this is because the smaller the hydration parameter of the electrolyte, the smaller the amount of water molecules that hydrate the electrolyte in the tracing paper, and the easier it is for water to vaporize from the tracing paper.
 以上の結果は、電解質水溶液を用いて、紙含有シートへ水を浸透させるときに、電解質の種類を調節することで、紙含有シートの乾燥速度を調節できることを示していた。さらに、紙含有シートの自律的な折り曲げの進行度に差を生じさせることが可能であることを示していた。 The above results showed that the drying speed of the paper-containing sheet can be adjusted by adjusting the type of electrolyte when water is infiltrated into the paper-containing sheet using the aqueous electrolyte solution. Furthermore, it was shown that it is possible to make a difference in the progress of autonomous bending of the paper-containing sheet.
[実施例8]
<<紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の濃度と、紙含有シートの折れ曲がりの角度と、の関係の確認>>
 濃度が0M、6M、12M及び18Mである、塩化リチウム(LiCl)水溶液を調製した。
 紙含有シートとしてトレーシングペーパー(厚さ60μm、大きさ65mm×95mm)を用い、A4サイズの紙の表面のうち、中心部に、再剥離可能なスプレー糊を用いて、このトレーシングペーパーを貼り付けて固定した。そして、温度20~22℃、相対湿度49~53%の条件下で、インクジェットプリンターを用い、上記で得られたそれぞれの塩化リチウム水溶液を別々に、トレーシングペーパーに印刷した(工程(A))。このとき、トレーシングペーパーの長手方向における中央部に、短手方向に沿って、幅15mmの太線状に、印刷を行った。
 次いで、この印刷後のトレーシングペーパーを、これを固定していたA4サイズの紙から剥離させ、密閉容器中に配置し、静置した。そして、この状態でトレーシングペーパーを乾燥させ、自律的に折り曲げた(工程(B))。この間、密閉容器中の相対湿度を55~60%に調節した。そして、この間のトレーシングペーパーの折れ曲がりの角度(図6Bにおけるθ)(°)を測定した。結果を図25に示す。
[Example 8]
<< Confirmation of the relationship between the concentration of the aqueous electrolyte solution and the bending angle of the paper-containing sheet when the aqueous electrolyte solution is infiltrated into the paper-containing sheet >>
Lithium chloride (LiCl) aqueous solutions having concentrations of 0M, 6M, 12M and 18M were prepared.
Use tracing paper (thickness 60 μm, size 65 mm × 95 mm) as a paper-containing sheet, and attach this tracing paper to the center of the surface of A4 size paper using a removable spray glue. Attached and fixed. Then, under the conditions of a temperature of 20 to 22 ° C. and a relative humidity of 49 to 53%, each lithium chloride aqueous solution obtained above was separately printed on tracing paper using an inkjet printer (step (A)). .. At this time, printing was performed on the central portion of the tracing paper in the longitudinal direction in a thick line having a width of 15 mm along the lateral direction.
Next, the printed tracing paper was peeled off from the A4 size paper to which it was fixed, placed in a closed container, and allowed to stand. Then, the tracing paper was dried in this state and bent autonomously (step (B)). During this time, the relative humidity in the closed container was adjusted to 55-60%. Then, the bending angle of the tracing paper during this period (θ 1 in FIG. 6B) (°) was measured. The results are shown in FIG.
 図25から明らかなように、塩化リチウム水溶液の濃度が0M、すなわち水の場合に、トレーシングペーパーの折れ曲がりが最も速く、前記濃度が6Mの場合に、トレーシングペーパーの折れ曲がりが最も遅かった。前記濃度が12M及び18Mの場合に、前記濃度が6Mの場合よりも、トレーシングペーパーの折れ曲がりが速く、前記濃度が18Mの場合に、前記濃度が12Mの場合よりも、トレーシングペーパーの折れ曲がりが速かった。これは、塩化リチウムが吸湿性を有するため、特に前記濃度が12M及び18Mの場合に、トレーシングペーパーがその乾燥中に、吸湿したためであると推測された。すなわち、前記濃度が0~6Mの範囲では、前記濃度が低いほど、トレーシングペーパーの折れ曲がりが速いと推測された。 As is clear from FIG. 25, when the concentration of the lithium chloride aqueous solution was 0 M, that is, when the concentration was water, the bending of the tracing paper was the fastest, and when the concentration was 6 M, the bending of the tracing paper was the slowest. When the concentrations are 12M and 18M, the bending of the tracing paper is faster than when the concentration is 6M, and when the concentration is 18M, the bending of the tracing paper is faster than when the concentration is 12M. It was fast. It was speculated that this was because lithium chloride was hygroscopic and therefore the tracing paper absorbed moisture during its drying, especially when the concentrations were 12M and 18M. That is, in the range of the concentration of 0 to 6M, it was presumed that the lower the concentration, the faster the bending of the tracing paper.
 以上の結果は、電解質水溶液を用いて、紙含有シートへ水を浸透させるときに、電解質水溶液の濃度を調節することで、紙含有シートの自律的な折り曲げの速度に差を生じさせることが可能であることを示していた。 The above results show that it is possible to make a difference in the autonomous bending speed of the paper-containing sheet by adjusting the concentration of the electrolyte solution when water is infiltrated into the paper-containing sheet using the electrolyte aqueous solution. It was shown to be.
[実施例9]
<<紙含有シートへ電解質水溶液を浸透させたときの、電解質水溶液の濃度と、浸透させた領域の幅と、紙含有シートの折れ曲がりの角度と、の関係の確認>>
 濃度が0M、6M、12M及び18Mである、塩化リチウム(LiCl)水溶液を調製した。
 紙含有シートとしてトレーシングペーパー(厚さ60μm、大きさ65mm×95mm)を用い、A4サイズの紙の表面のうち、中心部に、再剥離可能なスプレー糊を用いて、このトレーシングペーパーを貼り付けて固定した。そして、温度20~22℃、相対湿度58~62%の条件下で、インクジェットプリンターを用い、上記で得られたそれぞれの塩化リチウム水溶液を別々に、トレーシングペーパーに印刷した(工程(A))。このとき、トレーシングペーパーの長手方向における中央部に、短手方向に沿って、幅dが1mm、3mm、5mm及び7mmの太線状に、それぞれ印刷を行った。
 次いで、この印刷後のトレーシングペーパーを、これを固定していたA4サイズの紙から剥離させ、密閉容器中に配置し、静置した。そして、この状態でトレーシングペーパーを2日間乾燥させ、自律的に折り曲げた(工程(B))。この間、密閉容器中の相対湿度を64%に調節した。そして、この間のトレーシングペーパーの折れ曲がりの角度(図6Bにおけるθ)(°)を測定した。結果を図26に示す。
[Example 9]
<< Confirmation of the relationship between the concentration of the aqueous electrolyte solution when the aqueous electrolyte solution is infiltrated into the paper-containing sheet, the width of the infiltrated area, and the bending angle of the paper-containing sheet >>
Lithium chloride (LiCl) aqueous solutions having concentrations of 0M, 6M, 12M and 18M were prepared.
Use tracing paper (thickness 60 μm, size 65 mm × 95 mm) as a paper-containing sheet, and attach this tracing paper to the center of the surface of A4 size paper using a removable spray glue. Attached and fixed. Then, under the conditions of a temperature of 20 to 22 ° C. and a relative humidity of 58 to 62%, each lithium chloride aqueous solution obtained above was separately printed on tracing paper using an inkjet printer (step (A)). .. At this time, printing was performed on the central portion of the tracing paper in the longitudinal direction along the lateral direction in thick lines having widths d of 1 mm, 3 mm, 5 mm, and 7 mm, respectively.
Next, the printed tracing paper was peeled off from the A4 size paper to which it was fixed, placed in a closed container, and allowed to stand. Then, the tracing paper was dried in this state for 2 days and bent autonomously (step (B)). During this time, the relative humidity in the closed container was adjusted to 64%. Then, the bending angle of the tracing paper during this period (θ 1 in FIG. 6B) (°) was measured. The results are shown in FIG.
 図26から明らかなように、幅d(印刷領域)が同じ場合には、塩化リチウム水溶液の濃度が0M、すなわち水の場合に、前記濃度が6Mの場合よりも、トレーシングペーパーの折れ曲がりの角度が大きかった。前記濃度が12M及び18Mの場合に、前記濃度が0Mの場合よりも、トレーシングペーパーの折れ曲がりの角度が大きく、前記濃度が18Mの場合に、前記濃度が12Mの場合よりも、トレーシングペーパーの折れ曲がりの角度が大きかった。これは、塩化リチウムが吸湿性を有するため、特に前記濃度が12M及び18Mの場合に、トレーシングペーパーがその乾燥中に、吸湿したためであると推測された。すなわち、幅dが同じ場合には、前記濃度が0~6Mの範囲では、前記濃度が低いほど、トレーシングペーパーの折れ曲がりの角度が大きい傾向が認められた。
 一方、塩化リチウム水溶液の濃度が同じである場合には、幅dが太くなるほど、トレーシングペーパーの折れ曲がりの角度が大きくなることを示していた。
As is clear from FIG. 26, when the width d (printing area) is the same, when the concentration of the lithium chloride aqueous solution is 0 M, that is, when the concentration is 6 M, the bending angle of the tracing paper is larger than when the concentration is 6 M. Was big. When the concentrations are 12M and 18M, the bending angle of the tracing paper is larger than when the concentration is 0M, and when the concentration is 18M, the bending angle of the tracing paper is larger than when the concentration is 12M. The bending angle was large. It was speculated that this was because lithium chloride was hygroscopic and therefore the tracing paper absorbed moisture during its drying, especially when the concentrations were 12M and 18M. That is, when the width d is the same, in the range of 0 to 6 M, the lower the concentration, the larger the bending angle of the tracing paper was observed.
On the other hand, when the concentration of the lithium chloride aqueous solution was the same, it was shown that the larger the width d, the larger the bending angle of the tracing paper.
 以上の結果は、電解質水溶液を用いて、紙含有シートへ水を浸透させるときに、浸透させる領域の幅を調節することで、紙含有シートの自律的な折り曲げの角度に差を生じさせることが可能であることを示していた。 The above results show that when water is permeated into a paper-containing sheet using an aqueous electrolyte solution, the width of the permeated region is adjusted to cause a difference in the autonomous bending angle of the paper-containing sheet. It showed that it was possible.
 本発明は、3次元電子デバイスの製造、衝撃緩衝材の製造、シートの折り畳み等をはじめとする、折り紙技術の適用が可能な分野全般で利用可能である。 The present invention can be used in all fields to which origami technology can be applied, such as manufacturing of three-dimensional electronic devices, manufacturing of shock-cushioning materials, folding of sheets, and the like.
 1,2,3,4,8,200・・・紙含有シート
 1a,2a,3a,4a・・・紙含有シートの一方の面
 1b,3b,4b・・・紙含有シートの他方の面
 11,21,22,23,24,25,31,32,41,81・・・紙含有シートの水の濃度勾配を有する部位
 12・・・紙含有シートの水の濃度勾配を有する部位(第1部位)
 13・・・紙含有シートの水の濃度勾配を有する部位(第2部位)
 111・・・紙含有シートの水の濃度勾配を有する部位(実線状の部位)
 112・・・紙含有シートの水の濃度勾配を有する部位(点線状の部位)
 11’,21’,22’,23’,24’,25’,31’,32’,41’,81’・・・紙含有シートの水の濃度勾配を有していた部位
 9・・・水
 10,20,30,40,80・・・紙含有立体構造体
 T・・・紙含有シートの厚さ
1, 2, 3, 4, 8, 200 ... Paper-containing sheet 1a, 2a, 3a, 4a ... One side of the paper-containing sheet 1b, 3b, 4b ... The other side of the paper-containing sheet 11 , 21, 22, 23, 24, 25, 31, 32, 41, 81 ... Parts having a water concentration gradient on the paper-containing sheet 12 ... Parts having a water concentration gradient on the paper-containing sheet (1st Part)
13 ... A portion of the paper-containing sheet having a water concentration gradient (second portion)
111 ... A part of the paper-containing sheet having a water concentration gradient (solid line part)
112 ... A part of the paper-containing sheet having a water concentration gradient (dotted part)
11', 21', 22', 23', 24', 25', 31', 32', 41', 81'... The part having the water concentration gradient of the paper-containing sheet 9 ... Water 10, 20, 30, 40, 80 ... Paper-containing three-dimensional structure T 1 ... Paper-containing sheet thickness

Claims (8)

  1.  紙からなるか、又は紙を主成分とする紙含有シートが折り曲げられて構成された、紙含有立体構造体の製造方法であって、
     前記紙含有シートに対して、その一方の面から水を浸透させることにより、前記紙含有シートの厚さ方向に水の濃度勾配を有する部位を、前記紙含有シートに1又は2以上作製する工程(A)と、
     前記水の濃度勾配を有する状態の前記紙含有シートを乾燥させることにより、前記紙含有シートを、その前記水の濃度勾配を有していた部位において、自律的に折り曲げる工程(B)と、
     を有する、紙含有立体構造体の製造方法。
    A method for manufacturing a paper-containing three-dimensional structure, which is made of paper or is formed by folding a paper-containing sheet containing paper as a main component.
    A step of producing one or more portions of the paper-containing sheet having a water concentration gradient in the thickness direction of the paper-containing sheet by infiltrating water from one surface of the paper-containing sheet. (A) and
    A step (B) of autonomously bending the paper-containing sheet at a portion having the water concentration gradient by drying the paper-containing sheet having the water concentration gradient.
    A method for producing a paper-containing three-dimensional structure.
  2.  前記工程(B)において、前記紙含有シートの両面のうち、前記水の濃度が高い側の面を内向きにして、前記紙含有シートを自律的に折り曲げる、請求項1に記載の紙含有立体構造体の製造方法。 The paper-containing solid according to claim 1, wherein in the step (B), the paper-containing sheet is autonomously bent with the side of both sides of the paper-containing sheet facing inward, which has a high concentration of water. How to manufacture the structure.
  3.  前記工程(A)において、前記紙含有シートに浸透させる前記水の量を、1.0×10-12~10g/mmとする、請求項1又は2に記載の紙含有立体構造体の製造方法。 The production of the paper-containing three-dimensional structure according to claim 1 or 2, wherein in the step (A), the amount of the water to be permeated into the paper-containing sheet is 1.0 × 10 -12 to 10 g / mm 3. Method.
  4.  前記工程(A)において、前記水の濃度勾配を有する部位を、前記紙含有シートに、実線状又は点線状に作製する、請求項1~3のいずれか一項に記載の紙含有立体構造体の製造方法。 The paper-containing three-dimensional structure according to any one of claims 1 to 3, wherein in the step (A), a portion having the water concentration gradient is formed on the paper-containing sheet in a solid line shape or a dotted line shape. Manufacturing method.
  5.  前記工程(B)において、前記水の濃度勾配を有する状態の前記紙含有シートを、常圧下で、温度-273.15~1.0×10℃、相対湿度0~100%の条件下で乾燥させる、請求項1~4のいずれか一項に記載の紙含有立体構造体の製造方法。 In the step (B), the paper-containing sheet state having a concentration gradient of the water, under normal pressure, the temperature -273.15 ~ 1.0 × 10 5 ℃, under a relative humidity of 0-100% The method for producing a paper-containing three-dimensional structure according to any one of claims 1 to 4, which is to be dried.
  6.  前記工程(A)において、前記紙含有シートの表面方向において、前記水の浸透量が互いに異なる、前記水の濃度勾配を有する部位を、2以上作製する、請求項1~5のいずれか一項に記載の紙含有立体構造体の製造方法。 One of claims 1 to 5, wherein in the step (A), two or more portions having the water concentration gradients in which the permeation amount of the water is different from each other are produced in the surface direction of the paper-containing sheet. The method for manufacturing a paper-containing three-dimensional structure according to the above.
  7.  前記工程(A)において、互いに異なる2種以上の水溶液を、前記紙含有シートの互いに異なる領域に対して、別々に付着させることによって、前記紙含有シートの表面方向において、前記水の浸透量が互いに異なる、前記水の濃度勾配を有する部位を、2以上作製する、請求項6に記載の紙含有立体構造体の製造方法。 In the step (A), by separately adhering two or more different aqueous solutions to the different regions of the paper-containing sheet, the amount of water permeated in the surface direction of the paper-containing sheet is increased. The method for producing a paper-containing three-dimensional structure according to claim 6, wherein two or more portions having different water concentration gradients are produced.
  8.  前記2種以上の水溶液として、溶質の水和パラメーターがすべて互いに異なるものを用いる、請求項7に記載の紙含有立体構造体の製造方法。 The method for producing a paper-containing three-dimensional structure according to claim 7, wherein as the two or more kinds of aqueous solutions, those having different hydration parameters of solutes are used.
PCT/JP2021/019718 2020-05-25 2021-05-25 Method of manufacturing paper-containing three-dimensional structure WO2021241543A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022526561A JPWO2021241543A1 (en) 2020-05-25 2021-05-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-090550 2020-05-25
JP2020090550 2020-05-25
JP2020-151562 2020-09-09
JP2020151562 2020-09-09

Publications (1)

Publication Number Publication Date
WO2021241543A1 true WO2021241543A1 (en) 2021-12-02

Family

ID=78744483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019718 WO2021241543A1 (en) 2020-05-25 2021-05-25 Method of manufacturing paper-containing three-dimensional structure

Country Status (2)

Country Link
JP (1) JPWO2021241543A1 (en)
WO (1) WO2021241543A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7100331B1 (en) * 2022-02-12 2022-07-13 国立大学法人 東京大学 Folded structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256693A (en) * 1975-10-31 1977-05-10 Sadaaki Hiraga Device for controlling humidity of corrugated cardboard liner
JPH10500638A (en) * 1994-12-23 1998-01-20 マウラー インゴ Manufacturing method of paper lamp shade
JP2003300265A (en) * 2002-04-09 2003-10-21 Mitsubishi Heavy Ind Ltd Manufacturing apparatus for corrugated cardboard
JP2004350906A (en) * 2003-05-29 2004-12-16 Univ Waseda Actuator consisting of sheet-shaped member and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256693A (en) * 1975-10-31 1977-05-10 Sadaaki Hiraga Device for controlling humidity of corrugated cardboard liner
JPH10500638A (en) * 1994-12-23 1998-01-20 マウラー インゴ Manufacturing method of paper lamp shade
JP2003300265A (en) * 2002-04-09 2003-10-21 Mitsubishi Heavy Ind Ltd Manufacturing apparatus for corrugated cardboard
JP2004350906A (en) * 2003-05-29 2004-12-16 Univ Waseda Actuator consisting of sheet-shaped member and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGEMUNE, HIROKI ET AL.: "Proceedings of the 2014 JSME Conference on Robotics and Mechatronics", 2A2-V05 DESIGN OF PRINTED PAPER ROBOT WITH ORGANIC ACTUATOR: PROPOSAL OF PAPER MECHATRONICS, 25 May 2014 (2014-05-25), Toyama, Japan, pages 1 - 4, ISSN: 2424-3124 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7100331B1 (en) * 2022-02-12 2022-07-13 国立大学法人 東京大学 Folded structure

Also Published As

Publication number Publication date
JPWO2021241543A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2021241543A1 (en) Method of manufacturing paper-containing three-dimensional structure
JP3134644B2 (en) Inkjet recording paper
BR122020005741B1 (en) RECORD SHEET AND METHOD FOR MANUFACTURING RECORD SHEET
JP2005289064A (en) Printing medium and method for producing printing medium
JP2001199157A (en) Recording material for ink jet printing method
BR112012001807B1 (en) inkjet coated medium and method for forming a coated medium
CA2604483C (en) Inkjet anti-curl compositions for media and systems for processing the media
BR112015019424B1 (en) BASE PAPER FOR DECORATIVE COATING MATERIALS
WO2018182593A1 (en) Printable recording media
JPS61261089A (en) Recording sheet
CN106676939B (en) Cardboard, the method for manufacturing the cardboard and the image forming method using the cardboard
US11542399B2 (en) Coating composition
JP2001081700A (en) Base paper for wallpaper
WO2021235429A1 (en) Dehumidification member, dehumidification rotor, and method for producing dehumidification member
JP6373204B2 (en) Electronic circuit sheet
JP2016058461A (en) Conductive pattern erasing method and erasing tool
KR100358044B1 (en) The method of preparing instrument recorder chart paper
JPS6134523Y2 (en)
CN109311336A (en) Utilize the printing of moisture distribution
JP2010249657A (en) Manufacturing method of detection material
JPS5965851A (en) Electrostatic recording body and its manufacture
JP3048525B2 (en) Paper surface coating
JP2000225767A (en) Recording sheet
JP5673570B2 (en) Method for estimating dry state of coating film
JP2007077175A (en) Method for producing paper soap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812085

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022526561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812085

Country of ref document: EP

Kind code of ref document: A1