WO2021235427A1 - 液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法 - Google Patents

液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法 Download PDF

Info

Publication number
WO2021235427A1
WO2021235427A1 PCT/JP2021/018762 JP2021018762W WO2021235427A1 WO 2021235427 A1 WO2021235427 A1 WO 2021235427A1 JP 2021018762 W JP2021018762 W JP 2021018762W WO 2021235427 A1 WO2021235427 A1 WO 2021235427A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
mass
less
liquid composition
Prior art date
Application number
PCT/JP2021/018762
Other languages
English (en)
French (fr)
Inventor
昌平 莇
豊誠 伊藤
理彦 西田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020227043827A priority Critical patent/KR20230014717A/ko
Priority to CN202180036498.5A priority patent/CN115667398A/zh
Priority to JP2022524486A priority patent/JPWO2021235427A1/ja
Publication of WO2021235427A1 publication Critical patent/WO2021235427A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a liquid crystal polyester liquid composition, a liquid crystal polyester film, a laminate, and a method for producing a liquid crystal polyester film.
  • Insulation materials are used for printed circuit boards on which electronic components are mounted.
  • a fluororesin having a good dielectric property is used as a method for improving the dielectric property of the insulating material.
  • a sheet formed after melt-kneading a resin composition containing a fluorine-containing polymer having a carbonyl group-containing group and a liquid crystal polymer or the like has electrical properties, impact resistance, and mechanical strength. It is said to be excellent.
  • the insulating material containing fluororesin has a problem that the adhesion strength with the copper foil is lowered.
  • the present invention has been made to solve the above-mentioned problems, and to provide a liquid crystal polyester liquid composition capable of producing a film having excellent adhesion strength to a copper foil and dielectric properties.
  • Another object of the present invention is to provide a liquid crystal polyester film, a laminate, and a method for manufacturing a liquid crystal polyester film, which are excellent in adhesion strength to a copper foil and dielectric properties.
  • the present inventors can apply a film-forming method capable of producing a film having excellent isotropic properties by using a liquid crystal polyester soluble in an aprotic solvent. Furthermore, they have found that the dielectric properties can be improved while maintaining the adhesion strength with the copper foil by using a fluororesin having a melting point of 305 ° C or less in combination with the liquid crystal polyester, and have completed the present invention.
  • rice field. That is, the present invention has the following aspects.
  • a liquid crystal polyester liquid composition containing a liquid crystal polyester (A) soluble in an aprotic solvent, an aprotic solvent (S), and a fluororesin (B) having a melting point of 305 ° C. or lower.
  • a liquid crystal polyester liquid composition containing a liquid crystal polyester (A) soluble in an aprotic solvent, an aprotic solvent (S), and a fluororesin (B) having a melting point of 305 ° C. or lower.
  • the liquid crystal polyester liquid composition according to the above [1] wherein the liquid crystal polyester (A) contains an amide bond.
  • the liquid crystal polyester (A) contains a structural unit represented by the following formula (A1), a structural unit represented by the following formula (A2), and a structural unit represented by the following formula (A3).
  • A1 liquid crystal polyester liquid composition according to the above [1] or [2].
  • Ar1 represents a 1,4-phenylene group, a 2,6-naphthalenedyl group, or a 4,4'-biphenylene group
  • Ar2 is a 1,4-phenylene group, a 1,3-phenylene group, Or, it represents a 2,6-naphthalenediyl group
  • Ar3 represents a 1,4-phenylene group or a 1,3-phenylene group
  • X represents -NH-
  • Y represents -O- or -NH-.
  • the Ar1 is a 2,6-naphthalenedyl group
  • the Ar2 is a 1,3-phenylene group
  • the Ar3 is a 1,4-phenylene group
  • the Y is —O—.
  • the content ratio of the liquid crystal polyester (A) is 10% by mass or more and 90% by mass or less
  • the content ratio of the fluororesin (B) is 10 with respect to the total content of the solid content of the liquid crystal polyester liquid composition.
  • the liquid crystal polyester liquid composition according to any one of the above [1] to [4], which is by mass% or more and 90% by mass or less.
  • the content ratio of the liquid crystal polyester (A) is 25% by mass or more and 40% by mass or less, and the content ratio of the fluororesin (B) is 25 with respect to the total content of the solid content of the liquid crystal polyester liquid composition.
  • the liquid crystal polyester liquid composition according to any one of the above [1] to [8], wherein the fluororesin (B) has a crystallite size of 2.9 ⁇ 10-8 m or less.
  • the fluororesin (B) is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (perfluoroalkoxyalkane, PFA), polytetrafluoroethylene (PTFE), or tetrafluoroethylene-hexafluoropropylene copolymer ().
  • the liquid crystal polyester liquid composition according to any one of the above [1] to [9]. [11] The above [1] to [10], wherein the content of the liquid crystal polyester (A) is 0.01 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the aprotic solvent (S). The liquid crystal polyester liquid composition according to any one of the above.
  • the liquid crystal polyester liquid composition according to any one of the above [1] to [11], wherein the aprotic solvent (S) is N-methylpyrrolidone.
  • a liquid crystal polyester (A) and a fluororesin (B) having a melting point of 305 ° C. or lower are contained.
  • the liquid crystal polyester (A) contains a structural unit represented by the following formula (A1), a structural unit represented by the following formula (A2), and a structural unit represented by the following formula (A3).
  • Ar1 represents a 1,4-phenylene group, a 2,6-naphthalenedyl group, or a 4,4'-biphenylene group
  • Ar2 is a 1,4-phenylene group, a 1,3-phenylene group, Or, it represents a 2,6-naphthalenediyl group
  • Ar3 represents a 1,4-phenylene group or a 1,3-phenylene group
  • X represents -NH-
  • Y represents -O- or -NH-.
  • a laminate comprising a metal layer and the liquid crystal polyester film according to the above [13] or [14] laminated on the metal layer.
  • a laminate comprising a metal layer and a liquid crystal polyester film formed by applying the liquid crystal polyester liquid composition according to any one of [1] to [12] on the metal layer.
  • the liquid crystal polyester liquid composition according to any one of the above [1] to [12] is applied onto the support, and the aprotonic solvent (S) is removed from the liquid crystal polyester liquid composition.
  • a method for producing a liquid crystal polyester film which comprises obtaining a liquid crystal polyester film by heat treatment.
  • liquid crystal polyester liquid composition capable of producing a film having excellent adhesion strength to a copper foil and dielectric properties. Further, according to the present invention, it is possible to provide a liquid crystal polyester film, a laminate and a method for manufacturing a liquid crystal polyester film having excellent adhesion strength to a copper foil and dielectric properties.
  • liquid crystal polyester liquid composition the liquid crystal polyester film, the laminate, and the method for producing the liquid crystal polyester film of the present invention will be described.
  • the liquid crystal polyester liquid composition of the embodiment contains a liquid crystal polyester (A) soluble in an aprotic solvent, an aprotic solvent (S), and a fluororesin (B) having a melting point of 305 ° C. or lower. It is a thing.
  • the term "liquid composition” means a solution or dispersion that is liquid at normal temperature and pressure (25 ° C., 1 atm). In the case of a dispersion liquid, it means a dispersion liquid in which the dispersion medium is a liquid at normal temperature and pressure (25 ° C., 1 atm). The dispersion means a dispersion of undissolved solids in the solution.
  • solid content refers to components other than the solvent contained in the liquid composition.
  • the solid content to be dispersed include the above-mentioned fluororesin (B) and the later-described inorganic filler (C).
  • the solvent for example, the aprotic solvent (S) described later corresponds.
  • the ratio of the solid content to the total mass of the liquid composition is not particularly limited, and may be 0.5% by mass or more, and may be 0.5% by mass or more. It may be 80% by mass or less, 1% by mass or more and 70% by mass or less, or 5% by mass or more and 50% by mass or less.
  • liquid crystal polyester liquid composition according to the embodiment of the present invention is also simply referred to as the "liquid composition" of the embodiment.
  • the component (A) is a liquid crystal polyester soluble in the aprotic solvent (S).
  • the component (A) also contributes to increasing the adhesion strength with the metal foil and increasing the mechanical strength when the liquid composition of the embodiment is made into a film on the metal foil.
  • the liquid crystal polyester is a liquid crystal polyester that exhibits liquid crystal properties in a molten state, and is preferably melted at a temperature of 450 ° C. or lower.
  • the liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide.
  • the liquid crystal polyester is preferably a total aromatic liquid crystal polyester having only a structural unit derived from an aromatic compound as a raw material monomer.
  • "origin” means that the chemical structure of the functional group that contributes to the polymerization changes due to the polymerization of the raw material monomer, and no other structural change occurs.
  • the liquid crystal polyester (A) preferably contains an amide bond.
  • the liquid crystal polyester (A) contains an amide bond, it is possible to improve the adhesion strength with the copper foil when laminated with the copper foil as a film.
  • liquid crystal polyester (A) containing an amide bond and soluble in an aprotic solvent the structural unit represented by the following formula (A1), the structural unit represented by the following formula (A2), and the following formula (A3). Examples thereof include those including the structural units indicated by.
  • Ar1 represents a 1,4-phenylene group, a 2,6-naphthalenedyl group, or a 4,4'-biphenylene group
  • Ar2 is a 1,4-phenylene group, a 1,3-phenylene group, Or, it represents a 2,6-naphthalenediyl group
  • Ar3 represents a 1,4-phenylene group or a 1,3-phenylene group
  • X represents -NH-
  • Y represents -O- or -NH-. .
  • Ar2 is a 1,3-phenylene group. Since Ar2 is a 1,3-phenylene group, its dissolution in an aprotic solvent becomes even better. It is considered that this is because Ar2 is a 1,3-phenylene group and a bent structure is introduced into the polymer.
  • Ar1 is 2 from the viewpoint that it is well dissolved in an aprotic solvent and the adhesion strength and dielectric properties of the copper foil when laminated as a film are easily exhibited.
  • 6-Naphthalenediyl group Ar2 is preferably a 1,3-phenylene group, Ar3 is a 1,4-phenylene group, and Y is preferably —O—.
  • the ratio of the preferable content of each structural unit in the liquid crystal polyester can be exemplified as follows.
  • the content of the structural unit represented by the above formula (A1) is the total content of all the structural units constituting the liquid crystal polyester (A) (the mass of each structural unit constituting the liquid crystal polyester is the formula amount of each structural unit).
  • the amount of substance equivalent (mol) of each structural unit is obtained, and the total value thereof is preferably 30 mol% or more and 80 mol% or less, and 40 mol% or more and 70 mol% or more. It is more preferably 45 mol% or more and 65 mol% or less.
  • the content of the structural unit represented by the above formula (A2) is preferably 10 mol% or more and 35 mol% or less with respect to the total content of all the structural units constituting the liquid crystal polyester (A). It is more preferably mol% or more and 30 mol% or less, and even more preferably 17.5 mol% or more and 27.5 mol% or less.
  • the content of the structural unit (A2) is not more than the above upper limit value, the liquid crystal property tends to be good, and when it is more than the above lower limit value, the solubility in a solvent tends to be good.
  • the content of the structural unit represented by the above formula (A3) is preferably 10 mol% or more and 35 mol% or less with respect to the total content of all the structural units constituting the liquid crystal polyester (A). It is more preferably mol% or more and 30 mol% or less, and even more preferably 17.5 mol% or more and 27.5 mol% or less.
  • the content of the structural unit (A3) is not more than the above upper limit value, the liquid crystal property tends to be good, and when it is more than the above lower limit value, the solubility in a solvent tends to be good.
  • the content of the structural unit (A2) and the content of the structural unit (A3) in the liquid crystal polyester (A) are equal to each other, but when the contents are different, the structural unit (A2) and the structural unit (A2) and the structural unit (A2) are different.
  • the difference in the content of (A3) is preferably 10 mol% or less. With this difference, the degree of polymerization of the liquid crystal polyester can also be controlled.
  • the ratio of the preferable content of each structural unit in the liquid crystal polyester (A) is the content of the structural unit represented by the above formula (A1) with respect to the total content of all the structural units constituting the liquid crystal polyester (A).
  • the content is 30 mol% or more and 80 mol% or less
  • the content of the structural unit represented by the above formula (A2) is preferably 10 mol% or more and 35 mol% or less
  • the above formula (A3) The content of the structural unit indicated by is preferably 10 mol% or more and 35 mol% or less.
  • the ratio of the preferable content of each structural unit in the liquid crystal polyester (A) is the content of the structural unit represented by the above formula (A1) with respect to the total content of all the structural units constituting the liquid crystal polyester (A).
  • the content is 40 mol% or more and 70 mol% or less
  • the content of the structural unit represented by the above formula (A2) is more preferably 15 mol% or more and 30 mol% or less.
  • the content of the structural unit shown in A3) is 15 mol% or more and 30 mol% or less.
  • the ratio of the preferable content of each structural unit in the liquid crystal polyester (A) is the content of the structural unit represented by the above formula (A1) with respect to the total content of all the structural units constituting the liquid crystal polyester (A). However, it is more preferably 45 mol% or more and 65 mol% or less, and further preferably the content of the structural unit represented by the above formula (A2) is 17.5 mol% or more and 27.5 mol% or less. It is more preferable that the content of the structural unit represented by the above formula (A3) is 17.5 mol% or more and 27.5 mol% or less.
  • the structural unit (A1) may be, for example, a structural unit derived from an aromatic hydroxycarboxylic acid.
  • the structural unit (A2) may be, for example, a structural unit derived from an aromatic dicarboxylic acid.
  • the structural unit (A3) may be, for example, an aromatic diamine or a structural unit derived from an aromatic amine having a phenolic hydroxyl group.
  • an ester or an amide-forming derivative of the above-mentioned structural unit may be used instead of the above-mentioned structural unit.
  • ester-forming derivative of the carboxylic acid examples include a carboxy group in which the carboxy group is a derivative having high reaction activity such as a acid compound and an acid anhydride that promotes a reaction for producing a polyester, and a carboxy group. , Alcohols that form a polyester by transesterification reaction, ethylene glycol, and the like that form an ester.
  • ester-forming derivative of the phenolic hydroxyl group examples include those in which the phenolic hydroxyl group forms an ester with a carboxylic acid.
  • amide-forming derivative of the amino group examples include those in which the amino group forms an amide with a carboxylic acid.
  • Examples of the structural unit of the component (A) used in the present embodiment include, but are not limited to, the following.
  • Examples of the structural unit represented by the formula (A1) include structural units derived from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-hydroxy-4'-biphenylcarboxylic acid and the like.
  • the structural unit of species or more may be included in all structural units.
  • a structural unit derived from 6-hydroxy-2-naphthoic acid is preferable.
  • Examples of the structural unit represented by the formula (A2) include structural units derived from terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and the like, and two or more of the structural units are included in the total structural unit. May be included in. Among these structural units, isophthalic acid-derived structural units are preferable from the viewpoint of solubility in a solvent.
  • Examples of the structural unit represented by the formula (A3) include 3-aminophenol, 4-aminophenol, 1,4-phenylenediamine, 1,3-phenylenediamine, 4-aminobenzoic acid, 4'-hydroxyacetanilide and the like.
  • the structural unit of origin and the like may be mentioned, and two or more kinds of the structural unit may be included in the total structural unit.
  • structural units derived from 4-aminophenol or 4'-hydroxyacetanilide are preferable from the viewpoint of reactivity.
  • the liquid crystal polyester soluble in an aprotic solvent may be a liquid crystal polyester containing a structural unit derived from 4'-hydroxyacetanilide.
  • the liquid crystal polyester soluble in an aprotic solvent is a liquid crystal polyester composed of a structural unit derived from 6-hydroxy-2-naphthoic acid, a structural unit derived from 4'-hydroxyacetanilide, and a structural unit derived from isophthalic acid. May be.
  • the method for producing the component (A) used in the present embodiment is not particularly limited, but for example, an aromatic hydroxy acid corresponding to the structural unit (A1) and an aromatic having a phenolic hydroxyl group corresponding to the structural unit (A3).
  • the phenolic hydroxyl groups and amino groups of group amines and aromatic diamines are acylated with an excess amount of fatty acid anhydride to obtain an acylated product, and the obtained acylated product and the aromatic dicarboxylic acid corresponding to the structural unit (A2) are obtained.
  • Examples thereof include a method of performing melt polymerization by ester-amide exchange (polycondensation) (see JP-A-2002-220444 and JP-A-2002-146003).
  • the amount of the fatty acid anhydride added is preferably 1.0 to 1.2 times the total equivalent of the phenolic hydroxyl group and the amino group, and more preferably 1.05 to 1. It is 1 times equivalent. If the amount of fatty acid anhydride added is too small, acylated substances and raw material monomers tend to sublimate during transesterification / amide exchange (polycondensation), and the reaction system tends to be clogged. The coloring of polyester tends to be remarkable.
  • the acylation reaction is preferably carried out at 130 to 180 ° C. for 5 minutes to 10 hours, and more preferably at 140 to 160 ° C. for 10 minutes to 3 hours.
  • the fatty acid anhydride used in the acylation reaction is not particularly limited, and is, for example, acetic acid anhydride, propionic acid anhydride, butyric acid anhydride, isobutyric acid anhydride, valeric acid anhydride, pivalic acid anhydride, diethylhexanoic acid anhydride, monochloroacetic acid anhydride.
  • acetic anhydride, propionic anhydride, butyric anhydride, or isobutyric anhydride is preferable, and acetic anhydride is more preferable.
  • the acyl group of the acylated product has an equivalent amount of 0.8 to 1.2 times that of the carboxyl group.
  • Transesterification / amide exchange is preferably carried out while raising the temperature up to 400 ° C. at a rate of 0.1 to 50 ° C./min, and up to 350 ° C. at a rate of 0.3 to 5 ° C./min. It is more preferable to do it while doing it.
  • the acylated product and the carboxylic acid are transesterified or amide exchanged (polycondensed)
  • it is preferable that the fatty acid produced as a by-product and the unreacted fatty acid anhydride are distilled off from the system by evaporation or the like.
  • the acylation reaction and transesterification / amide exchange (polycondensation) may be carried out in the presence of a catalyst.
  • a catalyst those conventionally known as catalysts for polymerizing polyester can be used, for example, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide and the like.
  • Metal salt catalysts, organic compound catalysts such as N, N-dimethylaminopyridine, N-methylimidazole and the like can be mentioned.
  • heterocyclic compounds containing two or more nitrogen atoms such as N, N-dimethylaminopyridine and N-methylimidazole are preferably used (see JP-A-2002-146003).
  • the catalyst is usually charged at the time of charging the monomers, and it is not always necessary to remove the catalyst even after acylation. If the catalyst is not removed, transesterification can be performed as it is.
  • melt polymerization and solid phase polymerization may be used in combination.
  • the solid phase polymerization is preferably carried out by a known solid phase polymerization method after extracting the polymer from the melt polymerization step and then pulverizing the polymer into powder or flakes. Specifically, for example, a method of heat-treating in a solid phase state at 20 to 350 ° C. for 1 to 30 hours in an inert atmosphere such as nitrogen can be mentioned.
  • Solid-phase polymerization may be carried out with stirring or in a stationary state without stirring.
  • the melt polymerization tank and the solid phase polymerization tank can be made into the same reaction tank by providing an appropriate stirring mechanism.
  • the obtained liquid crystal polyester may be pelletized and molded by a known method.
  • the liquid crystal polyester can be produced, for example, by using a batch device, a continuous device, or the like.
  • the content of the component (A) may be 10% by mass or more and 90% by mass or less, and 15% by mass or more and 50% by mass or less with respect to the total content of the solid content of the liquid composition of the embodiment. It may be 25% by mass or more and 40% by mass or less.
  • the component (S) is an aprotic solvent.
  • Protic and aprotic solvents have the advantages of low corrosiveness and ease of handling.
  • the aprotic solvent is a solvent containing an aprotic compound.
  • the aprotonic solvent includes, for example, halogen-based solvents such as 1-chlorobutane, chlorobenzene, 1,1-dichloroethane, 1,2-dichloroethane, chloroform, 1,1,2,2-tetrachloroethane.
  • Examples thereof include amide-based solvents, nitro-based solvents such as nitromethane and nitrobenzene, sulfide-based solvents such as dimethylsulfoxide and sulfolane, phosphoric acid-based solvents such as hexamethylphosphate amide and tri-n-butylphosphate, and two or more of them. You may use the mixture of.
  • an aprotic compound having no halogen atom is preferably used from the viewpoint of environmental influence, and a solvent having a dipole moment of 3 or more and 5 or less is preferably used from the viewpoint of solubility.
  • an amide-based solvent such as N, N'-dimethylformamide, N, N'-dimethylacetamide, tetramethylurea, N-methylpyrrolidone, or a lactone-based solvent such as ⁇ -butyrolactone is more preferably used.
  • N, N'-dimethylformamide, N, N'-dimethylacetamide, or N-methylpyrrolidone are more preferably used.
  • the ratio of the content of the component (S) to the total mass of the liquid composition is 20 mass from the viewpoint of lowering the viscosity of the liquid composition and facilitating coating on the support. % Or more, 20% by mass or more and 99% by mass or less, and 50% by mass or more and 95% by mass or less.
  • the content of the liquid crystal polyester (A) is preferably 0.01 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the aprotic solvent (S), and 1 part by mass. More than 70 parts by mass is more preferable, and 5 parts by mass or more and 40 parts by mass or less is further preferable.
  • the content of the liquid crystal polyester (A) when the content of the liquid crystal polyester (A) is in the above range, it is easy to apply the coating to a support such as a metal foil. Depending on the desired film thickness, the content of the liquid crystal polyester (A) can be appropriately adjusted within the above range.
  • the component (B) is a fluororesin having a melting point of 305 ° C. or lower.
  • the "fluororesin” means a resin containing a fluorine atom in a molecule, and examples thereof include a polymer having a structural unit containing a fluorine atom.
  • Examples of the fluororesin (B) include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene (PCTFE), and ethylene-tetrafluoroethylene copolymer.
  • Examples thereof include ethylene-chlorotrifluoroethylene copolymer, polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (perfluoroalkoxyalkane, PFA) and the like.
  • the fluororesin (B) is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (perfluoroalkoxyalkane, PFA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), poly.
  • the fluororesin (B) is preferably perfluoroalkoxyalkane (PFA) having a melting point of 305 ° C. or lower.
  • the liquid composition of the embodiment may contain two or more kinds of fluororesins.
  • Fluororesin contains a fluorine atom in the molecule, so that the dielectric property of the film containing the fluororesin can be improved.
  • the melting point of the fluororesin (B) according to the embodiment is 305 ° C. or lower, preferably 303 ° C. or lower, and more preferably 301 ° C. or lower.
  • the melting point of the fluororesin (B) is not more than the above upper limit value, the characteristics of the adhesion strength of the film containing the fluororesin (B) to the copper foil can be excellent.
  • the mechanism is not clear, it is considered that the low melting point of the fluororesin reflects the low molecular weight of the fluororesin, which enhances the adhesion to the copper foil. Conceivable.
  • the lower limit of the melting point of the fluororesin (B) according to the embodiment may be 280 ° C. or higher, 290 ° C. or higher, or 295 ° C. or higher in consideration of practicality in applications requiring heat resistance. It may be there.
  • the upper limit value and the lower limit value of the melting point of the fluororesin (B) according to the embodiment can be freely combined.
  • the numerical range of the melting point of the fluororesin (B) it may be 280 ° C. or higher and 305 ° C. or lower, 290 ° C. or higher and 303 ° C. or lower, or 295 ° C. or higher and 301 ° C. or lower.
  • the melting point of the fluororesin (B) shall be measured as the endothermic peak value of differential scanning calorimetry (DSC) in accordance with JISK6935.
  • the melting point of the fluororesin (B) can be adjusted not only by selecting the raw material of the fluororesin but also by controlling the molecular weight of the fluororesin.
  • the molecular weight of the fluororesin can be appropriately adjusted to a desired value by appropriately adjusting the polymerization rate, polymerization time, etc. at the time of production.
  • the fluororesin (B) preferably has a crystallite size of 2.9 ⁇ 10-8 m or less, more preferably 2.7 ⁇ 10-8 m or less, and 2.5. It is more preferably x10-8 m or less.
  • the crystallite size of the fluororesin (B) is not more than the above upper limit value, the characteristics of the adhesion strength of the film containing the fluororesin (B) to the copper foil can be excellent.
  • the small crystallite size of the fluororesin is considered to reflect the low molecular weight of the fluororesin, which enhances the adhesion to the copper foil. It is considered to be.
  • the lower limit of the crystallite size of the fluororesin (B) according to the embodiment may be, for example, 2.0 ⁇ 10-8 m or more, 2.1 ⁇ 10-8 m or more, and 2.2. It may be ⁇ 10-8 m or more.
  • the upper limit value and the lower limit value of the crystallite size of the fluororesin (B) according to the embodiment can be freely combined.
  • the numerical range of the crystallite size of the fluororesin (B) it may be 2.0 ⁇ 10-8 m or more and 2.9 ⁇ 10-8 m or less, and 2.1 ⁇ 10-8 m or more 2 it may be a .7 ⁇ 10 -8 m or less, may be less 2.2 ⁇ 10 -8 m or 2.5 ⁇ 10 -8 m.
  • the crystallite size of the fluororesin (B) can be carried out by the following method using a wide-angle X-ray scattering (WAXS) measuring device.
  • WAXS wide-angle X-ray scattering
  • the fluororesin powder sample is sandwiched between bag-shaped Kapton films, and the X-ray beam size is adjusted to be smaller than the sample size.
  • To fluororesin powder sample, and the incident X-rays in the thickness direction of the Kapton film, subjected to transmitted X-ray intensity measurement and WAXS measurement is performed to obtain the transmitted X-ray intensity A S and WAXS scattering intensity I S.
  • the method for measuring the crystallite size by X-ray diffraction can be carried out as follows.
  • D K ⁇ ⁇ / ⁇ cos ⁇ ⁇ ⁇ ⁇ (2)
  • D is the crystallite size
  • is the measured X-ray wavelength
  • is the full width at half maximum (radian)
  • is the diffraction angle
  • K is the Scherrer constant (0.94).
  • fluororesin satisfying the above-mentioned melting point, crystallite size and half width
  • a commercially available fluororesin may be used, and for example, AGC EA2000 or the like can be used.
  • the liquid composition of the embodiment contains the fluororesin (B), the water absorption rate when made into a film can be made preferable.
  • the fluororesin contained in the liquid composition of the embodiment may be a powder.
  • the volume average particle size of the fluororesin may be 0.1 ⁇ m or more and 30 ⁇ m or less, 0.5 ⁇ m or more and 10 ⁇ m or less, or 1 ⁇ m or more and 5 ⁇ m or less. It is preferable that the volume average particle size of the fluororesin is within the above range because the surface smoothness of the film is excellent.
  • the volume average particle size of the fluororesin can be measured by a laser diffraction / scattering type particle size distribution measuring device in a wet manner using water as a dispersion medium.
  • the shape of the fluororesin contained in the liquid composition of the embodiment is not particularly limited, but for example, spherical, lumpy, fibrous, or scaly ones can be used. In particular, spherical or lumpy ones are preferable from the viewpoint of excellent dispersibility in the liquid crystal polyester liquid composition.
  • the mass ratio (solid content) of the component (A) to the component (B) [(A) component: (B) component] contained in the liquid composition of the embodiment is, for example, 9: 1 to 1: 9. It may be 5: 1 to 1: 5, and may be 3: 2 to 2: 3.
  • the liquid composition containing the component (A) and the component (B) in the above ratio the adhesion strength, the dielectric property and the water resistance of the produced liquid crystal polyester film with the copper foil can be easily improved. Can be done.
  • the content of the component (B) may be 10% by mass or more and 90% by mass or less, 15% by mass or more and 50% by mass or less, 25 by mass, based on the total solid content of the liquid composition. It may be mass% or more and 40 mass% or less.
  • the liquid composition of the embodiment can contain the component (A), the component (B), and the component (S).
  • the content ratio of the component (A) is 10% by mass or more and 90% by mass or less with respect to the total solid content of the liquid composition (B).
  • the content ratio of the component is 10% by mass or more and 90% by mass or less can be exemplified.
  • the combination of these numerical values is an example, and for example, the numerical values exemplified above as an example of the content ratio of each component can be freely combined.
  • the liquid composition of the embodiment contains other components as required, such as a filler, an antioxidant, a heat stabilizer, and an ultraviolet absorber. , Antistatic agents, surfactants, flame retardants, colorants and other additives, and resins that do not fall under the components (A) and (B) may be contained.
  • the filler examples include inorganic fillers (C) such as silica, alumina, titanium oxide, barium titanate, strontium titanate, aluminum hydroxide and calcium carbonate; and cured epoxy resin, crosslinked benzoguanamine resin, crosslinked acrylic resin and the like.
  • examples include organic fillers.
  • a silica filler is preferable from the viewpoint of improving the dielectric loss tangent of the liquid crystal polyester film.
  • the liquid composition containing the fluororesin (B) having a melting point of 305 ° C. or lower is a component of the fluororesin (B) having a melting point of 305 ° C. or lower and an inorganic filler (C) such as a silica filler (hereinafter, (C) component.
  • the above filler is preferably granular.
  • the volume average particle size of the filler may be 0.1 ⁇ m or more and 10 ⁇ m or less, 0.2 ⁇ m or more and 5 ⁇ m or less, or 0.3 ⁇ m or more and 1 ⁇ m or less.
  • the volume average particle size of the filler can be measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the content thereof may be 5% by mass or more and 70% by mass or less, and 20% by mass, based on the total solid content of the liquid composition. It may be% or more and 50% by mass or less, and may be 30% by mass or more and 45% by mass or less.
  • the inorganic filler (C) within the above numerical range, the characteristics of the inorganic filler are satisfactorily exhibited.
  • the dielectric properties of the produced liquid crystal polyester film can be improved.
  • the adhesion strength of the produced liquid crystal polyester film with the copper foil can be improved.
  • the liquid composition of the embodiment can contain a component (A), a component (B), a component (S), and a component (C).
  • the content ratio of the component (A) is 25% by mass or more and 40% by mass or less with respect to the total solid content of the liquid composition (B).
  • the content ratio of the component (C) is 25% by mass or more and 40% by mass or less, and the content ratio of the component (C) is 20% by mass or more and 50% by mass or less.
  • the content ratio of the component (A) is 25% by mass or more and 35% by mass or less with respect to the total solid content of the liquid composition.
  • Examples thereof include those in which the content ratio of the component B) is 25% by mass or more and 35% by mass or less, and the content ratio of the component (C) is 30% by mass or more and 45% by mass or less.
  • the combination of these numerical values is an example, and for example, the numerical values exemplified above as an example of the content ratio of each component can be freely combined.
  • Examples of the component (A) and the resin not corresponding to the component (B) include polypropylene, polyamide, polyester other than liquid crystal polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and its modified product, and polyether.
  • Thermoplastic resins other than liquid crystal polyesters such as imide; elastomers such as copolymers of glycidyl methacrylate and polyethylene; and thermosetting resins such as phenol resins, epoxy resins, polyimide resins and cyanate resins are mentioned, and their contents are It may be 0 with respect to 100 parts by mass of the liquid crystal polyester, and is preferably 20 parts by mass or less.
  • liquid crystal polyester liquid composition of the embodiment it is possible to produce a film having excellent adhesion strength and dielectric properties with a copper foil.
  • the liquid crystal polyester film is generally manufactured by a melt molding method or a solution casting method in which the liquid crystal polyester is melted.
  • the melt molding method is a method of forming a film by extruding a kneaded product from an extruder.
  • the liquid crystal polyester molecules are oriented in the film forming direction rather than in the lateral direction with respect to the extrusion direction, and it is difficult to obtain a liquid crystal polyester having excellent isotropic properties.
  • the solution casting method since the film is formed without applying a force such as extrusion, the orientation of the liquid crystal polyester is isotropic as compared with the liquid crystal polyester film formed by the melt molding method.
  • liquid crystal polyester (A) is soluble in the aprotic solvent (S)
  • a solution casting method can be applied to obtain a liquid crystal polyester film having excellent isotropic properties. It can be manufactured.
  • the liquid composition of the embodiment further contains the component (C)
  • a film having further excellent dielectric properties and water resistance can be produced. Further, since the liquid composition contains the component (C), it is possible to produce an excellent film having an extremely good balance between the adhesion strength with the copper foil, the dielectric property and the water resistance.
  • the liquid crystal polyester film of the embodiment contains a liquid crystal polyester (A) and a fluororesin (B) having a melting point of 305 ° C. or lower, and the liquid crystal polyester (A) contains an amide bond.
  • the liquid crystal polyester film according to the embodiment of the present invention is also simply referred to as the "film" of the embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of the liquid crystal polyester film 10 of the embodiment.
  • liquid crystal polyester (A) examples include those described as the component (A) above, and detailed description thereof will be omitted here.
  • the liquid crystal polyester (A) in the state of being molded into a film does not have to be soluble in an aprotic solvent due to changes in physical properties through the process of film formation.
  • the above-mentioned change in physical properties is, for example, an increase in the degree of polymerization.
  • the liquid crystal polyester (A) preferably contains a structural unit represented by the following formula (A1), a structural unit represented by the following formula (A2), and a structural unit represented by the following formula (A3).
  • Ar1 represents a 1,4-phenylene group, a 2,6-naphthalenedyl group, or a 4,4'-biphenylene group
  • Ar2 is a 1,4-phenylene group, a 1,3-phenylene group, Or, it represents a 2,6-naphthalenediyl group
  • Ar3 represents a 1,4-phenylene group or a 1,3-phenylene group
  • X represents -NH-
  • Y represents -O- or -NH-. .
  • fluororesin (B) having a melting point of 305 ° C. or lower examples include those described as the component (B) above, and detailed description thereof will be omitted here.
  • the film of the embodiment is the same as the liquid composition of the above-described embodiment, in addition to the component (A) and the component (B), if necessary, other components such as a filler, an antioxidant, and heat stability.
  • Additives such as agents, ultraviolet absorbers, antistatic agents, surfactants, flame retardants, and colorants, and resins that do not correspond to the components (A) and (B) may be included, and a detailed description thereof will be given here. Is omitted.
  • the film of the embodiment preferably contains the above-mentioned component (A), component (B), and inorganic filler (C).
  • the liquid crystal polyester film containing the component (A), the component (B), and the component (C) is unlikely to cause a decrease in the adhesion strength with the copper foil, and has a good balance between the adhesion strength with the copper foil and the dielectric property. It is also excellent in water resistance and has particularly excellent properties.
  • Examples of the inorganic filler (C) include those described as the component (C) described above, and detailed description thereof will be omitted here.
  • the inorganic filler (C) is preferably a silica filler.
  • the content of various components in the film of the embodiment can be the same as the content of various components as the solid content of the liquid composition of the embodiment exemplified above.
  • the film of the embodiment exhibits excellent dielectric properties.
  • the film of the embodiment preferably has a relative permittivity of 3.1 or less, more preferably 3.0 or less, further preferably 2.9 or less, and 2.8 or less at a frequency of 1 GHz. It is particularly preferable to have.
  • the relative permittivity of the film may be 2.3 or more, 2.4 or more, or 2.5 or more.
  • the numerical range of the value of the relative permittivity of the film it may be 2.3 or more and 3.1 or less, 2.4 or more and 3.0 or less, and 2.5 or more. It may be 2.9 or less, and may be 2.5 or more and 2.8 or less.
  • the film of the embodiment has a dielectric loss tangent of 0.005 or less, preferably 0.004 or less, more preferably 0.003 or less, and even more preferably 0.002 or less at a frequency of 1 GHz. , 0.0015 or less is particularly preferable.
  • the dielectric loss tangent of the liquid crystal polyester film may be 0.0003 or more, 0.0005 or more, or 0.0007 or more.
  • the value may be 0.0003 or more and 0.005 or less, 0.0005 or more and 0.004 or less, and 0.0007 or more and 0.
  • the relative permittivity and the dielectric loss tangent of the film at a frequency of 1 GHz can be measured by a capacitive method using an impedance analyzer under the conditions described in Examples.
  • the film of the embodiment can be excellent in isotropic properties.
  • the value of the degree of molecular orientation (MOR) measured by the microwave orientation meter is preferably in the range of 1 to 1.1, more preferably in the range of 1 to 1.08, and 1 It is more preferably in the range of ⁇ 1.06, and particularly preferably in the range of 1 to 1.04.
  • the degree of molecular orientation is measured by a microwave molecular orientation meter (for example, MOA-5012A manufactured by Oji Measuring Instruments Co., Ltd.).
  • the microwave molecular orientation meter is a device that utilizes the fact that the transmission intensity of microwaves differs between the orientation direction and the direction perpendicular to the orientation of the molecule. Specifically, while rotating the sample, the sample is irradiated with a microwave having a constant frequency (12 GHz is used), the intensity of the transmitted microwave that changes depending on the orientation of the molecule is measured, and the maximum / minimum value thereof is measured. Let the ratio be MOR.
  • the interaction between a microwave electric field with a constant frequency and the dipoles that make up the molecule is related to the inner product of the vectors of both. Due to the anisotropy of the dielectric constant of the sample, the intensity of the microwave changes depending on the angle at which the sample is placed, so it is possible to know the degree of orientation.
  • the film of the embodiment preferably has a linear expansion coefficient of 85 ppm / ° C. or less, and more preferably 57 ppm / ° C. or less, which is obtained in a temperature range of 50 to 100 ° C. under the condition of a temperature rise rate of 5 ° C./min. It is more preferably 45 ppm / ° C. or lower, and particularly preferably 40 ppm / ° C. or lower.
  • the lower limit of the coefficient of linear expansion is not particularly limited, but is, for example, 0 ppm / ° C. or higher.
  • the linear expansion coefficient of the copper foil is 18 ppm / ° C.
  • the linear expansion coefficient of the film of the embodiment is preferably a value close to that. That is, the coefficient of linear expansion of the film of the embodiment is preferably 0 ppm / ° C. or higher and 57 ppm / ° C. or lower, more preferably 10 ppm / ° C. or higher and 45 ppm / ° C. or lower, and 20 ppm / ° C. or higher and 40 ppm / ° C. or lower. It is more preferable to have. If the coefficient of linear expansion differs depending on the direction or portion of the film, the higher value shall be adopted as the coefficient of linear expansion of the film.
  • the film of the embodiment satisfying the above numerical range has a low coefficient of linear expansion and high dimensional stability.
  • the film of the embodiment exhibits excellent water resistance.
  • the film of the embodiment preferably has a water absorption rate of 0.8% by mass or less, more preferably 0.5% by mass or less, as measured in accordance with JIS K 7209. , 0.4% by mass or less, more preferably 0.3% by mass or less.
  • the water absorption rate of the film may be 0.05% by mass or more, 0.1% by mass or more, or 0.15% by mass or more.
  • the numerical range of the value of the water absorption rate of the above film it may be 0.05% by mass or more and 0.8% by mass or less, or 0.1% by mass or more and 0.5% by mass or less. It may be 0.15% by mass or more and 0.4% by mass or less, and may be 0.15% by mass or more and 0.3% by mass or less.
  • the thickness of the film of the embodiment is not particularly limited, but the thickness suitable for the film for electronic components is preferably 5 to 50 ⁇ m, more preferably 7 to 40 ⁇ m, and 10 It is more preferably to 33 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the method for producing the film of the embodiment is not particularly limited, and for example, the liquid composition of the embodiment can be obtained by molding into a film. From the viewpoint that a film having excellent isotropic properties can be produced, it is preferable that the film of the embodiment is produced by ⁇ a method for producing a liquid crystal polyester film >> described later.
  • the method for producing a liquid crystal polyester film of the embodiment is to apply the liquid composition of the embodiment on a support and remove the aprotic solvent (S) from the liquid composition to obtain a liquid crystal polyester film. It includes.
  • the production method may correspond to the solution casting method.
  • liquid composition of the embodiment examples include those exemplified in the above ⁇ liquid crystal polyester liquid composition >>.
  • the method for producing a liquid crystal polyester film may include the following steps.
  • the method for producing a liquid crystal polyester film of the embodiment is a step of heat-treating the liquid crystal polyester liquid composition or the precursor of the liquid crystal polyester film from which the aprotic solvent (S) has been removed after the coating step (heat treatment step). ) May be included.
  • the liquid crystal polyester liquid composition of the embodiment is applied onto a support, the aprotonic solvent (S) is removed from the liquid crystal polyester liquid composition, and heat treatment is performed. It may include obtaining a liquid crystal polyester film.
  • the heat treatment the polymerization reaction of the polymer in the liquid crystal polyester liquid composition can be promoted, and further, the volatilization of the aprotic solvent (S) can be promoted.
  • the method for producing the liquid crystal polyester film of the embodiment may include applying the liquid crystal polyester liquid composition of the embodiment on the support and heat-treating the liquid crystal polyester film to obtain the liquid crystal polyester film.
  • the method for producing the liquid crystal polyester film may further include a step (separation step) of separating the support from the laminated body. Since the liquid crystal polyester film can be suitably used as a film for electronic components even when it is formed on the support as a laminated body, the separation step is not an essential step in the manufacturing step of the liquid crystal polyester film.
  • FIG. 3 is a schematic diagram showing an example of a manufacturing process of the liquid crystal polyester film and the laminate of the embodiment.
  • the liquid crystal polyester liquid composition 30 is applied onto the support 12 (FIG. 3A coating step).
  • the liquid composition can be applied onto the support by a roller coating method, a dip coating method, a spray coating method, a spinner coating method, a curtain coating method, a slot coating method, a screen printing method, or the like.
  • a method that can be applied smoothly and evenly on the body can be appropriately selected.
  • an operation of stirring the liquid composition may be performed before coating.
  • the viscosity of the liquid crystal polyester liquid composition 30 is not particularly limited, but the viscosity measured by a B-type viscometer at 23 ° C. is 200 mPa ⁇ s or more and 2000 mPa ⁇ s or less from the viewpoint of simplifying the coating work and shortening the drying time. It is preferably 250 mPa ⁇ s or more and 1500 mPa ⁇ s or less, and more preferably 300 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • Examples of the support 12 include a glass plate, a resin film, and a metal foil.
  • a resin film or a metal foil is preferable, and a copper foil is particularly preferable because it has excellent heat resistance, is easy to apply a liquid composition, and is easy to remove from a liquid crystal polyester film.
  • Examples of commercially available polyimide (PI) films include "U-Pylex S” and “U-Pylex R” from Ube Industries, Ltd., “Kapton” from Toray DuPont Co., Ltd., and “SKC Koron PI". "IF30", “IF70” and “LV300” are mentioned.
  • the thickness of the resin film is usually 25 ⁇ m or more and 75 ⁇ m or less, preferably 50 ⁇ m or more and 75 ⁇ m or less.
  • the thickness of the metal foil is usually 3 ⁇ m or more and 75 ⁇ m or less, preferably 5 ⁇ m or more and 30 ⁇ m or less, and more preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the aprotic solvent is removed from the liquid crystal polyester liquid composition 30 applied on the support 12 (FIG. 3B drying step).
  • the liquid composition from which the aprotic solvent has been removed becomes the liquid crystal polyester film precursor 40 to be heat-treated.
  • the aprotic solvent does not need to be completely removed from the liquid composition, and a part of the aprotic solvent contained in the liquid composition may be removed, and the entire aprotic solvent is removed. May be good.
  • the ratio of the aprotic solvent contained in the liquid crystal polyester film precursor 40 is preferably 50% by mass or less, and preferably 3% by mass or more and 12% by mass or less, based on the total mass of the liquid crystal polyester film precursor. It is more preferably 5% by mass or more and 10% by mass or less.
  • the content of the aprotic solvent in the liquid crystal polyester film precursor is at least the above lower limit value, the possibility that the thermal conductivity of the liquid crystal polyester film is lowered is reduced. Further, when the content of the aprotic solvent in the liquid crystal polyester film precursor is not more than the above upper limit value, the possibility that the appearance of the liquid crystal polyester film is deteriorated due to foaming or the like during heat treatment is reduced.
  • the removal of the aprotic solvent is preferably performed by evaporating the aprotic solvent, and examples thereof include heating, depressurization and ventilation, and these may be combined. Further, the removal of the aprotic solvent may be carried out by a continuous method or a single-wafer method. From the viewpoint of productivity and operability, the removal of the aprotic solvent is preferably performed by heating in a continuous manner, and more preferably by heating while ventilating in a continuous manner.
  • the removal temperature of the aprotic solvent is preferably a temperature lower than the melting point of the liquid crystal polyester (A) and the fluororesin (B), for example, 40 ° C. or higher and 200 ° C. or lower.
  • the time for removing the aprotic solvent is appropriately adjusted so that the aprotic solvent content in the liquid crystal polyester film precursor is, for example, 3 to 12% by mass.
  • the time for removing the aprotic solvent is, for example, 0.2 hours or more and 12 hours or less, preferably 0.5 hours or more and 8 hours or less.
  • the laminate precursor 22 having the support 12 and the liquid crystal polyester film precursor 40 thus obtained is heat-treated to obtain the support 12 and the liquid crystal polyester film 10 (a film obtained by heat-treating the liquid crystal polyester film precursor 40). (FIG. 3C heat treatment step). At this time, the liquid crystal polyester film 10 formed on the support is obtained.
  • the heat treatment conditions include raising the temperature from ⁇ 50 ° C., which is the boiling point of the medium, until the heat treatment temperature is reached, and then heat-treating at a temperature equal to or higher than the melting points of the liquid crystal polyester (A) and the fluororesin (B).
  • the heat treatment may be carried out continuously or in a single-wafered manner, but from the viewpoint of productivity and operability, the heat treatment is preferably carried out in a continuous manner and is aprotic. It is more preferable to carry out the removal of the solvent in a continuous manner.
  • the liquid crystal polyester film 10 can be obtained as a single-layer film by separating the liquid crystal polyester film 10 from the laminate 20 having the support 12 and the liquid crystal polyester film 10 (FIG. 3D separation step).
  • the liquid crystal polyester film 10 may be separated from the laminate 20 by peeling the liquid crystal polyester film 10 from the laminate 20.
  • a resin film is used as the support 12, it is preferable to peel off the resin film or the liquid crystal polyester film 10 from the laminate 20.
  • a metal foil is used as the support 12, it is preferable to separate the metal foil from the laminate 20 by etching and removing the metal foil.
  • the laminate 20 may be used as a metal-clad laminate for a printed wiring board without separating the liquid crystal polyester film from the laminate 20.
  • the laminate of the embodiment includes a metal layer and a liquid crystal polyester film of the embodiment laminated on the metal layer.
  • FIG. 2 is a schematic view showing the configuration of the laminated body 21 according to the embodiment of the present invention.
  • the laminate 21 includes a metal layer 13 and a liquid crystal polyester film 10 laminated on the metal layer 13.
  • Examples of the liquid crystal polyester film 10 included in the laminate include those exemplified above, and the description thereof will be omitted.
  • Examples of the metal layer included in the laminate include those exemplified as a support in ⁇ Method for manufacturing a liquid crystal polyester film >> described later and ⁇ Method for manufacturing a laminate >> described later, and a metal foil is preferable. Copper is preferable as the metal constituting the metal layer from the viewpoint of conductivity and cost, and copper foil is preferable as the metal foil.
  • the thickness of the laminate of the embodiment is not particularly limited, but is preferably 5 to 130 ⁇ m, more preferably 10 to 70 ⁇ m, and even more preferably 15 to 60 ⁇ m.
  • the method for manufacturing the laminated body of the embodiment is not particularly limited, but the laminated body of the embodiment can be manufactured by the ⁇ manufacturing method of the laminated body >> described later.
  • a laminate comprising a metal layer and a liquid crystal polyester film formed by applying the liquid composition of the embodiment on the metal layer.
  • the laminate of the embodiment can be suitably used for a film application for electronic parts such as a printed wiring board.
  • the liquid crystal polyester liquid composition of the embodiment is applied onto the support, the aprotonic solvent (S) is removed from the liquid crystal polyester liquid composition, and the liquid crystal is formed on the support.
  • the present invention includes obtaining a laminate including the support and the film.
  • the method for producing the laminated body of the embodiment may include the following steps.
  • the method for producing a laminate of the embodiment is a liquid crystal polyester film precursor from which the liquid crystal polyester liquid composition or the aprotonic solvent (S) has been removed after the coating step.
  • a step of heat-treating the body (heat treatment step) may be included.
  • the method for producing the laminate of the embodiment is to apply the liquid crystal polyester liquid composition of the embodiment on the support, remove the aprotonic solvent (S) from the liquid crystal polyester liquid composition, heat-treat it, and support it.
  • a liquid crystal polyester film on the body it may include obtaining a laminated body including the support and the film.
  • the heat treatment the polymerization reaction of the polymer in the liquid composition can be promoted, and further, the volatilization of the aprotic solvent (S) can be promoted.
  • the heat treatment can also serve as the above-mentioned drying step. Therefore, in the method for producing a laminated body of the embodiment, the liquid crystal polyester liquid composition of the embodiment is applied onto the support and heat-treated to form a liquid crystal polyester film on the support, thereby forming the liquid crystal polyester film on the support. It may include obtaining a laminate including the film.
  • FIG. 3 is a schematic diagram showing an example of the manufacturing process of the liquid crystal polyester film and the laminate of the embodiment.
  • the method for producing the laminated body exemplified in FIG. 3 is the same as that described in the above-mentioned method for producing a liquid crystal polyester film except that the above-mentioned separation step (FIG. 3D) is not performed, and thus the description thereof will be omitted.
  • the method for manufacturing a laminate of the embodiment it is possible to manufacture the laminate having the liquid crystal polyester film of the embodiment.
  • the liquid crystal polyester (A) contains a structural unit represented by the following formula (A1), a structural unit represented by the following formula (A2), and a structural unit represented by the following formula (A3), and is a liquid crystal polyester liquid composition.
  • Ar1 represents a 1,4-phenylene group, a 2,6-naphthalenedyl group, or a 4,4'-biphenylene group
  • Ar2 is a 1,4-phenylene group, a 1,3-phenylene group, Or, it represents a 2,6-naphthalenediyl group
  • Ar3 represents a 1,4-phenylene group or a 1,3-phenylene group
  • X represents -NH-
  • Y represents -O- or -NH-.
  • the Ar1 is a 2,6-naphthalenedyl group
  • the Ar2 is a 1,3-phenylene group
  • the Ar3 is a 1,4-phenylene group
  • the Y is —O—.
  • the liquid crystal polyester liquid composition contains the liquid crystal polyester (A) and the fluororesin (B) as solids.
  • the content ratio of the liquid crystal polyester (A) is 10% by mass or more and 90% by mass or less, and the content ratio of the fluororesin (B) is 10 with respect to the total content of the solid content of the liquid crystal polyester liquid composition.
  • liquid crystal polyester according to ⁇ 5> wherein the volume average particle size of the silica filler is any one of 0.1 ⁇ m or more and 10 ⁇ m or less, 0.2 ⁇ m or more and 5 ⁇ m or less, and 0.3 ⁇ m or more and 1 ⁇ m or less.
  • Liquid composition. ⁇ 7> The content ratio of the liquid crystal polyester (A) is 25% by mass or more and 40% by mass or less, and the content ratio of the fluororesin (B) is 25 with respect to the total content of the solid content of the liquid crystal polyester liquid composition.
  • the fluorine crystallite size of the resin (B) is, 2.0 ⁇ 10 at -8 m or 2.9 ⁇ 10 -8 m or less, 2.1 ⁇ 10 -8 m or 2.7 ⁇ 10 - 8 m or less, and is either 2.2 ⁇ 10 -8 m or 2.5 ⁇ 10 -8 m or less, the ⁇ 1> to the liquid crystal polyester liquid composition according to any one of ⁇ 7> ..
  • the fluororesin (B) is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (perfluoroalkoxyalkane, PFA), polytetrafluoroethylene (PTFE), or tetrafluoroethylene-hexafluoropropylene copolymer (. FEP), polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, and at least one fluororesin selected from the group consisting of polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the volume average particle size of the fluororesin (B) is any one of 0.1 ⁇ m or more and 30 ⁇ m or less, 0.5 ⁇ m or more and 10 ⁇ m or less, and 1 ⁇ m or more and 5 ⁇ m or less.
  • the liquid crystal polyester liquid composition according to any one. ⁇ 11> The liquid crystal polyester liquid composition according to any one of ⁇ 1> to ⁇ 10>, wherein the aprotic solvent (S) is N-methylpyrrolidone.
  • a liquid crystal polyester (A) and a fluororesin (B) having a melting point of 305 ° C. or lower are contained.
  • the liquid crystal polyester (A) contains a structural unit represented by the following formula (A1), a structural unit represented by the following formula (A2), and a structural unit represented by the following formula (A3).
  • Ar1 represents a 1,4-phenylene group, a 2,6-naphthalenedyl group, or a 4,4'-biphenylene group
  • Ar2 is a 1,4-phenylene group, a 1,3-phenylene group, Or, it represents a 2,6-naphthalenediyl group
  • Ar3 represents a 1,4-phenylene group or a 1,3-phenylene group
  • X represents -NH-
  • Y represents -O- or -NH-.
  • the Ar1 is a 2,6-naphthalenedyl group
  • the Ar2 is a 1,3-phenylene group
  • the Ar3 is a 1,4-phenylene group
  • the Y is —O—.
  • the content ratio of the liquid crystal polyester (A) is 10% by mass or more and 90% by mass or less
  • the content ratio of the fluororesin (B) is 10% by mass or more and 90% with respect to the total content of the liquid crystal polyester film.
  • the content ratio of the liquid crystal polyester (A) is 25% by mass or more and 40% by mass or less, and the content ratio of the fluororesin (B) is 25% by mass or more and 40% with respect to the total content of the liquid crystal polyester film.
  • the inorganic filler (C) is a silica filler.
  • the liquid crystal polyester film according to any one of ⁇ 12> to ⁇ 18>, wherein the fluororesin (B) has a crystallite size of 2.9 ⁇ 10-8 m or less.
  • the fluororesin (B) is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (perfluoroalkoxyalkane, PFA), polytetrafluoroethylene (PTFE), or tetrafluoroethylene-hexafluoropropylene copolymer (.
  • the liquid crystal polyester film according to any one of ⁇ 12> to ⁇ 19>. ⁇ 21> Any of the above ⁇ 12> to ⁇ 20> having a thickness of 5 to 50 ⁇ m, preferably 7 to 40 ⁇ m, more preferably 10 to 33 ⁇ m, still more preferably 15 to 30 ⁇ m.
  • the liquid crystal polyester film described in one.
  • the relative permittivity at a frequency of 1 GHz is 2.3 or more and 3.1 or less, preferably 2.4 or more and 3.0 or less, more preferably 2.5 or more and 2.9 or less, and further.
  • the dielectric positive contact at a frequency of 1 GHz is 0.0003 or more and 0.005 or less, preferably 0.0005 or more and 0.004 or less, more preferably 0.0007 or more and 0.003 or less, still more preferable.
  • the value of the degree of molecular orientation (MOR) measured by the microwave orientation meter is 1 to 1.1, preferably in the range of 1 to 1.08, and more preferably 1 to 1.06.
  • ⁇ 25> The linear expansion coefficient obtained in the temperature range of 50 to 100 ° C. under the condition of a temperature rising rate of 5 ° C./min is 0 ppm / ° C.
  • the liquid crystal polyester film according to any one of ⁇ 12> to ⁇ 24>, which is more preferably 20 ppm / ° C. or higher and 40 ppm / ° C. or lower.
  • the water absorption rate measured in accordance with JIS K 7209 is 0.05% by mass or more and 0.8% by mass or less, preferably 0.1% by mass or more and 0.5% by mass or less, and more.
  • ⁇ 27> A laminate comprising a metal layer and the liquid crystal polyester film according to any one of ⁇ 12> to ⁇ 26> laminated on the metal layer.
  • ⁇ 28> A laminate comprising a metal layer and a liquid crystal polyester film formed by applying the liquid crystal polyester liquid composition according to any one of ⁇ 1> to ⁇ 11> on the metal layer.
  • the thickness of the liquid crystal polyester film is 5 to 50 ⁇ m, preferably 7 to 40 ⁇ m, more preferably 10 to 33 ⁇ m, still more preferably 15 to 30 ⁇ m, according to ⁇ 28>.
  • Laminated body. ⁇ 30> A single-sided copper-clad plate of a liquid crystal polyester film measured by peeling the copper foil in a direction of 90 ° with respect to the liquid crystal polyester film at a peeling speed of 50 mm / min.
  • the peel strength (90 ° peel strength) is 6.5 N / cm or more and 10.0 N / cm or less, preferably 7.5 N / cm or more and 9.8 N / cm or less, and more preferably 7.9 N / cm or more and 9.0 N.
  • the relative permittivity of the liquid crystal polyester film at a frequency of 1 GHz is 2.3 or more and 3.1 or less, preferably 2.4 or more and 3.0 or less, and more preferably 2.5 or more and 2.9.
  • the dielectric adjacency of the liquid crystal polyester film at a frequency of 1 GHz is 0.0003 or more and 0.005 or less, preferably 0.0005 or more and 0.004 or less, and more preferably 0.0007 or more and 0.003 or less.
  • the value of the degree of molecular orientation (MOR) measured by the microwave orientation meter of the liquid crystal polyester film is 1 to 1.1, preferably 1 to 1.08, and more preferably 1 to 1.
  • the laminate according to any one of ⁇ 28> to ⁇ 32> which is 0.6, more preferably 1 to 1.04.
  • ⁇ 34> The linear expansion coefficient obtained in the temperature range of 50 to 100 ° C. under the condition of a temperature rise rate of 5 ° C./min of the liquid crystal polyester film is 0 ppm / ° C. or higher and 57 ppm / ° C. or lower, preferably 10 ppm / ° C. or higher.
  • the laminate according to any one of ⁇ 28> to ⁇ 33> which is 45 ppm / ° C. or lower, more preferably 20 ppm / ° C. or higher and 40 ppm / ° C. or lower.
  • the water absorption of the liquid crystal polyester film measured in accordance with JIS K 7209 is 0.05% by mass or more and 0.8% by mass or less, preferably 0.1% by mass or more and 0.5% by mass. % Or less, more preferably 0.15% by mass or more and 0.4% by mass or less, still more preferably 0.15% by mass or more and 0.3% by mass or less.
  • liquid crystal polyester liquid composition according to any one of ⁇ 1> to ⁇ 11> is applied onto the support, and the aprotonic solvent (S) is removed from the liquid crystal polyester liquid composition.
  • a method for producing a liquid crystal polyester film which comprises obtaining a liquid crystal polyester film by heat treatment.
  • the crystallite size was measured by X-ray diffraction as follows.
  • D K ⁇ ⁇ / ⁇ cos ⁇ ⁇ ⁇ ⁇ (2)
  • D is the crystallite size
  • is the measured X-ray wavelength
  • is the full width at half maximum (radian)
  • is the diffraction angle
  • K is the Scherrer constant (0.94).
  • Capacitance method (Device: Impedance analyzer (Agilent model: E4991A)) -Electrode model: 16453A ⁇ Measurement environment: 23 ° C, 50% RH ⁇ Applied voltage: 1V
  • the liquid crystal polyester (A1) is heated from room temperature to 160 ° C. over 2 hours and 20 minutes under a nitrogen atmosphere, then heated from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and held at 180 ° C. for 5 hours. Thereby, after solid-phase polymerization, the mixture was cooled, and then pulverized with a pulverizer to obtain a powdery liquid crystal polyester (A2).
  • the flow start temperature of this liquid crystal polyester (A2) was 220 ° C.
  • the temperature of the liquid crystal polyester (A2) is raised from room temperature to 180 ° C. for 1 hour and 25 minutes under a nitrogen atmosphere, then the temperature is raised from 180 ° C. to 255 ° C. for 6 hours and 40 minutes, and the temperature is maintained at 255 ° C. for 5 hours. After solid-phase polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester (A).
  • the flow start temperature of the liquid crystal polyester (A) was 302 ° C.
  • liquid crystal polyester solution 8 parts by mass of the liquid crystal polyester (A) is added to 92 parts by mass of N-methylpyrrolidone (boiling point (1 atm) 204 ° C.), and the mixture is stirred at 140 ° C. for 4 hours under a nitrogen atmosphere to prepare a liquid crystal polyester solution (A). bottom.
  • the viscosity of this liquid crystal polyester solution was 955 mPa ⁇ s.
  • Comparative Examples 2 to 4 Silica (SO-C2 manufactured by Admatex, average particle size described in the catalog: 0.5 ⁇ m) was added to the liquid crystal polyester solution obtained above so as to have the blending amount (solid content) shown in Table 2, and a stirring defoaming device (stirring defoaming device) ( The liquid compositions of Comparative Examples 2 to 4 were prepared using AR-500) of Shinky Co., Ltd.
  • Example 6 In the liquid crystal polyester solution obtained above, the fluororesin PFA (EA2000 manufactured by AGC, melting point: 300.82 ° C., crystallite size: 2.28 ⁇ 10-8 m) so as to have the blending amount (solid content) shown in Table 3. , Volume average particle size: 2 ⁇ m), and silica (SO-C2 manufactured by Admatex, average particle size described in the catalog: 0.5 ⁇ m) are added, and a stirring defoaming device (AR-500 of Shinky Co., Ltd.) is used.
  • the liquid compositions of Examples 6 to 10 were prepared.
  • Liquid crystal polyester solutions (A) (Comparative Example 1) to which the liquid compositions of Examples 1 to 10, the liquid compositions of Comparative Examples 2 to 10 and fine particles were not added, were mixed with a copper foil (JX Nippon Mining & Metals JXEFL-V2 thickness).
  • a film applicator with a micrometer manufactured by Tester Sangyo
  • an automatic coating device Teester Sangyo Co., Ltd.
  • the solvent was partially removed from the casting film by drying at 40 ° C.
  • Examples 1 to 10 and Comparative Example 1 A film with a copper foil (liquid crystal polyester film single-sided copper-clad plate) provided with a film of each Example or Comparative Example formed from each of the solutions or liquid compositions of 9 to 9 was obtained.
  • the liquid crystal polyester films of Examples 1 to 10 had higher peel strength values and excellent adhesion strength to the copper foil than the liquid crystal polyester films of Comparative Examples 5 to 10. This is because the liquid crystal polyester films of Examples 1 to 10 were formed from a liquid crystal polyester liquid composition containing a fluororesin PFA (EA2000) having a melting point of 305 ° C. or lower, whereas the liquid crystal polyester films of Comparative Examples 5 to 10 were formed. It is considered that the liquid crystal polyester film of No. 1 is formed from a liquid crystal polyester liquid composition containing a fluororesin PFA (9738-JN) having a higher melting point.
  • EA2000 fluororesin PFA
  • the liquid crystal polyester films of Examples 1 to 5 had the same peel strength as the liquid crystal polyester films of Comparative Example 1, but had improved water absorption, relative permittivity, and dielectric properties of dielectric loss tangent. From this, the liquid crystal polyester film formed from the liquid crystal polyester liquid composition containing both the liquid crystal polyester (A) and the fluororesin (B) having a melting point of 305 ° C. or lower has peel strength, water resistance and dielectric properties. It was shown to be well-balanced and have excellent properties.
  • liquid crystal polyester films of Comparative Examples 2 to 4 in which silica was added to the liquid crystal polyester (A) tended to have a good CTE value, but the degree of improvement in the dielectric property value was poor.
  • the liquid crystal polyester films of Examples 6 to 10 tended to suppress the increase in CTE value as compared with the liquid crystal polyester films of Examples 1 to 5. Further, the liquid crystal polyester films of Examples 6 to 10 have a relative permittivity and a dielectric constant while having the same peel strength as those of Examples 1 and 2 and Comparative Examples 2 and 4 in which the CTE value is not so high. The value of the dielectric property of the positive tangent was improved. In addition, the value of water absorption rate was also good. From this, the liquid crystal polyester film formed from the liquid crystal polyester liquid composition containing the liquid crystal polyester (A), the fluororesin (B) having a melting point of 305 ° C. or lower, and further silica has CTE, water resistance, and peel. It was shown that the balance between strength and dielectric properties was good, and that the properties were particularly excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、非プロトン性溶媒に可溶な液晶ポリエステル(A)と、非プロトン性溶媒(S)と、融点が305℃以下のフッ素樹脂(B)と、を含有する、液晶ポリエステル液状組成物に関する。

Description

液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法
 本発明は、液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法に関する。
 本願は、2020年5月21日に、日本に出願された特願2020-088885号に基づき優先権を主張し、その内容をここに援用する。
 電子部品が実装されるプリント回路基板には、絶縁材料が用いられている。近年、通信システムの発達等により、絶縁材料について、更なる誘電特性等の物性改善が望まれている。
 絶縁材料の誘電特性を改善する方法として、誘電特性の良好なフッ素樹脂を用いることが行われている。例えば、特許文献1によれば、カルボニル基含有基を有する含フッ素重合体と、液晶ポリマー等を配合した樹脂組成物を溶融混練した後に成形されたシートは、電気特性、耐衝撃性、機械強度に優れるとされる。
特開2018-177931号公報
 しかし、フッ素樹脂が配合された絶縁材料では、銅箔との密着強度が低下するという問題があった。
 本発明は、上記のような問題点を解消するためになされたものであり、銅箔との密着強度及び誘電特性に優れたフィルムを製造可能とする、液晶ポリエステル液状組成物を提供することを目的とする。
 また、本発明は、銅箔との密着強度及び誘電特性に優れた液晶ポリエステルフィルム、積層体および液晶ポリエステルフィルムの製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく、鋭意検討した結果、非プロトン性溶媒に可溶な液晶ポリエステルを用いることで、等方性に優れるフィルムを製造可能な製膜法を適用できること、更に、当該液晶ポリエステルに、融点が305℃以下のフッ素樹脂を併用することにより、銅箔との密着強度を維持しつつ、誘電特性を向上可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を有する。
[1] 非プロトン性溶媒に可溶な液晶ポリエステル(A)と、非プロトン性溶媒(S)と、融点が305℃以下のフッ素樹脂(B)と、を含有する、液晶ポリエステル液状組成物。
[2] 前記液晶ポリエステル(A)が、アミド結合を含む、前記[1]に記載の液晶ポリエステル液状組成物。
[3] 前記液晶ポリエステル(A)が、下記式(A1)で示される構造単位、下記式(A2)で示される構造単位、及び下記式(A3)で示される構造単位を含む、
 前記[1]又は[2]に記載の液晶ポリエステル液状組成物。
(A1) -O-Ar1-CO-
(A2) -CO-Ar2-CO-
(A3) -X-Ar3-Y-
(式中、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表し、Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表し、Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。)
[4] 前記Ar1が2,6-ナフタレンジイル基であり、前記Ar2が1,3-フェニレン基であり、前記Ar3が1,4-フェニレン基であり、前記Yが-O-である、前記[3]に記載の液晶ポリエステル液状組成物。
[5] 液晶ポリエステル液状組成物の固形分の総含有量に対し、前記液晶ポリエステル(A)の含有割合が10質量%以上90質量%以下であり、前記フッ素樹脂(B)の含有割合が10質量%以上90質量%以下である、前記[1]~[4]のいずれか一つに記載の液晶ポリエステル液状組成物。
[6] さらに、無機フィラー(C)を含有する、前記[1]~[5]のいずれか一つに記載の液晶ポリエステル液状組成物。
[7] 液晶ポリエステル液状組成物の固形分の総含有量に対し、前記液晶ポリエステル(A)の含有割合が25質量%以上40質量%以下であり、前記フッ素樹脂(B)の含有割合が25質量%以上40質量%以下であり、前記無機フィラー(C)の含有割合が20質量%以上50質量%以下である、前記[6]に記載の液晶ポリエステル液状組成物。
[8] 前記無機フィラー(C)がシリカフィラーである、前記[6]又は[7]に記載の液晶ポリエステル液状組成物。
[9] 前記フッ素樹脂(B)の結晶子サイズが、2.9×10-8m以下である、前記[1]~[8]のいずれか一つに記載の液晶ポリエステル液状組成物。
[10] 前記フッ素樹脂(B)が、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(パーフルオロアルコキシアルカン,PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、及びポリフッ化ビニリデン(PVDF)からなる群から選ばれる少なくとも一種のフッ素樹脂である、前記[1]~[9]のいずれか一つに記載の液晶ポリエステル液状組成物。
[11] 前記非プロトン性溶媒(S)100質量部に対して、前記液晶ポリエステル(A)の含有量が、0.01質量部以上100質量部以下である、前記[1]~[10]のいずれか一つに記載の液晶ポリエステル液状組成物。
[12] 前記非プロトン性溶媒(S)が、N-メチルピロリドンである、前記[1]~[11]のいずれか一つに記載の液晶ポリエステル液状組成物。
[13] 液晶ポリエステル(A)と、融点が305℃以下のフッ素樹脂(B)と、を含有し、
 前記液晶ポリエステル(A)が、アミド結合を含む、液晶ポリエステルフィルム。
[14] 前記液晶ポリエステル(A)が、下記式(A1)で示される構造単位、下記式(A2)で示される構造単位、及び下記式(A3)で示される構造単位を含む、
 前記[13]に記載の液晶ポリエステルフィルム。
(A1) -O-Ar1-CO-
(A2) -CO-Ar2-CO-
(A3) -X-Ar3-Y-
(式中、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表し、Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表し、Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。)
[15] 金属層と、前記金属層上に積層された前記[13]又は[14]に記載の液晶ポリエステルフィルムと、を備える積層体。
[16] 金属層と、前記金属層上に前記[1]~[12]のいずれか一つに記載の液晶ポリエステル液状組成物を塗布して形成された液晶ポリエステルフィルムと、を備える積層体。
[17] 支持体上に、前記[1]~[12]のいずれか一つに記載の液晶ポリエステル液状組成物を塗布し、前記液晶ポリエステル液状組成物から前記非プロトン性溶媒(S)を除去し、熱処理して、液晶ポリエステルフィルムを得ることを含む、液晶ポリエステルフィルムの製造方法。
 本発明によれば、銅箔との密着強度及び誘電特性に優れたフィルムを製造可能とする、液晶ポリエステル液状組成物を提供できる。
 また、本発明によれば、銅箔との密着強度及び誘電特性に優れた液晶ポリエステルフィルム、積層体および液晶ポリエステルフィルムの製造方法を提供できる。
本発明の一実施形態の液晶ポリエステルフィルムの構成を示す模式図である。 本発明の一実施形態の積層体の構成を示す模式図である。 本発明の一実施形態の液晶ポリエステルフィルム及び積層体の製造過程を示す模式図である。 本発明の一実施形態の液晶ポリエステルフィルム及び積層体の製造過程を示す模式図である。 本発明の一実施形態の液晶ポリエステルフィルム及び積層体の製造過程を示す模式図である。 本発明の一実施形態の液晶ポリエステルフィルム及び積層体の製造過程を示す模式図である。
 以下、本発明の液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法の実施形態を説明する。
≪液晶ポリエステル液状組成物≫
 実施形態の液晶ポリエステル液状組成物は、非プロトン性溶媒に可溶な液晶ポリエステル(A)と、非プロトン性溶媒(S)と、融点が305℃以下のフッ素樹脂(B)と、を含有するものである。
 本明細書において「液状組成物」とは、常温常圧(25℃、1atm)にて液体である溶液又は分散液を意味する。分散液の場合は、常温常圧(25℃、1atm)にて分散媒が液体である分散液を意味する。分散液は、溶液中に溶解されていない固形分を分散させたものを意味する。本明細書において「固形分」とは、液状組成物に含まれる溶媒以外の成分を指す。分散される固形分としては、上記のフッ素樹脂(B)や、後述の無機フィラー(C)等が挙げられる。溶媒としては、例えば後述の非プロトン性溶媒(S)が該当する。
 実施形態の液状組成物において、液状組成物の総質量に対する、固形分の含有量の割合は特に制限されるものではなく、0.5質量%以上であってもよく、0.5質量%以上80質量%以下であってよく、1質量%以上70質量%以下であってもよく、5質量%以上50質量%以下であってもよい。
 以下、本発明の一実施形態に係る液晶ポリエステル液状組成物を、単に実施形態の「液状組成物」ともいう。
<(A)成分>
 (A)成分は、非プロトン性溶媒(S)に可溶な液晶ポリエステルである。
 (A)成分は、実施形態の液状組成物を金属箔上でフィルムにした場合に、金属箔との密着強度を高め、機械強度を高めることにも寄与する。
 液晶ポリエステルは、溶融状態で液晶性を示す液晶ポリエステルであり、450℃以下の温度で溶融するものであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、原料モノマーとして芳香族化合物に由来する構造単位のみを有する全芳香族液晶ポリエステルであることが好ましい。
 なお、本明細書において「由来」とは、原料モノマーが重合するために、重合に寄与する官能基の化学構造が変化し、その他の構造変化を生じないことを意味する。
 液晶ポリエステルが非プロトン性溶媒(S)に可溶であることは、下記の試験を行うことにより確認できる。
・試験方法
 液晶ポリエステル5質量部を非プロトン性溶媒95質量部中で180℃の温度で、アンカー翼を用いて200rpmの攪拌条件で6時間攪拌した後、室温まで冷却する。次いで、目開き5μmのメンブレンフィルターおよび加圧式のろ過機を用いてろ過をした後、メンブレンフィルター上の残留物を確認する。この時、固形物が確認されない場合を非プロトン性溶媒に可溶と判断する。固形物が確認された場合は非プロトン性溶媒に不溶と判断する。固形物は、顕微鏡観察により確認することができる。
 液晶ポリエステル(A)は、アミド結合を含むことが好ましい。液晶ポリエステル(A)がアミド結合を含むことで、フィルムとして銅箔と積層された際の、銅箔との密着強度を向上させることができる。
 アミド結合を含み、非プロトン性溶媒に可溶な液晶ポリエステル(A)の一例として、下記式(A1)で示される構造単位、下記式(A2)で示される構造単位、及び下記式(A3)で示される構造単位を含むものを例示できる。
 (A1) -O-Ar1-CO-
 (A2) -CO-Ar2-CO-
 (A3) -X-Ar3-Y-
 (式中、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表し、Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表し、Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。)
 本実施形態においては、特に、前記Ar2が1,3-フェニレン基であることが好ましい。Ar2が1,3-フェニレン基であることで、非プロトン性溶媒への溶解がさらに良好なものとなる。これは、Ar2が1,3-フェニレン基であることで、重合体に屈曲構造が導入されることによるものと考えられる。
 本実施形態においては、非プロトン性溶媒への溶解が良好であり、フィルムとして銅箔と積層された際の銅箔との密着強度及び誘電特性が発現されやすいとの観点から、前記Ar1が2,6-ナフタレンジイル基であり、前記Ar2が1,3-フェニレン基であり、前記Ar3が1,4-フェニレン基であり、前記Yが-O-であることが好ましい。
 液晶ポリエステルが、上記式(A1)~(A3)で表される全ての種類の構造単位を有するものであるとき、液晶ポリエステルにおける各構造単位の好ましい含有量の割合を、以下のとおり例示できる。
 上記式(A1)で示される構造単位の含有量は、前記液晶ポリエステル(A)を構成する全構造単位の合計含有量(液晶ポリエステルを構成する各構造単位の質量をその各構造単位の式量で割ることにより、各構造単位の物質量相当量(モル)を求め、それらを合計した値)に対して、30モル%以上80モル%以下であることが好ましく、40モル%以上70モル%以下であることがより好ましく、45モル%以上65モル%以下であることがよりさらに好ましい。
 構造単位(A1)の含有量が上記上限値以下であると溶媒への溶解性が良好となる傾向があり、上記下限値以上であると液晶性が良好となる傾向がある。
 上記式(A2)で示される構造単位の含有量は、前記液晶ポリエステル(A)を構成する全構造単位の合計含有量に対して、10モル%以上35モル%以下であることが好ましく、15モル%以上30モル%以下であることがより好ましく、17.5モル%以上27.5モル%以下であることがよりさらに好ましい。
 構造単位(A2)の含有量が上記上限値以下であると、液晶性が良好となる傾向があり、上記下限値以上であると溶媒への溶解性が良好となる傾向がある。
 上記式(A3)で示される構造単位の含有量は、前記液晶ポリエステル(A)を構成する全構造単位の合計含有量に対して、10モル%以上35モル%以下であることが好ましく、15モル%以上30モル%以下であることがより好ましく、17.5モル%以上27.5モル%以下であることがよりさらに好ましい。
 構造単位(A3)の含有量が上記上限値以下であると、液晶性が良好となる傾向があり、上記下限値以上であると溶媒への溶解性が良好となる傾向がある。
 また、液晶ポリエステル(A)における、構造単位(A2)の含有量と構造単位(A3)の含有量とは、等しいことが好ましいが、含有量が異なる場合は、構造単位(A2)と構造単位(A3)の含有量の差は、10モル%以下が望ましい。この差により、液晶ポリエステルの重合度を制御することもできる。
 液晶ポリエステル(A)における各構造単位の好ましい含有量の割合は、前記液晶ポリエステル(A)を構成する全構造単位の合計含有量に対して、上記式(A1)で示される構造単位の含有量が、30モル%以上80モル%以下であることが好ましく、上記式(A2)で示される構造単位の含有量が、10モル%以上35モル%以下であることが好ましく、上記式(A3)で示される構造単位の含有量が、10モル%以上35モル%以下であることが好ましい。
 液晶ポリエステル(A)における各構造単位の好ましい含有量の割合は、前記液晶ポリエステル(A)を構成する全構造単位の合計含有量に対して、上記式(A1)で示される構造単位の含有量が、40モル%以上70モル%以下であることがより好ましく、上記式(A2)で示される構造単位の含有量が、15モル%以上30モル%以下であることがより好ましく、上記式(A3)で示される構造単位の含有量が、15モル%以上30モル%以下であることがより好ましい。
 液晶ポリエステル(A)における各構造単位の好ましい含有量の割合は、前記液晶ポリエステル(A)を構成する全構造単位の合計含有量に対して、上記式(A1)で示される構造単位の含有量が、45モル%以上65モル%以下であることがさらに好ましく、上記式(A2)で示される構造単位の含有量が、17.5モル%以上27.5モル%以下であることがさらに好ましく、上記式(A3)で示される構造単位の含有量が、17.5モル%以上27.5モル%以下であることがさらに好ましい。
 構造単位(A1)は、例えば芳香族ヒドロキシカルボン酸に由来する構造単位であってよい。構造単位(A2)は、例えば芳香族ジカルボン酸に由来する構造単位であってよい。構造単位(A3)は、例えば、芳香族ジアミン、又はフェノール性水酸基を有する芳香族アミンに由来する構造単位であってよい。(A)成分は、上述した構造単位の代わりに、上述した構造単位のエステルもしくはアミド形成性誘導体を用いてもよい。
 カルボン酸のエステル形成性誘導体としては、例えば、カルボキシ基が、ポリエステルを生成する反応を促進するような、酸塩化物、酸無水物などの反応活性が高い誘導体となっているもの、カルボキシ基が、エステル交換反応によりポリエステルを生成するようなアルコール類やエチレングリコールなどとエステルを形成しているものなどが挙げられる。
 フェノール性水酸基のエステル形成性誘導体としては、例えば、フェノール性水酸基がカルボン酸類とエステルを形成しているものなどが挙げられる。
 アミノ基のアミド形成性誘導体としては、例えばアミノ基がカルボン酸類とアミドを形成しているものなどが挙げられる。
 本実施形態に使用される(A)成分の構造単位としては、下記のものを例示することができるが、これらに限定されるものではない。
 式(A1)で示される構造単位としては、例えば、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-ヒドロキシ-4’-ビフェニルカルボン酸等由来の構造単位などが挙げられ、2種以上の前記構造単位が、全構造単位中に含まれていてもよい。これらの構造単位の中では、6-ヒドロキシ-2-ナフトエ酸由来の構造単位が好ましい。
 式(A2)で示される構造単位としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等由来の構造単位などが挙げられ、2種以上の前記構造単位が、全構造単位中に含まれていてもよい。これらの構造単位の中では、溶媒への溶解性の観点から、イソフタル酸由来の構造単位が好ましい。
 式(A3)で示される構造単位としては、例えば、3-アミノフェノール、4-アミノフェノール、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4-アミノ安息香酸、4’-ヒドロキシアセトアニリド等由来の構造単位などが挙げられ、2種以上の前記構造単位が、全構造単位中に含まれていてもよい。これらの構造単位の中で、反応性の観点から4-アミノフェノール由来又は4’-ヒドロキシアセトアニリド由来の構造単位が好ましい。
 非プロトン性溶媒に可溶な液晶ポリエステルとしては、4’-ヒドロキシアセトアニリドに由来する構造単位を含む液晶ポリエステルであってよい。
 非プロトン性溶媒に可溶な液晶ポリエステルとしては、6-ヒドロキシ-2-ナフトエ酸に由来する構造単位、4’-ヒドロキシアセトアニリドに由来する構造単位、及びイソフタル酸に由来する構造単位からなる液晶ポリエステルであってよい。
 本実施形態で使用される(A)成分の製造方法は、特に限定されないが、例えば、構造単位(A1)に対応する芳香族ヒドロキシ酸、構造単位(A3)に対応するフェノール性水酸基を有する芳香族アミン、芳香族ジアミンのフェノール性水酸基やアミノ基を過剰量の脂肪酸無水物によりアシル化してアシル化物を得、得られたアシル化物と、構造単位(A2)に対応する芳香族ジカルボン酸とをエステル・アミド交換(重縮合)して溶融重合する方法などが挙げられる(特開2002-220444号公報、特開2002-146003号公報参照)。
 アシル化反応においては、脂肪酸無水物の添加量は、フェノール性水酸基とアミノ基の合計に対して、1.0~1.2倍当量であることが好ましく、より好ましくは1.05~1.1倍当量である。脂肪酸無水物の添加量が少なすぎると、エステル交換・アミド交換(重縮合)時にアシル化物や原料モノマーなどが昇華し、反応系が閉塞し易い傾向があり、また、多すぎると、得られる液晶ポリエステルの着色が著しくなる傾向がある。
 アシル化反応は、130~180℃で5分間~10時間反応させることが好ましく、140~160℃で10分間~3時間反応させることがより好ましい。
 アシル化反応に使用される脂肪酸無水物は,特に限定されないが、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水2エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、無水β-ブロモプロピオン酸などが挙げられ、これらは2種類以上を混合して用いてもよい。本実施形態においては、無水酢酸、無水プロピオン酸、無水酪酸、又は無水イソ酪酸が好ましく、より好ましくは、無水酢酸である。
 エステル交換・アミド交換(重縮合)においては、アシル化物のアシル基がカルボキシル基の0.8~1.2倍当量であることが好ましい。
 エステル交換・アミド交換(重縮合)は、400℃まで0.1~50℃/分の割合で昇温しながら行なうことが好ましく、350℃まで0.3~5℃/分の割合で昇温しながら行なうことがより好ましい。
 アシル化物とカルボン酸とをエステル交換・アミド交換(重縮合)させる際、副生する脂肪酸と未反応の脂肪酸無水物は、蒸発させるなどして系外へ留去することが好ましい。
 なお、アシル化反応、エステル交換・アミド交換(重縮合)は、触媒の存在下に行なってもよい。該触媒としては、従来からポリエステルの重合用触媒として公知のものを使用することができ、例えば、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属塩触媒、N,N-ジメチルアミノピリジン、N-メチルイミダゾールなどの有機化合物触媒などを挙げることができる。
 これらの触媒の中で、N,N-ジメチルアミノピリジン、N-メチルイミダゾールなどの窒素原子を2個以上含む複素環状化合物が好ましく使用される(特開2002-146003号公報参照)。
 該触媒は、通常、モノマー類の投入時に投入され、アシル化後も除去することは必ずしも必要ではなく、該触媒を除去しない場合にはそのままエステル交換を行なうことができる。
 エステル交換・アミド交換による重縮合は、通常、溶融重合により行なわれるが、溶融重合と固相重合とを併用してもよい。固相重合は、溶融重合工程からポリマーを抜き出し、その後、粉砕してパウダー状もしくはフレーク状にした後、公知の固相重合方法により行うことが好ましい。具体的には、例えば、窒素などの不活性雰囲気下、20~350℃で、1~30時間固相状態で熱処理する方法などが挙げられる。固相重合は、攪拌しながらでも、攪拌することなく静置した状態で行ってもよい。なお適当な攪拌機構を備えることにより溶融重合槽と固相重合槽とを同一の反応槽とすることもできる。固相重合後、得られた液晶ポリエステルは、公知の方法によりペレット化し、成形してもよい。
 液晶ポリエステルの製造は、例えば、回分装置、連続装置等を用いて行うことができる。
 (A)成分の含有量は、実施形態の液状組成物の固形分の総含有量に対して、10質量%以上90質量%以下であってよく、15質量%以上50質量%以下であってよく、25質量%以上40質量%以下であってよい。
 上記の数値範囲で(A)成分を含有する液状組成物を用いることで、製造される液晶ポリエステルフィルムの、銅箔との密着強度及び誘電特性を容易に向上させることができる。
<(S)成分>
 (S)成分は、非プロトン性溶媒である。非プロトン性溶媒は、腐食性が低く、扱い易いという利点を有する。
 本実施形態において、非プロトン性溶媒とは、非プロトン性化合物を含む溶媒である。 本実施形態においては、該非プロトン性溶媒としては、例えば、1-クロロブタン、クロロベンゼン、1,1-ジクロロエタン、1,2-ジクロロエタン、クロロホルム、1,1,2,2-テトラクロロエタンなどのハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、アセトン、シクロヘキサノンなどのケトン系溶媒、酢酸エチルなどのエステル系溶媒、γ-ブチロラクトンなどのラクトン系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、トリエチルアミン、ピリジンなどのアミン系溶媒、アセトニトリル、サクシノニトリルなどのニトリル系溶媒、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドンなどのアミド系溶媒、ニトロメタン、ニトロベンゼンなどのニトロ系溶媒、ジメチルスルホキシド、スルホランなどのスルフィド系溶媒、ヘキサメチルリン酸アミド、トリn-ブチルリン酸などのリン酸系溶媒などが挙げられ、それらの2種以上の混合物を用いてもよい。
 これらの中で、ハロゲン原子を有しない非プロトン性化合物が環境への影響面から好ましく使用され、双極子モーメントが3以上5以下の溶媒が溶解性の観点から好ましく使用される。具体的には、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドンなどのアミド系溶媒、又はγ-ブチロラクトンなどのラクトン系溶媒がより好ましく使用され、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、又はN-メチルピロリドンがさらに好ましく使用される。
 実施形態の液状組成物において、液状組成物の総質量に対する、(S)成分の含有量の割合は、液状組成の粘度を低下させて支持体への塗工を容易とする観点から、20質量%以上であってもよく、20質量%以上99質量%以下であってよく、50質量%以上95質量%以下であってもよい。
 実施形態の液状組成物においては、前記液晶ポリエステル(A)の含有量は、非プロトン性溶媒(S)100質量部に対して、0.01質量部以上100質量部以下が好ましく、1質量部以上70質量部以下がより好ましく、5質量部以上40質量部以下がさらに好ましい。
 実施形態において、前記液晶ポリエステル(A)の含有量が上記範囲であると、金属箔等の支持体への塗工が容易である。所望のフィルム厚さによって、上記の範囲内で、液晶ポリエステル(A)の含有量を適宜調整することができる。
<(B)成分>
 (B)成分は、融点が305℃以下のフッ素樹脂である。「フッ素樹脂」とは、分子中にフッ素原子を含む樹脂を意味し、フッ素原子を含む構造単位を有するポリマーが挙げられる。
 フッ素樹脂(B)の例としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(パーフルオロアルコキシアルカン,PFA)等が挙げられる。
 フッ素樹脂(B)は、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(パーフルオロアルコキシアルカン,PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、及びポリフッ化ビニリデン(PVDF)からなる群から選ばれる少なくとも一種のフッ素樹脂であることが好ましい。
 前記フッ素樹脂(B)は、融点が305℃以下のパーフルオロアルコキシアルカン(PFA)であることが好ましい。
 実施形態の液状組成物は、フッ素樹脂を2種以上含んでいてもよい。
 フッ素樹脂は、分子中にフッ素原子を含むことにより、フッ素樹脂を含むフィルムの誘電特性を優れたものとできる。
 実施形態に係るフッ素樹脂(B)の融点は、305℃以下であり、303℃以下が好ましく、301℃以下がより好ましい。
 フッ素樹脂(B)の融点が上記上限値以下であることにより、フッ素樹脂(B)を含むフィルムの銅箔との密着強度の特性を優れたものとできる。当該メカニズムついては明らかではないが、フッ素樹脂の融点が低いことは、フッ素樹脂の分子量が低いことを反映していると考えられ、このことにより、銅箔との密着性が高められているものと考えられる。
 実施形態に係るフッ素樹脂(B)の融点の下限値は、耐熱性が求められる用途での実用性を考慮し、280℃以上であってよく、290℃以上であってよく、295℃以上であってよい。
 実施形態に係るフッ素樹脂(B)の融点の上限値及び下限値は、自由に組合せることができる。フッ素樹脂(B)の融点の数値範囲の一例としては、280℃以上305℃以下であってよく、290℃以上303℃以下であってよく、295℃以上301℃以下であってよい。
 フッ素樹脂(B)の融点は、JISK 6935に準拠して、示差走査熱量測定(DSC)の吸熱ピークの値として測定したものとする。
 フッ素樹脂(B)の融点は、フッ素樹脂の原料の選定の他、フッ素樹脂の分子量を制御することによっても調整可能である。フッ素樹脂の分子量は、製造時の重合速度、重合時間等を適宜調整して所望の値とすることができる。
 実施形態に係るフッ素樹脂(B)は、結晶子サイズが、2.9×10-8m以下であることが好ましく、2.7×10-8m以下であることがより好ましく、2.5×10-8m以下であることがさらに好ましい。
 フッ素樹脂(B)の結晶子サイズが上記上限値以下であることにより、フッ素樹脂(B)を含むフィルムの銅箔との密着強度の特性を優れたものとできる。当該メカニズムついては明らかではないが、フッ素樹脂の結晶子サイズが小さいことは、フッ素樹脂の分子量が低いことを反映していると考えられ、このことにより、銅箔との密着性が高められているものと考えられる。
 実施形態に係るフッ素樹脂(B)の結晶子サイズの下限値は、例えば2.0×10-8m以上であってよく、2.1×10-8m以上であってよく、2.2×10-8m以上であってよい。
 実施形態に係るフッ素樹脂(B)の結晶子サイズの上限値及び下限値は、自由に組合せることができる。フッ素樹脂(B)の結晶子サイズの数値範囲の一例としては、2.0×10-8m以上2.9×10-8m以下であってよく、2.1×10-8m以上2.7×10-8m以下であってよく、2.2×10-8m以上2.5×10-8m以下であってよい。
 フッ素樹脂(B)の結晶子サイズは、広角X線散乱(WAXS:Wide Anle X-ray Scattering)測定装置用いて、以下の方法にて実施することができる。
 フッ素樹脂粉末サンプルを、袋状にしたカプトンフィルムで挟み、X線のビームサイズがサンプルの大きさよりも小さくなるように調整する。X線の波長をλ=1.5418Åとし、回折角2θ=5°~30°の範囲で測定を実施する。
 フッ素樹脂粉末サンプルに対し、カプトンフィルムの厚さ方向にX線を入射し、透過X線強度測定とWAXS測定を行い、透過X線強度AとWAXS散乱強度Iを得る。フッ素樹脂粉末を含まないこと以外は同じ条件で透過X線強度測定とWAXS測定を行い、バックグラウンドの透過X線強度AとWAXS散乱強度Iを得る。下記式(1)に基づいて透過X線強度補正とバックグラウンド控除を行い、補正後のWAXS散乱強度Iを得る。
 I=I/A-I/A   (1)
 X線回折による結晶子サイズの測定方法は下記のとおり実施できる。
 フッ素樹脂粉末の結晶子サイズ(Å)は、広角X線回折測定で得られたデバイ環の回折ピーク(回折角2θ=17.93±0.2°の範囲内にピークトップを有する回折ピークとする)における散乱強度の半値幅(β)によって、下記式(2)のScherrerの式より算出できる。
 D=K・λ/βcosθ ・・・(2)
 式中、Dは結晶子サイズであり、λは測定X線波長であり、βは半値幅(ラジアン)であり、θは回折角であり、KはScherrer定数(0.94)である。
 同様の観点から、実施形態に係るフッ素樹脂(B)は、X線回折分析において、回折角2θ=17.93±0.2°にピークトップが存在する当該ピークの半値幅が0.29~0.43であることが好ましく、0.31~0.41であることがより好ましく、0.33~0.39であることがさらに好ましい。
 上記の融点、結晶子サイズ及び半値幅の数値を満たすフッ素樹脂は、市販のものを使用してもよく、例えば、AGC製 EA2000等を用いることができる。
 また、実施形態の液状組成物はフッ素樹脂(B)を含むことで、フィルムとしたときの吸水率を好ましいものとできる。
 実施形態の液状組成物に含まれる前記フッ素樹脂は粉体であってよい。当該フッ素樹脂の体積平均粒径は、0.1μm以上30μm以下であってもよく、0.5μm以上10μm以下であってもよく、1μm以上5μm以下であってもよい。フッ素樹脂の体積平均粒径が上記範囲内であると、フィルムとしたときの表面平滑性に優れることから好ましい。フッ素樹脂の体積平均粒径は、レーザ回折/散乱式粒子径分布測定装置により、水を分散媒として湿式にて測定することができる。
 実施形態の液状組成物に含まれる前記フッ素樹脂の形状は、特に限定されないが、例えば球状、塊状、繊維状、又は鱗片状のものを使用できる。特に、球状や塊状であるものが、液晶ポリエステル液状組成物中での分散性に優れるとの観点で好ましい。
 実施形態の液状組成物に含まれる(A)成分と(B)成分との質量比(固形分)[(A)成分:(B)成分]は、例えば、9:1~1:9であってよく、5:1~1:5であってよく、3:2~2:3であってよい。
 上記の比で(A)成分及び(B)成分を含有する液状組成物を用いることで、製造される液晶ポリエステルフィルムの、銅箔との密着強度、誘電特性及び耐水性を容易に向上させることができる。
 (B)成分の含有量は、液状組成物の固形分の総含有量に対して、10質量%以上90質量%以下であってよく、15質量%以上50質量%以下であってよく、25質量%以上40質量%以下であってよい。
 上記の数値範囲で(B)成分を含有する液状組成物を用いることで、製造される液晶ポリエステルフィルムの、銅箔との密着強度、誘電特性及び耐水性を容易に向上させることができる。
 実施形態の液状組成物は、(A)成分と(B)成分と(S)成分とを含有することができる。かかる組成物における各成分の配合割合の好ましい例としては、液状組成物の固形分の総含有量に対し、前記(A)成分の含有割合が10質量%以上90質量%以下であり、(B)成分の含有割合が10質量%以上90質量%以下であるものを例示できる。なお、これら数値範囲の組み合わせは一例であり、例えば、各成分の含有割合の一例として上記に例示した数値を、自由に組み合わせることができる。
<その他の成分>
 実施形態の液状組成物は、(A)成分、(B)成分、(S)成分の他に、必要に応じてその他の成分、例えば、充填材、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤、着色剤等の添加剤や、(A)成分及び(B)成分に該当しない樹脂等を含んでもよい。
 充填材の例としては、シリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、水酸化アルミニウム、炭酸カルシウム等の無機フィラー(C);及び硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂、架橋アクリル樹脂等の有機フィラーが挙げられる。
 無機フィラー(C)としては、液晶ポリエステルフィルムの誘電正接向上の観点から、シリカフィラーが好ましい。
 シリカフィラーの添加により、誘電正接を向上可能であることは従来知られているが、液晶ポリエステルと併用した場合、銅箔との密着強度が低下するという問題が生じる場合があった。
 しかし、上記の融点が305℃以下のフッ素樹脂(B)を含む液状組成物は、融点が305℃以下のフッ素樹脂(B)とシリカフィラー等の無機フィラー(C)(以下、(C)成分ともいう。)と、が組みわせて配合されることで、(C)成分が配合されていても、銅箔との密着強度の低下がし生じ難く、耐水性にも優れ、銅箔との密着強度及び誘電特性のバランスを極めて良好なものとでき、特に優れた特性を有する液晶ポリエステルフィルムを製造できる。
 上記の充填材は粒状であることが好ましい。充填材の体積平均粒径は、0.1μm以上10μm以下であってもよく、0.2μm以上5μm以下であってもよく、0.3μm以上1μm以下であってもよい。充填材の体積平均粒径が上記範囲内であると、液晶ポリエステル液状組成物中での分散性に優れることから好ましい。充填材の体積平均粒径は、レーザ回折/散乱式粒子径分布測定装置により測定することができる。
 実施形態の液状組成物が無機フィラー(C)を含む場合、その含有量は、液状組成物の固形分の総含有量に対して、5質量%以上70質量%以下であってよく、20質量%以上50質量%以下であってよく、30質量%以上45質量%以下であってよい。
 上記数値範囲内で無機フィラー(C)を含有することで、無機フィラーの特性が良好に発揮される。例えば、上記下限値以上で、例えばシリカフィラーを含有する液状組成物を用いることで、製造される液晶ポリエステルフィルムの誘電特性を向上できる。また、上記上限値以下でシリカフィラーを含有する液状組成物を用いることで、製造される液晶ポリエステルフィルムの銅箔との密着強度を良好なものとできる。
 実施形態の液状組成物は、(A)成分と(B)成分と(S)成分と、さらに(C)成分とを含有することができる。
 かかる組成物における各成分の配合割合の好ましい例としては、液状組成物の固形分の総含有量に対し、前記(A)成分の含有割合が25質量%以上40質量%以下であり、(B)成分の含有割合が25質量%以上40質量%以下であり、前記(C)成分の含有割合が20質量%以上50質量%以下であるものを例示できる。
 かかる組成物における各成分の配合割合のより好ましい例としては、液状組成物の固形分の総含有量に対し、前記(A)成分の含有割合が25質量%以上35質量%以下であり、(B)成分の含有割合が25質量%以上35質量%以下であり、前記(C)成分の含有割合が30質量%以上45質量%以下であるものを例示できる。
 なお、これら数値範囲の組み合わせは一例であり、例えば、各成分の含有割合の一例として上記に例示した数値を、自由に組み合わせることができる。
 (A)成分及び(B)成分に該当しない樹脂の例としては、ポリプロピレン、ポリアミド、液晶ポリエステル以外のポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の液晶ポリエステル以外の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;及びフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられ、その含有量は、液晶ポリエステル100質量部に対して、0であってもよく、好ましくは20質量部以下である。
 実施形態の液晶ポリエステル液状組成物によれば、銅箔との密着強度及び誘電特性に優れたフィルムを製造可能である。
 実施形態の液状組成物が(A)成分を含有することで、特に銅箔との密着強度及び誘電特性に優れたフィルムを製造できる。
 本実施形態の液状組成物によれば、等方性に優れるフィルムを製造可能な製膜法が適用できる。
 従来、液晶ポリエステルフィルムは、液晶ポリエステルを溶融させる溶融成形法又は溶液キャスト法により製造されることが一般的である。
 溶融成形法は、混練物を押出機から押し出すことにより、フィルムを成形する方法である。しかし、溶融成形法により製造されたフィルムは、押出方向に対する横方向よりも、製膜方向に液晶ポリエステル分子が配向してしまい、等方性に優れた液晶ポリエステルを得ることが難しい。
 対して、溶液キャスト法では、押出等の力をかけずに製膜するため、溶融成形法により形成された液晶ポリエステルフィルムよりも、液晶ポリエステルの配向が等方的となる。
 実施形態の液状組成物によれば、液晶ポリエステル(A)が非プロトン性溶媒(S)に可溶であるので、溶液キャスト法を適用することができ、等方性に優れた液晶ポリエステルフィルムを製造可能である。
 実施形態の液状組成物が(B)成分を含有することで、銅箔との密着強度、誘電特性及び耐水性に優れたフィルムを製造できる。
 実施形態の液状組成物が、さらに(C)成分を含有することで、さらに誘電特性及び耐水性に優れたフィルムを製造できる。
 また、液状組成物が(C)成分を含有することで、銅箔との密着強度、誘電特性及び耐水性のバランスが極めて良好な、優れたフィルムを製造できる。
≪液晶ポリエステルフィルム≫
 実施形態の液晶ポリエステルフィルムは、液晶ポリエステル(A)と、融点が305℃以下のフッ素樹脂(B)と、を含有し、前記液晶ポリエステル(A)が、アミド結合を含むものである。
 以下、本発明の一実施形態に係る液晶ポリエステルフィルムを、単に実施形態の「フィルム」ともいう。
 図1は、実施形態の液晶ポリエステルフィルム10の構成を示す模式図である。
 液晶ポリエステル(A)としては、上記の(A)成分として説明したものが挙げられ、ここでの詳細な説明を省略する。なお、フィルムに成形された状態での液晶ポリエステル(A)は、フィルム化の過程を経た物性の変化などにより、非プロトン性溶媒に可溶でなくともよい。上記の物性の変化とは、例えば重合度の上昇である。
 上記の液晶ポリエステル(A)は、下記式(A1)で示される構造単位、下記式(A2)で示される構造単位、及び下記式(A3)で示される構造単位を含むことが好ましい。(A1) -O-Ar1-CO-
(A2) -CO-Ar2-CO-
(A3) -X-Ar3-Y-
(式中、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表し、Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表し、Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。)
 融点が305℃以下のフッ素樹脂(B)としては、上記の(B)成分として説明したものが挙げられ、ここでの詳細な説明を省略する。
 実施形態のフィルムは、上記の実施形態の液状組成物と同様に、(A)成分、(B)成分の他に、必要に応じてその他の成分、例えば、充填材、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤、着色剤等の添加剤や、(A)成分及び(B)成分に該当しない樹脂等を含んでもよく、ここでの詳細な説明を省略する。
 実施形態のフィルムは、上記の(A)成分、(B)成分、及び無機フィラー(C)を含有することが好ましい。
 (A)成分、(B)成分、及び(C)成分を含有する液晶ポリエステルフィルムは、銅箔との密着強度の低下がし生じ難く、銅箔との密着強度及び誘電特性のバランスが良好で、耐水性にも優れるものであり、特に優れた特性を有する。
 無機フィラー(C)としては、上記の(C)成分として説明したものが挙げられ、ここでの詳細な説明を省略する。
 無機フィラー(C)はシリカフィラーであることが好ましい。
 実施形態のフィルムにおける各種成分の含有量は、上記に例示した、実施形態の液状組成物の固形分としての各種成分の含有量と同一とすることができる。
 実施形態のフィルムは、優れた誘電特性を発揮する。
 実施形態のフィルムは、周波数1GHzにおける比誘電率が3.1以下であることが好ましく、3.0以下であることがより好ましく、2.9以下であることがさらに好ましく、2.8以下であることが特に好ましい。また、フィルムの比誘電率は、2.3以上であってもよく、2.4以上であってもよく、2.5以上であってもよい。
 上記のフィルムの上記比誘電率の値の数値範囲の一例としては、2.3以上3.1以下であってもよく、2.4以上3.0以下であってもよく、2.5以上2.9以下であってもよく、2.5以上2.8以下であってもよい。
 実施形態のフィルムは、周波数1GHzにおける誘電正接が0.005以下であり、0.004以下であることが好ましく、0.003以下であることがより好ましく、0.002以下であることがさらに好ましく、0.0015以下であることが特に好ましい。液晶ポリエステルフィルムの誘電正接は、0.0003以上であってもよく、0.0005以上であってもよく、0.0007以上であってもよい。
 上記のフィルムの上記誘電正接の値の数値範囲の一例としては、0.0003以上0.005以下であってもよく、0.0005以上0.004以下であってもよく、0.0007以上0.003以下であってもよく、0.0007以上0.002以下であってもよく、0.0007以上0.0015以下であってもよい。
 なお、フィルムの周波数1GHzにおける比誘電率、及び誘電正接は、インピーダンスアナライザーを用いた容量法にて、実施例に記載の条件で測定することができる。
 実施形態のフィルムは、等方性に優れたものとできる。
 実施形態のフィルムは、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1の範囲であることが好ましく、1~1.08の範囲であることがより好ましく、1~1.06の範囲であることがさらに好ましく、1~1.04の範囲であることが特に好ましい。
 分子配向度(MOR)は、マイクロ波分子配向計(例えば王子計測機器株式会社製、MOA-5012A)により測定される。マイクロ波分子配向計は、分子の配向によって、配向方向と直角方向とでマイクロ波の透過強度が異なることを利用した装置である。具体的には、試料を回転させながら、一定の周波数(12GHzが用いられる)を有するマイクロ波を照射し、分子の配向によって変化する透過マイクロ波の強度を測定し、その最大値/最小値の比をMORとする。一定の周波数を有するマイクロ波電界と、分子を構成する双極子との相互作用は、両者のベクトルの内積に関係する。試料の誘電率の異方性により、試料が配置される角度によってマイクロ波の強度が変化するため、配向度を知ることが可能である。
 実施形態のフィルムは、昇温速度5℃/分の条件で50~100℃の温度範囲において求められた線膨張係数が85ppm/℃以下であることが好ましく、57ppm/℃以下であることがより好ましく、45ppm/℃以下であることがさらに好ましく、40ppm/℃以下であることが特に好ましい。線膨張係数の下限値は特に限定されないが、例えば0ppm/℃以上である。また、例えば銅箔とフィルムとが積層された場合、銅箔の線膨張係数が18ppm/℃であることから、実施形態のフィルムの線膨張係数は、それに近い値であることが好ましい。つまり、実施形態のフィルムの線膨張係数は、0ppm/℃以上57ppm/℃以下であることが好ましく、10ppm/℃以上45ppm/℃以下であることがより好ましく、20ppm/℃以上40ppm/℃以下であることがさらに好ましい。線膨張係数がフィルムの方向や部位により異なる場合は、高いほうの値を、フィルムの線膨張係数として採用するものとする。上記数値範囲を満たす実施形態のフィルムは、低い線膨張係数を有し、寸法安定性が高い。
 実施形態のフィルムは、優れた耐水性を発揮する。
 耐水性の指標として、実施形態のフィルムは、JIS K 7209に準拠して測定された吸水率が、0.8質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.4質量%以下であることがさらに好ましく、0.3質量%以下であることが特に好ましい。また、フィルムの吸水率は、0.05質量%以上であってもよく、0.1質量%以上であってもよく、0.15質量%以上であってもよい。
 上記のフィルムの上記吸水率の値の数値範囲の一例としては0.05質量%以上0.8質量%以下であってもよく、0.1質量%以上0.5質量%以下であってもよく、0.15質量%以上0.4質量%以下であってもよく、0.15質量%以上0.3質量%以下であってもよい。
 実施形態のフィルムの厚さは、特に限定されるものではないが、電子部品用フィルムとして好適な厚さとしては、5~50μmであることが好ましく、7~40μmであることがより好ましく、10~33μmであることがさらに好ましく、15~30μmであることが特に好ましい。
 実施形態のフィルムの製造方法は特に限定されるものではなく、例えば、実施形態の液状組成物をフィルム状に成形して得ることができる。優れた等方性を有するフィルムを製造可能との観点から、実施形態のフィルムは、後述の≪液晶ポリエステルフィルムの製造方法≫により製造されることが好ましい。
≪液晶ポリエステルフィルムの製造方法≫
 実施形態の液晶ポリエステルフィルムの製造方法は、支持体上に、実施形態の液状組成物を塗布し、前記液状組成物から非プロトン性溶媒(S)を除去して、液晶ポリエステルフィルムを得ることを含むものである。
 当該製造方法は、溶液キャスト法に該当するものであってよい。
 実施形態の液状組成物については、上記の≪液晶ポリエステル液状組成物≫で例示したものが挙げられる。
 液晶ポリエステルフィルムの製造方法は、以下の工程を含んでいてもよい。
 支持体上に、実施形態の液晶ポリエステル液状組成物を塗布する工程(塗布工程)。 塗布された液晶ポリエステル液状組成物から非プロトン性溶媒(S)を除去する工程(乾燥工程)。
 実施形態の液晶ポリエステルフィルムの製造方法は、上記塗布工程の後、前記液晶ポリエステル液状組成物、又は非プロトン性溶媒(S)が除去された液晶ポリエステルフィルムの前駆体を、熱処理する工程(熱処理工程)を含んでいてもよい。
 実施形態の液晶ポリエステルフィルムの製造方法は、支持体上に、実施形態の液晶ポリエステル液状組成物を塗布し、前記液晶ポリエステル液状組成物から非プロトン性溶媒(S)を除去し、熱処理して、液晶ポリエステルフィルムを得ることを含むものであってもよい。熱処理によれば、液晶ポリエステル液状組成物中の重合体の重合反応を促進させ、更には、非プロトン性溶媒(S)の揮発を促進させることができる。
 熱処理は、上記の乾燥工程を兼ねることができる。
 そのため、実施形態の液晶ポリエステルフィルムの製造方法は、支持体上に、実施形態の液晶ポリエステル液状組成物を塗布し、熱処理して、液晶ポリエステルフィルムを得ることを含むものであってもよい。
 また、液晶ポリエステルフィルムの製造方法において、更に、前記積層体から支持体を分離する工程(分離工程)を含んでいてもよい。なお、液晶ポリエステルフィルムは、積層体として支持体上に形成されたままでも電子部品用フィルムとして好適に使用可能であるので、分離工程は、液晶ポリエステルフィルムの製造工程において必須の工程ではない。
 以下、図面を参照して、実施形態の液晶ポリエステルフィルムの製造方法の一例を説明する。
 図3は、実施形態の液晶ポリエステルフィルム及び積層体の製造過程の一例を示す模式図である。
 まず、液晶ポリエステル液状組成物30を支持体12上に塗布する(図3A塗布工程)。液状組成物の支持体上への塗布は、ローラーコート法、ディップコート法、スプレイコート法、スピナーコート法、カーテンコート法、スロットコート法、及びスクリーン印刷法等の方法により行うことができ、支持体上に表面平滑かつ均一に塗布できる方法を適宜選択できる。また、液状組成物に配合されてもよい充填材等の分布を均一化させるため、塗布の前に、液状組成物を攪拌する操作を行ってもよい。
 液晶ポリエステル液状組成物30の粘度は、特に限定されないが、塗布作業の簡易化および乾燥時間の短縮化の観点から、23℃におけるB型粘度計で測定した粘度が200mPa・s以上2000mPa・s以下であることが好ましく、250mPa・s以上1500mPa・s以下であることがより好ましく、300mPa・s以上1000mPa・s以下であることがさらに好ましい。
 支持体12としては、例えば、ガラス板、樹脂フィルム又は金属箔が挙げられる。中でも、樹脂フィルム又は金属箔が好ましく、特に、耐熱性に優れ、液状組成物を塗布し易く、また、液晶ポリエステルフィルムから除去し易いことから、銅箔が好ましい。
 ポリイミド(PI)フィルムの市販品の例としては、宇部興産(株)の「U-ピレックスS」及び「U-ピレックスR」、東レデュポン(株)の「カプトン」、並びにSKCコーロンPI社の「IF30」、「IF70」及び「LV300」が挙げられる。
 樹脂フィルムの厚さは、通常25μm以上75μm以下であり、好ましくは50μm以上75μm以下である。
 金属箔の厚さは、通常3μm以上75μm以下であり、好ましくは5μm以上30μm以下であり、より好ましくは10μm以上25μm以下ある。
 次に、支持体12上に塗布された液晶ポリエステル液状組成物30から非プロトン性溶媒を除去する(図3B乾燥工程)。非プロトン性溶媒が除去された液状組成物は、熱処理の対象である液晶ポリエステルフィルム前駆体40となる。なお、非プロトン性溶媒は液状組成物から完全に除去される必要はなく、液状組成物に含まれる非プロトン性溶媒の一部が除去されてもよく、非プロトン性溶媒の全部が除去されていもよい。液晶ポリエステルフィルム前駆体40に含まれる非プロトン性溶媒の割合は、液晶ポリエステルフィルム前駆体の総質量に対し、50質量%以下であることが好ましく、3質量%以上12質量%以下であることがより好ましく、5質量%以上10質量%以下であることがさらに好ましい。液晶ポリエステルフィルム前駆体中の非プロトン性溶媒の含有量が上記下限値以上であることにより、液晶ポリエステルフィルムの熱伝導性が低下する恐れが低減される。また液晶ポリエステルフィルム前駆体中の非プロトン性溶媒の含有量が上記上限値以下であることにより、熱処理時の発泡等により液晶ポリエステルフィルムの外観が低下する恐れが低減される。
 非プロトン性溶媒の除去は、非プロトン性溶媒を蒸発させることにより行うことが好ましく、その方法としては、例えば、加熱、減圧及び通風が挙げられ、これらを組み合わせてもよい。また、非プロトン性溶媒の除去は、連続式で行ってもよいし、枚葉式で行ってもよい。生産性や操作性の点から、非プロトン性溶媒の除去は、連続式で加熱することにより行うことが好ましく、連続式で通風しながら加熱することにより行うことがより好ましい。非プロトン性溶媒の除去温度は、液晶ポリエステル(A)及びフッ素樹脂(B)の融点未満の温度が好ましく、例えば40℃以上200℃以下である。非プロトン性溶媒除去の時間は、例えば、液晶ポリエステルフィルム前駆体中の非プロトン性溶媒含有量が3~12質量%になるように、適宜調整される。非プロトン性溶媒除去の時間は、例えば0.2時間以上12時間以下であり、好ましくは0.5時間以上8時間以下である。
 こうして得られる支持体12と液晶ポリエステルフィルム前駆体40とを有する積層体前駆体22を、熱処理して、支持体12と液晶ポリエステルフィルム10(液晶ポリエステルフィルム前駆体40が熱処理されてなるフィルム)とを有する積層体20を得る(図3C熱処理工程)。このとき、支持体上に形成された、液晶ポリエステルフィルム10が得られる。
 熱処理条件は、例えば、媒体の沸点の-50℃から熱処理温度に達するまで昇温した後、液晶ポリエステル(A)及びフッ素樹脂(B)の融点以上の温度で熱処理することが挙げられる。
 熱処理は、非プロトン性溶媒の除去同様、連続式で行ってもよいし、枚葉式で行ってもよいが、生産性や操作性の点から、連続式で行うことが好ましく、非プロトン性溶媒の除去に続けて連続式で行うことがより好ましい。
 次いで、支持体12と液晶ポリエステルフィルム10とを有する積層体20から、液晶ポリエステルフィルム10を分離することにより、液晶ポリエステルフィルム10を単層フィルムとして得ることができる(図3D分離工程)。積層体20からの液晶ポリエステルフィルム10の分離は、支持体12としてガラス板を用いた場合は、積層体20から液晶ポリエステルフィルム10を剥離することにより行うのがよい。支持体12として樹脂フィルムを用いた場合は、積層体20から樹脂フィルム又は液晶ポリエステルフィルム10を剥離することにより行うのがよい。支持体12として金属箔を用いた場合は、金属箔をエッチングして除去することにより積層体20から分離するのがよい。支持体として樹脂フィルム、特にポリイミドフィルムを用いると、積層体20からポリイミドフィルム又は液晶ポリエステルフィルムが剥離され易く、外観が良好な液晶ポリエステルフィルムが得られる。支持体として金属箔を用いた場合、積層体20から液晶ポリエステルフィルムを分離することなく、積層体20をプリント配線板用の金属張積層板として用いてもよい。
 実施形態の液晶ポリエステルフィルムの製造方法によれば、等方性に優れた液晶ポリエステルフィルムを製造可能である。
≪積層体≫
 実施形態の積層体は、金属層と、前記金属層上に積層された実施形態の液晶ポリエステルフィルムと、を備えるものである。
 図2は、本発明の一実施形態の積層体21の構成を示す模式図である。積層体21は、金属層13と、金属層13上に積層された液晶ポリエステルフィルム10と、を備える。 積層体が備える液晶ポリエステルフィルム10については、上記に例示したものが挙げられ、説明を省略する。
 積層体が備える金属層については、後述の≪液晶ポリエステルフィルムの製造方法≫及び後述の≪積層体の製造方法≫において支持体として例示するものが挙げられ、金属箔が好ましい。金属層を構成する金属としては導電性やコストの観点で銅が好ましく、金属箔としては銅箔が好ましい。
 実施形態の積層体の厚さは、特に限定されるものではないが、5~130μmであることが好ましく、10~70μmであることがより好ましく、15~60μmであることがさらに好ましい。
 実施形態の積層体の製造方法は特に限定されるものではないが、実施形態の積層体は、後述の≪積層体の製造方法≫により製造可能である。
 本発明の一実施形態として、金属層と、前記金属層上に実施形態の液状組成物を塗布して形成された液晶ポリエステルフィルムと、を備える積層体を提供できる。
 実施形態の積層体は、プリント配線板などの電子部品用フィルム用途に好適に使用することができる。
≪積層体の製造方法≫
 実施形態の積層体の製造方法は支持体上に、実施形態の液晶ポリエステル液状組成物を塗布し、前記液晶ポリエステル液状組成物から非プロトン性溶媒(S)を除去して、支持体上に液晶ポリエステルフィルムを形成することにより、前記支持体と前記フィルムとを備える積層体を得ることを含むものである。
 実施形態の積層体の製造方法は以下の工程を含んでいてもよい。
 支持体上に、実施形態の液晶ポリエステル液状組成物を塗布する工程(塗布工程)。 塗布された液晶ポリエステル液状組成物から非プロトン性溶媒(S)を除去する工程(乾燥工程)。
 上述の液晶ポリエステルフィルムの製造方法と同じく、実施形態の積層体の製造方法は、上記塗布工程の後、前記液晶ポリエステル液状組成物、又は非プロトン性溶媒(S)が除去された液晶ポリエステルフィルム前駆体を、熱処理する工程(熱処理工程)を含んでいてもよい。
 実施形態の積層体の製造方法は、支持体上に、実施形態の液晶ポリエステル液状組成物を塗布し、前記液晶ポリエステル液状組成物から非プロトン性溶媒(S)を除去し、熱処理して、支持体上に液晶ポリエステルフィルムを形成することにより、前記支持体と前記フィルムとを備える積層体を得ることを含むものであってもよい。熱処理によれば、液状組成物中の重合体の重合反応を促進させ、更には、非プロトン性溶媒(S)の揮発が促進させることができる。
 熱処理は、上記の乾燥工程を兼ねることができる。
 そのため、実施形態の積層体の製造方法は、支持体上に、実施形態の液晶ポリエステル液状組成物を塗布し、熱処理して、支持体上に液晶ポリエステルフィルムを形成することにより、前記支持体と前記フィルムとを備える積層体を得ることを含むものであってもよい。
 図3は、実施形態の液晶ポリエステルフィルム及び積層体の製造過程の一例を示す模式図である。図3で例示する積層体の製造方法については、上述の分離工程(図3D)を行わないこと以外は、上述の液晶ポリエステルフィルムの製造方法において説明したとおりであるので、説明を省略する。
 実施形態の積層体の製造方法によれば、実施形態の液晶ポリエステルフィルムを有する積層体を製造可能である。
 本発明は以下の側面を有する。
<1> 非プロトン性溶媒に可溶な液晶ポリエステル(A)と、非プロトン性溶媒(S)と、融点が305℃以下、280℃以上305℃以下、290℃以上303℃以下、及び295℃以上301℃以下のいずれかのフッ素樹脂(B)と、を含有し、
 前記液晶ポリエステル(A)が、下記式(A1)で示される構造単位、下記式(A2)で示される構造単位、及び下記式(A3)で示される構造単位を含み、液晶ポリエステル液状組成物。
(A1) -O-Ar1-CO-
(A2) -CO-Ar2-CO-
(A3) -X-Ar3-Y-
(式中、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表し、Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表し、Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。)
<2> 前記Ar1が2,6-ナフタレンジイル基であり、前記Ar2が1,3-フェニレン基であり、前記Ar3が1,4-フェニレン基であり、前記Yが-O-である、前記<1>に記載の液晶ポリエステル液状組成物。
<3>前記液晶ポリエステル液状組成物が、固形分として前記液晶ポリエステル(A)及び前記フッ素樹脂(B)を含み、
 液状組成物の総質量に対する、固形分の含有量の割合が、5質量%以上50質量%以下である、前記<1>又は<2>に記載の液晶ポリエステル液状組成物。
<4> 液晶ポリエステル液状組成物の固形分の総含有量に対し、前記液晶ポリエステル(A)の含有割合が10質量%以上90質量%以下であり、前記フッ素樹脂(B)の含有割合が10質量%以上90質量%以下である、前記<1>~<3>のいずれか一つに記載の液晶ポリエステル液状組成物。
<5> さらに、シリカフィラーを含有する、前記<1>~<4>のいずれか一つに記載の液晶ポリエステル液状組成物。
<6> 前記シリカフィラーの体積平均粒径は、0.1μm以上10μm以下、0.2μm以上5μm以下、及び0.3μm以上1μm以下でのいずれかである、前記<5>に記載の液晶ポリエステル液状組成物。
<7> 液晶ポリエステル液状組成物の固形分の総含有量に対し、前記液晶ポリエステル(A)の含有割合が25質量%以上40質量%以下であり、前記フッ素樹脂(B)の含有割合が25質量%以上40質量%以下であり、前記シリカフィラーの含有割合が20質量%以上50質量%以下である、前記<5>又は<6>に記載の液晶ポリエステル液状組成物。
<8> 前記フッ素樹脂(B)の結晶子サイズが、2.0×10-8m以上2.9×10-8m以下で、2.1×10-8m以上2.7×10-8m以下、及び2.2×10-8m以上2.5×10-8m以下のいずれかである、前記<1>~<7>のいずれか一つに記載の液晶ポリエステル液状組成物。
<9> 前記フッ素樹脂(B)が、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(パーフルオロアルコキシアルカン,PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、及びポリフッ化ビニリデン(PVDF)からなる群から選ばれる少なくとも一種のフッ素樹脂である、前記<1>~<8>のいずれか一つに記載の液晶ポリエステル液状組成物。
<10> 前記フッ素樹脂(B)の体積平均粒径が、0.1μm以上30μm以下、0.5μm以上10μm以下、及び1μm以上5μm以下のいずれかである、前記<1>~<9>のいずれか一つに記載の液晶ポリエステル液状組成物。
<11> 前記非プロトン性溶媒(S)が、N-メチルピロリドンである、前記<1>~<10>のいずれか一つに記載の液晶ポリエステル液状組成物。
<12> 液晶ポリエステル(A)と、融点が305℃以下のフッ素樹脂(B)と、を含有し、
 前記液晶ポリエステル(A)が、アミド結合を含む、液晶ポリエステルフィルム。
<13> 前記液晶ポリエステル(A)が、下記式(A1)で示される構造単位、下記式(A2)で示される構造単位、及び下記式(A3)で示される構造単位を含む、
 前記<12>に記載の液晶ポリエステルフィルム。
(A1) -O-Ar1-CO-
(A2) -CO-Ar2-CO-
(A3) -X-Ar3-Y-
(式中、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表し、Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表し、Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。)
<14> 前記Ar1が2,6-ナフタレンジイル基であり、前記Ar2が1,3-フェニレン基であり、前記Ar3が1,4-フェニレン基であり、前記Yが-O-である、前記<13>に記載の液晶ポリエステルフィルム。
<15> 前記液晶ポリエステルフィルムの総含有量に対し、前記液晶ポリエステル(A)の含有割合が10質量%以上90質量%以下であり、前記フッ素樹脂(B)の含有割合が10質量%以上90質量%以下である、前記<12>~<14>のいずれか一つに記載の液晶ポリエステルフィルム。
<16> さらに、無機フィラー(C)を含有する、前記<12>~<15>のいずれか一つに記載の液晶ポリエステルフィルム。
<17> 前記液晶ポリエステルフィルムの総含有量に対し、前記液晶ポリエステル(A)の含有割合が25質量%以上40質量%以下であり、前記フッ素樹脂(B)の含有割合が25質量%以上40質量%以下であり、前記無機フィラー(C)の含有割合が20質量%以上50質量%以下である、前記<16>に記載の液晶ポリエステルフィルム。
<18> 前記無機フィラー(C)がシリカフィラーである、前記<16>又は<17>に記載の液晶ポリエステルフィルム。
<19> 前記フッ素樹脂(B)の結晶子サイズが、2.9×10-8m以下である、前記<12>~<18>のいずれか一つに記載の液晶ポリエステルフィルム。
<20> 前記フッ素樹脂(B)が、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(パーフルオロアルコキシアルカン,PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、及びポリフッ化ビニリデン(PVDF)からなる群から選ばれる少なくとも一種のフッ素樹脂である、前記<12>~<19>のいずれか一つに記載の液晶ポリエステルフィルム。
<21> 厚さが、5~50μmであり、好ましくは7~40μmであり、より好ましくは10~33μmであり、さらに好ましくは15~30μmである、前記<12>~<20>のいずれか一つに記載の液晶ポリエステルフィルム。
<22> 周波数1GHzにおける比誘電率が、2.3以上3.1以下であり、好ましくは2.4以上3.0以下であり、より好ましくは2.5以上2.9以下であり、さらに好ましくは2.5以上2.8以下である、前記<12>~<21>のいずれか一つに記載の液晶ポリエステルフィルム。
<23> 周波数1GHzにおける誘電正接が、0.0003以上0.005以下であり、好ましくは0.0005以上0.004以下であり、より好ましくは0.0007以上0.003以下であり、さらに好ましくは0.0007以上0.002以下であり、特に好ましくは0.0007以上0.0015以下である、前記<12>~<22>のいずれか一つに記載の液晶ポリエステルフィルム。
<24> マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1であり、好ましくは1~1.08の範囲であり、より好ましくは1~1.06であり、さらに好ましくは1~1.04である、前記<12>~<23>のいずれか一つに記載の液晶ポリエステルフィルム。
<25> 昇温速度5℃/分の条件で50~100℃の温度範囲において求められた線膨張係数が0ppm/℃以上57ppm/℃以下であり、好ましくは10ppm/℃以上45ppm/℃以下であり、より好ましくは20ppm/℃以上40ppm/℃以下である、前記<12>~<24>のいずれか一つに記載の液晶ポリエステルフィルム。
<26> JIS K 7209に準拠して測定された吸水率が、0.05質量%以上0.8質量%以下であり、好ましくは0.1質量%以上0.5質量%以下であり、より好ましくは0.15質量%以上0.4質量%以下であり、さらに好ましくは0.15質量%以上0.3質量%以下である、前記<12>~<25>のいずれか一つに記載の液晶ポリエステルフィルム。
<27> 金属層と、前記金属層上に積層された前記<12>~<26>のいずれか一つに記載の液晶ポリエステルフィルムと、を備える積層体。
<28> 金属層と、前記金属層上に前記<1>~<11>のいずれか一つに記載の液晶ポリエステル液状組成物を塗布して形成された液晶ポリエステルフィルムと、を備える積層体。
<29> 前記液晶ポリエステルフィルムの厚さが、5~50μmであり、好ましくは7~40μmであり、より好ましくは10~33μmであり、さらに好ましくは15~30μmである、前記<28>に記載の積層体。
<30> 前記金属層が銅箔であり、前記液晶ポリエステルフィルムに対して90°の方向に前記銅箔を50mm/分の剥離速度で引き剥がすことにより測定した、液晶ポリエステルフィルム片面銅張板のピール強度(90°ピール強度)が、6.5N/cm以上10.0N/cm以下、好ましくは7.5N/cm以上9.8N/cm以下、より好ましくは7.9N/cm以上9.0N/cm以下である、前記<28>又は<29>に記載の積層体。
<31> 前記液晶ポリエステルフィルムの周波数1GHzにおける比誘電率が、2.3以上3.1以下であり、好ましくは2.4以上3.0以下であり、より好ましくは2.5以上2.9以下であり、さらに好ましくは2.5以上2.8以下である、前記<28>~<30>のいずれか一つに記載の積層体。
<32> 前記液晶ポリエステルフィルムの周波数1GHzにおける誘電正接が、0.0003以上0.005以下であり、好ましくは0.0005以上0.004以下であり、より好ましくは0.0007以上0.003以下であり、さらに好ましくは0.0007以上0.002以下であり、特に好ましくは0.0007以上0.0015以下である、前記<28>~<31>のいずれか一つに記載の積層体。
<33> 前記液晶ポリエステルフィルムのマイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1であり、好ましくは1~1.08の範囲であり、より好ましくは1~1.06であり、さらに好ましくは1~1.04である、前記<28>~<32>のいずれか一つに記載の積層体。
<34> 前記液晶ポリエステルフィルムの昇温速度5℃/分の条件で50~100℃の温度範囲において求められた線膨張係数が0ppm/℃以上57ppm/℃以下であり、好ましくは10ppm/℃以上45ppm/℃以下であり、より好ましくは20ppm/℃以上40ppm/℃以下である、前記<28>~<33>のいずれか一つに記載の積層体。
<35> 前記液晶ポリエステルフィルムの、JIS K 7209に準拠して測定された吸水率が、0.05質量%以上0.8質量%以下であり、好ましくは0.1質量%以上0.5質量%以下であり、より好ましくは0.15質量%以上0.4質量%以下であり、さらに好ましくは0.15質量%以上0.3質量%以下である、前記<28>~<34>のいずれか一つに記載の積層体。
<36> 支持体上に、前記<1>~<11>のいずれか一つに記載の液晶ポリエステル液状組成物を塗布し、前記液晶ポリエステル液状組成物から前記非プロトン性溶媒(S)を除去し、熱処理して、液晶ポリエステルフィルムを得ることを含む、液晶ポリエステルフィルムの製造方法。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<測定方法>
[フッ素樹脂の融点の測定]
 JISK 6935に準拠して、示差走査熱量測定(DSC)の吸熱ピークの値として、フッ素樹脂の融点を測定した。
[フッ素樹脂の結晶子サイズの測定]
 広角X線散乱(WAXS:Wide Anle X-ray Scattering)測定は、Rigaku社製Nano Viewerを用いて実施した。
 フッ素樹脂粉末サンプルを、袋状にしたカプトンフィルムで挟み、X線のビームサイズがサンプルの大きさよりも小さくなるように調整した。X線の波長をλ=1.5418Åとし、回折角2θ=5°~30°の範囲で測定を実施した。
 フッ素樹脂粉末サンプルに対し、カプトンフィルムの厚さ方向にX線を入射し、透過X線強度測定とWAXS測定を行い、透過X線強度AとWAXS散乱強度Iを得た。フッ素樹脂粉末を含まないこと以外は同じ条件で透過X線強度測定とWAXS測定を行い、バックグラウンドの透過X線強度AとWAXS散乱強度Iを得た。下記式(1)に基づいて透過X線強度補正とバックグラウンド控除を行い、補正後のWAXS散乱強度Iを得た。
 I=I/A-I/A   (1)
 X線回折による結晶子サイズの測定を下記のとおり行った。
 フッ素樹脂粉末の結晶子サイズ(Å)は、広角X線回折測定で得られたデバイ環の回折ピーク(回折角2θ=17.93±0.2°の範囲内にピークトップを有する回折ピーク)における散乱強度の半値幅(β)によって、下記式(2)のScherrerの式より算出した。
 D=K・λ/βcosθ ・・・(2)
 式中、Dは結晶子サイズであり、λは測定X線波長であり、βは半値幅(ラジアン)であり、θは回折角であり、KはScherrer定数(0.94)である。
〔液晶ポリエステルの流動開始温度の測定〕
 フローテスター((株)島津製作所の「CFT-500型」)を用いて、液晶ポリエステル約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000P)の粘度を示す温度を測定した。
〔PFA微粒子の体積平均粒径の測定〕
 散乱式粒子径分布測定装置((株)HORIBAの「LA-950V2」)を用い、水を分散媒として湿式にて、PFAの体積平均粒径を測定した。
〔液晶ポリエステル溶液の粘度測定〕
 B型粘度計(東機産業株式会社の「TV-22」)を用いて、下記測定条件により、液晶ポリエステル溶液の溶液粘度を測定した。
 測定条件:温度23℃、ローター回転数20rpm
〔液晶ポリエステルフィルム片面銅張板のピール強度測定〕
 液晶ポリエステルフィルム片面銅張板を幅10mmの短冊状に切り出して3個の試験片を作成し、それぞれの試験片について、液晶ポリエステルフィルムを固定した状態で、オートグラフ((株)島津製作所の「AG-1KNIS」)を用い、液晶ポリエステルフィルムに対して90°の方向に銅箔を50mm/分の剥離速度で引き剥がすことにより、液晶ポリエステルフィルム片面銅張板のピール強度(90°ピール強度)を測定した後、3個の試験片の平均値を算出した。
〔液晶ポリエステルフィルムの線膨張係数測定〕
熱機械分析装置((株)リガク製、型式:TMA8310)を用いて、昇温速度5℃/分で50℃から100℃までの線膨張係数を測定した。
〔液晶ポリエステルフィルムの比誘電率、誘電正接測定〕
 液晶ポリエステルフィルム片面銅張板の銅箔を、第二塩化鉄溶液を使用してエッチング除去した。得られた単層の液晶ポリエステルフィルムについて、フローテスター((株)島津製作所の「CFT-500型」)を用いて350℃で溶融させた後、冷却固化させることにより、直径1cm、厚さ0.5cmの錠剤を作製した。得られた錠剤に対して、下記条件にて1GHzにおける比誘電率、誘電正接を測定した。
・測定方法:容量法(装置:インピーダンスアナライザー(Agilent社製 型式:E4991A))
・電極型式:16453A
・測定環境:23℃、50%RH
・印加電圧:1V
〔液晶ポリエステルフィルムの吸水率測定〕
 JIS K 7209に準拠して、実施例1~10と比較例1の液晶ポリエステルフィルムについて吸水率を測定した。
〔液晶ポリエステル(A)の製造例〕
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、4’-ヒドロキシアセトアニリド377.9g(2.5モル)、イソフタル酸415.3g(2.5モル)及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から140℃まで60分かけて昇温し、140℃で3時間還流させた。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(A1)を得た。この液晶ポリエステル(A1)の流動開始温度は、193.3℃であった。
 液晶ポリエステル(A1)を、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(A2)を得た。この液晶ポリエステル(A2)の流動開始温度は、220℃であった。
 液晶ポリエステル(A2)を窒素雰囲気下、室温から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル(A)を得た。液晶ポリエステル(A)の流動開始温度は、302℃であった。
〔液晶ポリエステル溶液の調製〕
 液晶ポリエステル(A)8質量部を、N-メチルピロリドン(沸点(1気圧)204℃)92質量部に加え、窒素雰囲気下、140℃で4時間攪拌して、液晶ポリエステル溶液(A)を調製した。この液晶ポリエステル溶液の粘度は、955mPa・sであった。
〔液状組成物の調製〕
(実施例1~5)
 上記で得た液晶ポリエステル溶液に、表1に示す配合量(固形分)となるようフッ素樹脂のPFA(AGC製 EA2000、融点:300.82℃、結晶子サイズ:2.28×10-8m、体積平均粒径:2μm)を添加し、攪拌脱泡装置((株)シンキーのAR-500)を用いて、実施例1~5の液状組成物を調製した。
(比較例2~4)
 上記得た液晶ポリエステル溶液に、表2に示す配合量(固形分)となるようシリカ(アドマテックス製 SO-C2、カタログ記載の平均粒径:0.5μm)を添加し、攪拌脱泡装置((株)シンキーのAR-500)を用いて、比較例2~4の液状組成物を調製した。
(実施例6~10)
 上記で得た液晶ポリエステル溶液に、表3に示す配合量(固形分)となるようフッ素樹脂のPFA(AGC製 EA2000、融点:300.82℃、結晶子サイズ:2.28×10-8m、体積平均粒径:2μm)、及びシリカ(アドマテックス製 SO-C2、カタログ記載の平均粒径:0.5μm)を添加し、攪拌脱泡装置((株)シンキーのAR-500)を用いて、実施例6~10の液状組成物を調製した。
(比較例5~10)
 上記で得た液晶ポリエステル溶液に、表4に示す配合量(固形分)となるようフッ素樹脂のPFA(三井ケマーズ製 9738-JN、融点:308.68℃、結晶子サイズ:2.97×10-8m)、及びシリカ(アドマテックス製 SO-C2、カタログ記載の平均粒径:0.5μm)を添加し、攪拌脱泡装置((株)シンキーのAR-500)を用いて、比較例5~10の液状組成物を調製した。PFA(三井ケマーズ製 9738-JN)は、添加前に篩い分けを行い、平均粒径10μmに調製した。
〔液晶ポリエステルフィルムの製造〕
 実施例1~10の液状組成物、比較例2~10の液状組成物および微粒子を添加していない液晶ポリエステル溶液(A)(比較例1)を、銅箔(JX金属製 JXEFL-V2 厚さ12μm)の粗化面に、流延膜の厚さがそれぞれ表1~4に示す厚さになるように、マイクロメーター付フィルムアプリケーター(テスター産業製)と自動塗工装置(テスター産業(株)製、型式:PI-1210)とを用いて流延した後、40℃、常圧(1気圧)にて、4時間乾燥することにより、流延膜から溶媒を部分的に除去した。尚、2回流延する場合は、1回目の流延をし上記乾燥条件で乾燥した後に、さらに2回目の流延および乾燥を実施した。乾燥後の銅箔付きフィルムを、さらに窒素雰囲気下、熱風オーブン中で室温から310℃まで4時間で昇温し、その温度で2時間保持する熱処理を行い、実施例1~10、比較例1~9の各溶液又は液状組成物から形成された各実施例又は比較例のフィルムを備えた、銅箔付きフィルム(液晶ポリエステルフィルム片面銅張板)を得た。この銅箔付きフィルムについて、銅箔との密着強度の指標となるピール強度の測定を行い、この銅箔付きフィルムから銅箔をエッチング除去した単層の液晶ポリエステルフィルムについて、線膨張係数(CTE)、吸水率、比誘電率及び誘電正接の測定を行った。結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~10の液晶ポリエステルフィルムは、比較例5~10の液晶ポリエステルフィルムと比べ、ピール強度の値が高く、銅箔との密着強度に優れるものであった。
 これは、実施例1~10の液晶ポリエステルフィルムは、融点が305℃以下のフッ素樹脂PFA(EA2000)を含有する液晶ポリエステル液状組成物から形成されたものであるのに対し、比較例5~10の液晶ポリエステルフィルムは、より高い融点のフッ素樹脂PFA(9738-JN)を含有する液晶ポリエステル液状組成物から形成されたものであることに起因すると考えられる。
 実施例1~5の液晶ポリエステルフィルムは、比較例1の液晶ポリエステルフィルムに比べ、同等のピール強度を有しつつ、吸水率並びに比誘電率及び誘電正接の誘電特性の値が向上していた。
 このことから、液晶ポリエステル(A)と、融点が305℃以下のフッ素樹脂(B)の両方を含有する液晶ポリエステル液状組成物から形成された液晶ポリエステルフィルムは、ピール強度、耐水性及び誘電特性のバランスが良好であり、優れた特性を有するものであることが示された。
 液晶ポリエステル(A)にシリカが添加された比較例2~4の液晶ポリエステルフィルムは、CTEの値が良好な傾向にあるものの、誘電特性の値の改善の程度は乏しいものであった。
 実施例6~10の液晶ポリエステルフィルムは、実施例1~5の液晶ポリエステルフィルムよりも、CTE値の上昇が、抑制される傾向にあった。また、実施例6~10の液晶ポリエステルフィルムは、CTEの値がそれほど高くない実施例1~2や比較例2~4と比べても、同等のピール強度を有しつつ、比誘電率及び誘電正接の誘電特性の値が向上していた。また、吸水率の値も良好であった。
 このことから、液晶ポリエステル(A)と、融点が305℃以下のフッ素樹脂(B)と、さらにシリカとを含有する液晶ポリエステル液状組成物から形成された液晶ポリエステルフィルムは、CTE、耐水性、ピール強度及び誘電特性のバランスが良好であり、特に優れた特性を有するものであることが示された。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
10…液晶ポリエステルフィルム、12…支持体、13…金属層、20,21…積層体、22…積層体前駆体、30…液晶ポリエステル液状組成物、40…液晶ポリエステルフィルム前駆体

Claims (17)

  1.  非プロトン性溶媒に可溶な液晶ポリエステル(A)と、非プロトン性溶媒(S)と、融点が305℃以下のフッ素樹脂(B)と、を含有する、液晶ポリエステル液状組成物。
  2.  前記液晶ポリエステル(A)が、アミド結合を含む、請求項1に記載の液晶ポリエステル液状組成物。
  3.  前記液晶ポリエステル(A)が、下記式(A1)で示される構造単位、下記式(A2)で示される構造単位、及び下記式(A3)で示される構造単位を含む、
     請求項1又は2に記載の液晶ポリエステル液状組成物。
    (A1) -O-Ar1-CO-
    (A2) -CO-Ar2-CO-
    (A3) -X-Ar3-Y-
    (式中、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表し、Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表し、Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。)
  4.  前記Ar1が2,6-ナフタレンジイル基であり、前記Ar2が1,3-フェニレン基であり、前記Ar3が1,4-フェニレン基であり、前記Yが-O-である、請求項3に記載の液晶ポリエステル液状組成物。
  5.  液晶ポリエステル液状組成物の固形分の総含有量に対し、前記液晶ポリエステル(A)の含有割合が10質量%以上90質量%以下であり、前記フッ素樹脂(B)の含有割合が10質量%以上90質量%以下である、請求項1~4のいずれか一項に記載の液晶ポリエステル液状組成物。
  6.  さらに、無機フィラー(C)を含有する、請求項1~5のいずれか一項に記載の液晶ポリエステル液状組成物。
  7.  液晶ポリエステル液状組成物の固形分の総含有量に対し、前記液晶ポリエステル(A)の含有割合が25質量%以上40質量%以下であり、前記フッ素樹脂(B)の含有割合が25質量%以上40質量%以下であり、前記無機フィラー(C)の含有割合が20質量%以上50質量%以下である、請求項6に記載の液晶ポリエステル液状組成物。
  8.  前記無機フィラー(C)がシリカフィラーである、請求項6又は7に記載の液晶ポリエステル液状組成物。
  9.  前記フッ素樹脂(B)の結晶子サイズが、2.9×10-8m以下である、請求項1~8のいずれか一項に記載の液晶ポリエステル液状組成物。
  10.  前記フッ素樹脂(B)が、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(パーフルオロアルコキシアルカン,PFA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、及びポリフッ化ビニリデン(PVDF)、からなる群から選ばれる少なくとも一種のフッ素樹脂である、請求項1~9のいずれか一項に記載の液晶ポリエステル液状組成物。
  11.  前記非プロトン性溶媒(S)100質量部に対して、前記液晶ポリエステル(A)の含有量が、0.01質量部以上100質量部以下である、請求項1~10のいずれか一項に記載の液晶ポリエステル液状組成物。
  12.  前記非プロトン性溶媒(S)が、N-メチルピロリドンである、請求項1~11のいずれか一項に記載の液晶ポリエステル液状組成物。
  13.  液晶ポリエステル(A)と、融点が305℃以下のフッ素樹脂(B)と、を含有し、
     前記液晶ポリエステル(A)が、アミド結合を含む、液晶ポリエステルフィルム。
  14.  前記液晶ポリエステル(A)が、下記式(A1)で示される構造単位、下記式(A2)で示される構造単位、及び下記式(A3)で示される構造単位を含む、
     請求項13に記載の液晶ポリエステルフィルム。
    (A1) -O-Ar1-CO-
    (A2) -CO-Ar2-CO-
    (A3) -X-Ar3-Y-
    (式中、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表し、Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表し、Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表し、Xは-NH-を表し、Yは、-O-又は-NH-を表す。)
  15.  金属層と、前記金属層上に積層された請求項13又は14に記載の液晶ポリエステルフィルムと、を備える積層体。
  16.  金属層と、前記金属層上に請求項1~12のいずれか一項に記載の液晶ポリエステル液状組成物を塗布して形成された液晶ポリエステルフィルムと、を備える積層体。
  17.  支持体上に、請求項1~12のいずれか一項に記載の液晶ポリエステル液状組成物を塗布し、前記液晶ポリエステル液状組成物から前記非プロトン性溶媒(S)を除去し、熱処理して、液晶ポリエステルフィルムを得ることを含む、液晶ポリエステルフィルムの製造方法。
PCT/JP2021/018762 2020-05-21 2021-05-18 液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法 WO2021235427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227043827A KR20230014717A (ko) 2020-05-21 2021-05-18 액정 폴리에스테르 액상 조성물, 액정 폴리에스테르 필름, 적층체 및 액정 폴리에스테르 필름의 제조 방법
CN202180036498.5A CN115667398A (zh) 2020-05-21 2021-05-18 液晶聚酯液态组合物、液晶聚酯膜、层叠体以及液晶聚酯膜的制造方法
JP2022524486A JPWO2021235427A1 (ja) 2020-05-21 2021-05-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-088885 2020-05-21
JP2020088885 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021235427A1 true WO2021235427A1 (ja) 2021-11-25

Family

ID=78708438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018762 WO2021235427A1 (ja) 2020-05-21 2021-05-18 液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法

Country Status (5)

Country Link
JP (1) JPWO2021235427A1 (ja)
KR (1) KR20230014717A (ja)
CN (1) CN115667398A (ja)
TW (1) TW202212408A (ja)
WO (1) WO2021235427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210471A1 (ja) * 2022-04-28 2023-11-02 富士フイルム株式会社 フィルム及び積層体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278966A (ja) * 1996-04-10 1997-10-28 Du Pont Mitsui Fluorochem Co Ltd 金属基材被覆用組成物
JP2012149127A (ja) * 2011-01-17 2012-08-09 Sumitomo Chemical Co Ltd 液晶ポリエステル含有液状組成物
JP6844755B1 (ja) * 2019-08-27 2021-03-17 東レ株式会社 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159102A1 (ja) * 2015-04-01 2016-10-06 三菱鉛筆株式会社 フッ素系樹脂含有非水系分散体、フッ素系樹脂含有ポリイミド前駆体溶液組成物、それを用いたポリイミド、ポリイミドフィルム、回路基板用接着剤組成物、およびそれらの製造方法
JP7003434B2 (ja) * 2017-04-11 2022-01-20 Agc株式会社 樹脂組成物および成形品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278966A (ja) * 1996-04-10 1997-10-28 Du Pont Mitsui Fluorochem Co Ltd 金属基材被覆用組成物
JP2012149127A (ja) * 2011-01-17 2012-08-09 Sumitomo Chemical Co Ltd 液晶ポリエステル含有液状組成物
JP6844755B1 (ja) * 2019-08-27 2021-03-17 東レ株式会社 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210471A1 (ja) * 2022-04-28 2023-11-02 富士フイルム株式会社 フィルム及び積層体

Also Published As

Publication number Publication date
KR20230014717A (ko) 2023-01-30
JPWO2021235427A1 (ja) 2021-11-25
TW202212408A (zh) 2022-04-01
CN115667398A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
JP6991083B2 (ja) 液晶性ポリエステル液状組成物、液晶ポリエステルフィルムの製造方法及び液晶性ポリエステルフィルム
WO2020166651A1 (ja) 液晶ポリエステル粉末、液晶ポリエステル組成物、フィルムの製造方法、及び積層体の製造方法
CN113396180B (zh) 液晶聚酯粉末、液晶聚酯组合物、膜的制造方法和层叠体的制造方法
KR100976103B1 (ko) 방향족 액정 폴리에스테르 및 그 필름
WO2020166644A1 (ja) フィルム及び積層体
WO2011013831A1 (ja) 液晶ポリエステル組成物およびこれを用いた電子回路基板
JP6844755B1 (ja) 液晶ポリエステル樹脂組成物、積層体、液晶ポリエステル樹脂フィルムおよびその製造方法
WO2021235427A1 (ja) 液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法
CN113710484B (zh) 膜和层叠体
WO2022030494A1 (ja) 液状組成物、液状組成物の製造方法、液晶ポリエステルフィルムの製造方法及び積層体の製造方法
JP6705537B2 (ja) 積層体用液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物、積層体および液晶ポリエステル樹脂フィルム
US20240110020A1 (en) Liquid crystal polyester powder, method for producing powder, composition, method for producing composition, method for producing film, and method for producing laminated body
US20240101904A1 (en) Liquid crystal polyester powder, composition, method for producing composition, method for producing film, and method for producing laminated body
WO2023022081A1 (ja) 液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法
JP2022031116A (ja) 液状組成物、液状組成物の製造方法、液晶ポリエステルフィルムの製造方法及び積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524486

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227043827

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808190

Country of ref document: EP

Kind code of ref document: A1