WO2021232597A1 - 一种近红外热修复柔性导电膜及其制备方法 - Google Patents

一种近红外热修复柔性导电膜及其制备方法 Download PDF

Info

Publication number
WO2021232597A1
WO2021232597A1 PCT/CN2020/106757 CN2020106757W WO2021232597A1 WO 2021232597 A1 WO2021232597 A1 WO 2021232597A1 CN 2020106757 W CN2020106757 W CN 2020106757W WO 2021232597 A1 WO2021232597 A1 WO 2021232597A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
preparation
silver
composite material
thermoplastic polyurethane
Prior art date
Application number
PCT/CN2020/106757
Other languages
English (en)
French (fr)
Inventor
王悦辉
周志敏
赵玉珍
王可
林凯文
张小宾
Original Assignee
电子科技大学中山学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学中山学院 filed Critical 电子科技大学中山学院
Publication of WO2021232597A1 publication Critical patent/WO2021232597A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the invention relates to the technical field of self-healing materials, in particular to a near-infrared thermal repairing flexible conductive film and a preparation method thereof.
  • the purpose of the present invention is to provide a near-infrared thermal repair flexible conductive film and a preparation method thereof.
  • the conductive film prepared by the present invention has high electrical conductivity and thermal conductivity, and has high repair efficiency under the action of near-infrared light, and can achieve rapid multiplication. Repairs.
  • the invention provides a method for preparing a near-infrared thermal repair flexible conductive film, which includes the following steps:
  • the silver nanowire-graphene composite material, thermoplastic polyurethane and N,N-dimethylformamide are mixed, and the resulting mixed slurry is formed into a film, and after drying, a near-infrared thermal repair flexible conductive film is obtained.
  • the temperature of the solvothermal reaction is 150-180°C, and the time is 3-5 hours.
  • the mass content of silver nitrate is 0.5-1.0%
  • the mass ratio of graphene oxide and silver nitrate is (0.03-0.1):1
  • the mass content of polyvinylpyrrolidone is 1.0-1.3%
  • the mass content of ferric chloride is 0.0015 to 0.003%.
  • the mass of the silver nanowire-graphene composite material accounts for 20-40% of the total mass of the silver nanowire-graphene composite material and the thermoplastic polyurethane.
  • the mass of the thermoplastic polyurethane accounts for 20-30% of the total mass of the thermoplastic polyurethane and N,N-dimethylformamide.
  • the film formation method is casting film formation.
  • the drying temperature is 60-75°C, and the time is 12-36 hours.
  • the process of mixing graphene oxide, silver nitrate and ethylene glycol includes: adding graphene oxide to ethylene glycol for ultrasound, and then adding silver nitrate and stirring until it is completely dissolved.
  • the present invention provides a near-infrared thermal repair flexible conductive film prepared by the preparation method described in the above solution, which includes a silver nanowire-graphene composite material and a thermoplastic polyurethane.
  • the mass content of the silver nanowire-graphene composite material is 20-40%, and the balance is thermoplastic polyurethane.
  • the invention provides a method for preparing a near-infrared thermal repair flexible conductive film, which comprises the following steps: mixing graphene oxide, silver nitrate and ethylene glycol to obtain a first mixed liquid; Mixing with ethylene glycol to obtain a second mixed material liquid; mixing the first mixed material liquid and the second mixed material liquid, and subjecting the obtained reaction material liquid to a solvothermal reaction to obtain a silver nanowire-graphene composite material; The silver nanowire-graphene composite material, thermoplastic polyurethane and N,N-dimethylformamide are mixed, the resulting mixed slurry is formed into a film, and after drying, a near-infrared thermal repair flexible conductive film is obtained.
  • graphene oxide, silver nitrate and ethylene glycol are mixed, and silver nitrate ions can be adsorbed on the surface and between layers of graphene oxide sheets to form a graphene oxide/silver ion composite system.
  • the graphene oxide is also reduced to graphene, which is conducive to the adhesion of the silver nanowires to the graphene surface and the insertion into the graphene layer during formation.
  • a silver nanowire-graphene hybrid structure is formed.
  • the silver nanowire-graphene hybrid structure on the one hand avoids the stacking of graphene sheets and improves the dispersibility, thereby helping to improve the conductivity of the film. On the other hand, it compensates for the influence of silver nanowires on the mechanical properties of the conductive film.
  • polyvinylpyrrolidone, ferric chloride and ethylene glycol are mixed to obtain a second mixed material liquid.
  • polyvinylpyrrolidone is used as a surface modifier and has the functions of controlling the growth of silver nanowires and morphology control.
  • ferric chloride acts as an inhibitor.
  • the graphene oxide/silver ion composite system in the reaction material liquid can form a small amount with ferric chloride and polyvinylpyrrolidone
  • the chloride ion present in the reaction feed solution can provide electrostatic stability for the first silver seed crystal, and the chloride ion can combine with the silver ion to form AgCl colloid, which reduces the initial
  • the concentration of free silver ions in the solution reduces the speed at which silver ions are reduced and silver seed crystals grow; this slow reaction process is conducive to the formation of thermodynamically stable multiple twin seed crystals; polyvinylpyrrolidone is preferentially adsorbed on The ⁇ 100 ⁇ crystal plane family of multiple twin seed crystals enables it to grow along the ⁇ 111 ⁇ crystal plane and grow into silver nanowires through anisotropy; as the reaction progresses, the concentration of free silver ions in the solution gradually decreases In order to
  • the formation and growth of seed crystals provide better conditions, which is conducive to obtaining silver nanowires with larger diameters.
  • the graphene oxide is reduced to graphene by ethylene glycol during the solvothermal reaction, and the formed silver nanowires are attached to the surface of the graphene and inserted between the graphene layers to obtain a silver nanowire-graphene with a hybrid structure.
  • Composite materials are used.
  • Fe 3+ can be reduced to Fe 2+ by ethylene glycol, and oxygen can reduce Fe 2+ is re-oxidized to Fe 3+ and circulates in sequence. This process can consume the residual oxygen in the reaction liquid and eliminate its etching effect on the silver seed crystal.
  • the present invention uses thermoplastic polyurethane as a matrix and a silver nanowire-graphene composite material with a hybrid structure as a conductive filler (in which silver nanowires are the main conductive phase and graphene is the auxiliary phase), and the thermoplastic polyurethane system is based on The high-efficiency energy conversion unit and conductive path of silver nanowire-graphene, the flexible conductive film obtained has high conductivity; at the same time, the use of silver nanowire and graphene's absorption characteristics of near-infrared light can not only achieve local heating in small areas The damaged thermoplastic polyurethane material can be repaired, and the repair efficiency of the thermoplastic polyurethane conductive film can be improved, and rapid multiple repairs can be realized.
  • the silver nanowire-graphene composite material absorbs the near-infrared light to heat the thermoplastic polyurethane, and the thermoplastic polyurethane itself absorbs part of the heat.
  • the two work together to promote the melting of the thermoplastic polyurethane.
  • the flow realizes the self-repair of the damaged membrane, which greatly improves the repair efficiency; and during the self-repair process, the silver nanowire-graphene composite material is pulled to reorganize to form a new conductive network, and the final repair will still have high conductivity.
  • graphene helps to improve the mechanical properties of the thermoplastic polyurethane material, so as to ensure that the repaired conductive film still has good mechanical properties.
  • the near-infrared thermal repair flexible conductive film prepared by the present invention has high conductivity, and when microcracks appear on the surface of the conductive film, the microcracks disappear after 5-10 minutes of irradiation under an infrared lamp with a wavelength of 0.76-5 ⁇ m. Achieve a complete repair.
  • the invention provides a method for preparing a near-infrared thermal repair flexible conductive film, which includes the following steps:
  • the silver nanowire-graphene composite material, thermoplastic polyurethane and N,N-dimethylformamide are mixed, the resulting mixed slurry is formed into a film, and after drying, a near-infrared thermal repair flexible conductive film is obtained.
  • the raw materials used are all commercially available products well known in the art.
  • graphene oxide, silver nitrate and ethylene glycol are mixed to obtain the first mixed material liquid.
  • the mixing process is preferably: adding graphene oxide to ethylene glycol for ultrasound, and then adding silver nitrate and stirring until it is completely dissolved.
  • the power of the ultrasound is preferably 300W
  • the time of the ultrasound is preferably 1 hour.
  • the invention uniformly disperses graphene oxide into ethylene glycol through ultrasound.
  • the present invention has no special requirements on the stirring conditions, as long as the silver nitrate can be completely dissolved. Regarding the amount of each raw material, the present invention will be described later.
  • silver nitrate ions can be adsorbed on the surface and between layers of graphene oxide sheets to form a graphene oxide/silver ion composite system.
  • graphene oxide/silver ion when graphene oxide/silver ion When the silver ions in the composite system are reduced to form silver nanowires, graphene oxide is also reduced to graphene, which is conducive to the adhesion of silver nanowires to the surface of graphene and intercalation between graphene layers to form silver nanowires.
  • -Graphene hybrid structure when graphene oxide/silver ion When the silver ions in the composite system are reduced to form silver nanowires, graphene oxide is also reduced to graphene, which is conducive to the adhesion of silver nanowires to the surface of graphene and intercalation between graphene layers to form silver nanowires.
  • polyvinylpyrrolidone, ferric chloride and ethylene glycol are mixed to obtain a second mixed material liquid.
  • the present invention has no special requirements on the stirring conditions, and it is enough to ensure that the substances are completely dissolved.
  • polyvinylpyrrolidone is used as a surface modifier to control the growth and morphology of silver nanowires
  • ethylene glycol is used as a reducing agent and solvent
  • ferric chloride is used as an inhibitor. The dosage will be discussed in detail later.
  • the present invention mixes the first mixed material liquid and the second mixed material liquid to obtain a reaction material liquid.
  • the mass content of silver nitrate is preferably 0.5-1.0%, more preferably 0.6-0.9%; the mass ratio of graphene oxide and silver nitrate is preferably (0.03-0.1):1, more preferably (0.05 ⁇ 0.1):1; the mass content of polyvinylpyrrolidone is preferably 1.0 to 1.3%, more preferably 1.1 to 1.2%; the mass content of ferric chloride is preferably 0.0015 to 0.003%, more preferably 0.002 to 0.0025 %.
  • the masses of ethylene glycol in the first mixed material liquid and the second mixed material liquid are preferably equal.
  • the present invention does not have special requirements for the graphene oxide, and it is sufficient to use industrially general graphene oxide (multilayer graphene oxide).
  • the content of polyvinylpyrrolidone in the reaction feed liquid is controlled within the above range, which is beneficial to better control the growth of silver nanowires.
  • the content of polyvinylpyrrolidone is too high or too low, nano-silver particles or particles are easily formed Hybrid with wire and rod.
  • the graphene oxide/silver ion composite system can form a small amount of silver seed crystals with ferric chloride and polyvinylpyrrolidone.
  • the present invention subjects the reaction material liquid to a solvothermal reaction to obtain a silver nanowire-graphene composite material.
  • the reaction material liquid is placed in a reaction kettle, and then the reaction kettle is placed in a vacuum drying box for solvothermal reaction.
  • the temperature of the solvothermal reaction is preferably 150 to 180°C, more preferably 160 to 170°C; the time of the solvothermal reaction is preferably 3 to 5 hours, more preferably 3.5 to 4.5 hours.
  • the chloride ions present in the reaction feed solution can provide electrostatic stability for the first silver seed crystals.
  • the chloride ions can combine with the silver ions to form AgCl colloids, which reduces the concentration of free silver ions in the initial solution and reduces the silver
  • the speed at which ions are reduced and the silver seed crystal grows; this slow reaction process is conducive to the formation of thermodynamically stable multiple twin seed crystals; polyvinylpyrrolidone preferentially adsorbs on the ⁇ 100 ⁇ crystal plane of the multiple twin seed crystals It can grow along the ⁇ 111 ⁇ crystal plane and grow into silver nanowires through anisotropy; as the reaction progresses, the concentration of free silver ions in the solution gradually decreases, in order to maintain the balance of silver ions and AgCl colloid The silver ions are gradually released from the AgCl colloid and grow into silver nanowires; as the concentration of silver nanowires increases, the free silver ions in the solution are further reduced, providing more opportunities for the formation and growth of multiple twin
  • the graphene oxide is reduced to graphene by ethylene glycol during the solvothermal reaction, and the formed silver nanowires are attached to the surface of the graphene and inserted between the graphene layers to obtain a silver nanowire-graphene with a hybrid structure.
  • Composite materials due to the presence of residual oxygen in the reaction feed liquid, it will have an etching effect on the multiple twin seed crystals and hinder their growth into silver nanowires.
  • Fe 3+ can be reduced to Fe 2+ by ethylene glycol, and oxygen can reduce Fe 2+ is re-oxidized to Fe 3+ and circulates in sequence. This process can consume the residual oxygen in the reaction liquid and eliminate its etching effect on the silver seed crystal.
  • the present invention preferably further includes natural cooling and washing of the reaction system.
  • the washing process is preferably: adding acetone to the product system after natural cooling for two centrifugal washing, and then using ethanol for centrifugal washing twice to obtain a slurry.
  • the present invention uses acetone to wash away the ethylene glycol in the product system.
  • the silver nanowire-graphene composite material of the present invention is present in the slurry.
  • the present invention preferably does not perform drying.
  • the slurry obtained by centrifuging the ethanol is directly subjected to the subsequent steps to prevent agglomeration of the silver nanowire-graphene composite material after drying. .
  • the present invention has no special requirements on the solid content of the slurry, and the ethanol in the slurry will volatilize after the film is formed.
  • the present invention mixes the silver nanowire-graphene composite material, thermoplastic polyurethane and N,N-dimethylformamide to obtain a mixed slurry.
  • the mass of the thermoplastic polyurethane preferably accounts for 20-30% of the total mass of the thermoplastic polyurethane and N,N-dimethylformamide; the mass of the silver nanowire-graphene composite material preferably accounts for the mass of the silver nanowire -20-40% of the total mass of graphene composite material and thermoplastic polyurethane.
  • the thermoplastic polyurethane is preferably added to N,N-dimethylformamide, then the silver nanowire-graphene composite material is added, and the nano-dispersing machine is used for stirring treatment to obtain a mixed slurry.
  • the rotation speed of the nano-dispersing machine is preferably 2000-4000 rpm, more preferably 3000 rpm; the time of the stirring treatment is preferably 0.5-2 hours, more preferably 1 hour.
  • the temperature of the stirring treatment preferably does not exceed 30°C.
  • the nano-dispersing machine is used for mixing in the present invention, and the film-forming state is better.
  • the present invention processes the mixed slurry to form a film, and after drying, a near-infrared thermal repair flexible conductive film is obtained.
  • the method of film formation is preferably cast film formation.
  • it is preferable to cast a film on a polytetrafluoroethylene plate.
  • the present invention does not have special requirements on the thickness of the cast film, and only needs to be controlled according to actual requirements.
  • the drying temperature is preferably 60 to 75°C, and the time is preferably 12 to 36 hours.
  • N,N-dimethylformamide is evaporated to obtain a near-infrared thermal repair flexible conductive film.
  • the present invention provides a near-infrared thermal repair flexible conductive film prepared by the preparation method described in the above solution, which includes a silver nanowire-graphene composite material and a thermoplastic polyurethane.
  • the mass content of the silver nanowire-graphene composite material in the near-infrared thermal repair flexible conductive film is preferably 20-40%, and the balance is thermoplastic polyurethane.
  • the thickness of the near-infrared thermal repair flexible conductive film is preferably 30-800 ⁇ m.
  • the present invention uses thermoplastic polyurethane as a matrix and a silver nanowire-graphene composite material with a hybrid structure as a conductive filler (in which silver nanowires are the main conductive phase and graphene is the auxiliary phase), and the thermoplastic polyurethane system is based on The high-efficiency energy conversion unit and conductive path of silver nanowire-graphene, the flexible conductive film obtained has high conductivity; at the same time, the use of silver nanowire and graphene's absorption characteristics of near-infrared light can not only achieve local heating in small areas The damaged thermoplastic polyurethane material can be repaired, and the repair efficiency of the thermoplastic polyurethane conductive film can be improved, and rapid multiple repairs can be realized.
  • the silver nanowire-graphene composite material absorbs the near-infrared light to heat the thermoplastic polyurethane, and the thermoplastic polyurethane itself absorbs part of the heat.
  • the two work together to promote the melting of the thermoplastic polyurethane.
  • the flow realizes the self-repair of the damaged membrane, which greatly improves the efficiency of repair; and during the self-repair process, the silver nanowire-graphene composite material is pulled to reorganize to form a new conductive network, and the final repair will still have high conductivity.
  • thermoplastic polyurethane Prepare 500 ml of N,N-dimethylformamide solution of thermoplastic polyurethane with a mass concentration of 30%, and then mix the above-mentioned silver nanowire-graphene composite material slurry (containing 45 grams of silver nanowire-graphene composite material , Silver nanowire-graphene composite material in the conductive film with a mass percentage of 30%) is added to the thermoplastic polyurethane solution; the mixed solution is stirred for 1 hour with a nano-disperser, the rotating speed is 3000rpm, and the temperature is controlled not to exceed 30°C; Then, the mixed solution is cast on a polytetrafluoroethylene plate to form a film, and then heat-treated on a heating plate at 70° C. for 12 hours until the mass remains unchanged, to obtain a conductive film.
  • the thickness of the conductive film is about 200 ⁇ m, and the resistivity of the conductive film is 1.2 ⁇ mm.
  • thermoplastic polyurethane Prepare 500 ml of N,N-dimethylformamide solution of thermoplastic polyurethane with a mass concentration of 30%, and then mix the above-mentioned silver nanowire-graphene composite slurry (containing 30 grams of silver nanowire-graphene composite material) , Silver nanowire-graphene composite material in the conductive film with a mass percentage of 20%) is added to the thermoplastic polyurethane solution; the mixed solution is stirred for 1 hour with a nano-disperser, the rotation speed is 3000 rpm, and the temperature is controlled not to exceed 30°C; The mixed solution was cast on a polytetrafluoroethylene plate to form a film, and then heat-treated on a heating plate at 70° C. for 12 hours until the mass remained unchanged, to obtain a conductive film.
  • the thickness of the conductive film is about 200 ⁇ m, and the resistivity of the conductive film is 312.7 ⁇ mm.
  • thermoplastic polyurethane Prepare 500 ml of N,N-dimethylformamide solution of thermoplastic polyurethane with a mass concentration of 30%. Then add the above-mentioned silver nanowire-graphene composite material slurry (containing 60 grams of silver nanowire-graphene composite material, the content of the silver nanowire-graphene composite material in the conductive film is 40% by weight) is added to the thermoplastic Polyurethane solution; stir the mixed solution with a nano-disperser for 1 hour at 3000 rpm and control the temperature not to exceed 30°C; then cast the mixed solution on a polytetrafluoroethylene plate to form a film, and then place it on a heating plate at 70°C Heat treatment for 12 hours until the mass does not change to obtain a conductive film.
  • the thickness of the conductive film is about 200 ⁇ m, and the resistivity of the conductive film is 0.07 ⁇ mm.
  • thermoplastic polyurethane Prepare 500 ml of N,N-dimethylformamide solution of thermoplastic polyurethane with a mass concentration of 30%, and then mix the slurry containing silver nanowire-graphene composite material (containing 60 grams of silver nanowire-graphene composite material , The silver nanowire-graphene composite material in the conductive film is 40% by weight) is added to the thermoplastic polyurethane solution; the mixed solution is stirred for 1 hour with a nano-disperser, the rotating speed is 3000 rpm, and the temperature is controlled not to exceed 30 °C; The mixed solution was cast on a polytetrafluoroethylene plate to form a film, and then heat-treated on a heating plate at 70° C. for 12 hours until the mass remained unchanged, to obtain a conductive film.
  • the thickness of the conductive film is about 200 ⁇ m, and the resistivity of the conductive film is 0.15 ⁇ mm.
  • thermoplastic polyurethane Prepare 500 ml of N,N-dimethylformamide solution of thermoplastic polyurethane with a mass concentration of 30%, and then mix the above-mentioned silver nanowire-graphene composite material slurry (containing 45 grams of silver nanowire-graphene composite material , The silver nanowire-graphene composite material in the conductive film is 30% by weight) is added to the thermoplastic polyurethane solution; the mixed solution is stirred for 1 hour with a nano-disperser, the rotating speed is 3000 rpm, and the temperature is controlled not to exceed 30°C; The mixed solution was cast on a polytetrafluoroethylene plate to form a film, and then heat-treated on a heating plate at 70° C. for 12 hours until the mass remained unchanged, to obtain a conductive film.
  • the thickness of the conductive film is about 200 ⁇ m, and the resistivity of the conductive film is 11.8 ⁇ mm.
  • the present invention provides a near-infrared thermal repair flexible conductive film and a preparation method thereof.
  • the conductive film prepared by the present invention has high electrical conductivity and thermal conductivity, and has high repair efficiency under the action of near-infrared light. It can be repaired multiple times quickly.

Abstract

本发明提供了一种近红外热修复柔性导电膜及其制备方法,属于自修复材料技术领域。本发明的制备方法包括以下步骤:将氧化石墨烯、硝酸银和乙二醇混合,得到第一混合料液;将聚乙烯吡咯烷酮、三氯化铁和乙二醇混合,得到第二混合料液;将所述第一混合料液和第二混合料液混合,将得到的反应料液进行溶剂热反应,得到银纳米线-石墨烯复合材料;将所述银纳米线-石墨烯复合材料、热塑性聚氨酯和N,N-二甲基甲酰胺混合,将所得混合浆料进行成膜,干燥后得到近红外热修复柔性导电膜。本发明制备的导电膜具有高导电性和导热性,且在近红外光作用下具有高修复效率,能够实现快速多次修复。

Description

一种近红外热修复柔性导电膜及其制备方法
本申请要求于2020年05月21日提交中国专利局、申请号为202010434712.X、发明名称为“一种近红外热修复柔性导电膜及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及自修复材料技术领域,尤其涉及一种近红外热修复柔性导电膜及其制备方法。
背景技术
近年来,随着便携式电子器件和柔性可穿戴电子设备的发展,柔性电极作为电子器件的重要组成部分成为研究热点。电子器件的正常工作依赖于可导通的电子电路,然而,电极在使用中因反复磨损、弯折、冲击或刮擦等易产生微裂纹或微损伤,从而导致器件无法正常工作,甚至成为电子垃圾。随着环保意识的提高和可持续发展理念的不断深入,迫切需要研发具有自修复功能的柔性电极,实现材料本身微裂纹或微损伤的智能修复,恢复其基本功能,从而提高器件的可靠性,延长使用寿命,提升器件的重复使用率等。
但由于电子器件对电、热、力及环境等特殊要求,只有为数不多的自修复材料体系可应用在电子领域。目前自修复电子材料及其应用研究还处于研发阶段。
发明内容
本发明的目的在于提供一种近红外热修复柔性导电膜及其制备方法,本发明制备的导电膜具有高导电性和导热性,且在近红外光作用下具有高修复效率,能够实现快速多次修复。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种近红外热修复柔性导电膜的制备方法,包括以下步骤:
将氧化石墨烯、硝酸银和乙二醇混合,得到第一混合料液;
将聚乙烯吡咯烷酮、三氯化铁和乙二醇混合,得到第二混合料液;
将所述第一混合料液和第二混合料液混合,将得到的反应料液进行溶剂热反应,得到银纳米线-石墨烯复合材料;
将所述银纳米线-石墨烯复合材料、热塑性聚氨酯和N,N-二甲基甲酰胺混合,将所得混合浆料进行成膜,干燥后得到近红外热修复柔性导电膜。
优选的,所述溶剂热反应的温度为150~180℃,时间为3~5小时。
优选的,所述反应料液中,硝酸银的质量含量为0.5~1.0%,氧化石墨烯和硝酸银的质量比为(0.03~0.1):1,聚乙烯吡咯烷酮的质量含量为1.0~1.3%,三氯化铁的质量含量为0.0015~0.003%。
优选的,所述银纳米线-石墨烯复合材料的质量占银纳米线-石墨烯复合材料与热塑性聚氨酯总质量的20~40%。
优选的,所述热塑性聚氨酯的质量占热塑性聚氨酯和N,N-二甲基甲酰胺总质量的20~30%。
优选的,所述成膜的方式为流延成膜。
优选的,所述干燥的温度为60~75℃,时间为12~36小时。
优选的,将氧化石墨烯、硝酸银和乙二醇混合的过程包括:将氧化石墨烯加入到乙二醇中进行超声,然后加入硝酸银搅拌至完全溶解。
本发明提供了上述方案所述制备方法制备得到的近红外热修复柔性导电膜,包括银纳米线-石墨烯复合材料和热塑性聚氨酯。
优选的,所述银纳米线-石墨烯复合材料的质量含量为20~40%,余量为热塑性聚氨酯。
本发明提供了一种近红外热修复柔性导电膜的制备方法,包括以下步骤:将氧化石墨烯、硝酸银和乙二醇混合,得到第一混合料液;将聚乙烯吡咯烷酮、三氯化铁和乙二醇混合,得到第二混合料液;将所述第一混合料液和第二混合料液混合,将得到的反应料液进行溶剂热反应,得到银纳米线-石墨烯复合材料;将所述银纳米线-石墨烯复合材料、热塑性聚氨酯和N,N-二甲基甲酰胺混合,将所得混合浆料进行成膜,干燥后得到近红外热修复柔性导电膜。
本发明将氧化石墨烯、硝酸银和乙二醇混合,硝酸银离子可以吸附在氧化石墨烯片层表面和层间,形成氧化石墨烯/银离子复合体系,在后续 溶剂热反应过程中,当氧化石墨烯/银离子复合体系中的银离子被还原形成银纳米线时,氧化石墨烯也被还原为石墨烯,有利于银纳米线在形成时附着在石墨烯表面及***到石墨烯的层间,形成银纳米线-石墨烯杂化结构。银纳米线-石墨烯杂化结构一方面避免了石墨烯片层的堆叠,提高了分散性,进而有利于提高膜的导电性,另一方面弥补了银纳米线对导电膜力学性能的影响。本发明将聚乙烯吡咯烷酮、三氯化铁和乙二醇混合,得到第二混合料液,其中,聚乙烯吡咯烷酮作为表面修饰剂,具有控制银纳米线生长和形貌控制的作用,乙二醇作为还原剂和溶剂,三氯化铁作为抑制剂。具体的:将第一混合料液和第二混合料液混合后,在进行溶剂热反应前,反应料液中的氧化石墨烯/银离子复合体系能够与三氯化铁和聚乙烯吡咯烷酮形成少量的银晶种,之后进行溶剂热反应,反应初期,反应料液中存在的氯离子能够为最先形成的银晶种提供静电稳定性,氯离子能够与银离子结合生成AgCl胶体,减少了初始溶液中游离银离子的浓度,降低了银离子被还原和银晶种长大的速度;这一缓慢的反应过程有利于生成热力学上比较稳定的多重孪晶晶种;聚乙烯吡咯烷酮则优先吸附于多重孪晶晶种的{100}晶面族,使其能够沿着{111}晶面长大,通过各向异性生长成银纳米线;随着反应的进行,溶液中游离银离子浓度逐步减小,为了保持银离子和AgCl胶体的平衡浓度,从AgCl胶体中逐渐释放出银离子,生长为银纳米线;随着银纳米线浓度的增大,溶液中游离银离子进一步减少,为多重孪晶晶种的形成和长大提供了更为良好的条件,有利于获得较大直径的银纳米线。同时,溶剂热反应过程中氧化石墨烯被乙二醇还原为石墨烯,形成的银纳米线附着在石墨烯表面及***到石墨烯的层间,得到具有杂化结构的银纳米线-石墨烯复合材料。
同时,由于反应料液中残余氧气的存在,其对多重孪晶晶种会产生蚀刻作用,阻碍其生长成为银纳米线,Fe 3+能够被乙二醇还原成Fe 2+,而氧气能够将Fe 2+重新氧化成Fe 3+,依次循环,这一过程能够消耗反应料液中残留的氧气,消除其对银晶种的蚀刻作用。
本发明以热塑性聚氨酯为基体,以具有杂化结构的银纳米线-石墨烯复合材料作为导电填料(其中银纳米线为主要的导电相,石墨烯为辅助相),在热塑性聚氨酯体系内构筑基于银纳米线-石墨烯的高效能量转换单 元和导电通路,得到的柔性导电膜具有高导电性;同时利用银纳米线和石墨烯对近红外光的吸收特性,不仅可以实现微小区域局部加热对受损的热塑性聚氨酯材料进行修复,而且可以提高热塑性聚氨酯导电膜的修复效率,实现快速多次修复。具体的,当近红外光照射到导电膜上时,银纳米线-石墨烯复合材料吸收近红外光对热塑性聚氨酯进行加热,同时热塑性聚氨酯本身吸收部分热量,二者共同作用通过促进热塑性聚氨酯发生熔融流动实现破损膜的自修复,大大提高了修复效率;而自修复过程中又牵引银纳米线-石墨烯复合材料重组,形成新的导电网络,最终实现修复后仍具有高导电率。
此外,石墨烯又有利于改善热塑性聚氨酯材料的机械性能,从而保障修复后的导电膜依然具有良好的机械性能。
实施例的结果表明,本发明制备的近红外热修复柔性导电膜具有高导电性,且当导电膜表面出现微裂纹时,在波长0.76~5μm的红外灯下照射5~10分钟微裂纹消失,实现完全修复。
具体实施方式
本发明提供了一种近红外热修复柔性导电膜的制备方法,包括以下步骤:
将氧化石墨烯、硝酸银和乙二醇混合,得到第一混合料液;
将聚乙烯吡咯烷酮、三氯化铁和乙二醇混合,得到第二混合料液;
将所述第一混合料液和第二混合料液混合,将得到的反应料液进行溶剂热反应,得到银纳米线-石墨烯复合材料;
将所述银纳米线-石墨烯复合材料、热塑性聚氨酯和N,N-二甲基甲酰胺混合,将所得混合浆料进行成膜,干燥后得到近红外热修复柔性导电膜。
在本发明中,未经特殊说明,所用原料均为本领域熟知的市售商品。
本发明将氧化石墨烯、硝酸银和乙二醇混合,得到第一混合料液。
在本发明中,所述混合的过程优选为:将氧化石墨烯加入到乙二醇中进行超声,然后加入硝酸银搅拌至完全溶解。在本发明中,所述超声的功率优选为300W,超声的时间优选为1小时。本发明通过超声将氧化石墨烯均匀分散到乙二醇中。本发明对所述搅拌的条件没有特殊要求,能够确保硝酸银完全溶解即可。关于各原料的用量,本发明后续会进行说明。
本发明在所述混合过程中,硝酸银离子可以吸附在氧化石墨烯片层表 面和层间,形成氧化石墨烯/银离子复合体系,在后续溶剂热反应过程中,当氧化石墨烯/银离子复合体系中的银离子被还原形成银纳米线时,氧化石墨烯也被还原为石墨烯,有利于银纳米线在形成时附着在石墨烯表面及***到石墨烯的层间,形成银纳米线-石墨烯杂化结构。
本发明将聚乙烯吡咯烷酮、三氯化铁和乙二醇混合,得到第二混合料液。本发明优选先将聚乙烯吡咯烷酮加入到乙二醇中搅拌至完全溶解,然后加入三氯化铁搅拌至完全溶解,得到第二混合料液。本发明对各搅拌的条件没有特殊要求,能够保证各物质完全溶解即可。在本发明中,聚乙烯吡咯烷酮作为表面修饰剂,具有控制银纳米线生长和形貌控制的作用,乙二醇作为还原剂和溶剂,三氯化铁作为抑制剂,具体的作用以及各物质的用量后面会详细论述。
得到第一混合料液和第二混合料液后,本发明将所述第一混合料液和第二混合料液混合,得到反应料液。
本发明所述反应料液中,硝酸银的质量含量优选为0.5~1.0%,更优选为0.6~0.9%;氧化石墨烯和硝酸银的质量比优选为(0.03~0.1):1,更优选为(0.05~0.1):1;聚乙烯吡咯烷酮的质量含量优选为1.0~1.3%,更优选为1.1~1.2%;三氯化铁的质量含量优选为0.0015~0.003%,更优选为0.002~0.0025%。所述第一混合料液和第二混合料液中乙二醇的质量优选为相等。本发明对所述氧化石墨烯没有特殊的要求,采用工业上通用的氧化石墨烯即可(为多层氧化石墨烯)。
本发明将反应料液中聚乙烯吡咯烷酮的含量控制在上述范围,有利于更好的控制银纳米线生长,而当聚乙烯吡咯烷酮的含量过高或过低时,则容易形成纳米银颗粒或颗粒与线及棒的混合体。
本发明将第一混合料液和第二混合料液混合后,氧化石墨烯/银离子复合体系能够与三氯化铁和聚乙烯吡咯烷酮形成少量的银晶种。
得到反应料液后,本发明将所述反应料液进行溶剂热反应,得到银纳米线-石墨烯复合材料。
本发明优选将反应料液置于反应釜中,然后将反应釜置于真空干燥箱中进行溶剂热反应。
在本发明中,所述溶剂热反应的温度优选为150~180℃,更优选为 160~170℃;所述溶剂热反应的时间优选为3~5小时,更优选为3.5~4.5小时。
反应初期,反应料液中存在的氯离子能够为最先形成的银晶种提供静电稳定性,氯离子能够与银离子结合生成AgCl胶体,减少了初始溶液中游离银离子的浓度,降低了银离子被还原和银晶种长大的速度;这一缓慢的反应过程有利于生成热力学上比较稳定的多重孪晶晶种;聚乙烯吡咯烷酮则优先吸附于多重孪晶晶种的{100}晶面族,使其能够沿着{111}晶面长大,通过各向异性生长成银纳米线;随着反应的进行,溶液中游离银离子浓度逐步减小,为了保持银离子和AgCl胶体的平衡浓度,从AgCl胶体中逐渐释放出银离子,生长为银纳米线;随着银纳米线浓度的增大,溶液中游离银离子进一步减少,为多重孪晶晶种的形成和长大提供了更为良好的条件,有利于获得较大直径的银纳米线。同时,溶剂热反应过程中氧化石墨烯被乙二醇还原为石墨烯,形成的银纳米线附着在石墨烯表面及***到石墨烯的层间,得到具有杂化结构的银纳米线-石墨烯复合材料。同时,由于反应料液中残余氧气的存在,其对多重孪晶晶种会产生蚀刻作用,阻碍其生长成为银纳米线,Fe 3+能够被乙二醇还原成Fe 2+,而氧气能够将Fe 2+重新氧化成Fe 3+,依次循环,这一过程能够消耗反应料液中残留的氧气,消除其对银晶种的蚀刻作用。
完成所述溶剂热反应后,本发明优选还包括对反应后的体系进行自然冷却和洗涤。在本发明中,所述洗涤的过程优选为:向自然冷却后的产物体系中加入丙酮离心洗涤两次,然后采用乙醇离心洗涤两次,得到浆料。本发明利用丙酮洗去产物体系中的乙二醇。本发明的银纳米线-石墨烯复合材料存在于浆料中,本发明优选不进行干燥,直接将乙醇离心所得浆料进行后续步骤,以防止银纳米线-石墨烯复合材料干燥后会发生团聚。本发明对所述浆料的固含量没有特殊要求,浆料中的乙醇在成膜后会挥发。
得到银纳米线-石墨烯复合材料后,本发明将所述银纳米线-石墨烯复合材料、热塑性聚氨酯和N,N-二甲基甲酰胺混合,得到混合浆料。
在本发明中,所述热塑性聚氨酯的质量优选占热塑性聚氨酯和N,N-二甲基甲酰胺总质量的20~30%;所述银纳米线-石墨烯复合材料的质量优选占银纳米线-石墨烯复合材料与热塑性聚氨酯总质量的20~40%。
本发明优选先将热塑性聚氨酯加入到N,N-二甲基甲酰胺中,然后加入银纳米线-石墨烯复合材料,用纳米分散机进行搅拌处理,得到混合浆料。在本发明中,所述纳米分散机的转速优选为2000~4000rpm,更优选为3000rpm;所述搅拌处理的时间优选为0.5~2小时,更优选为1小时。在本发明中,所述搅拌处理的温度优选不超过30℃。本发明采用纳米分散机进行混合较其他混合方法获得的混合浆料更加均匀,成膜状态更好。
得到混合浆料后,本发明将所述混合浆料进行成膜,干燥后得到近红外热修复柔性导电膜。
在本发明中,所述成膜的方式优选为流延成膜。本发明优选在聚四氟乙烯板上进行流延成膜。本发明对所述流延成膜的厚度没有特殊要求,根据实际需求进行控制即可。在本发明中,所述干燥的温度优选为60~75℃,时间优选为12~36小时。本发明在所述干燥过程中,N,N-二甲基甲酰胺被蒸发掉,得到近红外热修复柔性导电膜。
本发明提供了上述方案所述制备方法制备得到的近红外热修复柔性导电膜,包括银纳米线-石墨烯复合材料和热塑性聚氨酯。在本发明中,所述近红外热修复柔性导电膜中银纳米线-石墨烯复合材料的质量含量优选为20~40%,余量为热塑性聚氨酯。在本发明中,所述近红外热修复柔性导电膜的厚度优选为30~800μm。本发明以热塑性聚氨酯为基体,以具有杂化结构的银纳米线-石墨烯复合材料作为导电填料(其中银纳米线为主要的导电相,石墨烯为辅助相),在热塑性聚氨酯体系内构筑基于银纳米线-石墨烯的高效能量转换单元和导电通路,得到的柔性导电膜具有高导电性;同时利用银纳米线和石墨烯对近红外光的吸收特性,不仅可以实现微小区域局部加热对受损的热塑性聚氨酯材料进行修复,而且可以提高热塑性聚氨酯导电膜的修复效率,实现快速多次修复。具体的,当近红外光照射到导电膜上时,银纳米线-石墨烯复合材料吸收近红外光对热塑性聚氨酯进行加热,同时热塑性聚氨酯本身吸收部分热量,二者共同作用通过促进热塑性聚氨酯发生熔融流动实现破损膜的自修复,大大提高了修复的效率;而自修复过程中又牵引银纳米线-石墨烯复合材料重组,形成新的导电网络,最终实现修复后仍具有高导电率。
下面结合实施例对本发明提供的近红外热修复柔性导电膜及其制备 方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
将0.068克氧化石墨烯加入到40毫升的乙二醇溶液中,在300W下超声1小时,将0.68克硝酸银加入到上述溶液中搅拌至完全溶解,得到第一混合料液;将1.019克聚乙烯吡咯烷酮(K30)加入到40毫升乙二醇中搅拌至完全溶解,然后向其中加入0.0016克三氯化铁搅拌至完全溶解,得到第二混合料液;将所述第一混合料液倒入第二混合料液中,快速搅拌30秒后,将混合溶液倒入反应釜中;将反应釜放入真空干燥箱160℃反应3小时,自然冷却后,依次用丙酮、乙醇分别离心洗涤两次,获得含银纳米线-石墨烯复合材料的浆料(溶剂为乙醇)。
配制质量浓度为30%的热塑性聚氨酯的N,N-二甲基甲酰胺溶液500毫升,然后将上述含银纳米线-石墨烯复合材料的浆料(含45克银纳米线-石墨烯复合材料,银纳米线-石墨烯复合材料在导电膜中质量百分比含量为30%)加入到热塑性聚氨酯溶液中;将混合溶液用纳米分散机搅拌处理1小时,转速为3000rpm,控制温度不超过30℃;然后将混合溶液在聚四氟乙烯板上流延成膜,再在加热板上70℃条件下热处理12小时至质量不变,获得导电膜。导电膜厚度约为200μm,导电膜的电阻率为1.2Ω·mm。
在导电膜表面用美工刀划出长3厘米,深5毫米的伤痕,然后将导电膜放在红外灯下(飞利浦红外线灯泡,功率为250W,波长为0.76~5μm,峰值波长4μm)热处理5分钟,伤痕消失,实现自修复,测修复后导电膜的电阻率为1.31Ω·mm,说明该方法制备的导电膜能够实现快速修复;在修复后的伤痕处,再重复上述过程5次,修复后导电膜的电阻率分别为1.28Ω·mm、1.32Ω·mm、1.39Ω·mm、1.43Ω·mm、1.49Ω·mm。说明该方法制备的导电膜经过多次修复,仍具有良好的导电性。
实施例2
将0.034克氧化石墨烯加入到与40毫升的乙二醇溶液中在300W下超声1小时,将0.68克硝酸银加入到上述溶液中搅拌至完全溶解,得到第一混合料液;将1.019克聚乙烯吡咯烷酮(K30)加入到40毫升乙二醇中搅拌至完全溶解,然后向其中加入0.0016克三氯化铁搅拌至完全溶解, 得到第二混合料液;将所述第一混合料液倒入第二混合料液中,快速搅拌30秒后,将混合溶液倒入反应釜中;将反应釜放入真空干燥箱160℃反应3小时,自然冷却后,依次用丙酮、乙醇分别离心洗涤两次,获得含银纳米线-石墨烯复合材料的浆料(溶剂为乙醇)。
配制质量浓度为30%的热塑性聚氨酯的N,N-二甲基甲酰胺溶液500毫升,然后将上述含银纳米线-石墨烯复合材料的浆料(含30克银纳米线-石墨烯复合材料,银纳米线-石墨烯复合材料在导电膜中质量百分比含量为20%)加入到热塑性聚氨酯溶液;将混合溶液用纳米分散机搅拌处理1小时,转速为3000rpm,控制温度不超过30℃;然后将混合溶液在聚四氟乙烯板上流延成膜,再在加热板上70℃条件下热处理12小时至质量不变,获得导电膜。导电膜的厚度约200μm,导电膜的电阻率为312.7Ω·mm。
在导电膜表面用美工刀划出长3厘米,深5毫米的裂痕,然后将导电膜放在红外灯下(飞利浦红外线灯泡,功率为250W,波长为0.76~5μm,峰值波长4μm)热处理5分钟,裂痕消失,实现自修复,测修复后导电膜的电阻率为315.1Ω·mm。在修复后的伤痕处,再重复上述过程5次,修复后导电膜的电阻率分别为317.9Ω·mm、313.6Ω·mm、318.1Ω·mm、316.8Ω·mm、313.8Ω·mm。说明该方法制备的导电膜经过多次修复,仍具有良好的导电性。
实施例3
将0.034克氧化石墨烯加入到与40毫升的乙二醇溶液中在300W下超声1小时,将0.68克硝酸银加入到上述溶液中搅拌至完全溶解,得到第一混合料液;将1.019克聚乙烯吡咯烷酮(K30)加入到40毫升乙二醇中搅拌至完全溶解,然后向其中加入0.0016克三氯化铁搅拌至完全溶解,得到第二混合料液;将所述第一混合料液倒入第二混合料液中,快速搅拌30秒后,将混合溶液倒入反应釜中;将反应釜放入真空干燥箱160℃反应3小时,自然冷却后,依次用丙酮、乙醇分别离心洗涤两次,获得含银纳米线-石墨烯复合材料的浆料(溶剂为乙醇)。
配制质量浓度为30%的热塑性聚氨酯的N,N-二甲基甲酰胺溶液500毫升。然后将上述含银纳米线-石墨烯复合材料的浆料(含60克银纳米 线-石墨烯复合材料,银纳米线-石墨烯复合材料在导电膜中质量百分比含量为40%)加入到热塑性聚氨酯溶液;将混合溶液用纳米分散机搅拌处理1小时,转速为3000rpm,控制温度不超过30℃;然后将混合溶液在聚四氟乙烯板上流延成膜,再在加热板上70℃条件下热处理12小时至质量不变,获得导电膜。导电膜的厚度约200μm,导电膜的电阻率为0.07Ω·mm。
在导电膜表面用美工刀划出长3厘米,深5毫米的裂痕,然后将导电膜放在红外灯下(飞利浦红外线灯泡,功率为250W,波长为0.76~5μm,峰值波长4μm)热处理5分钟,裂痕消失,实现自修复,测修复后导电膜的电阻率为0.11Ω·mm。在修复后的伤痕处,再重复上述过程5次,修复后导电膜的电阻率分别为0.18Ω·mm、0.09Ω·mm、0.14Ω·mm、0.12Ω·mm、0.11Ω·mm。说明该方法制备的导电膜经过多次修复,仍具有良好的导电性。
实施例4
将0.02克氧化石墨烯加入到与40毫升的乙二醇溶液中在300W下超声1小时,将0.68克硝酸银加入到上述溶液中搅拌至完全溶解,得到第一混合料液;将1.019克聚乙烯吡咯烷酮(K30)加入到40毫升乙二醇中搅拌至完全溶解,然后向其中加入0.0016克三氯化铁搅拌至完全溶解,得到第二混合料液;将所述第一混合料液倒入第二混合料液中,快速搅拌30秒后,将混合溶液倒入反应釜中;将反应釜放入真空干燥箱160℃反应3小时,自然冷却后,依次用丙酮、乙醇分别离心洗涤两次,获得含银纳米线-石墨烯复合材料的浆料。
配制质量浓度为30%的热塑性聚氨酯的N,N-二甲基甲酰胺溶液500毫升,然后将上述含银纳米线-石墨烯复合材料的浆料(含60克银纳米线-石墨烯复合材料,银纳米线-石墨烯复合材料在导电膜中质量百分比含量为40%)加入到热塑性聚氨酯溶液;将混合溶液用纳米分散机搅拌处理1小时,转速为3000rpm,控制温度不超过30℃;然后将混合溶液在聚四氟乙烯板上流延成膜,再在加热板上70℃条件下热处理12小时至质量不变,获得导电膜。导电膜的厚度约200μm,导电膜的电阻率为0.15Ω·mm。
在导电膜表面用美工刀划出长3厘米,深5毫米的裂痕,然后将导电膜放在红外灯下(飞利浦红外线灯泡,功率为250W,波长为0.76~5μm,峰值波长4μm)热处理5分钟,裂痕消失,实现自修复,测修复后导电膜的电阻率为0.19Ω·mm。在修复后的伤痕处,再重复上述过程5次,修复后导电膜的电阻率分别为0.18Ω·mm、0.16Ω·mm、0.19Ω·mm、0.21Ω·mm、0.20Ω·mm。说明该方法制备的导电膜经过多次修复,仍具有良好的导电性。
实施例5
将0.068克氧化石墨烯加入到与40毫升的乙二醇溶液中在300W下超声1小时,将0.68克硝酸银加入到上述溶液中搅拌至完全溶解,得到第一混合料液;将1.019克聚乙烯吡咯烷酮(K30)加入到40毫升乙二醇中搅拌至完全溶解,然后向其中加入0.0016克三氯化铁搅拌至完全溶解,得到第二混合料液;将所述第一混合料液倒入第二混合料液中,快速搅拌30秒后,将混合溶液倒入反应釜中;将反应釜放入真空干燥箱160℃反应3小时,自然冷却后,依次用丙酮、乙醇分别离心洗涤两次,获得含银纳米线-石墨烯复合材料的浆料。
配制质量浓度为30%的热塑性聚氨酯的N,N-二甲基甲酰胺溶液500毫升,然后将上述含银纳米线-石墨烯复合材料的浆料(含45克银纳米线-石墨烯复合材料,银纳米线-石墨烯复合材料在导电膜中质量百分比含量为30%)加入到热塑性聚氨酯溶液;将混合溶液用纳米分散机搅拌处理1小时,转速为3000rpm,控制温度不超过30℃;然后将混合溶液在聚四氟乙烯板上流延成膜,再在加热板上70℃条件下热处理12小时至质量不变,获得导电膜。导电膜的厚度约200μm,导电膜的电阻率为11.8Ω·mm。
在导电膜表面用美工刀划出长3厘米,深5毫米的裂痕,然后将导电膜放在红外灯下(飞利浦红外线灯泡,功率为250W,波长为0.76~5μm,峰值波长4μm)热处理5分钟,裂痕消失,实现自修复,测修复后导电膜的电阻率为12.2Ω·mm。在修复后的伤痕处,再重复上述过程5次,修复后导电膜的电阻率分别为12.8Ω·mm、12.9Ω·mm、12.1Ω·mm、12.9Ω·mm、13.1Ω·mm。说明该方法制备的导电膜经过多次修复,仍具有良 好的导电性。
由以上实施例可知,本发明提供了一种近红外热修复柔性导电膜及其制备方法,本发明制备的导电膜具有高导电性和导热性,且在近红外光作用下具有高修复效率,能够实现快速多次修复。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种近红外热修复柔性导电膜的制备方法,其特征在于,包括以下步骤:
    将氧化石墨烯、硝酸银和乙二醇混合,得到第一混合料液;
    将聚乙烯吡咯烷酮、三氯化铁和乙二醇混合,得到第二混合料液;
    将所述第一混合料液和第二混合料液混合,将得到的反应料液进行溶剂热反应,得到银纳米线-石墨烯复合材料;
    将所述银纳米线-石墨烯复合材料、热塑性聚氨酯和N,N-二甲基甲酰胺混合,将所得混合浆料进行成膜,干燥后得到近红外热修复柔性导电膜。
  2. 根据权利要求1所述的制备方法,其特征在于,所述溶剂热反应的温度为150~180℃,时间为3~5小时。
  3. 根据权利要求1所述的制备方法,其特征在于,所述反应料液中,硝酸银的质量含量为0.5~1.0%,氧化石墨烯和硝酸银的质量比为(0.03~0.1):1,聚乙烯吡咯烷酮的质量含量为1.0~1.3%,三氯化铁的质量含量为0.0015~0.003%。
  4. 根据权利要求3所述的制备方法,其特征在于,所述第一混合料液和第二混合料液中乙二醇的质量相等。
  5. 根据权利要求1所述的制备方法,其特征在于,完成所述溶剂热反应后,还包括对反应后的体系进行自然冷却和洗涤;所述洗涤的过程为向自然冷却后的产物体系中加入丙酮离心洗涤两次,然后采用乙醇离心洗涤两次,得到含银纳米线-石墨烯复合材料的浆料;将所述浆料直接进行后续步骤。
  6. 根据权利要求1所述的制备方法,其特征在于,所述银纳米线-石墨烯复合材料的质量占银纳米线-石墨烯复合材料与热塑性聚氨酯总质量的20~40%。
  7. 根据权利要求1或6所述的制备方法,其特征在于,所述热塑性聚氨酯的质量占热塑性聚氨酯和N,N-二甲基甲酰胺总质量的20~30%。
  8. 根据权利要求1所述的制备方法,其特征在于,将所述银纳米线-石墨烯复合材料、热塑性聚氨酯和N,N-二甲基甲酰胺混合的过程为: 先将热塑性聚氨酯加入到N,N-二甲基甲酰胺中,然后加入银纳米线-石墨烯复合材料,用纳米分散机进行搅拌处理,得到混合浆料。
  9. 根据权利要求1所述的制备方法,其特征在于,所述成膜的方式为流延成膜。
  10. 根据权利要求1所述的制备方法,其特征在于,所述干燥的温度为60~75℃,时间为12~36小时。
  11. 根据权利要求1所述的制备方法,其特征在于,将氧化石墨烯、硝酸银和乙二醇混合的过程包括:将氧化石墨烯加入到乙二醇中进行超声,然后加入硝酸银搅拌至完全溶解。
  12. 权利要求1~11任一项所述制备方法制备得到的近红外热修复柔性导电膜,包括银纳米线-石墨烯复合材料和热塑性聚氨酯。
  13. 根据权利要求12所述的近红外热修复柔性导电膜,其特征在于,所述银纳米线-石墨烯复合材料的质量含量为20~40%,余量为热塑性聚氨酯。
  14. 根据权利要求12所述的近红外热修复柔性导电膜,其特征在于,所述近红外热修复柔性导电膜的厚度为30~800μm。
PCT/CN2020/106757 2020-05-21 2020-08-04 一种近红外热修复柔性导电膜及其制备方法 WO2021232597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010434712.XA CN111564237B (zh) 2020-05-21 2020-05-21 一种近红外热修复柔性导电膜的制备方法
CN202010434712.X 2020-05-21

Publications (1)

Publication Number Publication Date
WO2021232597A1 true WO2021232597A1 (zh) 2021-11-25

Family

ID=72072208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106757 WO2021232597A1 (zh) 2020-05-21 2020-08-04 一种近红外热修复柔性导电膜及其制备方法

Country Status (2)

Country Link
CN (1) CN111564237B (zh)
WO (1) WO2021232597A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477152A (zh) * 2021-12-30 2022-05-13 杭州电子科技大学 一种银纳米颗粒/多层石墨烯复合材料及制备方法
CN116836421A (zh) * 2023-04-11 2023-10-03 湖北中一科技股份有限公司 一种导电膜及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861662A (zh) * 2021-09-30 2021-12-31 南昌航空大学 一种自修复聚氨酯导热复合材料及其制备方法
CN114010844B (zh) * 2021-10-28 2023-08-22 浙江理工大学 一种具有稳定信号传导功能的膜材料、心肌补片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106519939A (zh) * 2016-09-29 2017-03-22 广东工业大学 一种基于形状记忆的自修复型导电传感高分子材料
CN109336091A (zh) * 2018-10-11 2019-02-15 华南协同创新研究院 一种石墨烯原位生长银纳米线杂化导电材料及其制备方法和应用
CN110085349A (zh) * 2019-02-03 2019-08-02 深圳前海皓隆科技有限公司 一种透明石墨烯负载纳米银线防静电膜及其制备方法
CN110527120A (zh) * 2019-10-09 2019-12-03 南昌航空大学 一种高强度的柔性导电自修复薄膜的制作方法
US20200002501A1 (en) * 2018-06-29 2020-01-02 Samsung Electronics Co., Ltd. Self-healing composite and device including self-healing film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607655B (zh) * 2015-03-06 2016-08-24 苏州大学 一种银纳米线的制备方法
CN105623136B (zh) * 2016-03-17 2018-06-19 中国科学院深圳先进技术研究院 一种聚合物导电复合材料及其制备方法
CN107036741B (zh) * 2017-05-01 2019-10-11 苏州科技大学 一种自修复石墨烯基压力传感器的制备方法
CN107216643A (zh) * 2017-08-03 2017-09-29 四川大学 一种自修复聚氨酯纳米复合材料及其制备方法和用途
KR102097861B1 (ko) * 2018-04-03 2020-04-06 비엔비머티리얼 주식회사 투명 발열필름 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106519939A (zh) * 2016-09-29 2017-03-22 广东工业大学 一种基于形状记忆的自修复型导电传感高分子材料
US20200002501A1 (en) * 2018-06-29 2020-01-02 Samsung Electronics Co., Ltd. Self-healing composite and device including self-healing film
CN109336091A (zh) * 2018-10-11 2019-02-15 华南协同创新研究院 一种石墨烯原位生长银纳米线杂化导电材料及其制备方法和应用
CN110085349A (zh) * 2019-02-03 2019-08-02 深圳前海皓隆科技有限公司 一种透明石墨烯负载纳米银线防静电膜及其制备方法
CN110527120A (zh) * 2019-10-09 2019-12-03 南昌航空大学 一种高强度的柔性导电自修复薄膜的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG KE, ZHIMIN ZHOU, JIAHAO ZHANG, JINYUAN TANG, PEIYU WU, YUEHUI WANG, YUZHEN ZHAO, YONG LENG: "Electrical and Thermal and Self-Healing Properties of Graphene-Thermopolyurethane Flexible Conductive Films", NANOMATERIALS, vol. 10, no. 4, 15 April 2020 (2020-04-15), XP055870223, ISSN: 2079-4991, DOI: 10.3390/nano10040753 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477152A (zh) * 2021-12-30 2022-05-13 杭州电子科技大学 一种银纳米颗粒/多层石墨烯复合材料及制备方法
CN116836421A (zh) * 2023-04-11 2023-10-03 湖北中一科技股份有限公司 一种导电膜及其制备方法
CN116836421B (zh) * 2023-04-11 2024-02-06 湖北中一科技股份有限公司 一种导电膜及其制备方法

Also Published As

Publication number Publication date
CN111564237A (zh) 2020-08-21
CN111564237B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021232597A1 (zh) 一种近红外热修复柔性导电膜及其制备方法
WO2021056851A1 (zh) 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料
CN108658615B (zh) 一种高导热石墨烯基复合薄膜及其制备方法
JP5821137B2 (ja) 電池電極用バインダー組成物、電池電極用バインダー、電池電極形成用合剤スラリー、電池電極形成用合剤スラリー製造方法、電池電極および電池電極形成方法
WO2016011905A1 (zh) 银掺杂石墨烯复合纸及其制备方法
CN105949512A (zh) 插层组装氮化硼-石墨烯复合材料、应用及其制备方法
Tang et al. Properties of graphene oxide/epoxy resin composites
TWI711208B (zh) 一種矽氧化物與非晶碳層包覆以多層石墨烯為載體之奈米矽的負極材料及其製備方法
CN105802589A (zh) 一种高强度导热膜及其制备方法
WO2017198233A1 (zh) 一种ptc无机复合材料及其制备方法、应用
WO2022242026A1 (zh) 一种交联聚乙烯复合材料及其制备方法与应用
WO2015014120A1 (zh) 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
WO2016090958A1 (zh) 一种混合型电容器负极浆料制备方法
CN114672233B (zh) 一种基于MXene@Au杂化物的光热超疏水涂层及其制备方法
CN110752353B (zh) 一种柔性自支撑二硒化锡/碳纳米管复合薄膜电极材料及其制备方法和应用
CN114314573B (zh) 一种高导热石墨烯散热膜及其制备方法
CN110048080B (zh) 锂电池极片及其制备方法和锂电池
JP2024508000A (ja) 電気赤外線加熱膜、その調製方法、電気赤外線加熱装置
WO2022110455A1 (zh) 一种石墨烯添加剂及制备方法
CN108807903A (zh) 一种锂电池用复合修饰锂电池负极材料的制备方法
CN114456526B (zh) 一种聚合物复合材料及其制备方法和应用
CN116805679A (zh) 一种高比容量硅碳复合负极材料和其极片制备方法
CN114784227B (zh) 一种石墨烯/金属氧化物复合纳米材料及其制备方法和应用、电极极片及其应用
WO2019127766A1 (zh) 一种包埋富铝纳米颗粒的复合硅粉及其制备方法和应用
CN106995536B (zh) 碳化硅线-银杂化颗粒、其制备方法及作为填料在导热复合材料的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936509

Country of ref document: EP

Kind code of ref document: A1