WO2021230262A1 - ペリクルフレーム、ペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法 - Google Patents

ペリクルフレーム、ペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法 Download PDF

Info

Publication number
WO2021230262A1
WO2021230262A1 PCT/JP2021/017960 JP2021017960W WO2021230262A1 WO 2021230262 A1 WO2021230262 A1 WO 2021230262A1 JP 2021017960 W JP2021017960 W JP 2021017960W WO 2021230262 A1 WO2021230262 A1 WO 2021230262A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle
exposure
original plate
resin
pellicle frame
Prior art date
Application number
PCT/JP2021/017960
Other languages
English (en)
French (fr)
Inventor
優 簗瀬
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2022521945A priority Critical patent/JPWO2021230262A1/ja
Priority to US17/923,039 priority patent/US20230236497A1/en
Priority to EP21805081.3A priority patent/EP4152094A1/en
Priority to CN202180032763.2A priority patent/CN115485618A/zh
Priority to KR1020227041067A priority patent/KR20230011957A/ko
Publication of WO2021230262A1 publication Critical patent/WO2021230262A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70983Optical system protection, e.g. pellicles or removable covers for protection of mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces

Definitions

  • the present invention relates to a pellicle frame, a pellicle, an exposure original plate with a pellicle, a semiconductor manufacturing method, a liquid crystal display board manufacturing method, and an exposure method.
  • the design rules of LSI have been miniaturized to sub-quarter microns, and along with this, the wavelength of the exposure light source has been shortened. That is, the exposure light source has shifted from g-ray (436 nm) and i-line (365 nm) by a mercury lamp to KrF excimer laser (248 nm), ArF excimer laser (193 nm), and EUV with a main wavelength of 13.5 nm. (Excimer UltraViolet) EUV exposure using light is being studied.
  • the basic structure of this pellicle is that a pellicle film with high transmittance for light used for exposure is attached to the upper end surface of a pellicle frame made of aluminum, titanium, etc., and an airtight gasket is formed on the lower end surface. Is what you are doing.
  • An adhesive layer is generally used for the airtight gasket, and a protective sheet for protecting the adhesive layer is attached.
  • the pellicle film is nitrocellulose, cellulose acetate, fluorine that well transmits light used for exposure (g-line (436 nm), i-line (365 nm), KrF excimer laser (248 nm), ArF excimer laser (193 nm), etc. by mercury lamp). Although it is made of a polymer or the like, an ultrathin silicon film or a carbon film is being studied as a pellicle film for EUV exposure.
  • a porous membrane such as that used in a HEPA filter (High Efficiency Particulate Air Filter) or a ULPA filter (Ultra Low Penetration Air Filter) filter has been used because of its foreign matter repairing ability.
  • HEPA filter High Efficiency Particulate Air Filter
  • ULPA filter Ultra Low Penetration Air Filter
  • the EUV exposure apparatus is filled with hydrogen gas in order to efficiently remove foreign substances called scattered particles (debris) generated when EUV light is generated.
  • the hydrogen gas reacts with EUV light to become hydrogen radicals. Therefore, the EUV pellicle is required to have sufficient resistance to hydrogen radicals, which has not been required in the conventional KrF pellicle and ArF pellicle.
  • the filter has a porous membrane for collecting foreign matter, and when the gas passes through the gap of the porous membrane, the foreign matter is captured by the porous membrane and only the gas without foreign matter is passed. .. Due to its nature, it can be easily imagined that the porous membrane has the largest surface area among the members used in the pellicle and is most exposed to the gas containing hydrogen radicals. Therefore, when the porous membrane is deteriorated by hydrogen radicals and the gap becomes large, the foreign matter collection rate may decrease. Therefore, the porous membrane used for the filter is required to have high hydrogen radical resistance.
  • the present invention has been made in view of the above circumstances, and is a pellicle frame sufficiently resistant to hydrogen radicals in EUV exposure, a pellicle using the pellicle frame, an exposed original plate with a pellicle, a method for manufacturing a semiconductor, and a liquid crystal display board. It is an object of the present invention to provide a manufacturing method and an exposure method.
  • the present inventor has a porous film coated with a resin in a ventilation portion provided in the pellicle frame as a pellicle frame resistant to hydrogen radicals in EUV exposure. It has been found that the above problems can be solved by providing a filter, preferably by forming the resin that coats the porous film with a silicone resin or an epoxy resin, and the present invention has been completed.
  • the present invention provides the following pellicle frame, pellicle, exposure original plate with pellicle, semiconductor manufacturing method, liquid crystal display board manufacturing method, and exposure method.
  • a pellicle frame for EUV exposure wherein the pellicle frame is provided with at least one vent, and a filter having a porous film coated with a resin is attached to the vent.
  • Pellicle frame 2.
  • the pellicle frame according to 1 above, wherein the porous film is a resin porous film made of at least one resin selected from the group consisting of a fluororesin, a polyester resin, a polyimide resin, a polycarbonate resin, and a polyolefin resin. 3. 3.
  • a pellicle for EUV exposure characterized in that a pellicle film is stretched on the pellicle frame according to 1 above. 10.
  • the above 9 pellicle having a pellicle height of 2.5 mm or less.
  • the pellicle according to 9 or 10 above, wherein the pellicle membrane is a pellicle membrane supported by a frame.
  • An exposure original plate with a pellicle characterized in that the pellicle described in 9 above is attached to the exposure original plate.
  • a method for manufacturing a semiconductor which comprises a step of EUV exposure using the exposure original plate with a pellicle according to the above 12.
  • a method for manufacturing a liquid crystal display plate which comprises a step of EUV exposure using the exposure original plate with a pellicle according to the above 12. 18.
  • a pellicle frame used in a hydrogen plasma environment wherein the pellicle frame is provided with at least one vent, and a filter having a porous membrane coated with a resin is attached to the vent.
  • the porous film is a resin porous film made of at least one resin selected from the group consisting of a fluororesin, a polyester resin, a polyimide resin, a polycarbonate resin, and a polyolefin resin.
  • the porous membrane is a polytetrafluoroethylene porous membrane.
  • the resin that coats the porous film is a silicone resin or an epoxy resin. 22. 18.
  • the filter has a breathable support layer that supports a porous membrane. 23. 18.
  • a method for manufacturing a semiconductor which comprises a step of exposing in a hydrogen plasma environment by the exposure original plate with a pellicle according to the above 29.
  • a method for manufacturing a liquid crystal display plate which comprises a step of exposing in a hydrogen plasma environment by the exposure original plate with a pellicle according to the above 29.
  • a pellicle frame and a pellicle that are sufficiently resistant to hydrogen radicals in EUV exposure, and an EUV exposure method, a semiconductor manufacturing method, and a liquid crystal display board using the exposed original plate with the pellicle. Useful for the method.
  • the present invention is a frame-shaped pellicle frame having an upper end surface on which a pellicle film is provided and a lower end surface facing a photomask, and a pellicle using the same.
  • the pellicle frame is frame-shaped, its shape corresponds to the shape of the photomask on which the pellicle is attached. Generally, it has a rectangular (rectangular or square) frame shape.
  • the shape of the corner (edge) of the pellicle frame may be an angular (pointed) shape as it is, or it may be chamfered such as R chamfer or C chamfer and has another shape such as a curved shape. You may.
  • the pellicle frame has a surface for providing the pellicle film (here, the upper end surface) and a surface facing the photomask when the photomask is attached (here, the lower end surface).
  • a pellicle film is provided on the upper end surface via an adhesive or the like, and an adhesive or the like for attaching the pellicle to the photomask is provided on the lower end surface, but this is not the case.
  • the material of the pellicle frame there are no restrictions on the material of the pellicle frame, and known materials can be used. Since the pellicle frame for EUV may be exposed to high temperature, a material having a small coefficient of thermal expansion is preferable. Examples thereof include Si, SiO 2 , SiN, quartz, Invar, titanium, and titanium alloys. Among them, titanium and titanium alloys are preferable because of their ease of processing and light weight.
  • the dimensions of the pellicle frame are not particularly limited, but since the height of the EUV pellicle is limited to 2.5 mm or less, the thickness of the EUV pellicle frame is smaller than that and is less than 2.5 mm.
  • the thickness of the pellicle frame for EUV is preferably 1.5 mm or less in consideration of the thickness of the pellicle film, the mask adhesive, and the like. Further, the lower limit of the thickness of the pellicle frame is preferably 1.0 mm or more.
  • a jig hole used for handling and peeling the pellicle from the photomask is provided on the side surface of the pellicle frame.
  • the size of the jig hole is 0.5 to 1.0 mm in length (diameter in the case of a circle) in the thickness direction of the frame.
  • the shape of the hole is not limited and may be circular or rectangular.
  • the pellicle frame is provided with a ventilation portion for alleviating pressure changes inside and outside the pellicle.
  • a ventilation portion for alleviating pressure changes inside and outside the pellicle.
  • a filter is provided in the ventilation part to prevent foreign matter from entering the pellicle.
  • the place where the filter is installed is not particularly limited, and the filter can be installed inside the pellicle frame, inside the ventilation portion, or outside the pellicle frame.
  • the pellicle frame of the present invention is characterized by having a filter having a porous film coated with a resin having resistance to hydrogen radicals.
  • the porous film is not particularly limited, but is preferably selected from at least one resin selected from the group consisting of fluororesin, polyester resin, polyimide resin, polycarbonate resin and polyolefin resin, for example.
  • fluororesins that have been used as KrF pellicle and ArF pellicle are preferable, and among them, polytetrafluoroethylene (PTFE) is particularly preferable.
  • the PTFE porous membrane is generally composed of nodes (nodules), which are aggregates of PTFE, and innumerable fibrils, which are fine fibrous structures in which both ends are bonded to the nodes. Adjacent nodes are connected by fibril.
  • the PTFE porous membrane has air permeability in the film thickness direction with the space (pores) between adjacent fibrils as the air flow path.
  • the PTFE porous membrane is also called a stretched porous membrane, and is formed by stretching a PTFE sheet, which is an aggregate of PTFE. Nodes and fibrils are formed by stretching the PTFE sheet, and their composition changes depending on, for example, the stretching conditions of the PTFE sheet.
  • the resin that coats this porous film preferably has sufficient hydrogen radical resistance, and specific examples thereof include silicone resin, epoxy resin, acrylic resin, fluororesin, and urethane resin. Among these, a silicone resin or an epoxy resin is preferable, and a silicone resin is more preferable, from the viewpoint of hydrogen radical resistance.
  • the method of coating the porous membrane with the resin is not particularly limited, but the method of preparing the resin solution and including it in the porous membrane is easy and preferable. There is no limitation on the method of impregnating the porous membrane with the resin solution, and for example, a method of immersing the porous membrane in the resin solution, spin-coating the porous membrane with the resin solution, spraying, or the like is possible.
  • the solution can be easily spread in the gaps of the porous membrane, and the fibers of the porous membrane can be coated with the resin.
  • the coating of the porous membrane with the resin does not necessarily have to cover the entire surface of the porous membrane, and the coating amount and the coating ratio can be adjusted according to the required hydrogen radical resistance. Hydrogen radical resistance can also be improved by cross-linking and curing these resins with light or heat.
  • the filter can be provided with any member other than the porous membrane.
  • the member is, for example, a breathable support layer.
  • the filter comprises a porous membrane and a breathable support layer disposed on one main surface of the porous membrane. The arrangement of the breathable support layer improves the strength as a filter and also improves the handleability.
  • the breathable support layer is preferably a layer having higher breathability and moisture permeability in the thickness direction than the porous membrane.
  • a woven fabric, a non-woven fabric, a net, or a mesh can be used.
  • the material constituting the breathable support layer is, for example, polyester, polyethylene, or aramid resin.
  • the shape of the breathable support layer may be the same as or different from the shape of the porous membrane.
  • the breathable support layer is arranged by, for example, heat welding with a porous membrane, adhesion with an adhesive, or the like.
  • the breathable support layer may be arranged on one main surface of the porous membrane or may be arranged on both main surfaces. These breathable support layers may be coated with the above-mentioned resin.
  • the material of the pellicle film is not limited, but a film having high transmittance at the wavelength of the exposure light source and high light resistance is preferable.
  • a film having high transmittance at the wavelength of the exposure light source and high light resistance is preferable.
  • an ultrathin silicon film, a carbon film, or the like is used for EUV exposure.
  • the carbon film include films such as graphene, diamond-like carbon, and carbon nanotubes.
  • a pellicle film is provided on the upper end surface of the pellicle frame as described above via an adhesive or an adhesive.
  • the material of the pressure-sensitive adhesive and the adhesive is not limited, and known materials can be used.
  • a pressure-sensitive adhesive or an adhesive having a strong adhesive force is preferable.
  • an adhesive for attaching to the photomask is formed on the lower end surface of the pellicle frame.
  • the mask adhesive is provided over the entire circumference of the pellicle frame.
  • the mask pressure-sensitive adhesive known ones can be used, and acrylic-based pressure-sensitive adhesives and silicone-based pressure-sensitive adhesives can be preferably used.
  • the adhesive may be processed into any shape, if necessary.
  • a release layer (separator) for protecting the adhesive may be attached to the lower end surface of the mask adhesive.
  • the material of the release layer is not particularly limited, but is, for example, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyethylene (PE), polycarbonate (PC). ), Polyvinyl chloride (PVC), polypropylene (PP) and the like can be used.
  • a mold release agent such as a silicone-based mold release agent or a fluorine-based mold release agent may be applied to the surface of the mold release layer.
  • the pellicle of the present invention is used not only as a protective member for suppressing foreign matter from adhering to the exposure original plate in the exposure apparatus, but also for protecting the exposure original plate during storage of the exposure original plate and transportation of the exposure original plate. It may be used as a protective member.
  • a method of attaching a pellicle to an exposure original plate such as a photomask and manufacturing an exposure original plate with a pellicle there are a method of attaching with a mask adhesive described above, an electrostatic adsorption method, a method of mechanically fixing the pellicle, and the like.
  • the method for manufacturing a semiconductor or a liquid crystal display plate according to the present embodiment includes a step of exposing a substrate (semiconductor wafer or a liquid crystal display original plate) with the above-mentioned exposure original plate with a pellicle.
  • a substrate semiconductor wafer or a liquid crystal display original plate
  • the above-mentioned exposed original plate with a pellicle is installed on a stepper in order to form a photoresist pattern corresponding to an integrated circuit or the like on a substrate.
  • a lithography process which is one of the manufacturing processes of a semiconductor device or a liquid crystal display board
  • a projection optical system in which EUV light is reflected by an exposure original plate and guided to a substrate is used, and these are performed under reduced pressure or vacuum.
  • these foreign matter will not be imaged on the wafer coated with the photoresist, so that short-circuiting or disconnection of the integrated circuit or the like due to the image of the foreign matter can be prevented. Can be done. Therefore, by using the exposed original plate with a pellicle, the yield in the lithography process can be improved.
  • a filter (“TEMISH S-NTF1033-N01” manufactured by Nitto Denko Corporation) composed of a 15 cm square polytetrafluoroethylene porous membrane (PTFE porous membrane) and a polypropylene mesh-like support was prepared. A 1% by mass solution of each of the following resins (1) to (6) was spin-coated on this filter at 800 rpm for 60 seconds, and then air-dried at room temperature for 12 hours to volatilize the solvent.
  • Silicone resin adhesive (2) Epoxy resin adhesive (3) Acrylic resin adhesive (4) Fluororesin (5) Urethane resin adhesive (6) Untreated
  • the filter coated with the above resin was irradiated with hydrogen plasma by the following device.
  • Hydrogen plasma irradiation conditions Equipment: FlexAL manufactured by OXFORD INSTRUMENTS
  • Plasma source ICP (inductively coupled plasma)
  • Treatment conditions pressure 80 mTorr, H 2 flow rate 50sccm Power: 200W Processing temperature: 100 ° C Processing time: 600s
  • the filter having a porous film coated with a silicone resin or an epoxy resin has excellent hydrogen plasma resistance. Further, under the above conditions, for a filter having a porous film coated with an acrylic resin, a fluororesin, and a urethane resin, the porous film disappeared by hydrogen plasma. However, by reducing the power of the hydrogen plasma, lowering the temperature, and shortening the processing time, its superiority can be confirmed as compared with the untreated filter.
  • Example 1 A titanium pellicle frame (outer dimensions 150 mm ⁇ 118 mm ⁇ 1.5 mm, pellicle frame width 4.0 mm) was prepared. As shown in FIGS. 1 and 2, an L-shaped ventilation portion 10 is provided from the outside to the lower end surface of the pellicle frame 1.
  • reference numeral 1a indicates an upper end surface of the pellicle frame
  • 1b indicates a lower end surface of the pellicle frame.
  • Reference numeral 20 is a filter provided at the lower end surface opening of the pellicle frame, as will be described later, and is coated with a predetermined resin although not particularly shown.
  • a 10 mm long and 2.5 mm wide filter (“TEMISH S-NTF1033-N01” manufactured by Nitto Denko Corporation) consisting of a porous film made of PTFE and a mesh-like support made of polypropylene was prepared. Subsequently, 1 part by mass of a curing agent (“PT-56” manufactured by Shin-Etsu Chemical Co., Ltd.) is added to 100 parts by mass of a silicone resin adhesive (“X-40-3264” manufactured by Shin-Etsu Chemical Co., Ltd.). The stirred product was dissolved in a hydrocarbon solvent (“Isopar E” manufactured by Exxon Mobile Co., Ltd.) to prepare a solution consisting of 1% by mass.
  • a hydrocarbon solvent (“Isopar E” manufactured by Exxon Mobile Co., Ltd.)
  • the filter (reference numeral 20 in FIG. 2) was attached to the opening on the lower end surface of the pellicle frame with double-sided tape.
  • the pellicle frame is washed with a neutral detergent and pure water, and 100 parts by mass of a silicone resin-based adhesive (“X-40-3264” manufactured by Shin-Etsu Chemical Co., Ltd.) is applied to the upper end surface of the pellicle frame.
  • a silicone resin-based adhesive (“X-40-3264” manufactured by Shin-Etsu Chemical Co., Ltd.) 1 part by mass was added and stirred, and the mixture was applied so as to have a width of 1 mm and a thickness of 0.1 mm.
  • the pellicle frame was heated at 100 ° C. for 12 hours to cure the adhesive on the upper and lower end surfaces. Subsequently, an ultrathin silicon film as a pellicle film was pressure-bonded to the above-mentioned adhesive formed on the upper end surface of the pellicle frame to complete the pellicle.
  • Example 2 A filter having a length of 10 mm and a width of 2.5 mm (“TEMISH S-NTF1033-N01” manufactured by Nitto Denko Corporation) composed of a porous membrane made of PTFE and a mesh-like support made of polypropylene was prepared. Subsequently, an epoxy resin adhesive (“1001T75” manufactured by Mitsubishi Chemical Corporation) was dissolved in toluene to prepare a solution consisting of 1% by mass. After soaking 1 ml of this solution in the center of the filter, it was air-dried at room temperature for 2 hours to completely volatilize the solvent. The above filter was attached to the opening on the lower end surface of the pellicle frame with double-sided tape. Other than that, the pellicle was completed in the same manner as in Example 1 above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

本発明は、EUV露光用のペリクルフレームであって、該ペリクルフレームには少なくとも1個の通気部が設けられ、該通気部内には、樹脂で被覆された多孔質膜を有するフィルターが取り付けられることを特徴とするペリクルフレーム、該ペリクルフレームにペリクル膜が張設されることを特徴とするペリクル、EUV露光用のペリクル付露光原版であって、露光原版に上記ペリクルが装着されていることを特徴とするペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法を提供する。本発明のペリクルフレームは、EUV露光において水素ラジカルに十分に耐性がある。

Description

ペリクルフレーム、ペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法
 本発明は、ペリクルフレーム、ペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法に関する。
 近年、LSIのデザインルールはサブクオーターミクロンへと微細化が進んでおり、それに伴って、露光光源の短波長化が進んでいる。すなわち、露光光源は水銀ランプによるg線(436nm)、i線(365nm)から、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)などに移行しており、さらには主波長13.5nmのEUV(Extreme Ultra Violet)光を使用するEUV露光が検討されている。
 LSI、超LSIなどの半導体製造又は液晶表示板の製造においては、半導体ウエハまたは液晶用原板に光を照射してパターンを作製するが、この場合に用いるリソグラフィ用フォトマスク及びレチクル(以下、総称して「露光原版」と記述する)にゴミが付着していると、このゴミが光を吸収したり、光を曲げてしまうために、転写したパターンが変形したり、エッジが粗雑なものとなるほか、下地が黒く汚れたりして、寸法、品質、外観などが損なわれるという問題があった。
 これらの作業は、通常クリーンルームで行われているが、それでも露光原版を常に清浄に保つことは難しい。そこで、露光原版表面にゴミよけとしてペリクルを貼り付けた後に露光をする方法が一般に採用されている。この場合、異物は露光原版の表面には直接付着せず、ペリクル上に付着するため、リソグラフィ時に焦点を露光原版のパターン上に合わせておけば、ペリクル上の異物は転写に無関係となる。
 このペリクルの基本的な構成は、アルミニウムやチタンなどからなるペリクルフレームの上端面に露光に使われる光に対し透過率が高いペリクル膜が張設されるとともに、下端面に気密用ガスケットが形成されているものである。気密用ガスケットは一般的に粘着剤層が用いられ、この粘着剤層の保護を目的とした保護シートが貼り付けられる。ペリクル膜は、露光に用いる光(水銀ランプによるg線(436nm)、i線(365nm)、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)等)を良く透過させるニトロセルロース、酢酸セルロース、フッ素系ポリマーなどからなるが、EUV露光用では、ペリクル膜として極薄シリコン膜や炭素膜が検討されている。
 ところで、ペリクル用フィルターとしては、その異物補修能力からHEPAフィルター(High Efficiency Particulate Air Filter)やULPAフィルター(Ultra Low Penetration Air Filter)フィルターで使用されるような多孔質膜が使用されてきた。EUV用ペリクルにおいても、例えば特許文献1に記載されている通り、同様のフィルターを用いることが検討されている。
 しかしながら、EUV露光装置内には、EUV光を発生させる際に生じる飛散粒子(デブリ)と呼ばれる異物を効率よく除去するために、水素ガスで満たされている。その水素ガスがEUV光と反応し、水素ラジカルとなる。そのため、EUV用ペリクルには、従来のKrFペリクルやArFペリクルでは必要とされてこなかった、水素ラジカルに十分に耐性が求められる。
 一般的に、フィルターは異物捕集のために、多孔質膜を有し、多孔質膜の間隙を気体が通過する際に、異物を多孔質膜で捕獲し、異物の無い気体のみを通過させる。その性質から、多孔質膜はペリクルで使用される部材の中でも、最も表面積が大きく、水素ラジカルを含む気体に最も晒されることが容易に想像できる。このため、多孔質膜が水素ラジカルで劣化し、間隙が大きくなると異物捕集率も低下しうる。それ故に、フィルターに使用される多孔質膜には高い水素ラジカル耐性が必要とされる。
国際公開第2016/043292号
 本発明は、上記事情に鑑みなされたもので、EUV露光において水素ラジカルに十分に耐性のあるペリクルフレーム、及び該ペリクルフレームを用いたペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法を提供することを目的とする。
 本発明者は、上記目的を達成するため鋭意検討を重ねた結果、EUV露光において水素ラジカルに耐性のあるペリクルフレームとして、ペリクルフレームに設けられる通気部内に、樹脂で被覆された多孔質膜を有するフィルターを設けること、好ましくは、多孔質膜を被覆する樹脂をシリコーン樹脂又はエポキシ樹脂で形成することにより上記課題を解決できることを見出し、本発明を完成するに至ったものである。
 従って、本発明は、下記のペリクルフレーム、ペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法を提供する。
1.EUV露光用のペリクルフレームであって、該ペリクルフレームには少なくとも1個の通気部が設けられ、該通気部内には、樹脂で被覆された多孔質膜を有するフィルターが取り付けられることを特徴とするペリクルフレーム。
2.上記多孔質膜が、フッ素樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリカーボネート樹脂及びポリオレフィン樹脂からなる群より選択される少なくとも1種の樹脂からなる樹脂製多孔質膜である上記1記載のペリクルフレーム。
3.上記多孔質膜が、ポリテトラフルオロエチレン多孔質膜である上記1記載のペリクルフレーム。
4.上記多孔質膜を被覆する樹脂が、シリコーン樹脂又はエポキシ樹脂である上記1又は2記載のペリクルフレーム。
5.上記フィルターが、多孔質膜を支持する通気性支持層を有する上記1又は2記載のペリクルフレーム。
6.上記多孔質膜が、複数のノードと複数のフィブリルとを有し、隣り合うノードがフィブリルにより接続されている上記1又は2記載のペリクルフレーム。
7.上記通気性支持層が、織布、不織布、ネット及びメッシュからなる群より選択される少なくとも一つである上記5記載のペリクルフレーム。
8.ペリクルフレームの厚みは、2.5mm未満である上記1又は2記載のペリクルフレーム。
9.EUV露光用のペリクルであって、上記1記載のペリクルフレームにペリクル膜が張設されることを特徴とするペリクル。
10.ペリクルの高さが2.5mm以下である上記9載のペリクル。
11.上記ペリクル膜は、枠に支えられたペリクル膜である上記9又は10記載のペリクル。
12.露光原版に上記9記載のペリクルが装着されていることを特徴とするペリクル付露光原版。
13.露光原版が、EUV用露光原版である上記12記載のペリクル付露光原版。
14.EUVリソグラフィに用いられるペリクル付露光原版である上記12記載のペリクル付露光原版。
15.上記12記載のペリクル付露光原版を用いてEUV露光することを特徴とする露光方法。
16.上記12記載のペリクル付露光原版によってEUV露光する工程を備えることを特徴とする半導体の製造方法。
17.上記12記載のペリクル付露光原版によってEUV露光する工程を備えることを特徴とする液晶表示板の製造方法。
18.水素プラズマ環境下で使用されるペリクルフレームであって、該ペリクルフレームには少なくとも1個の通気部が設けられ、該通気部内には、樹脂で被覆された多孔質膜を有するフィルターが取り付けられることを特徴とするペリクルフレーム。
19.上記多孔質膜が、フッ素樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリカーボネート樹脂及びポリオレフィン樹脂からなる群より選択される少なくとも1種の樹脂からなる樹脂製多孔質膜である上記18記載のペリクルフレーム。
20.上記多孔質膜が、ポリテトラフルオロエチレン多孔質膜である上記18記載のペリクルフレーム。
21.上記多孔質膜を被覆する樹脂が、シリコーン樹脂又はエポキシ樹脂である上記18又は19記載のペリクルフレーム。
22.上記フィルターが、多孔質膜を支持する通気性支持層を有する上記18又は19記載のペリクルフレーム。
23.上記多孔質膜が、複数のノードと複数のフィブリルとを有し、隣り合うノードがフィブリルにより接続されている上記18又は19記載のペリクルフレーム。
24.上記通気性支持層が、織布、不織布、ネット及びメッシュからなる群より選択される少なくとも一つである上記22記載のペリクルフレーム。
25.ペリクルフレームの厚みは、2.5mm未満である上記18又は19記載のペリクルフレーム。
26.水素プラズマ環境下で使用されるペリクルであって、請求項18記載のペリクルフレームにペリクル膜が張設されることを特徴とするペリクル。
27.ペリクルの高さが2.5mm以下である上記26記載のペリクル。
28.上記ペリクル膜は、枠に支えられたペリクル膜である上記26又は27記載のペリクル。
29.水素プラズマ環境下で使用されるペリクル付露光原版であって、露光原版に請求項26記載のペリクルが装着されていることを特徴とするペリクル付露光原版。
30.露光原版が、EUV用露光原版である上記29記載のペリクル付露光原版。
31.EUVリソグラフィに用いられるペリクル付露光原版である上記29記載のペリクル付露光原版。
32.上記29記載のペリクル付露光原版によって、水素プラズマ環境下で露光が行われることを特徴とする露光方法。
33.上記29記載のペリクル付露光原版によって、水素プラズマ環境下で露光する工程を備えることを特徴とする半導体の製造方法。
34.上記29記載のペリクル付露光原版によって、水素プラズマ環境下で露光する工程を備えることを特徴とする液晶表示板の製造方法。
 本発明によれば、EUV露光において水素ラジカルに十分に耐性のあるペリクルフレーム及びペリクルを提供することができ、このペリクル付露光原版を用いたEUV露光方法、半導体の製造方法及び液晶表示板の製造方法に有用である。
本発明のペリクルフレームの一例を示す平面図である。 上記ペリクルフレームのA-A線に沿った断面であって、通気部及びフィルター部を示す概略図である。
 以下、本発明につき、更に詳しく説明する。
 本発明は、ペリクル膜を設ける上端面とフォトマスクに面する下端面とを有する枠状のペリクルフレームおよびそれを使用したペリクルである。
 ペリクルフレームは枠状であれば、その形状はペリクルを装着するフォトマスクの形状に対応する。一般的には、四角形(長方形又は正方形)枠状である。ペリクルフレームの角部(エッジ部)の形状については、そのまま角ばった(尖った)形状であってもよく、或いは、R面取り又はC面取り等の面取りを施し、曲線形状等の他の形状であってもよい。
 また、ペリクルフレームには、ペリクル膜を設けるための面(ここでは上端面とする)と、フォトマスク装着時にフォトマスクに面する面(ここでは下端面とする)がある。
 通常、上端面には、接着剤等を介してペリクル膜が設けられ、下端面には、ペリクルをフォトマスクに装着するための粘着剤等が設けられるが、この限りではない。
 ペリクルフレームの材質に制限はなく、公知のものを使用することができる。EUV用のペリクルフレームでは、高温にさらされる可能性があるため、熱膨張係数の小さな材料が好ましい。例えば、Si、SiO2、SiN、石英、インバー、チタン、チタン合金等が挙げられ、なかでも加工容易性や軽量なことからチタンやチタン合金が好ましい。
 ペリクルフレームの寸法は特に限定されないが、EUV用ペリクルの高さが2.5mm以下に制限されることから、EUV用のペリクルフレームの厚みはそれよりも小さくなり2.5mm未満である。
 また、EUV用のペリクルフレームの厚みは、ペリクル膜やマスク粘着剤等の厚みを勘案すると、1.5mm以下であることが好ましい。また、上記ペリクルフレームの厚みの下限値は1.0mm以上であることが好ましい。
 また、通常、ペリクルフレーム側面には、ハンドリングやペリクルをフォトマスクから剥離する際に用いられる冶具穴が設けられる。冶具穴の大きさはフレームの厚み方向の長さ(円形の場合は直径)が0.5~1.0mmである。穴の形状に制限はなく、円形や矩形であっても構わない。
 本発明では、ペリクルフレームには、ペリクル内外の圧力変化を緩和するための通気部が設けられる。通気部の形状や個数に制限はない。通気部にはペリクル内への異物侵入を防ぐために、フィルターが設けられる。フィルターの設置場所は特に制限は無く、ペリクルフレームの内側や、通気部の内部、あるいはペリクルフレームの外側にフィルターを設けることができる。
 本発明のペリクルフレームは、水素ラジカル耐性のある樹脂で被覆された多孔質膜を有するフィルターを持つことを特徴とする。多孔質膜としては、特に制限はないが、例えば、フッ素樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリカーボネート樹脂及びポリオレフィン樹脂からなる群より選択される少なくとも1種の樹脂から選ばれることが好適である。特に、KrFペリクルやArFペリクルとして使用実績のあるフッ素樹脂が好ましく、その中でも特に、ポリテトラフルオロエチレン(PTFE)であることが好ましい。
 PTFE多孔質膜は、一般に、PTFEの凝集部分であるノード(結節)と、ノードに両末端が結合した微細な繊維状構造体である無数のフィブリルとにより構成される。隣り合うノードはフィブリルにより接続されている。PTFE多孔質膜は、隣接するフィブリル間の空間(細孔)を通気経路とする、膜厚方向の通気性を有する。PTFE多孔質膜は延伸多孔質膜とも呼ばれ、PTFEの凝集体であるPTFEシートの延伸により形成される。PTFEシートの延伸によってノード及びフィブリルが形成され、これらの構成は、例えばPTFEシートの延伸条件によって変化する。
 この多孔質膜を被覆する樹脂については、充分な水素ラジカル耐性を有することが好ましく、具体的には、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ウレタン樹脂等が挙げられる。これらの中でも水素ラジカル耐性の観点からシリコーン樹脂又はエポキシ樹脂であることが好ましく、シリコーン樹脂であることがより好ましい。多孔質膜を樹脂で被覆する方法に特に制限はないが、樹脂溶液を調整し、多孔質膜に含ませる方法が容易であり、好ましい。多孔質膜に樹脂溶液を含ませる方法に制限はなく、例えば、多孔質膜を樹脂溶液に浸す、樹脂溶液を多孔質膜にスピンコーティングする、スプレーするなどの方法が可能である。樹脂溶液を用いることで、多孔質膜の隙間に容易に溶液が広がり、多孔質膜の繊維に樹脂を被覆することができる。なお、本発明において、樹脂による多孔質膜の被覆は、多孔質膜の全表面を被覆する必要は必ずしもなく、求められる水素ラジカル耐性に応じて被覆量や被覆割合を調整することができる。これら樹脂を光や熱により架橋・硬化させることにより水素ラジカル耐性を向上させることもできる。
 本発明において、フィルターは、多孔質膜以外の他の任意の部材を備えることができる。当該部材は、例えば、通気性支持層である。この場合、フィルターは、多孔質膜と、当該多孔質膜の一方の主面に配置された通気性支持層とを備える。通気性支持層の配置により、フィルターとしての強度が向上し、また、取扱性も向上する。
 通気性支持層は、好ましくは、多孔質膜に比べて厚さ方向の通気性及び透湿性が高い層である。通気性支持層には、例えば、織布、不織布、ネット、メッシュを用いることができる。通気性支持層を構成する材料は、例えば、ポリエステル、ポリエチレン、アラミド樹脂である。通気性支持層の形状は、多孔質膜の形状と同一であってもよいし、異なっていてもよい。通気性支持層は、例えば、多孔質膜との熱溶着、接着剤による接着等の手法により配置される。通気性支持層は、多孔質膜の一方の主面に配置されていても、双方の主面に配置されていてもよい。これら通気性支持層を前述した樹脂で被覆してもよい。
 また、ペリクル膜の材質に制限はないが、露光光源の波長における透過率が高く耐光性の高いものが好ましい。例えば、EUV露光に対しては極薄シリコン膜や炭素膜等が用いられる。炭素膜としては、例えば、グラフェン、ダイヤモンドライクカーボン、カーボンナノチューブ等の膜が挙げられる。なお、ペリクル膜単独での取り扱いが難しい場合には、シリコン等の枠に支えられたペリクル膜を用いることができる。その場合、枠の領域とペリクルフレームとを接着することにより、ペリクルを容易に製造することができる。
 本発明のペリクルは、上記のようなペリクルフレーム上端面に、粘着剤あるいは接着剤を介して、ペリクル膜が設けられる。粘着剤や接着剤の材料に制限はなく、公知のものを使用することができる。ペリクル膜を強く保持するために、接着力の強い粘着剤あるいは接着剤が好ましい。
 さらに、ペリクルフレームの下端面には、フォトマスクに装着するための粘着剤が形成される。一般的に、マスク粘着剤は、ペリクルフレームの全周にわたって設けられることが好ましい。
 マスク粘着剤としては、公知のものを使用することができ、アクリル系粘着剤やシリコーン系粘着剤が好適に使用できる。粘着剤は必要に応じて、任意の形状に加工されてもよい。
 マスク粘着剤の下端面には、粘着剤を保護するための離型層(セパレータ)が貼り付けられていてもよい。離型層の材質は、特に制限されないが、例えばポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリエチレン(PE)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)等を使用することができる。また、必要に応じて、シリコーン系離型剤やフッ素系離型剤等の離型剤を離型層の表面に塗布してもよい。
 本発明のペリクルは、露光装置内で、露光原版に異物が付着することを抑制するための保護部材としてだけでなく、露光原版の保管時や、露光原版の運搬時に露光原版を保護するための保護部材としてもよい。ペリクルをフォトマスク等の露光原版に装着し、ペリクル付露光原版を製造する方法には、前述したマスク粘着剤で貼り付ける方法の他、静電吸着法、機械的に固定する方法等がある。
 本実施形態に係る半導体又は液晶表示板の製造方法は、上記のペリクル付露光原版によって基板(半導体ウエハ又は液晶用原板)を露光する工程を備える。例えば、半導体装置又は液晶表示板の製造工程の一つであるリソグラフィ工程において、集積回路等に対応したフォトレジストパターンを基板上に形成するために、ステッパーに上記のペリクル付露光原版を設置して露光する。一般に、EUV露光ではEUV光が露光原版で反射して基板へ導かれる投影光学系が使用され、これらは減圧又は真空下で行われる。これにより、仮にリソグラフィ工程において異物がペリクル上に付着したとしても、フォトレジストが塗布されたウエハ上にこれらの異物は結像しないため、異物の像による集積回路等の短絡や断線等を防ぐことができる。よって、ペリクル付露光原版の使用により、リソグラフィ工程における歩留まりを向上させることができる。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
〔フィルターの水素ラジカル耐性評価〕
 15cm角のポリテトラフルオロエチレン製の多孔質膜(PTFE製多孔質膜)及びポリプロピレン製メッシュ状支持体からなるフィルター(日東電工(株)製「TEMISH S-NTF1033-N01」)を準備した。このフィルターに以下の(1)~(6)の各樹脂の1質量%溶液を800rpm、60秒でスピンコーティングした後、12時間、室温で風乾して溶剤を揮発させた。
  (1)シリコーン樹脂系粘着剤
  (2)エポキシ樹脂系接着剤
  (3)アクリル樹脂系粘着剤
  (4)フッ素樹脂
  (5)ウレタン樹脂系粘着剤
  (6)未処理
 上記樹脂を被覆したフィルターに下記装置にて水素プラズマ照射を実施した。
 (水素プラズマ照射条件
装置:OXFORD INSTRUMENTS社製 FlexAL
プラズマ源:ICP(誘導結合型プラズマ)
処理条件:圧力 80mTorr、H2流量 50sccm
パワー:200W
処理温度:100℃
処理時間:600s
 水素プラズマ照射後のフィルターを顕微鏡(ニコン社製の「ECLIPSE LV150」)で観察し、以下のように判断した。その結果を表1に示す。
(判断基準)
  A:PTEF製多孔質膜が存在し、フィルター構造に変化が無いことを確認した。
  B:PTFE製多孔質膜の消失を確認した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、シリコーン樹脂又はエポキシ樹脂で被覆した多孔質膜を有するフィルターは水素プラズマ耐性が優れることが確認できた。また、上記条件では、アクリル樹脂、フッ素樹脂及びウレタン樹脂で被覆した多孔質膜を有するフィルターについては、水素プラズマにより多孔質膜が消失した。しかしながら、水素プラズマのパワーを小さくしたり、温度を低くしたり、処理時間を短くしたりすることで、未処理のフィルターと比較すると、その優位性を確認することができる。
〔実施例1〕
 チタン製のペリクルフレーム(外寸150mm×118mm×1.5mm、ペリクルフレーム幅4.0mm)を準備した。図1、図2に示すように、ペリクルフレーム1の外側から下端面にかけて、L字型に通気部10を設けた。なお、図1及び図2において、符号1aはペリクルフレームの上端面を示し、1bはペリクルフレームの下端面を示す。符号20は、後述するように、ペリクルフレームの下端面開口部に設けられるフィルターであり、特に図示してはいないが所定の樹脂により被覆されている。
 PTFE製多孔質膜及びポリプロピレン製メッシュ状支持体からなる縦10mm、横2.5mmのフィルター(日東電工(株)製の「TEMISH S-NTF1033-N01」)を準備した。続いて、シリコーン樹脂系粘着剤(信越化学工業(株)製「X-40-3264」)100質量部に硬化剤(信越化学工業(株)製「PT-56」)1質量部を加えて攪拌したものを炭化水素系溶剤(エクソンモービル社製の「アイソパーE」に溶解させ、1質量%からなる溶液を準備した。この溶液をフィルターの中心部に1ml浸み込ませた後、室温で2時間風乾して、完全に溶剤を揮発させた。ペリクルフレームの下端面開口部に上記フィルター(図2中の符号20)を両面テープで貼り付けた。
 上記ペリクルフレームを中性洗剤と純水で洗浄し、該ペリクルフレームの上端面にはシリコーン樹脂系粘着剤(信越化学工業(株)製「X-40-3264」)100質量部に硬化剤(信越化学工業(株)製「PT-56」)1質量部を加えて攪拌したものを幅1mm、厚み0.1mmになるよう塗布した。また、ペリクルフレームの下端面にはマスク粘着剤として、アクリル樹脂系粘着剤(綜研化学(株)製「SKダイン1499M」)100質量部に硬化剤(綜研化学(株)製「L-45」)0.1質量部を加えて攪拌したものを全周に渡り、幅1mm、厚み0.1mmになるよう塗布した。
 その後、ペリクルフレームを100℃で12時間加熱して、上下端面の粘着剤を硬化させた。続いて、ペリクル膜として極薄シリコン膜を、ペリクルフレームの上端面に形成した上記粘着剤に圧着させて、ペリクルを完成させた。
〔実施例2〕
 PTFE製多孔質膜及びポリプロピレン製メッシュ状支持体からなる縦10mm、横2.5mmのフィルター(日東電工(株)製の「TEMISH S-NTF1033-N01」)を準備した。続いて、エポキシ樹脂系接着剤(三菱ケミカル社製の「1001T75」)をトルエンに溶解させ、1質量%からなる溶液を準備した。この溶液をフィルターの中心部に1ml浸み込ませた後、室温で2時間風乾して、完全に溶剤を揮発させた。ペリクルフレームの下端面開口部に上記フィルターを両面テープで貼り付けた。そのほかは、上記実施例1と同じようにペリクルを完成させた。
 上記実施例1及び実施例2により、水素ラジカルに耐性のあるフィルターを有するペリクルを提供できることが分かる。
1  ペリクルフレーム
1a ペリクルフレームの上端面
1b ペリクルフレームの下端面
10 通気部
20 フィルター

Claims (34)

  1.  EUV露光用のペリクルフレームであって、該ペリクルフレームには少なくとも1個の通気部が設けられ、該通気部内には、樹脂で被覆された多孔質膜を有するフィルターが取り付けられることを特徴とするペリクルフレーム。
  2.  上記多孔質膜が、フッ素樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリカーボネート樹脂及びポリオレフィン樹脂からなる群より選択される少なくとも1種の樹脂からなる樹脂製多孔質膜である請求項1記載のペリクルフレーム。
  3.  上記多孔質膜が、ポリテトラフルオロエチレン多孔質膜である請求項1記載のペリクルフレーム。
  4.  上記多孔質膜を被覆する樹脂が、シリコーン樹脂又はエポキシ樹脂である請求項1又は2記載のペリクルフレーム。
  5.  上記フィルターが、多孔質膜を支持する通気性支持層を有する請求項1又は2記載のペリクルフレーム。
  6.  上記多孔質膜が、複数のノードと複数のフィブリルとを有し、隣り合うノードがフィブリルにより接続されている請求項1又は2記載のペリクルフレーム。
  7.  上記通気性支持層が、織布、不織布、ネット及びメッシュからなる群より選択される少なくとも一つである請求項5記載のペリクルフレーム。
  8.  ペリクルフレームの厚みは、2.5mm未満である請求項1又は2記載のペリクルフレーム。
  9.  EUV露光用のペリクルであって、請求項1記載のペリクルフレームにペリクル膜が張設されることを特徴とするペリクル。
  10.  ペリクルの高さが2.5mm以下である請求項9載のペリクル。
  11.  上記ペリクル膜は、枠に支えられたペリクル膜である請求項9又は10記載のペリクル。
  12.  露光原版に請求項9記載のペリクルが装着されていることを特徴とするペリクル付露光原版。
  13.  露光原版が、EUV用露光原版である請求項12記載のペリクル付露光原版。
  14.  EUVリソグラフィに用いられるペリクル付露光原版である請求項12記載のペリクル付露光原版。
  15.  請求項12記載のペリクル付露光原版を用いてEUV露光することを特徴とする露光方法。
  16.  請求項12記載のペリクル付露光原版によってEUV露光する工程を備えることを特徴とする半導体の製造方法。
  17.  請求項12記載のペリクル付露光原版によってEUV露光する工程を備えることを特徴とする液晶表示板の製造方法。
  18.  水素プラズマ環境下で使用されるペリクルフレームであって、該ペリクルフレームには少なくとも1個の通気部が設けられ、該通気部内には、樹脂で被覆された多孔質膜を有するフィルターが取り付けられることを特徴とするペリクルフレーム。
  19.  上記多孔質膜が、フッ素樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリカーボネート樹脂及びポリオレフィン樹脂からなる群より選択される少なくとも1種の樹脂からなる樹脂製多孔質膜である請求項18記載のペリクルフレーム。
  20.  上記多孔質膜が、ポリテトラフルオロエチレン多孔質膜である請求項18記載のペリクルフレーム。
  21.  上記多孔質膜を被覆する樹脂が、シリコーン樹脂又はエポキシ樹脂である請求項18又は19記載のペリクルフレーム。
  22.  上記フィルターが、多孔質膜を支持する通気性支持層を有する請求項18又は19記載のペリクルフレーム。
  23.  上記多孔質膜が、複数のノードと複数のフィブリルとを有し、隣り合うノードがフィブリルにより接続されている請求項18又は19記載のペリクルフレーム。
  24.  上記通気性支持層が、織布、不織布、ネット及びメッシュからなる群より選択される少なくとも一つである請求項22記載のペリクルフレーム。
  25.  ペリクルフレームの厚みは、2.5mm未満である請求項18又は19記載のペリクルフレーム。
  26.  水素プラズマ環境下で使用されるペリクルであって、請求項18記載のペリクルフレームにペリクル膜が張設されることを特徴とするペリクル。
  27.  ペリクルの高さが2.5mm以下である請求項26記載のペリクル。
  28.  上記ペリクル膜は、枠に支えられたペリクル膜である請求項26又は27記載のペリクル。
  29.  水素プラズマ環境下で使用されるペリクル付露光原版であって、露光原版に請求項26記載のペリクルが装着されていることを特徴とするペリクル付露光原版。
  30.  露光原版が、EUV用露光原版である請求項29記載のペリクル付露光原版。
  31.  EUVリソグラフィに用いられるペリクル付露光原版である請求項29記載のペリクル付露光原版。
  32.  請求項29記載のペリクル付露光原版によって、水素プラズマ環境下で露光が行われることを特徴とする露光方法。
  33.  請求項29記載のペリクル付露光原版によって、水素プラズマ環境下で露光する工程を備えることを特徴とする半導体の製造方法。
  34.  請求項29記載のペリクル付露光原版によって、水素プラズマ環境下で露光する工程を備えることを特徴とする液晶表示板の製造方法。
PCT/JP2021/017960 2020-05-14 2021-05-12 ペリクルフレーム、ペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法 WO2021230262A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022521945A JPWO2021230262A1 (ja) 2020-05-14 2021-05-12
US17/923,039 US20230236497A1 (en) 2020-05-14 2021-05-12 Pellicle Frame, Pellicle, Pellicle-Attached Exposure Original Plate, Method for Manufacturing Semiconductor, Method for Manufacturing Liquid Crystal Display Plate, and Exposure Method
EP21805081.3A EP4152094A1 (en) 2020-05-14 2021-05-12 Pellicle frame, pellicle, pellicle-attached exposure original plate, method for manufacturing semiconductor, method for manufacturing liquid crystal display plate, and exposure method
CN202180032763.2A CN115485618A (zh) 2020-05-14 2021-05-12 防护薄膜框架、防护薄膜、带防护薄膜的曝光原版、半导体的制造方法、液晶显示板的制造方法及曝光方法
KR1020227041067A KR20230011957A (ko) 2020-05-14 2021-05-12 펠리클 프레임, 펠리클, 펠리클 부착 노광 원판, 반도체의 제조 방법, 액정 표시판의 제조 방법 및 노광 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-085355 2020-05-14
JP2020085355 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021230262A1 true WO2021230262A1 (ja) 2021-11-18

Family

ID=78524557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017960 WO2021230262A1 (ja) 2020-05-14 2021-05-12 ペリクルフレーム、ペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法

Country Status (7)

Country Link
US (1) US20230236497A1 (ja)
EP (1) EP4152094A1 (ja)
JP (1) JPWO2021230262A1 (ja)
KR (1) KR20230011957A (ja)
CN (2) CN115485618A (ja)
TW (2) TW202142952A (ja)
WO (1) WO2021230262A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305254A (ja) * 1999-04-22 2000-11-02 Shin Etsu Chem Co Ltd フィルター付きペリクル
JP2007333910A (ja) * 2006-06-14 2007-12-27 Shin Etsu Chem Co Ltd ペリクル
WO2016043292A1 (ja) 2014-09-19 2016-03-24 三井化学株式会社 ペリクル、その製造方法及び露光方法
JP2016524184A (ja) * 2013-05-22 2016-08-12 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学素子及び当該光学素子に対する放射の影響を低減する手段を備えた光学コンポーネント
JP2016191902A (ja) * 2015-03-30 2016-11-10 信越化学工業株式会社 ペリクル
WO2018116517A1 (ja) * 2016-12-19 2018-06-28 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜とこれを用いた防水通気膜及び防水通気部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968792A (ja) * 1995-08-31 1997-03-11 Shin Etsu Chem Co Ltd フィルター付ペリクル
JP5047232B2 (ja) * 2009-06-26 2012-10-10 信越化学工業株式会社 ペリクル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305254A (ja) * 1999-04-22 2000-11-02 Shin Etsu Chem Co Ltd フィルター付きペリクル
JP2007333910A (ja) * 2006-06-14 2007-12-27 Shin Etsu Chem Co Ltd ペリクル
JP2016524184A (ja) * 2013-05-22 2016-08-12 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学素子及び当該光学素子に対する放射の影響を低減する手段を備えた光学コンポーネント
WO2016043292A1 (ja) 2014-09-19 2016-03-24 三井化学株式会社 ペリクル、その製造方法及び露光方法
JP2016191902A (ja) * 2015-03-30 2016-11-10 信越化学工業株式会社 ペリクル
WO2018116517A1 (ja) * 2016-12-19 2018-06-28 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜とこれを用いた防水通気膜及び防水通気部材

Also Published As

Publication number Publication date
EP4152094A1 (en) 2023-03-22
JPWO2021230262A1 (ja) 2021-11-18
TW202142952A (zh) 2021-11-16
CN215986893U (zh) 2022-03-08
US20230236497A1 (en) 2023-07-27
CN115485618A (zh) 2022-12-16
KR20230011957A (ko) 2023-01-25
TWM621314U (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
JP6395320B2 (ja) ペリクル
KR102574361B1 (ko) 펠리클
JP2006504996A (ja) フォトマスク・アセンブリ、およびリソグラフィ工程中に生成される汚染物からそれを保護する方法
JP2020098227A (ja) フォトリソグラフィ用ペリクル膜及びこれを備えたペリクル
TWI461841B (zh) 微影用防護薄膜組件
TW202346612A (zh) 防護薄膜框架、防護薄膜組件、曝光方法及半導體元件之製造方法
JP2022066486A (ja) ペリクル、ペリクル付露光原版、露光方法及び半導体の製造方法
JP2023057096A (ja) ペリクルの製造方法、ペリクル付フォトマスクの製造方法、露光方法、半導体デバイスの製造方法、液晶ディスプレイの製造方法及び有機elディスプレイの製造方法
JP2022121755A (ja) ペリクル、ペリクル付露光原版、露光方法及び半導体の製造方法
TWI488932B (zh) 微影薄皮
WO2021230262A1 (ja) ペリクルフレーム、ペリクル、ペリクル付露光原版、半導体の製造方法、液晶表示板の製造方法及び露光方法
JP2003057804A (ja) リソグラフィ用ペリクル
WO2021246187A1 (ja) ペリクルフレーム、ペリクル、ペリクル付露光原版、露光方法、半導体の製造方法及び液晶表示板の製造方法
TWI571698B (zh) Method for manufacturing EUV mask inorganic protective film module
JP7331955B2 (ja) ペリクルフレーム、ペリクル、ペリクル付露光原版及び露光方法、並びに半導体又は液晶ディスプレイの製造方法
WO2021149602A1 (ja) ペリクルフレーム、ペリクル、ペリクルの検査方法、ペリクル付露光原版及び露光方法、並びに半導体又は液晶表示板の製造方法
WO2021251157A1 (ja) ペリクルフレーム、ペリクル、ペリクル付露光原版、露光方法、半導体の製造方法及び液晶表示板の製造方法
TW202420478A (zh) 防塵薄膜框架及防塵薄膜組件
JP2000305253A (ja) フィルター付きペリクルおよびその製造方法
KR20020006975A (ko) 레티클 오염을 방지하기 위한 펠리클 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521945

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021805081

Country of ref document: EP

Effective date: 20221214