WO2021226887A1 - 液压调节单元、制动***及控制方法 - Google Patents

液压调节单元、制动***及控制方法 Download PDF

Info

Publication number
WO2021226887A1
WO2021226887A1 PCT/CN2020/090089 CN2020090089W WO2021226887A1 WO 2021226887 A1 WO2021226887 A1 WO 2021226887A1 CN 2020090089 W CN2020090089 W CN 2020090089W WO 2021226887 A1 WO2021226887 A1 WO 2021226887A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
control valve
hydraulic
hydraulic chamber
cylinders
Prior art date
Application number
PCT/CN2020/090089
Other languages
English (en)
French (fr)
Inventor
杨维妙
张永生
靳彪
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080004512.9A priority Critical patent/CN112585046B/zh
Priority to EP20935487.7A priority patent/EP4147928A4/en
Priority to PCT/CN2020/090089 priority patent/WO2021226887A1/zh
Publication of WO2021226887A1 publication Critical patent/WO2021226887A1/zh
Priority to US17/985,347 priority patent/US20230077277A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/168Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/04Arrangements of piping, valves in the piping, e.g. cut-off valves, couplings or air hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/08Brake cylinders other than ultimate actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/92Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action
    • B60T8/94Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action on a fluid pressure regulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/403Brake circuit failure

Definitions

  • This application relates to the field of automobiles, and more specifically, to hydraulic adjustment units, braking systems, and control methods.
  • the braking system of a car is a system that applies a certain braking force to the wheels of the car to perform a certain degree of forced braking.
  • the function of the braking system is to force a driving car to decelerate or even stop according to the requirements of the driver or the controller, or to make a stopped car park stably under various road conditions (for example, on a ramp), or to make The speed of the car driving downhill remains stable.
  • the electro-hydraulic brake system (Electro-Hydraulic Brake, EHB) as a popular brake system usually includes a dual-circuit brake system and a distributed brake system.
  • EHB Electro-Hydraulic Brake
  • the hydraulic adjusting device is used to provide braking force for the first set of wheel brake cylinders through the first brake line
  • the hydraulic adjusting device is used to provide the second set of wheels through the second brake line.
  • General Motors uses a hydraulic adjustment device with a two-way pressurization function as the hydraulic adjustment device in the above-mentioned dual-circuit brake system.
  • the hydraulic pressure regulating device with two-way pressure boosting function is in the process of positive pressure
  • the second hydraulic chamber of the hydraulic pressure regulating device is the first brake pipe through the first brake pipeline provided with the one-way valve.
  • One group of vehicles provides braking force
  • the second hydraulic chamber provides braking force for the second group of vehicles through a second brake pipeline provided with a one-way valve.
  • the first hydraulic chamber of the hydraulic adjusting device provides braking force for the first group of vehicles through the first brake line provided with the one-way valve, and at the same time, the first hydraulic chamber is provided with the one-way valve.
  • the second brake line provides braking force for the second group of vehicles.
  • the first brake line and the second brake line are both based on the one-way valve to control the flow of the brake fluid, and the on-off of the brake line cannot be controlled. In this way, when one of the brake lines leaks, the brake fluid in the brake system will be lost along with the leaked brake line, causing the hydraulic adjustment unit to be unable to pressurize the brake system, reducing the vehicle's driving performance. safety.
  • the present application provides a hydraulic adjusting unit, a braking system, and a control method to individually pressurize any brake pipeline in the dual-circuit brake pipeline, so as to improve the driving safety of the vehicle.
  • a hydraulic adjustment unit in a braking system including: a hydraulic adjustment device 10, the hydraulic adjustment device 10 includes a first hydraulic chamber 16 and a second hydraulic chamber 17; the second hydraulic chambers 17 are respectively Connected to the first brake line 110 in the brake system and the second brake line 120 in the brake system, and the first brake line 110 is used for The first set of wheel brake cylinders 28, 29 provide braking force, and the second brake pipeline 120 is used to provide braking force for the second set of wheel brake cylinders 26, 27 in the braking system, where: The first brake pipeline 110 is provided with a first control valve 111, the on-off state of the first control valve 111 controls the on-off state of the first brake pipeline 110, and the second brake The pipeline 120 is provided with a second control valve 121, the on-off state of the second control valve 121 controls the on-off state of the second brake pipeline 120; the first hydraulic chamber 16 passes through the brake The third brake pipeline 130 in the system is connected to the second brake pipeline 120, and the first hydraulic chamber 16 serves
  • the third brake line 130 communicates with the first brake line through the second brake line 120.
  • the brake pipeline 110 is in communication, and the first hydraulic chamber 16 provides braking force for the first set of wheel brake cylinders 28 and 29 through the first brake pipeline 110.
  • the second hydraulic chamber 17 provides braking force for the first set of wheel brake cylinders 28 and 29 through the first brake pipeline 110 provided with the first control valve 111, and is provided with a second control valve 111.
  • the second brake pipe 120 of the valve 121 provides braking force for the second group of wheel brake cylinders 26 and 27, which is beneficial to realize the independent pressure increase of the first brake pipe 110 and the second brake pipe 120, and avoid
  • the first brake line 110 and the second brake line 120 with check valves provide the first set of wheel brake cylinders 28, 29 and the second set of wheel brake cylinders 26, 27.
  • the on-off state of the first brake line 110 and the second brake line 120 cannot be controlled.
  • the second hydraulic chamber 16 can reuse the first brake line 110 provided with the first control valve 111 and the second brake line 120 provided with the second control valve 121 to determine whether it is a second group system.
  • the driving wheel cylinders 26 and 27 provide braking force, which is beneficial to reduce the number of control valves in the braking system and reduce the cost of the braking system.
  • the above-mentioned hydraulic adjustment device 10 is a hydraulic adjustment device with a two-way pressurization function.
  • the second hydraulic chamber 17 is connected to the first end of the fourth brake line 140, and the second end of the fourth brake line 140 is connected to the second end of the fourth brake line 140.
  • the first end of the control valve 121 is connected, and the interface between the third brake pipe 130 and the second brake pipe 120 is connected to the second end of the second control valve 121.
  • the second hydraulic chamber 17 provides braking force for the first set of wheel brake cylinders 28 and 29 through the first brake pipeline 110 provided with the first control valve 111, and is provided with a second control valve 111.
  • the second brake line 120 of the valve 121 provides braking force for the second group of wheel brake cylinders 26 and 27, which is beneficial to realize the independent pressure increase of the first brake line 110 and the second brake line 120.
  • the second end of the first control valve 111 is connected to the second end of the second control valve 121 through a third control valve 141, and the third control valve 141 controls The on-off between the second end of the second control valve 121 and the second end of the first control valve 111.
  • the third control valve 141 between the second end of a control valve 111 and the second end of the second control valve 121, when the third control valve 141 is in the conducting state, the first The pressure of the brake fluid between the first brake pipe 110 where the control valve 111 is located and the second brake pipe 120 where the second control valve 121 is located is equalized, which is beneficial to improve the braking safety of the brake system.
  • a first check valve 122 is provided between the first interface of the hydraulic adjustment unit and the second interface of the hydraulic adjustment unit, and the first interface is the third interface.
  • the interface between the dynamic pipeline 130 and the second brake pipeline 120, the second interface is the interface between the third control valve 141 and the second brake pipeline 120, the first single
  • the direction valve 122 allows the brake fluid to flow from the first port to the second port, and the first one-way valve 122 blocks the flow of brake fluid from the second port to the first port.
  • the first check valve 122 is provided between the first port and the second port to allow the brake fluid to flow from the first port to the second port, and the first check valve 122 prevents the brake fluid from flowing from the first port to the second port.
  • the brake fluid flows from the second port to the first port, which is beneficial to improve the braking efficiency of the first hydraulic chamber 16.
  • a fourth control valve 142 is provided on the fourth brake pipeline 140, and the on-off of the fourth control valve 142 controls the on-off of the fourth brake pipeline 140. .
  • a fourth control valve 142 is provided on the fourth brake pipe 140 to control the on and off of the fourth brake pipe 140 through the on and off of the fourth control valve 142. It is avoided that when the first hydraulic chamber 16 provides braking force, the brake fluid flows into the second hydraulic chamber 17 through the fourth brake pipeline, which is beneficial to improve the braking efficiency of the first hydraulic chamber 16.
  • a fifth control valve 131 is provided on the third brake pipeline 130, and the fifth control valve 131 controls the on and off of the third brake pipeline 130.
  • the fifth control valve 131 is provided on the third brake line, so that the first hydraulic chamber 16 can be connected and disconnected by the fifth control valve 131, which can connect the first brake line 110 and the second brake line 110 and the second brake line.
  • the brake pipeline 120 provides independent braking, which is beneficial to improve the safety of the vehicle during driving.
  • the first hydraulic chamber 16 and the second hydraulic chamber 17 are formed by separating the hydraulic cylinder 11 in the hydraulic adjustment unit by the piston 12 in the hydraulic adjustment unit.
  • the end of the first hydraulic chamber 16 is provided with a push rod support portion 14, the push rod support portion 14 supports the push rod 13 driving the piston 12, and the push rod support portion 14 is provided with a first A hydraulic adjustment port 14a, the first hydraulic adjustment port 14a is connected to the first liquid outlet pipe 190 of the brake system; the push rod 13 is provided with a second hydraulic adjustment port 13a, the second hydraulic adjustment The port 13a is in communication with the first hydraulic chamber 16.
  • the first hydraulic pressure adjustment port 14a When the piston 12 is at the inner dead center of the piston stroke, the first hydraulic pressure adjustment port 14a is in communication with the second hydraulic pressure adjustment port 13a, and the first hydraulic pressure The brake fluid in the chamber 16 is discharged from the first hydraulic chamber 16 through the first fluid outlet line 150, when the piston 12 is located at a position other than the inner dead center in the piston stroke , The first hydraulic pressure regulating port 14a is not connected with the second hydraulic pressure regulating port 13a.
  • the outlet pipe of the first hydraulic chamber 16 is arranged in sections on the push rod support portion 14 (corresponding to the first hydraulic adjustment port 14a) and the push rod 13 (corresponding to the second hydraulic adjustment port 13a) In this way, when the piston 12 is at the inner dead center of the piston stroke, the first hydraulic pressure adjustment port 14a communicates with the second hydraulic pressure adjustment port 13a.
  • the first hydraulic pressure The adjustment port 14a and the second hydraulic adjustment port 13a are not connected, that is, the on-off state of the first hydraulic adjustment port 14a and the second hydraulic adjustment port 13a is controlled by the position of the piston 12 in the piston stroke, which avoids the traditional hydraulic adjustment device.
  • a control valve needs to be specially configured for the first hydraulic chamber 16 to control the on and off of the liquid outlet pipeline of the first hydraulic chamber 16 to help reduce the number of control valves in the hydraulic adjustment unit and reduce the cost in the hydraulic adjustment unit.
  • the first hydraulic chamber 16 is connected to a first fluid inlet line 190, and the first fluid inlet line 190 is used to feed the brake hydraulic pressure in the hydraulic pressure adjustment unit into the place. Mentioned first hydraulic chamber 16.
  • the brake fluid in the first hydraulic chamber 16 communicates with the first hydraulic pressure adjustment port 14a through the The second hydraulic pressure adjusting port 13a discharges the first hydraulic pressure chamber 16.
  • the outlet pipe of the first hydraulic chamber 16 is arranged in sections on the push rod support portion 14 (corresponding to the first hydraulic adjustment port 14a) and the push rod 13 (corresponding to the second hydraulic adjustment port 13a) In this way, when the piston 12 is at the inner dead center of the piston stroke, the first hydraulic pressure adjustment port 14a is in communication with the second hydraulic pressure adjustment port 13a, and the brake fluid in the first hydraulic chamber 16 can pass through the connected first hydraulic pressure adjustment port 14a. And the second hydraulic adjustment port 13a discharges the first hydraulic chamber 16, which is beneficial to reduce the number of control valves in the hydraulic adjustment unit and reduce the cost in the hydraulic adjustment unit.
  • an annular or semi-annular first diversion groove 13b is provided along the outer circumference of the push rod 13, and the first diversion groove 13b and the second hydraulic adjustment port 13a is connected.
  • an annular or semi-annular second diversion groove 13c is provided along the inner periphery of the push rod support portion 14, and the second diversion groove 13c is connected to the first diversion groove 13c.
  • the hydraulic pressure adjustment port 14a communicates with each other.
  • the second hydraulic pressure adjustment port 13a is obliquely arranged on the push rod 13 and penetrates the push rod 13, and the first end of the second hydraulic pressure adjustment port 13a and the piston
  • the distance between the second hydraulic adjustment port 13a and the piston 12 is shorter than the distance between the second hydraulic adjustment port 13a and the piston 12, wherein the first end is the second hydraulic adjustment port 13a and the first One end of the hydraulic adjustment port 14a is connected, and the second end is an end of the second hydraulic adjustment port 13a that communicates with the first hydraulic chamber 16.
  • the connected first The two hydraulic pressure adjustment ports 13a and the first hydraulic pressure adjustment port 14a may communicate with the first hydraulic chamber 16.
  • the push rod support 14 and the second hydraulic adjustment port 13a are spaced apart to avoid the push rod support 14 from blocking the second hydraulic adjustment port 13a, which is beneficial to convenience
  • the brake fluid flows into the second hydraulic adjustment port 13a, which improves the pressure reduction efficiency of the hydraulic adjustment device.
  • a brake system comprising a first set of wheel brake cylinders 28, 29, a second set of wheel brake cylinders 26, 27, and the hydraulic adjustment unit according to any one of claims 1-8
  • the hydraulic adjustment unit provides braking force for the first set of wheel brake cylinders 28, 29 through the first brake pipeline 110, and the hydraulic adjustment unit is controlled by the second brake pipeline 120.
  • the second set of brake wheel cylinders 26, 27 provide braking force.
  • control system further includes a driving device 15 that drives the piston 12 in the hydraulic adjustment device 10 to move along the inner wall of the hydraulic cylinder 11 of the hydraulic adjustment unit, The piston 12 separates the hydraulic cylinder 11 into the first hydraulic chamber 16 and the second hydraulic chamber 17.
  • an automobile including the hydraulic pressure adjustment unit according to any one of the possible implementation manners of the second aspect, wherein the hydraulic pressure adjustment unit adjusts the brake in the brake pipeline of the brake system. Hydraulic pressure to control the amount of braking force applied to the brake wheel cylinders in the brake system.
  • a method for controlling a brake system includes: a hydraulic pressure adjusting device 10 with a two-way pressurization function.
  • the hydraulic cylinder 11 of the hydraulic pressure adjusting device 10 is divided into a first hydraulic pressure by a piston 12 Chamber 16 and a second hydraulic chamber 17; the second hydraulic chamber 17 is respectively connected to the first brake line 110 in the brake system and the second brake line 120 in the brake system, so
  • the first brake line 110 is used to provide braking force for the first set of wheel brake cylinders 28 and 29 in the brake system
  • the second brake line 120 is used to provide braking force for the brake system.
  • the second set of wheel brake cylinders 26, 27 provide braking force, wherein a first control valve 111 is provided in the first brake pipeline 110, and the on-off state of the first control valve 111 controls the first The on-off state of a brake pipeline 110, the second brake pipeline 120 is provided with a second control valve 121, and the on-off state of the second control valve 121 controls the second brake pipeline 120 The on-off state; the first hydraulic chamber 16 is connected to the second brake line 120 through the third brake line 130 in the brake system, and the first hydraulic chamber 16 passes through the first The second brake pipeline 120 provides braking force for the second set of wheel brake cylinders 26, 27.
  • the third brake The pipeline 130 communicates with the first brake pipeline 110 through the second brake pipeline 120, and the first hydraulic chamber 16 brakes the first group through the first brake pipeline 110.
  • the wheel cylinders 28 and 29 provide braking force, and the method includes: a controller generates a control instruction, the control instruction is used to control the drive device 15; the controller sends the control instruction to the drive device 15 through Control the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11 to increase or decrease the first set of brake wheel cylinders 28, 29 and/or the second set of brakes The pressure of the brake fluid in the wheel cylinders 26, 27.
  • the second hydraulic chamber 17 provides braking force for the first set of wheel brake cylinders 28 and 29 through the first brake pipeline 110 provided with the first control valve 111, and is provided with a second control valve 111.
  • the second brake pipe 120 of the valve 121 provides braking force for the second group of wheel brake cylinders 26 and 27, which is beneficial to realize the independent pressure increase of the first brake pipe 110 and the second brake pipe 120, and avoid
  • the first brake line 110 and the second brake line 120 with check valves provide the first set of wheel brake cylinders 28, 29 and the second set of wheel brake cylinders 26, 27.
  • the on-off state of the first brake line 110 and the second brake line 120 cannot be controlled.
  • the second hydraulic chamber 16 can reuse the first brake line 110 provided with the first control valve 111 and the second brake line 120 provided with the second control valve 121 to determine whether it is a second group system.
  • the driving wheel cylinders 26 and 27 provide braking force, which is beneficial to reduce the number of control valves in the braking system and reduce the cost of the braking system.
  • the method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28 and 29 fails, and the first hydraulic chamber 16 is required to be used for the When the second set of wheel brake cylinders 26 and 27 provide braking force, the controller controls both the first control valve 111 and the second control valve 121 to be in a disconnected state.
  • the first control valve 111 and the second control valve 121 can be disconnected, and the first hydraulic chamber 16 provides braking force for the second set of wheel brake cylinders 26 and 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the leakage of brake fluid pressure caused by brake fluid flowing into the failed brake circuit.
  • the brake system further includes a fourth brake pipe 140, and the second hydraulic chamber 17 is connected to the first end of the fourth brake pipe 140, and the first The second end of the four brake pipe 140 is connected to the first end of the second control valve 121, and the fourth brake pipe 140 is provided with a fourth control valve 142 to control the fourth brake Connecting and disconnecting the pipeline 140
  • the method further includes: when the braking circuit that provides the braking force for the first set of wheel brake cylinders 28, 29 fails, and the first hydraulic chamber 16 is required to be the second When the group brake wheel cylinders 26 and 27 provide braking force, the controller controls the first control valve 111 and the second control valve 121 to be in the off state, and the fourth control valve 142 to be off state.
  • the first control valve 111, the second control valve 121, and the fourth control valve 142 can be disconnected.
  • the first hydraulic chamber 16 provides braking force for the second set of wheel brake cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system, and avoids the brake fluid flowing into the failed brake circuit and causing the brake fluid pressure to leak. .
  • the third brake pipeline 130 is provided with a fifth control valve 131, and the fifth control valve 131 controls the on and off of the third brake pipeline 130, and the The method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28, 29 fails, and the first hydraulic chamber 16 is required to provide the second set of wheel brake cylinders 26, 27 In the case of braking force, the controller controls both the first control valve 111 and the second control valve 121 to be in the off state, and the fifth control valve 131 to be in the on state.
  • the first control valve 111 and the second control valve 121 can be disconnected, and the fifth control valve can be controlled.
  • the valve 131 is turned on, and the first hydraulic chamber 16 provides braking force for the second set of brake wheel cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoid the brake fluid flowing into the failed brake circuit. Hydrodynamic pressure leaks.
  • the controller sends the control instruction to the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11 by controlling the driving device 15 to increase or Reducing the pressure of the brake fluid in the first set of wheel brake cylinders 28, 29 and/or the second set of wheel brake cylinders 26, 27 includes: 27.
  • the controller sends the control instruction to the driving device 15, and by controlling the driving device 15 to drive the piston 12 to compress the volume of the first hydraulic chamber 16 to reduce The brake fluid in the first hydraulic chamber 16 is pressed into the second set of wheel brake cylinders 26, 27 through the second brake pipeline 120 to enlarge the second set of wheel brake cylinders 26 , 27 brake fluid pressure.
  • the controller controls the piston 12 to compress the volume of the first hydraulic chamber 16 to pass through the first hydraulic chamber 16.
  • the brake fluid in the brake fluid builds pressure for the second set of wheel brake cylinders 26, 27, that is, pressure is built up separately for the second set of wheel brake cylinders 26, 27 to improve the safety of the brake system.
  • the method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28 and 29 fails, and the second hydraulic chamber 17 is required for the When the second set of wheel brake cylinders 26 and 27 provide braking force, the controller controls the first control valve 111 to be in the off state, and controls the second control valve 121 to be in the on state.
  • the first control valve 111 can be disconnected and the second control valve 121 can be connected, and the second hydraulic pressure
  • the cavity 17 provides braking force for the second set of wheel brake cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the braking system, and prevents the brake fluid from flowing into the failed brake circuit and causing the brake fluid pressure to leak.
  • the brake system further includes a fourth brake pipe 140, and the second hydraulic chamber 17 is connected to the first end of the fourth brake pipe 140, and the first The second end of the four brake pipe 140 is connected to the first end of the second control valve 121, and the fourth brake pipe 140 is provided with a fourth control valve 142 to control the fourth brake Connecting and disconnecting the pipeline 140
  • the method further includes: when the brake circuit that provides the braking force for the first set of wheel brake cylinders 28, 29 fails, and the second hydraulic chamber 17 is required to be the second When the group of brake wheel cylinders 26 and 27 provide braking force, the controller controls the first control valve 111 to be in the off state, and controls the second control valve 121 and the fourth control valve 142 to be on state.
  • the first control valve 111 can be disconnected, and the second control valve 121 can be connected to the fourth control valve. 142.
  • the second hydraulic chamber 17 provides braking force for the second set of brake wheel cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit and causing the brake fluid pressure Give way.
  • the third brake pipeline 130 is provided with a fifth control valve 131, and the fifth control valve 131 controls the on and off of the third brake pipeline 130, and the The method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28, 29 fails, and the first hydraulic chamber 16 is required to provide the second set of wheel brake cylinders 26, 27 In the case of braking force, the controller controls both the second control valve 121 to be in the off state, and the first control valve 111 and the fifth control valve 131 to be in the off state.
  • the first control valve 111 and the fifth control valve 131 can be disconnected, and the second control valve can be connected. 121.
  • the second hydraulic chamber 17 provides braking force for the second set of wheel brake cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit from causing brake fluid pressure Give way.
  • the controller sends the control instruction to the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11 by controlling the driving device 15 to increase or Reducing the pressure of the brake fluid in the first set of wheel brake cylinders 28, 29 and/or the second set of wheel brake cylinders 26, 27 includes: 27.
  • the controller sends the control instruction to the driving device 15, and by controlling the driving device 15 to drive the piston 12 to compress the volume of the second hydraulic chamber 17, The brake fluid in the second hydraulic chamber 17 is pressed into the second set of wheel brake cylinders 26, 27 through the second brake pipeline 120 to enlarge the second set of wheel brake cylinders 26 , 27 brake fluid pressure.
  • the controller controls the piston 12 to compress the volume of the second hydraulic chamber 17 to pass through the second hydraulic chamber 17.
  • the brake fluid in the brake fluid builds pressure for the second set of wheel brake cylinders 26, 27, that is, pressure is built up separately for the second set of wheel brake cylinders 26, 27 to improve the safety of the brake system.
  • the method further includes: when the braking circuit that provides braking force for the second set of wheel brake cylinders 26, 27 fails, and the second hydraulic chamber 17 is required for the When the first set of wheel brake cylinders 28 and 29 provide braking force, the controller controls the first control valve 111 to be in the off state, and the second control valve 121 to be in the on state.
  • the first control valve 111 can be disconnected and the second control valve 121 can be connected to the second hydraulic chamber. 17 provides braking force for the second set of brake wheel cylinders 26 and 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit and causing the brake fluid pressure to leak.
  • the brake system further includes a fourth brake pipe 140, and the second hydraulic chamber 17 is connected to the first end of the fourth brake pipe 140, and the first The second end of the four brake pipe 140 is connected to the first end of the second control valve 121, and the fourth brake pipe 140 is provided with a fourth control valve 142 to control the fourth brake Connecting and disconnecting the pipeline 140
  • the method further includes: when the brake circuit that provides the braking force for the second set of wheel brake cylinders 26, 27 fails, and the second hydraulic chamber 17 is required to be the first When the group brake wheel cylinders 28 and 29 provide braking force, the controller controls the second control valve 121 to be in the off state, and controls the first control valve 111 and the fourth control valve 142 to be in the on state.
  • the second control valve 121 when the braking circuit that provides braking force for the second set of wheel brake cylinders 26 and 27 fails, the second control valve 121 can be disconnected and the first control valve 111 and the fourth control valve 142 can be connected.
  • the second hydraulic chamber 17 provides braking force for the second set of brake wheel cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit and causing the brake fluid pressure to leak. .
  • the third brake pipeline 130 is provided with a fifth control valve 131, and the fifth control valve 131 controls the on and off of the third brake pipeline 130, and the The method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28, 29 fails, and the second hydraulic chamber 17 is required to provide the second set of wheel brake cylinders 26, 27 In the case of braking force, the controller controls both the first control valve 111 and the fifth control valve 131 to be in the on state, and the second control valve 121 to be in the off state.
  • the second control valve 121 when the braking circuit that provides braking force for the second set of wheel brake cylinders 26 and 27 fails, the second control valve 121 can be disconnected, and the first control valve 111 and the fifth control valve can be connected. 131.
  • the second hydraulic chamber 17 provides braking force for the second set of brake wheel cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit from causing brake fluid pressure Give way.
  • the controller sends the control instruction to the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11 by controlling the driving device 15 to increase or Reducing the pressure of the brake fluid in the first group of wheel brake cylinders 28, 29 and/or the second group of wheel brake cylinders 26, 27 includes: 29.
  • the controller sends the control instruction to the driving device 15, and by controlling the driving device 15 to drive the piston 12 to compress the volume of the second hydraulic chamber 17, The brake fluid in the second hydraulic chamber 17 is pressed into the first set of wheel brake cylinders 28, 29 through the first brake pipeline 110 to enlarge the first set of wheel brake cylinders 28 , 29 brake fluid pressure.
  • the controller controls the piston 12 to compress the volume of the second hydraulic chamber 17 to pass through the second hydraulic chamber 17.
  • the brake fluid in the brake fluid builds pressure for the first group of brake wheel cylinders 28 and 29, that is, the pressure is separately built for the first group of brake wheel cylinders 28, 29 to improve the safety of the brake system.
  • a control device in a fifth aspect, includes a processing unit and a storage unit, wherein the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the control device executes any one of the third aspect Possible method.
  • control device may be an independent controller in the automobile, or may be a chip with a control function in the automobile.
  • the foregoing processing unit may be a processor
  • the foregoing storage unit may be a memory, where the memory may be a storage unit in a chip (for example, a register, a cache, etc.), or a storage unit (for example, a read-only Memory, random access memory, etc.).
  • the memory and the processor are coupled in the above-mentioned controller.
  • the memory is coupled to the processor, it can be understood that the memory is located inside the processor, or the memory is located outside the processor, thereby being independent of the processor.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor, or may be packaged separately with the processor. Specific restrictions.
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes the methods in the above-mentioned aspects.
  • Fig. 1 is a schematic diagram of a hydraulic adjusting device according to an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a first diversion groove in an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a second diversion groove according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a hydraulic adjustment unit according to an embodiment of the application.
  • Fig. 5 is a schematic diagram of a hydraulic adjustment unit according to another embodiment of the application.
  • Fig. 6 is a schematic diagram of a hydraulic adjustment unit according to another embodiment of the application.
  • FIG. 7 is a schematic diagram of the first connection mode of the liquid storage device and the hydraulic adjustment device 10 in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the second connection mode of the liquid storage device and the hydraulic adjustment device 10 in the embodiment of the present application.
  • Fig. 9 is a schematic diagram of a hydraulic adjustment unit according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a hydraulic adjustment unit according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a hydraulic adjustment unit according to an embodiment of the present application.
  • Fig. 12 is a flowchart of a control method provided by an embodiment of the present application.
  • Fig. 13 is a flowchart of a control method according to another embodiment of the present application.
  • Fig. 14 is a schematic diagram of a control device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a controller according to another embodiment of the present application.
  • liquid outlet pipe and liquid inlet pipe may correspond to different brake pipes, or may correspond to the same brake pipe.
  • “Liquid outlet pipe” and “Liquid inlet pipe” are only distinguished based on the function of the brake pipe in the brake system.
  • the brake pipe in the brake system 1 is used to deliver the brake fluid in the brake wheel cylinder to the liquid storage device.
  • the brake pipeline 1 can be called the "liquid outlet pipeline”.
  • the brake line 1 is used to provide brake fluid for the wheels of the car, so as to provide braking force for the wheels of the car.
  • the brake line 1 can be called “fluid inlet”. Pipeline”.
  • liquid inlet valve used to control the connection or disconnection of the liquid inlet pipe
  • the controller used to control the connection or disconnection of the liquid return line can be called a "liquid outlet valve” or a “relief valve”.
  • the control valve used to isolate the two-stage brake subsystem may be referred to as an "isolation valve”.
  • the above-mentioned control valve may be a valve commonly used in an existing brake system, for example, a solenoid valve, etc., which is not specifically limited in the embodiment of the present application.
  • connection port between the control valve and the brake pipeline can be represented by the first end and the second end.
  • the direction of flow is not limited.
  • the brake fluid can flow from the first end of the control valve to the second end of the control valve, or when the control valve is in the off state, the brake fluid can flow from the control valve.
  • the second end flows to the first end of the control valve.
  • first brake pipe 110 can be understood as one or more sections of brake pipelines that achieve a certain function.
  • first liquid inlet pipeline 130 is a multi-section brake pipeline for connecting the master brake cylinder 3 and the wheel brake cylinder 151 of the first group of wheels.
  • Fig. 1 is a schematic diagram of a hydraulic adjusting device according to an embodiment of the present application.
  • the hydraulic adjusting device 10 shown in FIG. 1 includes a hydraulic cylinder 11, a piston 12, a push rod 13, and a push rod support part 14.
  • the piston 12 moves along the inner wall of the hydraulic cylinder 11.
  • the piston 12 divides the hydraulic cylinder 11 into a first hydraulic chamber 16 and a second hydraulic chamber 17;
  • the rod support part 14 supports the push rod 13, and the push rod support part 14 is provided with a first hydraulic adjustment port 14a;
  • the push rod 13 is provided with a second hydraulic adjustment port 13a, the first end of the second hydraulic adjustment port 13a and the first end A hydraulic chamber 16 is connected.
  • the first hydraulic pressure adjustment port 14a is connected to the second end of the second hydraulic pressure adjustment port 13a.
  • the piston 12 is in the piston stroke except for the inner dead point When the position is at, the second end of the first hydraulic adjustment port 14a and the second hydraulic adjustment port 13a are not connected.
  • the driving device 15 pushes the piston 12 through the push rod 13 to move along the inner wall of the hydraulic cylinder 11 and forms a piston stroke.
  • the hydraulic cylinder 11 is divided by the piston 12 into two hydraulic chambers, the first hydraulic chamber 16 and the second hydraulic chamber 16 Hydraulic chamber 17.
  • the first flow channel connected to the first hydraulic chamber 16 is composed of a port 11a and a port 11d.
  • the second flow path connected to the second hydraulic chamber 17 is composed of a port 11c and a port 11b.
  • the piston 12 is movably arranged in the hydraulic cylinder 11, one end of the push rod 13 extends into the hydraulic cylinder 11 and is connected to the piston 12, and the other end of the push rod 13 penetrates the hydraulic cylinder 11 and is connected to the driving device 15 in transmission. Driven by the driving device 15, the piston 12 can reciprocate in the hydraulic cylinder 11 to realize the pressure increase or pressure reduction (decompression) operation of the brake system.
  • the aforementioned piston 12 may be driven by a driving device 15, where the driving device 15 may be a motor or other devices with driving capability.
  • the driving device 15 may be a motor or other devices with driving capability.
  • the above-mentioned power replacement mechanism may include, for example, a worm gear assembly or a ball screw nut assembly.
  • the farthest position of the piston 12 from the drive shaft (for example, the center of the crankshaft) of the driving device 15 is called the "outer dead point”. Accordingly, the piston 12 is farthest from the driving device.
  • the most advanced position of the drive shaft (for example, the center of the crankshaft) of 15 is called the “inner dead center”, and the distance between the "outer dead center” and the “inner dead center” is called the piston stroke.
  • the first hydraulic pressure chamber 16 and the second hydraulic pressure chamber 17 are separated by the piston 12 and are configured to have a volume that changes with the movement of the piston 12. Specifically, when the piston 12 moves forward (to the left in FIG. 1), the volume of the first hydraulic chamber 16 is increased, and the volume of the second hydraulic chamber 17 is reduced. When the piston 12 moves backward (to the right in FIG. 1), the volume of the first hydraulic chamber 16 is reduced, and the volume of the second hydraulic chamber 17 is increased.
  • the forward movement of the piston 12 can be referred to as “forward movement”, and the backward movement of the piston 12 can be referred to as “reverse movement”.
  • forward movement When the brake system is pressurized by the hydraulic pressure adjusting device 10, the pressurization moving in the forward direction may be called forward pressurization, and the pressurization moving in the reverse direction may be called reverse pressurization.
  • reverse pressurization When introducing the hydraulic adjustment unit or braking system including the hydraulic adjustment device 10, the forward pressurization and the reverse pressurization will be further introduced.
  • the end of the first hydraulic chamber 16 is provided with a push rod support portion 14, the push rod support portion 14 supports the push rod 13, and the push rod support portion 14 is provided with a first hydraulic adjustment port 14 a.
  • the push rod support portion 14 and the hydraulic cylinder 11 may be integrally formed, or the push rod support portion 14 and the hydraulic cylinder 11 may also be assembled later, which is not limited in the embodiment of the present application.
  • a sealing member (not shown in the figure) is further provided on the push rod support portion 14, so as to prevent the brake fluid from flowing out of the first hydraulic chamber 16 through the gap between the push rod 13 and the push rod support portion.
  • the push rod 13 is provided with a second hydraulic adjustment port 13a.
  • the first hydraulic chamber 16 communicates with the second hydraulic adjustment port 14a through the first hydraulic adjustment port 14a.
  • the first hydraulic pressure adjustment port 14a and the second hydraulic pressure adjustment port 13a are not connected.
  • the above-mentioned first hydraulic pressure chamber 16 communicates with the second hydraulic pressure adjustment port 14a through the first hydraulic pressure adjustment port 14a.
  • the first hydraulic pressure chamber 16 is discharged from the port 13a, or the brake fluid can enter the first hydraulic chamber 16 through the first hydraulic pressure adjusting port 14a and the second hydraulic pressure adjusting port 13a that are connected.
  • first hydraulic pressure adjustment port 14a and the second hydraulic pressure adjustment port 13a can be regarded as ports of the first flow passage communicating with the first hydraulic chamber 16 as described above.
  • the brake fluid in the above-mentioned first hydraulic chamber 16 may flow in through a third hydraulic pressure adjustment port 11a provided on the first hydraulic chamber.
  • the third hydraulic adjustment port 11a communicates with the first hydraulic chamber 16 and the brake pipeline of the brake system.
  • the brake pipeline can be connected to the wheel brake cylinders of the automobile wheels.
  • the controller of the brake system can adjust the brake The hydraulic pressure in the pipeline adjusts the braking force applied to the wheels.
  • the first hydraulic chamber 16 can flow the brake hydraulic pressure into the brake pipeline through the third hydraulic pressure adjustment port 11a, thereby increasing the braking force applied to the wheels.
  • the brake fluid in the brake line can flow into the first hydraulic chamber 16 through the third hydraulic pressure adjustment port 11a, thereby reducing or eliminating the application to the wheels. Braking force.
  • the hydraulic cylinder 11 may also be provided with a fourth hydraulic adjustment port 11b, which is used to communicate the second hydraulic chamber 17 with the brake pipeline of the brake system through a pipeline.
  • the second hydraulic chamber 17 can discharge brake fluid into the brake line through the fourth hydraulic pressure adjustment port 11b, and pressurize the brake line, thereby increasing the braking force applied to the wheels.
  • the brake fluid in the brake line can also be discharged into the second hydraulic chamber 17 through the fourth hydraulic pressure adjustment port 11b, and the brake line is decompressed, so as to reduce or cancel the brake applied to the wheels. power.
  • the fourth hydraulic pressure adjustment port 11b can also communicate with the second hydraulic chamber 17 and the first hydraulic chamber 16 through a brake pipeline.
  • the hydraulic cylinder 11 may also be provided with a fifth hydraulic pressure adjusting port 11c, and the fifth hydraulic pressure adjusting port 11c is used to drain the brake fluid supplemented by the liquid storage device 30.
  • the fifth hydraulic adjustment port 11c is connected to the liquid storage device 30 through a pipeline.
  • the piston 12 is moved to the right During the movement, the brake fluid in the liquid storage device 30 can be promptly replenished into the second hydraulic chamber 17 through the fifth hydraulic adjustment port 11c.
  • the hydraulic adjusting device 10 provided by the embodiment of the present application can realize two-way pressurization by moving forward or backward, ensuring the continuity of the pressurization process, and improving the comfort during braking.
  • the hydraulic adjusting device 10 of the embodiment of the present application can quickly generate pressure, realize rapid pressure build-up of the brake system, reduce the control response time of the system, and meet the control and safety requirements of the vehicle.
  • the second hydraulic adjustment port 13a may be inclined on the push rod 13 and penetrate the push rod 13.
  • the liquid inlet of the second hydraulic adjustment port 13a The distance to the piston 12 is shorter than the distance between the liquid outlet of the second hydraulic pressure regulating port 13a and the piston 12.
  • the distance between the liquid inlet (also called the first end) of the second hydraulic adjustment port 13a and the piston 12 is shorter than the distance between the liquid outlet (also called the second end) of the second hydraulic adjustment port 13a and the piston 12
  • the distance can be understood as that the side where the second hydraulic adjustment port 13a communicates with the first hydraulic adjustment port 14a is closer to the piston 12 than the side where the second hydraulic adjustment port 13a communicates with the first hydraulic chamber 16.
  • the second hydraulic adjustment port 13a may also be a U-shaped hole, etc., which is not limited in this application.
  • the push rod support 14 may be spaced apart from the second hydraulic adjustment port 13a, or in other words, the piston When 12 is at the inner dead center or the outer dead center, there may be a certain interval between the push rod support portion 14 and the second hydraulic adjustment port 13a, so that the brake fluid in the first hydraulic chamber 16 can enter and exit the second hydraulic chamber without being blocked. Hydraulic adjustment port 13a.
  • the push rod supporting portion 14 can also block a part of the second hydraulic adjustment port 13a. The embodiment of the application does not limit this.
  • the push rod 13 may rotate after a long time of work.
  • the second hydraulic adjustment port 13a provided on the push rod 13 will also rotate.
  • the outlet of the second hydraulic adjustment port 13 a after the rotation may be blocked by the inner wall of the push rod support 14, and correspondingly, the first hydraulic adjustment port 14 a is blocked by the outer wall of the push rod 13.
  • a first diversion groove 13b can be provided along the outer circumference of the push rod 13.
  • the first diversion groove 13b is connected to the second hydraulic adjustment port 13a. , To ensure that the second hydraulic adjustment port 13a and the first hydraulic adjustment port 14a maintain communication.
  • the first diversion groove 13b may be annular or semi-annular along the outer circumference of the push rod 13.
  • the first diversion groove 13b is a semicircular annular groove arranged along the outer circumference of the push rod 13, it is beneficial to reduce the influence of the first diversion groove 13b on the mechanical strength of the push rod 13. It should be understood that the arc length of the aforementioned semicircular ring may be determined according to the maximum amount of rotation that the push rod 13 can generate.
  • FIG. 2 is a schematic structural diagram of a first diversion groove in an embodiment of the present application.
  • FIG. 2(b) is a front view of the push rod 13
  • FIG. 2(a) is a cross-sectional view of the view angle A-A in FIG. 2(b).
  • a first diversion groove 13b can be opened along the outer circumference of the push rod 13.
  • the diversion groove is arranged along the circumference of the push rod 13, and the second hydraulic adjustment port 13a communicates with the first diversion groove 13b, so that when the piston 12 When being moved to the inner dead center, the second hydraulic pressure regulating port 13a will be connected to the first hydraulic pressure regulating port 14a through the first diversion groove 13b, so that rapid pressure reduction can be achieved.
  • the first diversion groove 13b is arranged along the outer circumference of the push rod 13 and has a certain length, when the push rod 13 rotates, the first diversion groove 13b will always be in communication with the first hydraulic adjustment port 14a,
  • the second hydraulic adjustment port 13a is also connected to the first diversion groove 13b, that is, at this time, it can still be ensured that the second hydraulic adjustment port 13a and the first hydraulic adjustment port 14a are connected to each other.
  • the first diversion groove 13b is an annular groove connected end to end. In this way, no matter how large the angle of rotation of the push rod 13 occurs, it will ensure that the first diversion groove 13b and the first hydraulic adjustment port 14a are always in communication with each other, and the first diversion groove 13b and the second hydraulic adjustment port 13a are also always maintained with each other. In this way, the second hydraulic pressure adjustment port 13a and the first hydraulic pressure adjustment port 14a always maintain mutual conduction.
  • annular or semi-annular second diversion groove 13c is provided along the inner circumference of the push rod support portion 14, and the second diversion groove 13c is in communication with the first hydraulic adjustment port 14a.
  • the structure of the second diversion groove 13c of the embodiment of the present application is described below in conjunction with FIG. 3.
  • Fig. 3 is a schematic diagram of a second diversion groove in an embodiment of the present application.
  • the second diversion groove 13c may be provided on the inner wall of the push rod support portion 14, and the second diversion groove 13b is in communication with the first hydraulic adjustment port 14a.
  • the second diversion groove 13c can be arranged along the inner circumference of the push rod support part 14. Since the inner circumference of the push rod support part 14 always covers the outer circumference of the push rod 13, in this way, even if the push rod 13 rotates, it is located on the push rod support The second diversion groove 13c on the inner periphery of the portion 14 can also communicate with the second hydraulic adjustment port 13a, that is, the second hydraulic adjustment port 13a is in communication with the first hydraulic adjustment port 14a.
  • arranging the second diversion groove 13c on the push rod supporting portion 14 is beneficial to reduce the impact on the mechanical strength of the push rod 13 and prevent the push rod 13 from breaking after a long time operation.
  • the first hydraulic chamber in the hydraulic adjustment device is the first group through the oil inlet pipe 1.
  • the wheels provide braking force
  • the second set of wheels is provided with braking force through the oil inlet pipe 2.
  • the second hydraulic chamber in the hydraulic adjusting device also provides braking force for the first group of wheels and the second group of wheels through the aforementioned oil inlet pipe 1 and the oil inlet pipe 2 respectively.
  • the above-mentioned oil inlet pipe 1 and oil inlet pipe 2 are liquid inlet pipes with a one-way valve.
  • Such liquid inlet pipes can only control the flow direction of the brake fluid, and cannot control the on-off state of the liquid inlet pipe.
  • any one of the above-mentioned oil inlet pipe 1 and oil inlet pipe 2 leaks, because the leaking oil inlet pipe cannot be disconnected, the other normally working oil inlet pipe cannot build pressure normally, resulting in two None of the oil inlet pipes can provide braking force for the wheels, which reduces driving safety.
  • the embodiment of the present application provides a new hydraulic adjustment unit, which provides the first set of wheel brake cylinders 28, 29 and the second set of wheel brake cylinders 26, 27 through an oil inlet pipeline with a control valve. Braking force.
  • the hydraulic adjusting device 10 is taken as an example to introduce the hydraulic adjusting unit of the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the hydraulic adjustment unit of the application embodiment.
  • the hydraulic adjustment unit 400 shown in FIG. 4 includes a hydraulic adjustment device 10, a first hydraulic chamber 16, a second hydraulic chamber 17, a first brake line 110, and a second The brake line 120, the third brake line 130, the first control valve 111, and the second control valve 121.
  • the hydraulic adjusting device 10 has a two-way pressurization/decompression.
  • the hydraulic adjusting device 10 includes a first hydraulic chamber 16 and a second hydraulic chamber 17.
  • the second hydraulic chamber 17 is respectively connected to the first brake line 110 and the second brake line 120.
  • the first brake line 110 is used to provide the first set of wheel brake cylinders 28 and 29 in the braking system. Braking force
  • the second brake line 120 is used to provide braking force for the second set of wheel brake cylinders 26 and 27 in the braking system, wherein a first control valve 111 is provided in the first brake line 110, The on-off state of the first control valve 111 controls the on-off state of the first brake pipe 110, the second brake pipe 120 is provided with a second control valve 121, and the on-off state of the second control valve 121 controls the second brake pipe.
  • the on-off state of the brake line 120 is provided in the first brake line 110,
  • the on-off state of the first control valve 111 controls the on-off state of the first brake pipe 110
  • the second brake pipe 120 is provided with a second control valve 121
  • the on-off state of the second control valve 121 controls the second brake pipe.
  • the on-off state of the above-mentioned first control valve 111 controls the on-off state of the first brake pipe 110. It can be understood that when the first control valve 111 is in the off state, the first brake pipe 110 is disconnected, and the brake fluid It cannot flow to the first set of wheel brake cylinders 28 and 29 through the first brake pipeline 110.
  • the on-off state of the above-mentioned second control valve 121 controls the on-off state of the second brake pipeline 120. It can be understood that the second brake pipeline 120 is disconnected when the second control valve 121 is in the off state, and the brake fluid It cannot flow to the second set of wheel brake cylinders 26 and 27 through the second brake pipe 120.
  • the first set of wheel brake cylinders 28, 29 may include the wheel brake cylinder of the right front wheel and the wheel brake cylinder of the left front wheel of the automobile
  • the second set of wheel brake cylinders 26, 27 may include The brake wheel cylinder of the right rear wheel of the automobile and the brake wheel cylinder of the left rear wheel of the automobile.
  • the above-mentioned hydraulic brake unit can be understood as an H-shaped arrangement in the automobile.
  • the first set of wheel brake cylinders 28, 29 may include the wheel brake cylinder of the right front wheel of the automobile and the wheel brake cylinder of the left rear wheel
  • the second set of wheel brake cylinders 26, 27 may include the right wheel cylinder of the automobile.
  • the above-mentioned hydraulic brake unit can be understood as an X-shaped arrangement in an automobile.
  • the second hydraulic chamber 17 is respectively connected to the first brake line 110 and the second brake line 120, which can be understood as the second hydraulic chamber 17 and the first brake line 110 and the second brake line 120 is directly connected, that is, the fourth hydraulic pressure adjustment port 11b of the second hydraulic pressure chamber 17 is the pressure inlet port of the first brake pipe 110, and the fourth hydraulic pressure adjustment port 11b of the second hydraulic pressure chamber 17 is the second brake pipe
  • the pressure of the road 120 enters the port. In other words, the above-mentioned first brake line 110 and the second brake line 120 are connected.
  • the second hydraulic chamber 17 is respectively connected to the first brake pipe 110 and the second brake pipe 120. It can also be understood that the second hydraulic chamber 17 is connected to the first brake pipe 110 and the first brake pipe 110 and the second brake pipe through a section of pipe.
  • the two brake pipes 120 are connected, that is, the second hydraulic chamber 17 is connected to the first brake pipe 110 and the second brake pipe 120 through the fourth brake pipe 140.
  • the second hydraulic chamber 17 is connected to the first end of the fourth brake line 140, and the second end of the fourth brake line 140 is connected to the first control valve 111 in the first brake line 110.
  • the first end of the fourth brake pipe 140 is connected to the first end of the second control valve 121 in the second brake pipe 120.
  • the above-mentioned first brake line 110 and the second brake line 120 are connected.
  • the first hydraulic chamber 16 is connected to the second brake line 120 through the third brake line 130 in the brake system, and the first hydraulic chamber 16 is the second set of wheel brake cylinders 26 through the second brake line 120. , 27 provides braking force.
  • the third brake pipe 130 communicates with the first brake pipe 110 through the second brake pipe 120, and the first hydraulic pressure
  • the cavity 16 provides braking force for the first set of wheel brake cylinders 28 and 29 through the first brake pipeline 110.
  • the first end of the second control valve 121 is a port connected to the fourth control pipeline 140, and the first end of the second control valve 121 is the two ends of the second control valve 121 connected to the second control pipeline 120. The end other than the first end.
  • the interface between the third brake pipe 130 and the second brake pipe 120 is connected to the second end of the second control valve 121, and the second brake pipe 120 and the third brake pipe 120 are connected to the second end of the second control valve 121.
  • the pipeline 130 is connected, and the on-off state of the first control valve 111 and the second control valve 121 has no effect on the on-off state between the second brake pipeline 120 and the third brake pipeline 130.
  • the second brake line 120 communicates with the first brake line 110, that is, the third brake line 130 can pass through
  • the second brake line 120 is in communication with the first brake line 110, so that the first hydraulic chamber 17 can pass through the third brake line 130, the second brake line 120, and the first brake line 110.
  • the first set of wheel brake cylinders 28, 29 provide braking force.
  • the second brake line 120 is disconnected from the first brake line 110, that is, the third brake line 130 cannot communicate with the first brake line 110 through the second brake line 120.
  • the first hydraulic chamber 17 can only pass through the third brake line 130 and the second brake line 120 as the second group system.
  • the moving wheel cylinders 26 and 27 provide braking force.
  • the second hydraulic chamber 17 provides braking force for the first set of wheel brake cylinders 28 and 29 through the first brake pipeline 110 provided with the first control valve 111, and is provided with a second control valve 111.
  • the second brake pipe 120 of the valve 121 provides braking force for the second group of wheel brake cylinders 26 and 27, which is beneficial to realize the independent pressure increase of the first brake pipe 110 and the second brake pipe 120, and avoid
  • the first brake line 110 and the second brake line 120 with check valves provide the first set of wheel brake cylinders 28, 29 and the second set of wheel brake cylinders 26, 27.
  • the on-off state of the first brake line 110 and the second brake line 120 cannot be controlled.
  • the second hydraulic chamber 16 can reuse the first brake line 110 provided with the first control valve 111 and the second brake line 120 provided with the second control valve 121 to determine whether it is a second group system.
  • the driving wheel cylinders 26 and 27 provide braking force, which is beneficial to reduce the number of control valves in the braking system and reduce the cost of the braking system.
  • a third control valve 141 can be provided between the second end of the first control valve 111 and the second end of the second control valve 121.
  • the third control valve 141 controls the second control. The on-off between the second end of the valve 121 and the second end of the first control valve 111. In this way, when the third control valve 141 is in the conducting state, the second end of the first control valve 111 and the second end of the second control valve 121 are connected, and the pressure between the two brake lines is equalized.
  • the third control valve 141 may not be provided, which is not limited in the embodiment of the present application.
  • valve 141 since the third control valve 141 is used to balance the pressure of the brake fluid between the first brake pipe 110 and the second brake pipe 120, the third control valve 141 can also be referred to as "pressure equalization”. Valve 141".
  • a first check valve 122 can be provided between the first port and the second port.
  • the first port is between the third brake line 130 and the second brake line 120.
  • the second interface is the interface between the third control valve 141 and the second brake pipeline 120, the first check valve 122 allows the brake fluid to flow from the first interface to the second interface, and the first one The direction valve 122 blocks the flow of brake fluid from the second port to the first port.
  • the first one-way valve 122 may not be provided, which is not limited in the embodiment of the present application.
  • the first hydraulic chamber 16 can pass through the second brake pipeline 120 and the first brake pipeline 110 as the first group of wheel brake cylinders 27, 28 provides braking force.
  • the brake fluid flows from the second brake pipe 120 to the first control valve 111 through the second control valve 121, a part of the brake fluid may flow into the first control valve 111 through the fourth brake pipe 140.
  • the two hydraulic chambers 17 reduce the efficiency of the first hydraulic chamber 16 to provide braking force for the first set of wheel brake cylinders 27 and 28 to a certain extent.
  • a fourth control valve 142 may be provided on the fourth brake pipe 140 to control the on and off of the fourth brake pipe 140 through the on and off of the fourth control valve 142.
  • the fourth control valve 142 is in the disconnected state.
  • the brake fluid flows from the second brake pipeline 120 through the second control valve 121.
  • the brake fluid entering the fourth brake pipeline 140 will be blocked by the fourth control valve 142 and cannot flow into the second hydraulic chamber 17.
  • the arrangement of the control valves in the above-mentioned brake pipeline can be seen in FIG. 5.
  • a fifth control valve 131 can also be provided on the third brake pipeline 130, and the third control valve 131 is controlled by the on-off state of the fifth control valve 131.
  • the brake pipeline 130 is turned on and off.
  • connection between the hydraulic adjustment device and the dual-circuit brake system in the embodiment of the present application is described above in conjunction with FIGS. 4 to 6, and the connection between the hydraulic adjustment device and the liquid storage device 30 is described below in conjunction with FIGS. 7 and 8 Way. It should be understood that, for ease of understanding, the following uses the hydraulic adjustment device 10 as an example to introduce the connection between the hydraulic adjustment device 10 and the liquid storage device 30.
  • connection mode 1 The second hydraulic chamber 17 is provided with a liquid inlet pipe 170 connected to the liquid storage device 30, and the first hydraulic chamber 16 is not provided with a liquid inlet pipe connected to the liquid storage device 30.
  • FIG. 7 is a schematic diagram of the first connection mode of the liquid storage device and the hydraulic adjustment device 10 in the embodiment of the present application.
  • a check valve 171 is provided on the liquid inlet pipe 1, and the check valve 171 allows the brake fluid in the liquid inlet pipe 1 to flow from the liquid storage device 30 to the second hydraulic chamber.
  • the first hydraulic pressure regulating port (also called “liquid outlet”) 14 a in the first hydraulic chamber 16 is connected to the first liquid outlet pipe 180.
  • the second control valve 121 when the second control valve 121 is in the conducting state, in the positive pressurization mode of the hydraulic adjustment device 10, a part of the brake fluid in the second hydraulic chamber 17 flows into the dual-circuit brake system, and a part passes through the second
  • the control valve 121 flows into the third brake pipe 130, and flows into the first hydraulic chamber 16 through the third brake pipe 130, that is to say, in the process of positive pressurization, the inlet pipe of the first hydraulic chamber 16 It is the third brake line 130.
  • the brake fluid in the dual-circuit braking system is pumped into the second hydraulic chamber 17.
  • the dual-circuit braking The remaining brake fluid in the system flows to the fluid storage device 30 through the first fluid outlet pipe 180.
  • the first hydraulic chamber 16 is provided with a liquid inlet pipe 2 190 connected with the liquid storage device 30, and the second hydraulic chamber 17 is provided with a liquid inlet pipe 1 170 connected with the liquid storage device 30.
  • FIG. 8 is a schematic diagram of the second connection mode of the liquid storage device and the hydraulic adjustment device 10 in the embodiment of the present application.
  • a check valve 171 is provided on the liquid inlet pipe 1, and the check valve 171 allows the brake fluid in the liquid inlet pipe 1 to flow from the liquid storage device 30 to the second hydraulic chamber 17.
  • the first hydraulic pressure regulating port (also called “liquid outlet”) 14 a in the first hydraulic chamber 16 is connected to the first liquid outlet pipe 180.
  • a check valve 191 is provided on the inlet pipe 2 190.
  • the check valve 191 allows the brake fluid in the inlet pipe 2 to flow from the liquid storage device 30 to the first hydraulic chamber 16, and prevents the brake fluid in the inlet pipe 2 from flowing into the first hydraulic chamber 16. The brake fluid flows from the first hydraulic chamber 16 to the fluid storage device 30.
  • the second control valve 121 when the second control valve 121 is in the conducting state, in the positive pressurization mode of the hydraulic adjustment device 10, a part of the brake fluid in the second hydraulic chamber 17 flows into the dual-circuit brake system, and a part passes through the second
  • the control valve 121 flows into the third brake pipe 130, and flows into the first hydraulic chamber 16 through the third brake pipe 130, that is to say, in the process of positive pressurization, the inlet pipe of the first hydraulic chamber 16 It is the third brake line 130.
  • the brake fluid in the dual-circuit braking system is pumped into the second hydraulic chamber 17.
  • the dual-circuit braking The remaining brake fluid in the system flows to the fluid storage device 30 through the first fluid outlet pipe 180.
  • the connection between the hydraulic adjustment device 10 and the dual-circuit brake pipeline is described above in conjunction with Figs. 2 to 8.
  • the connection between the hydraulic adjustment device 10 and the liquid storage device 30, the hydraulic adjustment shown above The units 400 to 600 can be combined with the hydraulic adjustment units 700 and 800 arbitrarily.
  • the hydraulic adjustment unit 400 is combined with the hydraulic adjustment unit 800
  • the hydraulic adjustment unit 500 is combined with the hydraulic adjustment unit 800
  • the hydraulic adjustment unit 600 is combined with the hydraulic adjustment unit 800 as examples.
  • the mechanism of power is described above in conjunction with Figs. 2 to 8.
  • the manual braking mode triggered by the driver by stepping on the brake pedal the line control motion mode triggered by the driver by stepping on the brake pedal, and the automatic driving scenario can also be implemented.
  • the driverless braking mode The principle of the braking process in the manual braking mode is similar to the braking process in the existing braking system in the manual braking mode. The following mainly introduces the two-way pressure increase and two-way pressure reduction process of the pressure regulating device 10 in the brake-by-wire mode and the unmanned braking mode.
  • Fig. 9 is a schematic diagram of a hydraulic adjustment unit according to an embodiment of the present application.
  • the functions implemented by the master cylinder pressure increase adjustment unit 910 in the hydraulic adjustment unit 900 shown in FIG. 9 are the manual braking mode and the brake-by-wire mode that require the driver's participation.
  • the driver depresses the brake pedal 911 to flow the brake fluid in the master cylinder 917 into the pedal feel simulator 912 through the brake pipeline where the control valve 913 is located.
  • the control valve 915 and the control valve 916 are in a disconnected state.
  • the hydraulic regulator 10 is based on the pedal stroke detected by the pedal stroke sensor 918, or the pressure of the brake fluid detected by the pressure sensor 914, as The dual-circuit braking system provides braking force.
  • the control valve 915 and the control valve 916 are in a communication state, and the brake fluid provides braking force to the brake wheel cylinders 26, 27, 28, 29 through the brake pipeline 160 and the brake pipeline 150.
  • the first control valve 111, the second control valve 121, the third control valve 141, and the inlet valve 920 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in conduction
  • the control valve 915, the control valve 916, and the discharge valve 930 corresponding to the wheel brake cylinders 26, 27, 28, and 29 are in an open state.
  • the brake fluid in the second hydraulic chamber 17 passes through the first brake pipe 110 and the second brake pipe respectively.
  • the circuit 120 is pressed into the brake pipe 150 and the brake pipe 160, the brake wheel cylinders 28 and 29 are pressed into the brake pipe 150, and the brake wheel cylinders 26 and 27 are pressed into the brake pipe 160.
  • a part of the brake fluid can also enter the first hydraulic chamber 16 through the third brake pipe 130, so as to replenish the first hydraulic chamber 16 and reduce the driving device. 15 drives the driving force of the piston 12.
  • the brake fluid in the liquid storage device 30 can also enter the first hydraulic chamber 16 through the oil inlet pipe 2 190 to replenish the first hydraulic chamber 16 and reduce the driving force of the driving device 15 to drive the piston 12.
  • Another part of the brake fluid in the first hydraulic chamber 16 enters the second brake line 120 through the connected third brake pipe 130 and the second brake pipe 120, and passes through the second control valve 121 and the first control valve.
  • 111 enters the first brake line 110 and provides braking force for the first group of wheel brake cylinders 28 and 29 through the brake line 150.
  • the brake fluid in the liquid storage device 30 can also enter the second hydraulic chamber 17 through the oil inlet pipe 2 170 to replenish the second hydraulic chamber 17 and reduce the driving force of the driving device 15 to drive the piston 12.
  • the control valve 915, the control valve 916, the inlet valve 920 corresponding to the brake wheel cylinders 26, 27, 28, 29, and the brake wheel cylinders 26, 27, 28, 29 correspond to
  • the outlet valve 930 is in an off state, and the first control valve 111, the second control valve 121, and the third control valve 141 are in an on state.
  • the volume of the second hydraulic chamber 17 is the largest. At this time, the second hydraulic chamber 17 cannot continue to contain the brake fluid, and the remaining brakes in the wheel cylinders 26, 27, 28, 29 are braked.
  • the fluid can continue to flow through the first brake line 110 to the second control valve 121, through the second control valve 121 to the third brake line 130, and then flow into the second hydraulic chamber through the third brake line 130 16, and flow into the liquid storage device 30 through the first liquid outlet pipe 180.
  • the brake fluid in the second set of wheel brake cylinders 26, 27 is pumped through the second brake pipeline 120.
  • the brake fluid in the first set of wheel brake cylinders 28 and 29 is drawn into the first brake pipe 110, and flows into the third brake pipe 130 through the first control valve 111 and the second control valve 121, and finally passes through the first brake pipe.
  • the third control pipeline 130 flows into the first hydraulic chamber 16.
  • the outlet valve 930 corresponding to the brake wheel cylinders 26, 27, 28, 29 can be controlled to be in a conductive state, and the remaining brake fluid in the brake system can be corresponded to by the brake wheel cylinders 26, 27, 28, 29
  • the liquid outlet valve 930 of the valve flows to the liquid storage device 30 through the decompression pipeline.
  • the pressure regulating device 10 When the pressure regulating device 10 is in a two-way pressure-increasing mode of single-circuit braking, assuming that the brake circuit 940 fails, the pressure regulating device 10 needs to provide braking force for the brake circuit 950.
  • the third control valve 141, the second control valve 121, the control valve 915, the control valve 916, and the outlet valve 930 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in the open state, and the first The control valve 111 and the outlet valve 930 corresponding to the wheel brake cylinders 28 and 29 are in a conducting state.
  • the volume of the first hydraulic chamber 16 increases, and a part of the brake fluid can also enter the first hydraulic chamber 16 through the third brake pipe 130, so as to The hydraulic chamber 16 performs fluid replenishment to reduce the driving force of the driving device 15 to drive the piston 12.
  • the brake fluid in the liquid storage device 30 can also enter the first hydraulic chamber 16 through the oil inlet pipe 2 190 to replenish the first hydraulic chamber 16 and reduce the driving force of the driving device 15 to drive the piston 12.
  • the pressure regulating device 10 When the pressure regulating device 10 is in a two-way pressurization mode of single-circuit braking, assuming that the brake circuit 950 fails, the pressure regulating device 10 needs to provide braking force for the brake circuit 940.
  • the third control valve 141, the first control valve 111, the control valve 915, the control valve 916, and the outlet valve 930 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in the open state, and the second The control valve 121 and the outlet valve 930 corresponding to the wheel brake cylinders 26 and 27 are in a conducting state.
  • the driving device 15 drives the piston 12 to compress the volume of the second hydraulic chamber 17 to press the brake fluid in the second hydraulic chamber 17 into the brake line 160 through the second brake pipe 120. And the brake wheel cylinders 26 and 27 are pressed into the brake pipe 160. Since the first control valve 111 and the third control valve 141 in the first brake pipeline 110 are in a disconnected state, the brake fluid in the second hydraulic chamber 17 cannot pass through the first brake pipeline 110.
  • the volume of the first hydraulic chamber 16 increases, and the brake fluid in the fluid storage device 30 can enter the first hydraulic chamber 16 through the oil inlet pipe 2190 to correct
  • the first hydraulic chamber 16 performs fluid replenishment to reduce the driving force of the driving device 15 to drive the piston 12.
  • Fig. 10 is a schematic diagram of a hydraulic adjustment unit according to an embodiment of the present application.
  • the functions implemented by the master cylinder pressure-increasing adjustment unit 910 in the hydraulic adjustment unit 1000 shown in FIG. 10 are the same as those implemented by the hydraulic adjustment unit 900 shown in FIG.
  • the pressure regulating device 10 can be divided into a forward pressurization process and a reverse pressurization process.
  • the first control valve 111, the second control valve 121, and the fourth control valve 142, and the inlet valve 1020 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in a conducting state to control
  • the valve 915, the control valve 916, and the outlet valve 1030 corresponding to the wheel brake cylinders 26, 27, 28, and 29 are in an open state.
  • the driving device 15 drives the piston 12 to compress the volume of the second hydraulic chamber 17 to press the brake fluid in the second hydraulic chamber 17 into the brake pipe through the first brake pipe 110 and the second brake pipe 120 respectively 150 and the brake pipe 160, and press into the wheel brake cylinders 28 and 29 through the brake pipe 150, and press into the wheel brake cylinders 26 and 27 through the brake pipe 160.
  • a part of the brake fluid can also enter the first hydraulic chamber 16 through the third brake pipe 130, so as to replenish the first hydraulic chamber 16 and reduce the driving device. 15 drives the driving force of the piston 12.
  • the brake fluid in the liquid storage device 30 can also enter the first hydraulic chamber 16 through the oil inlet pipe 2 190 to replenish the first hydraulic chamber 16 and reduce the driving force of the driving device 15 to drive the piston 12.
  • the first control valve 111, the second control valve 121, and the inlet valve 1020 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in a conducting state, and the control valve 915 and the control valve 916 , The outlet valve 1030 and the fourth control valve 142 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in a disconnected state.
  • the pipeline 160 provides braking force for the second set of wheel brake cylinders 26 and 27.
  • Another part of the brake fluid in the first hydraulic chamber 16 enters the second brake line 120 through the connected third brake pipe 130 and the second brake pipe 120, and passes through the second control valve 121 and the first control valve.
  • 111 enters the first brake line 110 and provides braking force for the first group of wheel brake cylinders 28 and 29 through the brake line 150.
  • the brake fluid flows through the second control valve 121, since the fourth control valve 142 is in an open state, the brake fluid will be blocked from flowing into the second hydraulic chamber 17 through the fourth brake pipeline 140.
  • the brake fluid in the liquid storage device 30 can also enter the second hydraulic chamber 17 through the oil inlet pipe 2 170 to replenish the second hydraulic chamber 17 and reduce the driving force of the driving device 15 to drive the piston 12.
  • the pressure regulating device 10 can be divided into a forward pressure increase process and a reverse pressure increase process.
  • the outlet valve 1030 corresponding to 29 is in the off state, and the first control valve 111 and the second control valve 121 are in the on state.
  • the volume of the second hydraulic chamber 17 is the largest.
  • the second hydraulic chamber 17 cannot continue to contain the brake fluid, and the remaining brake fluid in the first group of wheel brake cylinders 28 and 29 It can continue to flow through the first brake line 110 to the second control valve 121, through the second control valve 121 to the third brake line 130, and then flow into the second hydraulic chamber 16 through the third brake line 130. , And flow into the liquid storage device 30 through the first liquid outlet pipe 180.
  • the remaining brake fluid in the second set of wheel brake cylinders 26 and 27 can continue to flow through the second brake line 120 to the third brake line 130, and flow into the second hydraulic chamber through the third brake line 130 16, and flow into the liquid storage device 30 through the first liquid outlet pipe 180.
  • the brake fluid in the second set of wheel brake cylinders 26, 27 is pumped through the second brake pipeline 120. It enters the third brake line 130 and is drawn into the first hydraulic chamber 16 through the third brake line 130.
  • the brake fluid in the first set of wheel brake cylinders 28 and 29 is drawn into the first brake pipe 110, and flows into the third brake pipe 130 through the first control valve 111 and the second control valve 121, and finally passes through the first brake pipe.
  • the third control pipeline 130 flows into the first hydraulic chamber 16.
  • the outlet valve 1030 corresponding to the brake wheel cylinders 26, 27, 28, 29 can be controlled to be in a conductive state, and the remaining brake fluid in the brake system can be corresponded to by the brake wheel cylinders 26, 27, 28, 29
  • the liquid outlet valve 1030 flows to the liquid storage device 30 through the decompression pipeline.
  • the pressure regulating device 10 When the pressure regulating device 10 is in the two-way pressure-increasing mode of single-circuit braking, assuming that the brake circuit 1040 fails, the pressure regulating device 10 needs to provide braking force for the brake circuit 1050.
  • the second control valve 121, the control valve 915, the control valve 916, and the outlet valve 1030 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in the open state
  • the third control valve 141, the first The control valve 111 and the outlet valve 1030 corresponding to the wheel brake cylinders 28 and 29 are in a conducting state.
  • the volume of the first hydraulic chamber 16 increases, and the brake fluid in the fluid storage device 30 can enter the first hydraulic chamber 16 through the oil inlet pipe 2190 to correct
  • the first hydraulic chamber 16 performs fluid replenishment to reduce the driving force of the driving device 15 to drive the piston 12.
  • the pressure regulating device 10 When the pressure regulating device 10 is in the two-way boost mode of single-circuit braking, assuming that the brake circuit 1050 fails, the pressure regulating device 10 needs to provide braking force for the brake circuit 1040.
  • the first control valve 111, the control valve 915, the control valve 916, and the outlet valve 1030 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in the open state
  • the fourth control valve 142, the second The control valve 121 and the outlet valve 1030 corresponding to the wheel brake cylinders 26 and 27 are in a conducting state.
  • the driving device 15 drives the piston 12 to compress the volume of the second hydraulic chamber 17 to press the brake fluid in the second hydraulic chamber 17 into the brake line 160 through the second brake pipe 120, and press it through the brake line 160.
  • the driving device 15 drives the piston 12 to compress the volume of the second hydraulic chamber 17 to press the brake fluid in the second hydraulic chamber 17 into the brake line 160 through the second brake pipe 120, and press it through the brake line 160.
  • the brake wheel cylinders 26,27 Since the first control valve 111 in the first brake line 110 is in a disconnected state, the brake fluid in the second hydraulic chamber 17 cannot pass through the first brake line 110.
  • the volume of the first hydraulic chamber 16 increases, and the brake fluid in the fluid storage device 30 can enter the first hydraulic chamber 16 through the oil inlet pipe 2190 to correct
  • the first hydraulic chamber 16 performs fluid replenishment to reduce the driving force of the driving device 15 to drive the piston 12.
  • the volume of the first hydraulic chamber 16 is increased, and a part of the brake fluid in the second brake pipeline 120 can also enter the first hydraulic chamber 16 through the third brake pipeline 130 to perform the operation on the first hydraulic chamber 16.
  • Replenishing fluid reduces the driving force of the driving device 15 to drive the piston 12.
  • Fig. 11 is a schematic diagram of a hydraulic adjustment unit according to an embodiment of the present application.
  • the functions implemented by the master cylinder pressure-increasing adjustment unit 900 in the hydraulic adjustment unit 1100 shown in FIG. 11 are the same as those implemented by the hydraulic adjustment unit 900 shown in FIG.
  • the pressure regulating device 10 can be divided into a forward pressurization process and a reverse pressurization process.
  • the first control valve 111, the second control valve 121, and the fourth control valve 142, and the inlet valve 1120 corresponding to the wheel brake cylinders 26, 27, 28, 29 are in a conducting state
  • the five control valve 131, the control valve 915, the control valve 916, and the outlet valve 1130 corresponding to the brake wheel cylinders 26, 27, 28, and 29 are in an open state.
  • the driving device 15 drives the piston 12 to compress the volume of the second hydraulic chamber 17 to press the brake fluid in the second hydraulic chamber 17 into the brake pipe through the first brake pipe 110 and the second brake pipe 120 respectively 150 and the brake pipe 160, and press into the wheel brake cylinders 28 and 29 through the brake pipe 150, and press into the wheel brake cylinders 26 and 27 through the brake pipe 160.
  • the brake fluid in the fluid storage device 30 can enter the first hydraulic chamber 16 through the oil inlet pipe 2 190 to replenish the first hydraulic chamber 16 and reduce The driving device 15 drives the driving force of the piston 12.
  • the brake fluid in the second brake line 120 cannot enter the first hydraulic chamber 16 through the third brake line 130.
  • the first control valve 111, the second control valve 121, the fifth control valve 131, and the inlet valve 1120 corresponding to the wheel brake cylinders 26, 27, 28, 29 are in a conducting state, and the control valve 915, the control valve 916, the outlet valve 1130 corresponding to the wheel brake cylinders 26, 27, 28, and 29, and the fourth control valve 142 are in a disconnected state.
  • the pipeline 160 provides braking force for the second set of wheel brake cylinders 26 and 27.
  • Another part of the brake fluid in the first hydraulic chamber 16 enters the second brake line 120 through the connected third brake pipe 130 and the second brake pipe 120, and passes through the second control valve 121 and the first control valve.
  • 111 enters the first brake line 110 and provides braking force for the first group of wheel brake cylinders 28 and 29 through the brake line 150.
  • the brake fluid flows through the second control valve 121, since the fourth control valve 142 is in an open state, the brake fluid will be blocked from flowing into the second hydraulic chamber 17 through the fourth brake pipeline 140.
  • the brake fluid in the liquid storage device 30 can also enter the second hydraulic chamber 17 through the oil inlet pipe 2 170 to replenish the second hydraulic chamber 17 and reduce the driving force of the driving device 15 to drive the piston 12.
  • the pressure regulating device 10 can be divided into a forward pressure increase process and a reverse pressure increase process.
  • the outlet valve 1130 corresponding to 29 is in the off state, and the fifth control valve 131, the first control valve 111, and the second control valve 121 are in the on state.
  • the volume of the second hydraulic chamber 17 is the largest.
  • the second hydraulic chamber 17 cannot continue to contain the brake fluid, and the remaining brake fluid in the first group of wheel brake cylinders 28 and 29 It can continue to flow through the first brake line 110 to the second control valve 121, and through the second control valve 121 to the third brake line 130. Since the fifth control valve 131 is in the conducting state, the brake fluid It can flow into the second hydraulic chamber 16 through the third brake pipe 130 and flow into the liquid storage device 30 through the first liquid outlet pipe 180.
  • the remaining brake fluid in the second set of wheel brake cylinders 26 and 27 can continue to flow through the second brake line 120 to the third brake line 130, and flow into the second hydraulic chamber through the third brake line 130 16, and flow into the liquid storage device 30 through the first liquid outlet pipe 180.
  • the brake fluid in the second set of wheel brake cylinders 26, 27 is pumped through the second brake pipeline 120. It enters the third brake line 130 and is drawn into the first hydraulic chamber 16 through the third brake line 130.
  • the brake fluid in the first set of wheel brake cylinders 28 and 29 is drawn into the first brake pipe 110, and flows into the third brake pipe 130 through the first control valve 111 and the second control valve 121, and finally passes through the first brake pipe.
  • the third control pipeline 130 flows into the first hydraulic chamber 16.
  • the outlet valve 1130 corresponding to the brake wheel cylinders 26, 27, 28, 29 can be controlled to be in a conductive state, and the remaining brake fluid in the brake system can be corresponded to by the brake wheel cylinders 26, 27, 28, 29
  • the liquid outlet valve 1130 flows to the liquid storage device 30 through the decompression pipeline.
  • the pressure regulating device 10 When the pressure regulating device 10 is in the bidirectional boost mode of single-circuit braking, assuming that the brake circuit 1140 fails, the pressure regulating device 10 needs to provide braking force for the brake circuit 1150.
  • the second control valve 121, the control valve 915, the control valve 916, and the outlet valve 1130 and the fifth control valve 131 corresponding to the wheel brake cylinders 26, 27, 28, 29 are in the open state
  • the third The control valve 141, the first control valve 111, and the discharge valve 1130 corresponding to the wheel brake cylinders 28 and 29 are in a conducting state.
  • the volume of the first hydraulic chamber 16 increases, and the brake fluid in the fluid storage device 30 can enter the first hydraulic chamber 16 through the oil inlet pipe 2190 to correct
  • the first hydraulic chamber 16 performs fluid replenishment to reduce the driving force of the driving device 15 to drive the piston 12.
  • the pressure regulating device 10 When the pressure regulating device 10 is in the two-way pressure-increasing mode of single-circuit braking, assuming that the brake circuit 1150 fails, the pressure regulating device 10 needs to provide braking force for the brake circuit 1140.
  • the first control valve 111, the control valve 915, the control valve 916, and the outlet valves 1130 and the fifth control valve 131 corresponding to the brake wheel cylinders 26, 27, 28, 29 are in the open state
  • the fourth The control valve 142, the second control valve 121, and the discharge valve 1130 corresponding to the wheel brake cylinders 26 and 27 are in a conducting state.
  • the driving device 15 drives the piston 12 to compress the volume of the second hydraulic chamber 17 to press the brake fluid in the second hydraulic chamber 17 into the brake line 160 through the second brake pipe 120, and press it through the brake line 160.
  • the driving device 15 drives the piston 12 to compress the volume of the second hydraulic chamber 17 to press the brake fluid in the second hydraulic chamber 17 into the brake line 160 through the second brake pipe 120, and press it through the brake line 160.
  • the brake wheel cylinders 26,27 Since the first control valve 111 in the first brake line 110 is in a disconnected state, the brake fluid in the second hydraulic chamber 17 cannot pass through the first brake line 110.
  • the brake fluid in the fluid storage device 30 can enter the first hydraulic chamber 16 through the oil inlet pipe 2190 to correct
  • the first hydraulic chamber 16 performs fluid replenishment to reduce the driving force of the driving device 15 to drive the piston 12.
  • the brake fluid in the second brake pipe 120 cannot enter the first hydraulic chamber 16 through the third brake pipe 130, which is beneficial to improve the braking performance of the pressure regulating device 10
  • the circuit 1140 provides the efficiency of the braking force.
  • Fig. 12 is a flowchart of a control method provided by an embodiment of the present application. The method shown in FIG. 12 includes step 1210 to step 1220.
  • the controller generates a control instruction, and the control instruction is used to control the driving device 15.
  • the controller sends a control instruction to the driving device 15, and by controlling the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11, to increase or decrease the first set of wheel brake cylinders 28, 29 and/or the second The pressure of the brake fluid in the group brake wheel cylinders 26, 27.
  • the method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28, 29 fails, and the first hydraulic chamber 16 is required to be used for the When the second set of wheel brake cylinders 26 and 27 provide braking force, the controller controls both the first control valve 111 and the second control valve 121 to be in a disconnected state.
  • the first control valve 111 and the second control valve 121 can be disconnected, and the first hydraulic chamber 16 provides braking force for the second set of wheel brake cylinders 26 and 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the leakage of brake fluid pressure caused by brake fluid flowing into the failed brake circuit.
  • the brake system further includes a fourth brake pipeline 140, the second hydraulic chamber 17 is connected to the first end of the fourth brake pipeline 140, and the first The second end of the four brake pipe 140 is connected to the first end of the second control valve 121, and the fourth brake pipe 140 is provided with a fourth control valve 142 to control the fourth brake Connecting and disconnecting the pipeline 140
  • the method further includes: when the braking circuit that provides the braking force for the first set of wheel brake cylinders 28, 29 fails, and the first hydraulic chamber 16 is required to be the second When the group brake wheel cylinders 26 and 27 provide braking force, the controller controls the first control valve 111 and the second control valve 121 to be in the off state, and the fourth control valve 142 to be off state.
  • the first control valve 111, the second control valve 121, and the fourth control valve 142 can be disconnected.
  • the first hydraulic chamber 16 provides braking force for the second set of wheel brake cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system, and avoids the brake fluid flowing into the failed brake circuit and causing the brake fluid pressure to leak. .
  • the third brake line 130 is provided with a fifth control valve 131, and the fifth control valve 131 controls the on and off of the third brake line 130, the The method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28, 29 fails, and the first hydraulic chamber 16 is required to provide the second set of wheel brake cylinders 26, 27 In the case of braking force, the controller controls both the first control valve 111 and the second control valve 121 to be in the off state, and the fifth control valve 131 to be in the on state.
  • the first control valve 111 and the second control valve 121 can be disconnected, and the fifth control valve can be controlled.
  • the valve 131 is turned on, and the first hydraulic chamber 16 provides braking force for the second set of brake wheel cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoid the brake fluid flowing into the failed brake circuit. Hydrodynamic pressure leaks.
  • the controller sends the control instruction to the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11 by controlling the driving device 15 to increase or Reducing the pressure of the brake fluid in the first set of wheel brake cylinders 28, 29 and/or the second set of wheel brake cylinders 26, 27 includes: 27.
  • the controller sends the control instruction to the driving device 15, and by controlling the driving device 15 to drive the piston 12 to compress the volume of the first hydraulic chamber 16 to reduce The brake fluid in the first hydraulic chamber 16 is pressed into the second set of wheel brake cylinders 26, 27 through the second brake pipeline 120 to enlarge the second set of wheel brake cylinders 26 , 27 brake fluid pressure.
  • the controller controls the piston 12 to compress the volume of the first hydraulic chamber 16 to pass through the first hydraulic chamber 16.
  • the brake fluid in the brake fluid builds pressure for the second set of wheel brake cylinders 26, 27, that is, pressure is built up separately for the second set of wheel brake cylinders 26, 27 to improve the safety of the brake system.
  • the method further includes: when the brake circuit that provides the braking force for the first set of wheel brake cylinders 28, 29 fails, and the second hydraulic chamber 17 is required for the When the second set of wheel brake cylinders 26 and 27 provide braking force, the controller controls the first control valve 111 to be in the off state, and controls the second control valve 121 to be in the on state.
  • the first control valve 111 can be disconnected and the second control valve 121 can be connected, and the second hydraulic pressure
  • the cavity 17 provides braking force for the second set of wheel brake cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the braking system, and prevents the brake fluid from flowing into the failed brake circuit and causing the brake fluid pressure to leak.
  • the brake system further includes a fourth brake pipeline 140, the second hydraulic chamber 17 is connected to the first end of the fourth brake pipeline 140, and the first The second end of the four brake pipe 140 is connected to the first end of the second control valve 121, and the fourth brake pipe 140 is provided with a fourth control valve 142 to control the fourth brake Connecting and disconnecting the pipeline 140
  • the method further includes: when the brake circuit that provides the braking force for the first set of wheel brake cylinders 28, 29 fails, and the second hydraulic chamber 17 is required to be the second When the group of brake wheel cylinders 26 and 27 provide braking force, the controller controls the first control valve 111 to be in the off state, and controls the second control valve 121 and the fourth control valve 142 to be on state.
  • the first control valve 111 can be disconnected, and the second control valve 121 can be connected to the fourth control valve. 142.
  • the second hydraulic chamber 17 provides braking force for the second set of brake wheel cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit and causing the brake fluid pressure Give way.
  • the third brake line 130 is provided with a fifth control valve 131, and the fifth control valve 131 controls the on and off of the third brake line 130, the The method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28, 29 fails, and the first hydraulic chamber 16 is required to provide the second set of wheel brake cylinders 26, 27 In the case of braking force, the controller controls both the second control valve 121 to be in the off state, and the first control valve 111 and the fifth control valve 131 to be in the off state.
  • the first control valve 111 and the fifth control valve 131 can be disconnected, and the second control valve can be connected. 121.
  • the second hydraulic chamber 17 provides braking force for the second set of wheel brake cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit from causing brake fluid pressure Give way.
  • the controller sends the control instruction to the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11 by controlling the driving device 15 to increase or Reducing the pressure of the brake fluid in the first set of wheel brake cylinders 28, 29 and/or the second set of wheel brake cylinders 26, 27 includes: 27.
  • the controller sends the control instruction to the driving device 15, and by controlling the driving device 15 to drive the piston 12 to compress the volume of the second hydraulic chamber 17, The brake fluid in the second hydraulic chamber 17 is pressed into the second set of wheel brake cylinders 26, 27 through the second brake pipeline 120 to enlarge the second set of wheel brake cylinders 26 , 27 brake fluid pressure.
  • the controller controls the piston 12 to compress the volume of the second hydraulic chamber 17 to pass through the second hydraulic chamber 17.
  • the brake fluid in the brake fluid builds pressure for the second set of wheel brake cylinders 26, 27, that is, pressure is built up separately for the second set of wheel brake cylinders 26, 27 to improve the safety of the brake system.
  • the method further includes: when the brake circuit that provides the braking force for the second set of wheel brake cylinders 26, 27 fails, and the second hydraulic chamber 17 is required for the When the first set of wheel brake cylinders 28 and 29 provide braking force, the controller controls the first control valve 111 to be in the off state, and the second control valve 121 to be in the on state.
  • the first control valve 111 can be disconnected and the second control valve 121 can be connected to the second hydraulic chamber. 17 provides braking force for the second set of brake wheel cylinders 26 and 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit and causing the brake fluid pressure to leak.
  • the brake system further includes a fourth brake pipeline 140, the second hydraulic chamber 17 is connected to the first end of the fourth brake pipeline 140, and the first The second end of the four brake pipe 140 is connected to the first end of the second control valve 121, and the fourth brake pipe 140 is provided with a fourth control valve 142 to control the fourth brake Connecting and disconnecting the pipeline 140
  • the method further includes: when the brake circuit that provides the braking force for the second set of wheel brake cylinders 26, 27 fails, and the second hydraulic chamber 17 is required to be the first When the group brake wheel cylinders 28 and 29 provide braking force, the controller controls the second control valve 121 to be in the off state, and controls the first control valve 111 and the fourth control valve 142 to be in the on state.
  • the second control valve 121 when the braking circuit that provides braking force for the second set of wheel brake cylinders 26 and 27 fails, the second control valve 121 can be disconnected and the first control valve 111 and the fourth control valve 142 can be connected.
  • the second hydraulic chamber 17 provides braking force for the second set of brake wheel cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit and causing the brake fluid pressure to leak. .
  • the third brake line 130 is provided with a fifth control valve 131, and the fifth control valve 131 controls the on and off of the third brake line 130, the The method further includes: when the braking circuit that provides braking force for the first set of wheel brake cylinders 28, 29 fails, and the second hydraulic chamber 17 is required to provide the second set of wheel brake cylinders 26, 27 In the case of braking force, the controller controls both the first control valve 111 and the fifth control valve 131 to be in the on state, and the second control valve 121 to be in the off state.
  • the second control valve 121 when the braking circuit that provides braking force for the second set of wheel brake cylinders 26 and 27 fails, the second control valve 121 can be disconnected, and the first control valve 111 and the fifth control valve can be connected. 131.
  • the second hydraulic chamber 17 provides braking force for the second set of wheel brake cylinders 26, 27, which is beneficial to improve the pressure building efficiency of the brake system and avoids the brake fluid flowing into the failed brake circuit from causing brake fluid pressure Give way.
  • the controller sends the control instruction to the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11 by controlling the driving device 15 to increase or Reducing the pressure of the brake fluid in the first group of wheel brake cylinders 28, 29 and/or the second group of wheel brake cylinders 26, 27 includes: 29.
  • the controller sends the control instruction to the driving device 15, and by controlling the driving device 15 to drive the piston 12 to compress the volume of the second hydraulic chamber 17, The brake fluid in the second hydraulic chamber 17 is pressed into the first set of wheel brake cylinders 28, 29 through the first brake pipeline 110 to enlarge the first set of wheel brake cylinders 28 , 29 brake fluid pressure.
  • the controller controls the piston 12 to compress the volume of the second hydraulic chamber 17 to pass through the second hydraulic chamber 17.
  • the brake fluid in the brake fluid builds pressure for the first group of brake wheel cylinders 28 and 29, that is, the pressure is separately built for the first group of brake wheel cylinders 28, 29 to improve the safety of the brake system.
  • the brake circuit that provides braking force for the first set of wheel brake cylinders 28 and 29 is called the "first brake circuit”.
  • the brake circuit that provides braking force for the second set of wheel brake cylinders 26 and 27 is called the "second brake circuit", for example, the brake circuit 940, the brake circuit 1040, or the brake circuit shown in FIGS. 9 to 11 Moving circuit 1140.
  • Fig. 13 is a flowchart of a control method according to another embodiment of the present application. The method shown in FIG. 13 includes steps 1301 to 1317.
  • step 1302 is executed; if the braking system does not need to perform braking, the braking process is ended.
  • the hydraulic regulating device 10 is powered on and enters a working state, or the hydraulic regulating device 10 enters a boosting mode.
  • step 1303 Determine whether the hydraulic adjusting device 10 enters a positive pressure increase process. If it is determined that the hydraulic regulating device 10 enters the positive pressure increasing process, step 1304 is executed; if it is determined that the hydraulic regulating device 10 does not enter the positive pressure increasing process, then step 1310 is executed to control the pressure equalizing valve 141 to be in a conducting state to maintain the first step. The balance of brake fluid pressure in the first brake circuit and the second brake circuit.
  • the piston 12 in the hydraulic adjustment device 10 moves to the left to compress the volume of the second hydraulic chamber 17 in the hydraulic adjustment device 10.
  • the hydraulic adjusting device 10 determines whether the dual brake circuits in the brake system are all working normally. If both the dual brake circuits are working normally, step 1305 is executed; if one of the dual brake circuits fails, step 1306 is executed.
  • the controller controls the control valve in the brake system to be in on-off state 1, and execute step 1311.
  • step 1306 Determine whether the first brake circuit fails. If the first brake circuit fails, step 1307 is executed; if the first brake circuit does not fail, step 1308 is executed.
  • the controller controls the control valve in the brake system to be in the on-off state 2, and executes step 1311.
  • step 1308 Determine whether the second brake circuit fails. If the second brake circuit fails, step 1309 is executed.
  • the controller controls the control valve in the brake system to be in on-off state 3, and executes step 1311.
  • step 1311 The controller determines whether the brake system continues to pressurize. If the controller determines that the brake system needs to continue to increase pressure, step 1303 is executed again; if the controller determines that the brake system does not need to continue to increase pressure, step 1312 is executed again.
  • step 1312 The controller determines whether the braking system enters the pressure holding mode. If the controller determines that the brake system needs to enter the pressure holding mode, step 1313 is executed; if the controller determines that the brake system does not need to enter the pressure holding mode, then step 1314 is executed.
  • the controller controls the hydraulic adjusting device 10 to stop working.
  • step 1314 The controller determines whether the braking system enters the decompression mode. If the controller determines that the braking system needs to enter the decompression mode, step 1315 is executed; if the controller determines that the braking system does not need to enter the decompression mode, the braking process is ended.
  • the controller controls the control valve in the brake system to be in an on-off state.
  • the controller controls the hydraulic adjustment device 10 to enter a positive decompression mode. For example, the controller controls the piston 12 of the hydraulic adjusting device 10 to move to the right to compress the volume of the first hydraulic chamber 16.
  • the controller determines that the brake system has been decompressed.
  • on-off state 1 to on-off state 4 are slightly different in different hydraulic adjustment units.
  • the on-off state of the control valve for different hydraulic adjustment units has been described in detail above. For the sake of brevity, it will not be here anymore. Go into details.
  • the hydraulic adjustment device may only perform one type of decompression process.
  • the hydraulic adjustment device may only perform forward decompression without realizing the reverse decompression mode. This is not limited.
  • control method of the embodiment of the present application is described above with reference to Figs. 12 and 13, and the control device for executing the above control method is described below with reference to Figs. 14 and 15. It should be noted that the device of the embodiment of the present application can be applied to any hydraulic adjustment unit or braking system introduced above to implement any one of the control methods introduced above. For the sake of brevity, details are not repeated here.
  • FIG. 14 is a schematic diagram of a control device according to an embodiment of the present application.
  • the control device 1400 shown in FIG. 14 includes an obtaining unit 1410 and a sending unit 1420.
  • the generating unit 1410 generates a control instruction, and the control instruction is used to control the driving device 15.
  • the sending unit 1420 sends the control instruction to the driving device 15, and by controlling the driving device 15 to drive the piston 12 to move along the inner wall of the hydraulic cylinder 11, to increase or decrease the first set of brakes The pressure of the brake fluid in the wheel cylinders 28, 29 and/or the second set of brake wheel cylinders 26, 27.
  • the generating unit 1410 may be a processor 1520, the sending unit 1420 may be a communication interface 1530, and the specific structure of the controller is shown in FIG. 15.
  • FIG. 15 is a schematic block diagram of a controller according to another embodiment of the present application.
  • the controller 1500 shown in FIG. 15 may include a memory 1510, a processor 1520, and a communication interface 1530.
  • the memory 1510, the processor 1520, and the communication interface 1530 are connected by an internal connection path.
  • the memory 1510 is used to store instructions, and the processor 1520 is used to execute the instructions stored in the memory 1520 to control the communication interface 1530 to receive/send information.
  • the memory 1510 may be coupled with the processor 1520 through an interface, or may be integrated with the processor 1520.
  • the aforementioned communication interface 1530 uses devices such as, but not limited to, an input/output interface to implement communication between the controller 1500 and other devices or communication networks.
  • the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1520 or instructions in the form of software.
  • the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1510, and the processor 1520 reads the information in the memory 1510, and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • a part of the processor may also include a non-volatile random access memory.
  • the processor may also store device type information.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

液压调节单元、制动***、汽车及控制方法,液压调节单元的第二液压腔(17)通过设置有第一控制阀(111)的第一制动管路(110)为第一组制动轮缸(28、29)提供制动力,并且通过设置有第二控制阀(121)的第二制动管路(120)为第二组制动轮缸(26、27)提供制动力,避免了现有技术中,通过带单向阀的第一制动管路(110)和第二制动管路(120)为第一组制动轮缸(28、29)和第二组制动轮缸(26、27)提供制动力时,无法控制第一制动管路(110)和第二制动管路(120)的通断状态。

Description

液压调节单元、制动***及控制方法 技术领域
本申请涉及汽车领域,并且更具体地,涉及液压调节单元、制动***及控制方法。
背景技术
汽车的制动***是通过对汽车的车轮施加一定的制动力,从而对其进行一定程度的强制制动的***。制动***作用是使行驶中的汽车按照驾驶员或者控制器的要求进行强制减速甚至停车,或者使已停驶的汽车在各种道路条件下(例如,在坡道上)稳定驻车,或者使下坡行驶的汽车速度保持稳定。
电液制动***(Electro-Hydraulic Brake,EHB)作为流行的制动***通常包括双回路制动***以及分布式制动***。其中,对于双回路制动***而言,液压调节装置通过第一制动管路用于为第一组制动轮缸提供制动力,液压调节装置通过第二制动管路为第二组车轮提供制动力。目前,通产采用具有双向增压功能的液压调节装置作为上述双回路制动***中的液压调节装置。
传统的双回路制动***中,具有双向增压功能的液压调节装置在正向增压的过程中,液压调节装置的第二液压腔通过设置有单向阀的第一制动管路为第一组车辆提供制动力,同时第二液压腔通过设置有单向阀的第二制动管路为第二组车辆提供制动力。在反向增压的过程中,液压调节装置的第一液压腔通过设置有单向阀的第一制动管路为第一组车辆提供制动力,同时第一液压腔通过设置有单向阀的第二制动管路为第二组车辆提供制动力。
然而,第一制动管路和第二制动管路都是基于单向阀控制制动液的流向,无法控制制动管路的通断。这样,当其中一条制动管路漏液后,制动***内的制动液会随着泄露的制动管路流失,导致液压调节单元无法为制动***增压,降低了车辆的行车的安全性。
发明内容
本申请提供一种液压调节单元、制动***及控制方法,以对双回路制动管路中的任意制动管路单独增压,提高车辆的行车的安全性。
第一方面,提供一种制动***中的液压调节单元,包括:液压调节装置10,所述液压调节装置10包括第一液压腔16和第二液压腔17;所述第二液压腔17分别连接至所述制动***中的第一制动管路110以及所述制动***中的第二制动管路120,所述第一制动管路110用于为所述制动***中的第一组制动轮缸28、29提供制动力,所述第二制动管路120用于为所述制动***中的第二组制动轮缸26、27提供制动力,其中,所述第一制动管路110中设置有第一控制阀111,所述第一控制阀111的通断状态控制所述第一制动管路110的通断状态,所述第二制动管路120中设置有第二控制阀121,所述第二控制阀121的通断状态控制所述第二制动管路120的通断状态;所述第一液压腔16通过所述制动***中的第三制动管路130与所述第二制动管路120相连,所述第一液压腔16通过所 述第二制动管路120为所述第二组制动轮缸26、27提供制动力,当所述第一控制阀111与所述第二控制阀121处于连通状态,所述第三制动管路130通过所述第二制动管路120与所述第一制动管路110连通,所述第一液压腔16通过所述第一制动管路110为所述第一组制动轮缸28、29提供制动力。
在本申请实施例中,第二液压腔17通过设置有第一控制阀111的第一制动管路110为第一组制动轮缸28、29提供制动力,并且通过设置有第二控制阀121的第二制动管路120为第二组制动轮缸26、27提供制动力,有利于实现对第一制动管路110和第二制动管路120进行单独增压,避免了现有技术中,通过带单向阀的第一制动管路110和第二制动管路120为第一组制动轮缸28、29和第二组制动轮缸26、27提供制动力时,无法控制第一制动管路110和第二制动管路120的通断状态。
另一方面,第二液压腔16可以复用设置有第一控制阀111的第一制动管路110以及设置有第二控制阀121的第二制动管路120确定是否为第二组制动轮缸26、27提供制动力,有利于减少制动***中控制阀的数量,降低制动***的成本。
可选地,上述液压调节装置10为具有双向增压功能的液压调节装置。
在一种可能的实现方式中,所述第二液压腔17与所述第四制动管路140的第一端相连,所述第四制动管路140的第二端与所述第二控制阀121的第一端相连,所述第三制动管路130与所述第二制动管路120的接口与所述第二控制阀121的第二端相连。
在本申请实施例中,第二液压腔17通过设置有第一控制阀111的第一制动管路110为第一组制动轮缸28、29提供制动力,并且通过设置有第二控制阀121的第二制动管路120为第二组制动轮缸26、27提供制动力,有利于实现对第一制动管路110和第二制动管路120进行单独增压。
在一种可能的实现方式中,所述第一控制阀111的第二端与所述第二控制阀121的第二端之间通过第三控制阀141相连,所述第三控制阀141控制所述第二控制阀121的第二端与所述第一控制阀111的第二端之间的通断。
在本申请实施例中,通过在一控制阀111的第二端与第二控制阀121的第二端之间设置第三控制阀141,当第三控制阀141处于导通状态时,第一控制阀111所在的第一制动管路110和第二控制阀121所在的第二制动管路120之间的制动液的压力均衡,有利于提高制动***制动的安全性。
在一种可能的实现方式中,所述液压调节单元的第一接口与所述液压调节单元的第二接口之间设置有第一单向阀122,所述第一接口为所述第三制动管路130与所述第二制动管路120之间的接口,第二接口为所述第三控制阀141与所述第二制动管路120之间的接口,所述第一单向阀122允许制动液从所述第一接口流至所述第二接口,且所述第一单向阀122阻断制动液从所述第二接口流向所述第一接口。
在本申请实施例中,通过在第一接口与第二接口之间设置有第一单向阀122,以允许制动液从第一接口流至第二接口,且第一单向阀122阻断制动液从第二接口流向第一接口,有利于提高第一液压腔16的制动效率。
在一种可能的实现方式中,所述第四制动管路140上设置有第四控制阀142,所述第四控制阀142的通断控制所述第四制动管路140的通断。
在本申请实施例中,在第四制动管路140上设置第四控制阀142,以通过第四控制阀 142的通断控制第四制动管路140的通断。避免第一液压腔16提供制动力的过程中,制动液通过第四制动管路流入第二液压腔17,有利于提高第一液压腔16的制动效率。
在一种可能的实现方式中,所述第三制动管路130上设置有第五控制阀131,所述第五控制阀131控制所述第三制动管路130的通断。
在本申请实施例中,通过在第三制动管路上设置第五控制阀131,使得第一液压腔16可以通过第五控制阀131的通断,对第一制动管路110和第二制动管路120提供单独制动,有利于提高车辆行车的安全性。
在一种可能的实现方式中,所述第一液压腔16和所述第二液压腔17为通过所述液压调节单元中的活塞12将所述液压调节单元中的液压缸11进行分隔形成的,所述第一液压腔16的端部设置有推杆支撑部14,所述推杆支撑部14支撑驱动所述活塞12的推杆13,且所述推杆支撑部14上设置有第一液压调节口14a,所述第一液压调节口14a与所述制动***的第一出液管路190相连;所述推杆13上设有第二液压调节口13a,所述第二液压调节口13a与所述第一液压腔16连通,当所述活塞12位于活塞行程的内止点时,所述第一液压调节口14a与所述第二液压调节口13a连通,所述第一液压腔16中的制动液通过所述第一出液管路150从所述第一液压腔16中排出,当所述活塞12位于所述活塞行程中除所述内止点之外的位置时,所述第一液压调节口14a与所述第二液压调节口13a不连通。
在本申请实施例中,将第一液压腔16的出液管路分段配置在推杆支撑部14(对应第一液压调节口14a)以及推杆13(对应第二液压调节口13a)上,这样,当活塞12位于活塞行程的内止点时,第一液压调节口14a与第二液压调节口13a连通,当活塞12位于活塞行程中除内止点之外的位置时,第一液压调节口14a与第二液压调节口13a不连通,即通过活塞12在活塞行程中的位置控制第一液压调节口14a与第二液压调节口13a的通断状态,避免了传统的液压调节装置中需要专门为第一液压腔16配置控制阀,以通过控制第一液压腔16的出液管路的通断,有利于减少液压调节单元中控制阀的数量,降低液压调节单元中的成本。
在一种可能的实现方式中,所述第一液压腔16与第一进液管路190相连,所述第一进液管路190用于将所述液压调节单元中的制动液压入所述第一液压腔16。
在一种可能的实现方式中,当所述活塞12位于活塞行程的内止点时,所述第一液压腔16内的制动液,通过连通的所述第一液压调节口14a与所述第二液压调节口13a排出所述第一液压腔16。
在本申请实施例中,将第一液压腔16的出液管路分段配置在推杆支撑部14(对应第一液压调节口14a)以及推杆13(对应第二液压调节口13a)上,这样,当活塞12位于活塞行程的内止点时,第一液压调节口14a与第二液压调节口13a连通,第一液压腔16内的制动液可以通过连通的第一液压调节口14a以及第二液压调节口13a排出第一液压腔16,有利于减少液压调节单元中控制阀的数量,降低液压调节单元中的成本。
在一种可能的实现方式中,沿所述推杆13的外周设有圆环状或半圆环状的第一导流槽13b,所述第一导流槽13b与所述第二液压调节口13a连通。
在本申请实施例中,通过在推杆13的外周设置圆环状或半圆环状的第一导流槽13b,在推杆13发生旋转的情况下,活塞12位于内止点,第一液压调节口14a与第二液压调节口13a之间可以通过第一导流槽13b连通,有利于提高液压调节装置的性能。
在一种可能的实现方式中,沿所述推杆支撑部14的内周设有圆环状或半圆环状的第二导流槽13c,所述第二导流槽13c与所述第一液压调节口14a连通。
在本申请实施例中,通过在推杆支撑部14的内周设置圆环状或半圆环状的第二导流槽13c,在推杆13发生旋转的情况下,活塞12位于内止点,第一液压调节口14a与第二液压调节口13a之间可以通过第二导流槽13c连通,有利于提高液压调节装置的性能。
在一种可能的实现方式中,所述第二液压调节口13a在所述推杆13上倾斜设置并且贯穿所述推杆13,所述第二液压调节口13a的第一端与所述活塞12之间的距离短于所述第二液压调节口13a的第二端与所述活塞12之间的距离,其中,所述第一端为所述第二液压调节口13a与所述第一液压调节口14a连通的一端,所述第二端为所述第二液压调节口13a与所述第一液压腔16连通的一端。
在本申请实施例中,通过设置第二液压调节口13a的第一端与活塞12之间的距离短于第二液压调节口13a的第二端与活塞12之间的距离,使得连通的第二液压调节口13a和第一液压调节口14a可以与第一液压腔16连通。
在一种可能的实现方式中,当所述活塞12位于所述内止点时,所述推杆支撑部14与所述第二液压调节口13a间隔设置。
在本申请实施例中,当活塞12位于内止点时,推杆支撑部14与第二液压调节口13a间隔设置,避免推杆支撑部14对第二液压调节口13a的遮挡,有利于方便制动液流进第二液压调节口13a,提高液压调节装置的减压效率。
第二方面,提供一种制动***,包括第一组制动轮缸28、29、第二组制动轮缸26、27以及如权利要求1-8中任一项所述的液压调节单元,所述液压调节单元通过所述第一制动管路110为所述第一组制动轮缸28、29提供制动力,所述液压调节单元通过所述第二制动管路120为所述第二组制动轮缸26、27提供制动力。
在一种可能的实现方式中,所述控制***还包括驱动装置15,所述驱动装置15驱动所述液压调节装置10中的活塞12沿着所述液压调节单元的液压缸11的内壁运动,所述活塞12将所述液压缸11分隔为所述第一液压腔16和所述第二液压腔17。
第三方面,提供一种汽车,包括上述第二方面中任意一种可能的实现方式所述的液压调节单元,所述液压调节单元通过调节所述制动***中的制动管路内制动液的压力,以控制施加至所述制动***中制动轮缸的制动力的大小。
第四方面,提供一种制动***的控制方法,所述制动***包括:具有双向增压功能的液压调节装置10,所述液压调节装置10的液压缸11被活塞12分隔为第一液压腔16和第二液压腔17;所述第二液压腔17分别连接至所述制动***中的第一制动管路110以及所述制动***中的第二制动管路120,所述第一制动管路110用于为所述制动***中的第一组制动轮缸28、29提供制动力,所述第二制动管路120用于为所述制动***中的第二组制动轮缸26、27提供制动力,其中,所述第一制动管路110中设置有第一控制阀111,所述第一控制阀111的通断状态控制所述第一制动管路110的通断状态,所述第二制动管路120中设置有第二控制阀121,所述第二控制阀121的通断状态控制所述第二制动管路120的通断状态;所述第一液压腔16通过所述制动***中的第三制动管路130与所述第二制动管路120相连,所述第一液压腔16通过所述第二制动管路120为所述第二组制动轮缸26、27提供制动力,当所述第一控制阀111与所述第二控制阀121均处于连通状态, 所述第三制动管路130通过所述第二制动管路120与所述第一制动管路110连通,所述第一液压腔16通过所述第一制动管路110为所述第一组制动轮缸28、29提供制动力,所述方法包括:控制器生成控制指令,所述控制指令用于对所述驱动装置15进行控制;所述控制器向驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12沿着所述液压缸11的内壁运动,以增大或减小所述第一组制动轮缸28、29和/或所述第二组制动轮缸26、27中制动液的压力。
在本申请实施例中,第二液压腔17通过设置有第一控制阀111的第一制动管路110为第一组制动轮缸28、29提供制动力,并且通过设置有第二控制阀121的第二制动管路120为第二组制动轮缸26、27提供制动力,有利于实现对第一制动管路110和第二制动管路120进行单独增压,避免了现有技术中,通过带单向阀的第一制动管路110和第二制动管路120为第一组制动轮缸28、29和第二组制动轮缸26、27提供制动力时,无法控制第一制动管路110和第二制动管路120的通断状态。
另一方面,第二液压腔16可以复用设置有第一控制阀111的第一制动管路110以及设置有第二控制阀121的第二制动管路120确定是否为第二组制动轮缸26、27提供制动力,有利于减少制动***中控制阀的数量,降低制动***的成本。
在一种可能的实现方式中,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第一液压腔16为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111和所述第二控制阀121均处于断开状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111和第二控制阀121,由第一液压腔16为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述制动***还包括第四制动管路140,所述第二液压腔17与所述第四制动管路140的第一端相连,所述第四制动管路140的第二端与所述第二控制阀121的第一端相连,且所述第四制动管路140上设置有第四控制阀142以控制所述第四制动管路140的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第一液压腔16为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111和所述第二控制阀121均处于断开状态,且所述第四控制阀142处于断开状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111、第二控制阀121以及第四控制阀142,由第一液压腔16为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述第三制动管路130设置有第五控制阀131,且所述第五控制阀131控制所述第三制动管路130的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第一液压腔16为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111和所述第二控制阀121均处于断开状态,且所述第五控制阀131处于导通状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可 以通过断开第一控制阀111、第二控制阀121,并控制第五控制阀131导通,由第一液压腔16为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述控制器向驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12沿着所述液压缸11的内壁运动,以增大或减小所述第一组制动轮缸28、29和/或所述第二组制动轮缸26、27中制动液的压力,包括:在为所述第二组制动轮缸26、27提供制动力的过程中,所述控制器向所述驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12压缩所述第一液压腔16的容积,以将所述第一液压腔16中的制动液通过所述第二制动管路120压入所述第二组制动轮缸26、27,以增大所述第二组制动轮缸26、27中制动液的压力。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,控制器控制活塞12压缩第一液压腔16的容积,以通过第一液压腔16中的制动液为第二组制动轮缸26、27建压,即对第二组制动轮缸26、27单独建压,以提高制动***的安全性。
在一种可能的实现方式中,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第二液压腔17为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111处于断开状态,且控制所述第二控制阀121处于导通状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111、连通第二控制阀121,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述制动***还包括第四制动管路140,所述第二液压腔17与所述第四制动管路140的第一端相连,所述第四制动管路140的第二端与所述第二控制阀121的第一端相连,且所述第四制动管路140上设置有第四控制阀142以控制所述第四制动管路140的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第二液压腔17为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111处于断开状态,且控制所述第二控制阀121以及所述第四控制阀142处于导通状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111、连通第二控制阀121与第四控制阀142,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述第三制动管路130设置有第五控制阀131,且所述第五控制阀131控制所述第三制动管路130的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第一液压腔16为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制所述第二控制阀121均处于断开状态,且所述第一控制阀111和所述第五控制阀131处于断开状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111与第五控制阀131、连通第二控制阀121,由第二液压腔17为 第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述控制器向驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12沿着所述液压缸11的内壁运动,以增大或减小所述第一组制动轮缸28、29和/或所述第二组制动轮缸26、27中制动液的压力,包括:在为所述第二组制动轮缸26、27提供制动力的过程中,所述控制器向所述驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12压缩所述第二液压腔17的容积,以将所述第二液压腔17中的制动液通过所述第二制动管路120压入所述第二组制动轮缸26、27,以增大所述第二组制动轮缸26、27中制动液的压力。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,控制器控制活塞12压缩第二液压腔17的容积,以通过第二液压腔17中的制动液为第二组制动轮缸26、27建压,即对第二组制动轮缸26、27单独建压,以提高制动***的安全性。
在一种可能的实现方式中,所述方法还包括:在为所述第二组制动轮缸26、27提供制动力的制动回路失效,且需要所述第二液压腔17为所述第一组制动轮缸28、29提供制动力的情况下,所述控制器控制第一控制阀111处于断开状态,且所述第二控制阀121处于导通状态。
在本申请实施例中,当为第二组制动轮缸26、27提供制动力的制动回路失效,可以通过断开第一控制阀111、连通第二控制阀121,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述制动***还包括第四制动管路140,所述第二液压腔17与所述第四制动管路140的第一端相连,所述第四制动管路140的第二端与所述第二控制阀121的第一端相连,且所述第四制动管路140上设置有第四控制阀142以控制所述第四制动管路140的通断,所述方法还包括:在为所述第二组制动轮缸26、27提供制动力的制动回路失效,且需要所述第二液压腔17为所述第一组制动轮缸28、29提供制动力的情况下,所述控制器控制所述第二控制阀121处于断开状态,且控制第一控制阀111以及第四控制阀142处于导通状态。
在本申请实施例中,当为第二组制动轮缸26、27提供制动力的制动回路失效,可以通过断开第二控制阀121、连通第一控制阀111和第四控制阀142,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述第三制动管路130设置有第五控制阀131,且所述第五控制阀131控制所述第三制动管路130的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第二液压腔17为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111和所述第五控制阀131均处于导通状态,且所述第二控制阀121处于断开状态。
在本申请实施例中,当为第二组制动轮缸26、27提供制动力的制动回路失效,可以通过断开第二控制阀121,连通第一控制阀111、以及第五控制阀131,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液 流进失效制动回路导致制动液压力泄露。
在一种可能的实现方式中,所述控制器向驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12沿着所述液压缸11的内壁运动,以增大或减小所述第一组制动轮缸28、29和/或所述第二组制动轮缸26、27中制动液的压力,包括:在为所述第一组制动轮缸28、29提供制动力的过程中,所述控制器向所述驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12压缩所述第二液压腔17的容积,以将所述第二液压腔17中的制动液通过所述第一制动管路110压入所述第一组制动轮缸28、29,以增大所述第一组制动轮缸28、29中制动液的压力。
在本申请实施例中,当为第二组制动轮缸26、27提供制动力的制动回路失效后,控制器控制活塞12压缩第二液压腔17的容积,以通过第二液压腔17中的制动液为第一组制动轮缸28、29建压,即对第一组制动轮缸28、29单独建压,以提高制动***的安全性。
第五方面,提供一种控制装置,该控制装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使控制装置执行第三方面中任一种可能的方法。
可选地,上述控制装置可以是汽车中独立的控制器,也可以是汽车中具有控制功能的芯片。上述处理单元可以是处理器,上述存储单元可以是存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是汽车内位于上述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
需要说明的是,上述控制器中存储器与处理器耦合。存储器与处理器耦合,可以理解为,存储器位于处理器内部,或者存储器位于处理器外部,从而独立于处理器。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第七方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是本申请实施例的液压调节装置的示意图。
图2是本申请实施例的第一导流槽的结构示意图。
图3是本申请实施例的第二导流槽的结构示意图。
图4是申请实施例的液压调节单元的示意图。
图5是申请另一实施例的液压调节单元的示意图。
图6是申请另一实施例的液压调节单元的示意图。
图7是本申请实施例中储液装置与液压调节装置10的连接方式一的示意图。
图8是本申请实施例中储液装置与液压调节装置10的连接方式二的示意图。
图9是本申请实施例的液压调节单元的示意图。
图10是本申请实施例的液压调节单元的示意图。
图11是本申请实施例的液压调节单元的示意图。
图12是本申请实施例提供的控制方法的流程图。
图13是本申请另一实施例的控制方法的流程图。
图14是本申请实施例的控制装置的示意图。
图15是本申请另一实施例的控制器的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
需要说明的是,下文中涉及的“出液管路”和“进液管路”可以对应不同的制动管路,也可以对应相同的一条制动管路。“出液管路”和“进液管路”仅仅基于制动管路在制动***中的功能来区分的。例如,当“出液管路”和“进液管路”对应相同的制动管路1时,可以理解为,在为汽车的车轮减压的过程中,制动***中的制动管路1用于将制动轮缸中的制动液输送至储液装置,此时,制动管路1可以称为“出液管路”。在为汽车的车轮增压的过程中,该制动管路1用于为汽车的车轮提供制动液,以为汽车的车轮提供制动力,此时,制动管路1可以称为“进液管路”。
另外,下文中涉及的“进液阀”、“出液阀”以及“均压阀”仅仅基于控制阀在制动***中的功能来区分的。用于控制进液管路连通或者断开的控制阀可以称为“进液阀”或者“增压阀”。用于控制回液管路连通或者断开的控制器可以称为“出液阀”或者“减压阀”。用于隔离两级制动子***的控制阀可以称为“隔离阀”。其中,上述控制阀可以是现有的制动***中常用的阀,例如,电磁阀等,本申请实施例对此不作具体限定。
另外,当控制阀连接至制动管路后,控制阀与制动管路的连接端口可以通过第一端和第二端表示,本申请对制动液在第一端和第二端之间的流向不作限定。例如,当控制阀处于导通状态时,制动液可以从控制阀的第一端流至控制阀的第二端,或者,当控制阀处于断开状态时,制动液可以从控制阀的第二端流至控制阀的第一端。
另外,下文中涉及的“第一制动管路110”、“第二制动管路120”、“第三制动管路130”、“第四进液管路140”、以及其他制动管路等可以理解为实现某一功能的一段或多段制动管路。例如,第一进液管路130为用于连接制动主缸3与第一组车轮的制动轮缸151的多段制动管路。
另外,下文在结合附图介绍制动***、汽车等架构时,附图中会示意性地示出每个控制阀可以实现的两种工作状态(断开或连通),并不限定控制阀当前的工作状态如图所示。
另外,下文在结合附图介绍液压调节单元、制动***、汽车等架构时,各个实施例对应的附图中功能相同的部件使用的编号相同,为了简洁,各部件的功能不会在每个实施例中说明,可以参见全文中关于各部件功能的介绍。
为了便于理解本申请,下文先结合图1至图3介绍本申请实施例适用的液压调节装置。应理解,本申请实施例的方案还适用于其他具有双向增压/减压功能的液压调节装置,本申请实施例对此不作限定。
图1是本申请实施例的液压调节装置的示意图。图1所示的液压调节装置10包括液压缸11、活塞12、推杆13、推杆支撑部14。
其中,活塞12沿着液压缸11的内壁运动,活塞12将液压缸11分隔为第一液压腔 16和第二液压腔17;第一液压腔16的端部设置有推杆支撑部14,推杆支撑部14支撑推杆13,且推杆支撑部14上设置有第一液压调节口14a;推杆13上设有第二液压调节口13a,第二液压调节口13a的第一端与第一液压腔16连通,当活塞12位于活塞行程的内止点时,第一液压调节口14a与第二液压调节口13a的第二端连通,当活塞12位于活塞行程中除内止点之外的位置时,第一液压调节口14a与第二液压调节口13a的第二端不连通。
如图1所示,驱动装置15通过推杆13推动活塞12沿着液压缸11的内壁运动并形成活塞行程,液压缸11被活塞12分隔为两个液压腔,第一液压腔16以及第二液压腔17。其中,与第一液压腔16相连的第一流道由端口11a和端口11d组成。与第二液压腔17相连的第二流道由端口11c和端口11b组成。
活塞12可活动的设置于液压缸11内,推杆13的一端伸入液压缸11内并且与活塞12连接,推杆13的另一端穿出液压缸11与驱动装置15传动连接。在驱动装置15的带动下,活塞12能够在液压缸11内做往复运动,以实现对制动***的增压或者减压(减压)操作。
需要说明的是,上述活塞12可以通过驱动装置15进行驱动,其中驱动装置15可以是电机等其他具有驱动能力的装置。应理解,上述驱动装置15为电机时,由于部分电机输出的是转矩,因此,为了将电机输出的转矩装换为驱动推杆13的直线运动,驱动装置15与推杆13之间还可以通过减速机构,或者其他动力转换机构18相连。上述动力装换机构例如可以包括涡轮蜗杆组件或者滚珠丝杠螺母组件。
在活塞12沿着液压缸11的内壁运动的过程中,活塞12距离驱动装置15的驱动轴(例如,曲轴中心)最远的位置称为“外止点”,相应地,活塞12距离驱动装置15的驱动轴(例如,曲轴中心)最进的位置称为“内止点”,而“外止点”和“内止点”之间的距离称为活塞行程。
第一液压腔16和第二液压腔17被活塞12隔开,并且被配置为其体积随着活塞12的移动而改变。具体地,当活塞12向前方(图1中向左方向)移动时,第一液压腔16的体积被增大,第二液压腔17的体积被减小。当活塞12向后方(图1中向右方向)移动时,第一液压腔16的体积被减小,第二液压腔17的体积被增大。
通常,可以将活塞12向前方移动称为“正向移动”,将活塞12向后方移动称为“反向移动”。当通过液压调节装置10对制动***进行增压操作时,可以将正向移动的增压称为正向增压,将反向移动的增压称为反向增压。下文在对包含该液压调节装置10在内的液压调节单元或者制动***进行介绍时,将会对该正向增压和反向增压做进一步介绍。
第一液压腔16的端部设置有推杆支撑部14,推杆支撑部14支撑推杆13,且推杆支撑部14上设置有第一液压调节口14a。
需要说明的是,推杆支撑部14与液压缸11可以一体成型,或者推杆支撑部14与液压缸11还可以是后期组装的,本申请实施例对此不作限定。
可选地,在推杆支撑部14上还设置有密封构件(图中未示出),从而防止制动液从第一液压腔16中通过推杆13和推杆支撑部之间的间隙流出。
推杆13上设有第二液压调节口13a,当活塞12位于活塞行程的内止点时,第一液压腔16通过第一液压调节口14a与第二液压调节口14a连通。相反地,当活塞12位于活塞行程中除内止点之外的位置时,第一液压调节口14a与第二液压调节口13a不连通。
上述第一液压腔16通过第一液压调节口14a与第二液压调节口14a连通,可以理解为第一液压腔16中的制动液可以通过连通的第一液压调节口14a与第二液压调节口13a排出第一液压腔16,或者制动液可以通过连通的第一液压调节口14a与第二液压调节口13a进入第一液压腔16。
上述第一液压调节口14a与第二液压调节口13a可以视为上文中与第一液压腔16相连通的第一流道的端口。
可选地,上述第一液压腔16中的制动液可以通过第一液压腔上设置的第三液压调节口11a流进。第三液压调节口11a连通第一液压腔16和制动***的制动管路,该制动管路可以连通至与汽车车轮的制动轮缸,制动***的控制器能够通过调节制动管路中的液压来调节施加在车轮上的制动力。
也就是说,在增压过程中,第一液压腔16可以通过第三液压调节口11a将制动液压入该制动管路中,以此来增加施加在车轮上的制动力。在减压过程中,基于制动***中的压力差,制动管路中的制动液可以通过第三液压调节口11a流进第一液压腔16中,以此来减少或者取消施加在车轮上的制动力。
可选地,液压缸11上还可以开设有第四液压调节口11b,第四液压调节口11b用于通过管路连通第二液压腔17和制动***的制动管路。
类似地,第二液压腔17能够通过第四液压调节口11b向该制动管路中排出制动液,对制动管路进行增压操作,以此来增加施加在车轮上的制动力。制动管路中的制动液还能够通过该第四液压调节口11b排入第二液压腔17中,对制动管路进行减压操作,以此来减少或者取消施加在车轮上的制动力。
上述第四液压调节口11b还可以通过制动管路连通第二液压腔17和第一液压腔16。通过以上设置,在液压调节装置10进行正向增压时,第二液压腔17内的制动液的一部分能够排入制动管路中,以对车轮进行制动,其余一部分制动液可以排入第一液压腔16内,从而能够降低第二液压腔17和第一液压腔16之间的压力差,减小驱动装置15的工作负荷,提高电机驱动装置的寿命。
液压缸11上还可以设置有第五液压调节口11c,第五液压调节口11c用于排入储液装置30补充的制动液。
具体地,第五液压调节口11c通过管路与储液装置30相连通,当进行反向增压时,为了降低第二液压腔17和第一液压腔16的压力差,在活塞12向右移动的过程中,可以通过第五液压调节口11c将储液装置30内的制动液及时的补充入第二液压腔17中。
因此,本申请实施例提供的液压调节装置10,通过正向移动或者反向移动,能够实现双向增压,保证增压过程的连续性,提高制动时的舒适性。另一方面,本申请实施例的液压调节装置10能够迅速的生成压力,实现对制动***的快速建压,减少***的控制响应时间,满足车辆的控制和安全需求。
可选地,为了便于连通第一液压腔16与第一液压调节口14a,第二液压调节口13a可以在推杆13上倾斜设置并且贯穿推杆13,第二液压调节口13a的进液口与活塞12之间的距离短于第二液压调节口13a的出液口与活塞12之间的距离。
上述第二液压调节口13a的进液口(又称第一端)与活塞12之间的距离短于第二液压调节口13a的出液口(又称第二端)与活塞12之间的距离,可以理解为,第二液压调 节口13a与第一液压调节口14a连通的一侧相对第二液压调节口13a与第一液压腔16连通的一侧更靠近活塞12。当然,第二液压调节口13a也可以为U形孔等,本申请对此不做限定。
通常为了避免活塞12位于内止点或外止点时,推杆支撑部14对第二液压调节口13a的遮挡,推杆支撑部14可以与第二液压调节口13a间隔设置,或者说,活塞12位于内止点或外止点时,推杆支撑部14可以与第二液压调节口13a之间存在一定间隔,以便于第一液压腔16中的制动液可以不被遮挡的进出第二液压调节口13a。当然,推杆支撑部14也可以遮挡部分第二液压调节口13a。本申请实施例对此不作限定。
通常,推杆13在经历长时间工作后可能发生旋转,相应地,设置在推杆13上的第二液压调节口13a也会发生旋转,此时,即使活塞12处于内止点,旋转后的第二液压调节口13a与第一液压调节口14a无法导通。例如,旋转后的第二液压调节口13a的出口可能被推杆支撑部14的内壁封堵,相应地,第一液压调节口14a被推杆13的外壁封堵。
为了避免上述问题,可以沿推杆13的外周设置第一导流槽13b,第一导流槽13b与第二液压调节口13a相连通,第一导流槽13b能够在推杆13发生旋转后,确保第二液压调节口13a与第一液压调节口14a之间保持连通。
可选地,第一导流槽13b可以是沿推杆13的外周的圆环状或半圆环状。当然,第一导流槽13b为沿推杆13的外周设置的半圆环形槽时,有利于减小第一导流槽13b对推杆13机械强度的影响。应理解,上述半圆环的弧长可以根据推杆13能够发生的最大旋转量来确定。
下文以图2所示的第一导流槽为例进行说明。图2是本申请实施例的第一导流槽的结构示意图。其中,图2(b)是推杆13的主视图,图2(a)是图2(b)中A-A视角的截面图。
沿推杆13的外周可以开设第一导流槽13b,该导流槽沿着推杆13的周向设置,第二液压调节口13a与第一导流槽13b相连通,这样,当活塞12被移动到内止点时,第二液压调节口13a将通过第一导流槽13b与第一液压调节口14a相导通,从而能够实现快速减压。
由于第一导流槽13b沿着推杆13的外周设置,并且具有一定的长度,从而使得在推杆13发生旋转时,第一导流槽13b将始终和第一液压调节口14a相连通,而第二液压调节口13a也与第一导流槽13b相连通,即此时仍然能够保证第二液压调节口13a与第一液压调节口14a相互导通。
如图2(a)所示,第一导流槽13b为首尾相连的环形槽。这样,推杆13无论发生多大角度的旋转,将保证第一导流槽13b和第一液压调节口14a始终保持相互连通,且第一导流槽13b和第二液压调节口13a也始终保持相互连通,如此,第二液压调节口13a与第一液压调节口14a始终保持相互导通。
可选地,沿推杆支撑部14的内周设有圆环状或半圆环状的第二导流槽13c,第二导流槽13c与第一液压调节口14a连通。下文结合图3介绍本申请实施例的第二导流槽13c的结构。
图3是本申请实施例的第二导流槽的示意图。如图3所示,第二导流槽13c可以设置于推杆支撑部14的内壁上,并且第二导流槽13b与第一液压调节口14a相连通。
第二导流槽13c可以沿着推杆支撑部14的内周设置,由于推杆支撑部14的内周始终包覆推杆13的外周,这样,即使推杆13发生旋转,位于推杆支撑部14的内周的第二导流槽13c与第二液压调节口13a也能连通,即第二液压调节口13a与第一液压调节口14a连通。
在本申请实施例中,通过将第二导流槽13c设置于推杆支撑部14上有利于减小对推杆13的机械强度的影响,防止推杆13长时间工作之后发生断裂。
在传统的基于双向增压/减压的液压调节装置的双回路电液制动***(Electro-Hydraulic Brake,EHB)中,液压调节装置中的第一液压腔通过进油管路1为第一组车轮提供制动力,通过进油管路2为第二组车轮提供制动力。相应地,液压调节装置中的第二液压腔也是通过上述进油管路1和进油管路2分别为第一组车轮和第二组车轮提供制动力。然而,上述进油管路1和进油管路2是带有单向阀的进液管路,这种进液管路只能控制制动液的流向,无法控制进液管路的通断状态。当上述进油管路1和进油管路2中任意一条进油管路出现漏液后,因为无法断开漏液的进油管路,另一条正常工作的进油管路也无法正常建压,导致两条进油管路都无法为车轮提供制动力,降低了行车安全。
为了避免上述问题,本申请实施例提供一种新的液压调节单元,通过带控制阀的进油管路分别为第一组制动轮缸28、29以及第二组制动轮缸26、27提供制动力。下文结合图1以液压调节装置10为例,介绍本申请实施例的液压调节单元。
图4是申请实施例的液压调节单元的示意图,图4所示的液压调节单元400包括液压调节装置10、第一液压腔16、第二液压腔17、第一制动管路110、第二制动管路120、第三制动管路130、第一控制阀111、第二控制阀121。
具有双向增压/减压的液压调节装置10,液压调节装置10包括第一液压腔16和第二液压腔17。
第二液压腔17分别连接至第一制动管路110以及第二制动管路120,第一制动管路110用于为制动***中的第一组制动轮缸28、29提供制动力,第二制动管路120用于为制动***中的第二组制动轮缸26、27提供制动力,其中,第一制动管路110中设置有第一控制阀111,第一控制阀111的通断状态控制第一制动管路110的通断状态,第二制动管路120中设置有第二控制阀121,第二控制阀121的通断状态控制第二制动管路120的通断状态。
上述第一控制阀111的通断状态控制第一制动管路110的通断状态,可以理解为,第一控制阀111处于断开状态时第一制动管路110断开,制动液无法通过第一制动管路110流至第一组制动轮缸28、29。
上述第二控制阀121的通断状态控制第二制动管路120的通断状态,可以理解为,第二控制阀121处于断开状态时第二制动管路120断开,制动液无法通过第二制动管路120流至第二组制动轮缸26、27。
可选地,上述第一组制动轮缸28、29可以包括汽车右前轮的制动轮缸和左前轮的制动轮缸,则上述第二组制动轮缸26、27可以包括汽车右后轮的制动轮缸和左后轮的制动轮缸,此时,上述液压制动单元可以理解为在汽车中呈H型布置。或者,上述第一组制动轮缸28、29可以包括汽车右前轮的制动轮缸和左后轮的制动轮缸,则上述第二组制动轮缸26、27可以包括汽车右后轮的制动轮缸和左前轮的制动轮缸,此时,上述液压制动单 元可以理解为在汽车中呈X型布置。
上述第二液压腔17分别连接至第一制动管路110以及第二制动管路120,可以理解为,上述第二液压腔17与第一制动管路110以及第二制动管路120直接相连,即上述第二液压腔17的第四液压调节口11b为第一制动管路110的压力入端口,且第二液压腔17的第四液压调节口11b为第二制动管路120的压力入端口。也就是说,上述第一制动管路110与第二制动管路120相连通。
上述第二液压腔17分别连接至第一制动管路110以及第二制动管路120,还可以理解为,上述第二液压腔17通过一段管路与第一制动管路110以及第二制动管路120相连,即上述第二液压腔17通过第四制动管路140与第一制动管路110以及第二制动管路120相连。如图1所示,第二液压腔17与第四制动管路140的第一端相连,第四制动管路140的第二端与第一制动管路110中第一控制阀111的第一端相连,且第四制动管路140的第二端与第二制动管路120中第二控制阀121的第一端相连。也就是说,上述第一制动管路110与第二制动管路120相连通。
第一液压腔16通过制动***中的第三制动管路130与第二制动管路120相连,第一液压腔16通过第二制动管路120为第二组制动轮缸26、27提供制动力,当第一控制阀111与第二控制阀121处于连通状态,第三制动管路130通过第二制动管路120与第一制动管路110连通,第一液压腔16通过第一制动管路110为第一组制动轮缸28、29提供制动力。
上述第二控制阀121的第一端为与第四控制管路140相连的端口,则第二控制阀121的第一端为第二控制阀121与第二控制管路120相连的两端中出第一端之外的一端。
如图1所示,第三制动管路130与第二制动管路120之间的接口与第二控制阀121的第二端相连,则第二制动管路120与第三制动管路130相连通,第一控制阀111和第二控制阀121的通断状态,对第二制动管路120与第三制动管路130之间的通断状态没有影响。但是,第一控制阀111和第二控制阀121同时处于导通状态时,第二制动管路120与第一制动管路110连通,也就是说,第三制动管路130可以通过第二制动管路120与第一制动管路110连通,这样,第一液压腔17可以通过第三制动管路130、第二制动管路120、第一制动管路110为第一组制动轮缸28、29提供制动力。
相应地,当第一控制阀111和第二控制阀121同时处于断开状态时,第二制动管路120与第一制动管路110断开,也就是说,第三制动管路130无法通过第二制动管路120与第一制动管路110连通,这样,第一液压腔17仅可以通过第三制动管路130、第二制动管路120为第二组制动轮缸26、27提供制动力。
在本申请实施例中,第二液压腔17通过设置有第一控制阀111的第一制动管路110为第一组制动轮缸28、29提供制动力,并且通过设置有第二控制阀121的第二制动管路120为第二组制动轮缸26、27提供制动力,有利于实现对第一制动管路110和第二制动管路120进行单独增压,避免了现有技术中,通过带单向阀的第一制动管路110和第二制动管路120为第一组制动轮缸28、29和第二组制动轮缸26、27提供制动力时,无法控制第一制动管路110和第二制动管路120的通断状态。
另一方面,第二液压腔16可以复用设置有第一控制阀111的第一制动管路110以及设置有第二控制阀121的第二制动管路120确定是否为第二组制动轮缸26、27提供制动 力,有利于减少制动***中控制阀的数量,降低制动***的成本。
在分别通过第一制动管路110和第二制动管路120为第一组制动轮缸28、29和第二组制动轮缸26、27提供制动力时,为了使得两条制动管路中制动液的压力均衡,可以在第一控制阀111的第二端与第二控制阀121的第二端之间设置第三控制阀141,第三控制阀141控制第二控制阀121的第二端与第一控制阀111的第二端之间的通断。这样,当第三控制阀141处于导通状态时,第一控制阀111的第二端与第二控制阀121的第二端导通,两条制动管路之间的压力均衡。当然,如果不考虑两条制动管路之间压力均衡的问题,也可以不设置第三控制阀141,本申请实施例对此不作限定。
需要说明的是,由于第三控制阀141用于平衡第一制动管路110和第二制动管路120之间制动液的压力,因此第三控制阀141又可以称为“均压阀141”。
当上述第三控制阀141处于导通状态后,第一制动管路110中的一部分制动液会通过第三控制阀141流至第二制动管路120,并通过第二控制阀121流至第二液压腔17,导致这部分制动液不能到达制动轮缸,降低制动效率。为了避免这个问题,如图1所示,可以在第一接口与第二接口之间设置第一单向阀122,第一接口为第三制动管路130与第二制动管路120之间的接口,第二接口为第三控制阀141与第二制动管路120之间的接口,第一单向阀122允许制动液从第一接口流至第二接口,且第一单向阀122阻断制动液从第二接口流向第一接口。当然,如果不考虑制动效率的问题,也可以不设置第一单向阀122,本申请实施例对此不作限定。
当第一控制阀111和第二控制阀121处于导通状态时,第一液压腔16可以通过第二制动管路120、第一制动管路110为第一组制动轮缸27、28提供制动力,但是,当制动液通过第二控制阀121从第二制动管路120流向第一控制阀111时,一部分制动液可能会经过第四制动管路140流进第二液压腔17,在一定程度上会降低第一液压腔16为第一组制动轮缸27、28提供制动力的效率。
为了避免上述问题,可以在第四制动管路140上设置第四控制阀142,以通过第四控制阀142的通断控制第四制动管路140的通断。这样,当第一控制阀111和第二控制阀121处于导通状态时,第四控制阀142处于断开状态,此时,制动液通过第二控制阀121从第二制动管路120流向第一控制阀111时,进入第四制动管路140的制动液会被第四控制阀142阻断,无法流进第二液压腔17。上述制动管路中控制阀的排布方式可以参见图5所示。
如上文所述,第一控制阀111和第二控制阀121的通断只能控制第一液压腔16是否为第一组制动轮缸28、29提供制动力,但是无法控制第一液压腔16是否为第二组制动轮缸26、27提供制动力,因此,还可以在第三制动管路130上设置第五控制阀131,通过第五控制阀131的通断状态控制第三制动管路130的通断。
如图6所示,当第五控制阀131处于导通状态时,第三制动管路130导通,第一液压腔16可以通过第三制动管路130、第二制动管路120为第二组制动轮缸26、27提供制动力。当第五控制阀131处于断开状态时,第三制动管路130断开,第一液压腔16无法通过第三制动管路130、第二制动管路120为第二组制动轮缸26、27提供制动力。
上文结合图4至图6介绍了本申请实施例中液压调节装置与双回路制动***之间的连接方式,下文结合图7和图8介绍液压调节装置与储液装置30之间的连接方式。应理解, 为了便于理解,下文以液压调节装置10为例,介绍液压调节装置10与储液装置30之间的连接方式。
连接方式一,第二液压腔17设置有与储液装置30相连的进液管路1 170,第一液压腔16未设置与储液装置30相连的进液管路。
图7是本申请实施例中储液装置与液压调节装置10的连接方式一的示意图。如图7所示的液压调节单元700,进液管路1上设置有单向阀171,单向阀171允许进液管路1中的制动液从储液装置30流至第二液压腔17。第一液压腔16中的第一液压调节口(又称“出液口”)14a与第一出液管路180相连。
相应地,当第二控制阀121处于导通状态时,在液压调节装置10的正向增压模式下,第二液压腔17内的制动液一部分流入双回路制动***,一部分通过第二控制阀121流入第三制动管路130,并通过第三制动管路130流入第一液压腔16,也就是说,在正向增压过程中,第一液压腔16的进液管路为第三制动管路130。
在正向减压过程中,随着活塞12的正向移动,双回路制动***中的制动液被抽入第二液压腔17,当活塞12移动到内止点后,双回路制动***中的剩余的制动液通过第一出液管路180流至储液装置30。
连接方式二,第一液压腔16设置有与储液装置30相连的进液管路2 190,第二液压腔17设置有与储液装置30相连的进液管路1 170。
图8是本申请实施例中储液装置与液压调节装置10的连接方式二的示意图。如图8所示液压调节单元800,进液管路1上设置有单向阀171,单向阀171允许进液管路1中的制动液从储液装置30流至第二液压腔17。第一液压腔16中的第一液压调节口(又称“出液口”)14a与第一出液管路180相连。
进液管路2 190上设置有单向阀191,单向阀191允许进液管路2中的制动液从储液装置30流至第一液压腔16,阻止进液管路2中的制动液从第一液压腔16流至储液装置30。
相应地,当第二控制阀121处于导通状态时,在液压调节装置10的正向增压模式下,第二液压腔17内的制动液一部分流入双回路制动***,一部分通过第二控制阀121流入第三制动管路130,并通过第三制动管路130流入第一液压腔16,也就是说,在正向增压过程中,第一液压腔16的进液管路为第三制动管路130。
在正向减压过程中,随着活塞12的正向移动,双回路制动***中的制动液被抽入第二液压腔17,当活塞12移动到内止点后,双回路制动***中的剩余的制动液通过第一出液管路180流至储液装置30。
上文结合图2至图8介绍了液压调节装置10与双回路制动管路之间的连接方式,以液压调节装置10与储液装置30之间的连接方式,上文所示的液压调节单元400至600可以与液压调节单元700和800任意结合。下文分别以液压调节单元400与液压调节单元800组合,液压调节单元500与液压调节单元800组合,液压调节单元600与液压调节单元800组合为例,介绍制动***中以液压调节机构10提供制动力的机制。
需要说明的是,在下文所示的制动***中,也可以实现驾驶员通过踩踏制动踏板触发的人工制动模式、驾驶员通过踩踏制动踏板触发的线控制动模式以及自动驾驶场景中的无人驾驶制动模式。其人工制动模式下的制动过程原理与现有的制动***中的人工制动模式 下的制动过程类似,为了简洁,不再具体赘述。下文主要介绍基于线控制动模式以及无人驾驶制动模式中,压力调节装置10的双向增压以及双向减压过程。
下文结合图9介绍液压调节单元400与液压调节单元800组合形成的液压调节单元900。图9是本申请实施例的液压调节单元的示意图。图9所示的液压调节单元900中主缸增压调节单元910实现的功能即为需要驾驶员参与的人工制动模式以及线控制动模式。
主缸增压调节单元910,驾驶员通过踩踏制动踏板911将制动主缸917中的制动液通过控制阀913所在的制动管路流入踏板感觉模拟器912。在线控制动模式下,控制阀915和控制阀916处于断开状态,相应地,液压调节装置10基于踏板行程传感器918检测到的踏板行程,或者压力传感器914检测到的制动液的压力,为双回路制动***提供制动力。在人工制动模式下,控制阀915和控制阀916处于连通状态,制动液通过制动管路160和制动管路150为制动轮缸26、27、28、29提供制动力。
压力调节装置10在双向增压模式下,第一控制阀111、第二控制阀121以及第三控制阀141、以及制动轮缸26、27、28、29对应的进液阀920处于导通状态,控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀930处于断开状态。
在正向增压过程中,当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液分别通过第一制动管110、第二制动管路120压入制动管路150和制动管路160,并通过制动管路150压入制动轮缸28、29,通过制动管路160压入制动轮缸26、27。
在活塞12压缩第二液压腔17的容积的过程中,一部分制动液还可以通过第三制动管路130进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。另外,储液装置30中的制动液还可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。
在反向增压过程中,当驱动装置15驱动活塞12压缩第一液压腔16的容积,以将第一液压腔16中的一部分制动液通过连通的第三制动管130与第二制动管路120压入制动管路160,以为第二组制动轮缸26、27提供制动力。
第一液压腔16中的另一部分制动液通过连通的第三制动管130与第二制动管路120进入第二制动管路120,并通过第二控制阀121以及第一控制阀111进入第一制动管路110,并通过制动管路150为第一组制动轮缸28、29提供制动力。
在制动液流经第二控制阀121的过程中,会有一部分通过第四制动管路140流入第二液压腔17,以为第二液压腔17进行补液,减小驱动装置15驱动活塞12的驱动力。另外,储液装置30中的制动液还可以通过进油管路2 170进入第二液压腔17,以对第二液压腔17进行补液,减小驱动装置15驱动活塞12的驱动力。
压力调节装置10在双向减压模式下,控制阀915、控制阀916、制动轮缸26、27、28、29对应的进液阀920以及制动轮缸26、27、28、29对应的出液阀930处于断开状态,第一控制阀111、第二控制阀121以及第三控制阀141处于导通状态。
在正向减压过程中,当驱动装置15驱动活塞12压缩第一液压腔16的容积,以将制动轮缸26、27、28、29中的制动液分别通过第一制动管路110抽入第二液压腔17。由于第二制动管路120上设置有第一单向阀122,当制动轮缸26、27、28、29中的制动液抽入第二制动管路120后,会被第一单向阀122阻断,只能通过第三控制阀141所在的制动 管路流至第一制动管路110流入第二液压腔17。
当活塞12移动至内止点后,第二液压腔17的容积最大,此时,第二液压腔17无法继续容纳制动液,制动轮缸26、27、28、29中剩余的制动液可以继续通过第一制动管路110流至第二控制阀121,并通过第二控制阀121流至第三制动管路130,再通过第三制动管路130流入第二液压腔16,并通过第一出液管路180流入储液装置30。
在反向减压过程中,当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二组制动轮缸26、27中的制动液通过第二制动管路120抽入第三控制阀141所在的制动管路,再通过第三控制阀141所在的制动管路流经第一控制阀111、第二控制阀121流入第三制动管路130。第一组制动轮缸28、29中的制动液抽入第一制动管路110,并经过第一控制阀111、第二控制阀121流入第三制动管路130,最终通过第三控制管路130流入第一液压腔16,当活塞12运行至外止点后,第一液压腔16的容积最大,无法继续容纳制动液。此时,可以控制制动轮缸26、27、28、29对应的出液阀930处于导通状态,制动***中剩余的制动液可以通过制动轮缸26、27、28、29对应的出液阀930通过减压管路流至储液装置30。
压力调节装置10在单回路制动的双向增压模式下,假设制动回路940失效,压力调节装置10需要为制动回路950提供制动力。
此种情况下,第三控制阀141、第二控制阀121、控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀930处于断开状态,第一控制阀111、制动轮缸28、29对应的出液阀930处于导通状态。
在正向增压过程中,当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液通过第一制动管110压入制动管路150,并通过制动管路150压入制动轮缸28、29。第二制动管路120中由于第二控制阀121以及第三控制阀141处于断开状态,因此,第二液压腔17中的制动液无法通过第二制动管路120。
在活塞12压缩第二液压腔17的容积的过程中,第一液压腔16的容积增大,一部分制动液还可以通过第三制动管路130进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。另外,储液装置30中的制动液还可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。
压力调节装置10在单回路制动的双向增压模式下,假设制动回路950失效,压力调节装置10需要为制动回路940提供制动力。此种情况下,第三控制阀141、第一控制阀111、控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀930处于断开状态,第二控制阀121、制动轮缸26、27对应的出液阀930处于导通状态。
在反向增压过程中,驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液通过第二制动管120压入制动管路160,并通过制动管路160压入制动轮缸26、27。第一制动管路110中由于第一控制阀111以及第三控制阀141处于断开状态,因此,第二液压腔17中的制动液无法通过第一制动管路110。
在活塞12压缩第二液压腔17的容积的过程中,第一液压腔16的容积增大,储液装置30中的制动液可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。
下文结合图10介绍液压调节单元500与液压调节单元800组合形成的液压调节单元1000。图10是本申请实施例的液压调节单元的示意图。图10所示的液压调节单元1000中主缸增压调节单元910实现的功能与图9所示的液压调节单元900实现的功能相同,为了简洁,下文不再赘述。
压力调节装置10在双向增压模式下,可以分为正向增压过程和反向增压过程。
在正向增压过程中,第一控制阀111、第二控制阀121以及第四控制阀142、以及制动轮缸26、27、28、29对应的进液阀1020处于导通状态,控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀1030处于断开状态。
当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液分别通过第一制动管110、第二制动管路120压入制动管路150和制动管路160,并通过制动管路150压入制动轮缸28、29,通过制动管路160压入制动轮缸26、27。
在活塞12压缩第二液压腔17的容积的过程中,一部分制动液还可以通过第三制动管路130进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。另外,储液装置30中的制动液还可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。
在反向增压过程中,第一控制阀111、第二控制阀121、以及制动轮缸26、27、28、29对应的进液阀1020处于导通状态,控制阀915、控制阀916、制动轮缸26、27、28、29对应的出液阀1030以及第四控制阀142处于断开状态。
当驱动装置15驱动活塞12压缩第一液压腔16的容积,以将第一液压腔16中的一部分制动液通过连通的第三制动管130与第二制动管路120压入制动管路160,以为第二组制动轮缸26、27提供制动力。
第一液压腔16中的另一部分制动液通过连通的第三制动管130与第二制动管路120进入第二制动管路120,并通过第二控制阀121以及第一控制阀111进入第一制动管路110,并通过制动管路150为第一组制动轮缸28、29提供制动力。在制动液流经第二控制阀121的过程中,由于第四控制阀142处于断开状态,因此会阻断制动液通过第四制动管路140流入第二液压腔17。
另外,储液装置30中的制动液还可以通过进油管路2 170进入第二液压腔17,以对第二液压腔17进行补液,减小驱动装置15驱动活塞12的驱动力。
压力调节装置10在双向减压模式下,可以分为正向增压过程和反向增压过程。
在正向减压过程中,第四控制阀142、控制阀915、控制阀916、制动轮缸26、27、28、29对应的进液阀1020以及制动轮缸26、27、28、29对应的出液阀1030处于断开状态,第一控制阀111以及第二控制阀121处于导通状态。
当驱动装置15驱动活塞12压缩第一液压腔16的容积,以将制动轮缸26、27、28、29中的制动液分别通过第一制动管路110以及第二制动管路120抽入第二液压腔17。
当活塞12移动至内止点后,第二液压腔17的容积最大,此时,第二液压腔17无法继续容纳制动液,第一组制动轮缸28、29中剩余的制动液可以继续通过第一制动管路110流至第二控制阀121,并通过第二控制阀121流至第三制动管路130,再通过第三制动管路130流入第二液压腔16,并通过第一出液管路180流入储液装置30。第二组制动轮缸26、27中剩余的制动液可以继续通过第二制动管路120流至第三制动管路130,并通过第 三制动管路130流入第二液压腔16,并通过第一出液管路180流入储液装置30。
在反向减压过程中,当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二组制动轮缸26、27中的制动液通过第二制动管路120抽入第三制动管路130,并通过第三制动管路130抽进第一液压腔16。第一组制动轮缸28、29中的制动液抽入第一制动管路110,并经过第一控制阀111、第二控制阀121流入第三制动管路130,最终通过第三控制管路130流入第一液压腔16,当活塞12移动至外止点后,第一液压腔16的容积最大,无法继续容纳制动液。此时,可以控制制动轮缸26、27、28、29对应的出液阀1030处于导通状态,制动***中剩余的制动液可以通过制动轮缸26、27、28、29对应的出液阀1030通过减压管路流至储液装置30。
压力调节装置10在单回路制动的双向增压模式下,假设制动回路1040失效,压力调节装置10需要为制动回路1050提供制动力。
此种情况下,第二控制阀121、控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀1030处于断开状态,第三控制阀141、第一控制阀111、制动轮缸28、29对应的出液阀1030处于导通状态。
在正向增压过程中,当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液通过第一制动管110压入制动管路150,并通过制动管路150压入制动轮缸28、29。第二制动管路120中由于第二控制阀121处于断开状态,因此,第二液压腔17中的制动液无法通过第二制动管路120。
在活塞12压缩第二液压腔17的容积的过程中,第一液压腔16的容积增大,储液装置30中的制动液可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。
压力调节装置10在单回路制动的双向增压模式下,假设制动回路1050失效,压力调节装置10需要为制动回路1040提供制动力。此种情况下,第一控制阀111、控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀1030处于断开状态,第四控制阀142、第二控制阀121、制动轮缸26、27对应的出液阀1030处于导通状态。
驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液通过第二制动管120压入制动管路160,并通过制动管路160压入制动轮缸26、27。第一制动管路110中由于第一控制阀111处于断开状态,因此,第二液压腔17中的制动液无法通过第一制动管路110。
在活塞12压缩第二液压腔17的容积的过程中,第一液压腔16的容积增大,储液装置30中的制动液可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。另外,第一液压腔16的容积增大,第二制动管路120中的一部分制动液还可以通过第三制动管路130进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。
下文结合图11介绍液压调节单元600与液压调节单元800组合形成的液压调节单元1100。图11是本申请实施例的液压调节单元的示意图。图11所示的液压调节单元1100中主缸增压调节单元900实现的功能与图9所示的液压调节单元900实现的功能相同,为了简洁,下文不再赘述。
压力调节装置10在双向增压模式下,可以分为正向增压过程和反向增压过程。
在正向增压过程中,第一控制阀111、第二控制阀121以及第四控制阀142、以及制动轮缸26、27、28、29对应的进液阀1120处于导通状态,第五控制阀131、控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀1130处于断开状态。
当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液分别通过第一制动管110、第二制动管路120压入制动管路150和制动管路160,并通过制动管路150压入制动轮缸28、29,通过制动管路160压入制动轮缸26、27。
在活塞12压缩第二液压腔17的容积的过程中,储液装置30中的制动液可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。另外,由于第五控制阀131处于断开状态,第二制动管路120中的制动液无法通过第三制动管路130进入第一液压腔16。
在反向增压过程中,第一控制阀111、第二控制阀121、第五控制阀131以及制动轮缸26、27、28、29对应的进液阀1120处于导通状态,控制阀915、控制阀916、制动轮缸26、27、28、29对应的出液阀1130以及第四控制阀142处于断开状态。
当驱动装置15驱动活塞12压缩第一液压腔16的容积,以将第一液压腔16中的一部分制动液通过连通的第三制动管130与第二制动管路120压入制动管路160,以为第二组制动轮缸26、27提供制动力。
第一液压腔16中的另一部分制动液通过连通的第三制动管130与第二制动管路120进入第二制动管路120,并通过第二控制阀121以及第一控制阀111进入第一制动管路110,并通过制动管路150为第一组制动轮缸28、29提供制动力。在制动液流经第二控制阀121的过程中,由于第四控制阀142处于断开状态,因此会阻断制动液通过第四制动管路140流入第二液压腔17。
另外,储液装置30中的制动液还可以通过进油管路2 170进入第二液压腔17,以对第二液压腔17进行补液,减小驱动装置15驱动活塞12的驱动力。
压力调节装置10在双向减压模式下,可以分为正向增压过程和反向增压过程。
在正向减压过程中,第四控制阀142、控制阀915、控制阀916、制动轮缸26、27、28、29对应的进液阀1120以及制动轮缸26、27、28、29对应的出液阀1130处于断开状态,第五控制阀131、第一控制阀111以及第二控制阀121处于导通状态。
当驱动装置15驱动活塞12压缩第一液压腔16的容积,以将制动轮缸26、27、28、29中的制动液分别通过第一制动管路110以及第二制动管路120抽入第二液压腔17。
当活塞12移动至内止点后,第二液压腔17的容积最大,此时,第二液压腔17无法继续容纳制动液,第一组制动轮缸28、29中剩余的制动液可以继续通过第一制动管路110流至第二控制阀121,并通过第二控制阀121流至第三制动管路130,由于第五控制阀131处于导通状态,则制动液可以通过第三制动管路130流入第二液压腔16,并通过第一出液管路180流入储液装置30。第二组制动轮缸26、27中剩余的制动液可以继续通过第二制动管路120流至第三制动管路130,并通过第三制动管路130流入第二液压腔16,并通过第一出液管路180流入储液装置30。
在反向减压过程中,当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二组制动轮缸26、27中的制动液通过第二制动管路120抽入第三制动管路130,并通过第三制动管路130抽进第一液压腔16。第一组制动轮缸28、29中的制动液抽入第一制动 管路110,并经过第一控制阀111、第二控制阀121流入第三制动管路130,最终通过第三控制管路130流入第一液压腔16,当活塞12移动至外止点后,第一液压腔16的容积最大,无法继续容纳制动液。此时,可以控制制动轮缸26、27、28、29对应的出液阀1130处于导通状态,制动***中剩余的制动液可以通过制动轮缸26、27、28、29对应的出液阀1130通过减压管路流至储液装置30。
压力调节装置10在单回路制动的双向增压模式下,假设制动回路1140失效,压力调节装置10需要为制动回路1150提供制动力。
此种情况下,第二控制阀121、控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀1130、第五控制阀131处于断开状态,第三控制阀141、第一控制阀111、制动轮缸28、29对应的出液阀1130处于导通状态。
在正向增压过程中,当驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液通过第一制动管110压入制动管路150,并通过制动管路150压入制动轮缸28、29。第二制动管路120中由于第二控制阀121处于断开状态,因此,第二液压腔17中的制动液无法通过第二制动管路120。
在活塞12压缩第二液压腔17的容积的过程中,第一液压腔16的容积增大,储液装置30中的制动液可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。
压力调节装置10在单回路制动的双向增压模式下,假设制动回路1150失效,压力调节装置10需要为制动回路1140提供制动力。
此种情况下,第一控制阀111、控制阀915、控制阀916、以及制动轮缸26、27、28、29对应的出液阀1130、第五控制阀131处于断开状态,第四控制阀142、第二控制阀121、制动轮缸26、27对应的出液阀1130处于导通状态。
驱动装置15驱动活塞12压缩第二液压腔17的容积,以将第二液压腔17中的制动液通过第二制动管120压入制动管路160,并通过制动管路160压入制动轮缸26、27。第一制动管路110中由于第一控制阀111处于断开状态,因此,第二液压腔17中的制动液无法通过第一制动管路110。
在活塞12压缩第二液压腔17的容积的过程中,第一液压腔16的容积增大,储液装置30中的制动液可以通过进油管路2 190进入第一液压腔16,以对第一液压腔16进行补液,减小驱动装置15驱动活塞12的驱动力。另外,由于第五控制阀131处于断开状态,第二制动管路120中制动液无法通过第三制动管路130进入第一液压腔16,有利于提高压力调节装置10为制动回路1140提供制动力的效率。
上文结合图1至图11介绍了本申请实施例提供的液压调节装置以及液压调节单元,下文结合图12至图13介绍本申请实施例提供的控制方法,应理解,本申请实施例提供的方案可以与上述任意一种液压调节单元配合使用,或者本申请的方法还可以应用于包含上述任意一种液压调节单元的制动***。
图12是本申请实施例提供的控制方法的流程图。图12所示的方法包括步骤1210至步骤1220。
1210,控制器生成控制指令,所述控制指令用于对驱动装置15进行控制。
1220,控制器向驱动装置15发送控制指令,通过控制驱动装置15驱动活塞12沿着 液压缸11的内壁运动,以增大或减小第一组制动轮缸28、29和/或第二组制动轮缸26、27中制动液的压力。
可选地,作为一个实施例,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第一液压腔16为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111和所述第二控制阀121均处于断开状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111和第二控制阀121,由第一液压腔16为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述制动***还包括第四制动管路140,所述第二液压腔17与所述第四制动管路140的第一端相连,所述第四制动管路140的第二端与所述第二控制阀121的第一端相连,且所述第四制动管路140上设置有第四控制阀142以控制所述第四制动管路140的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第一液压腔16为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111和所述第二控制阀121均处于断开状态,且所述第四控制阀142处于断开状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111、第二控制阀121以及第四控制阀142,由第一液压腔16为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述第三制动管路130设置有第五控制阀131,且所述第五控制阀131控制所述第三制动管路130的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第一液压腔16为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111和所述第二控制阀121均处于断开状态,且所述第五控制阀131处于导通状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111、第二控制阀121,并控制第五控制阀131导通,由第一液压腔16为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述控制器向驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12沿着所述液压缸11的内壁运动,以增大或减小所述第一组制动轮缸28、29和/或所述第二组制动轮缸26、27中制动液的压力,包括:在为所述第二组制动轮缸26、27提供制动力的过程中,所述控制器向所述驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12压缩所述第一液压腔16的容积,以将所述第一液压腔16中的制动液通过所述第二制动管路120压入所述第二组制动轮缸26、27,以增大所述第二组制动轮缸26、27中制动液的压力。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,控制器控制活塞12压缩第一液压腔16的容积,以通过第一液压腔16中的制动液为第二组制动轮缸26、27建压,即对第二组制动轮缸26、27单独建压,以提高制动***的安全性。
可选地,作为一个实施例,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第二液压腔17为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111处于断开状态,且控制所述第二控制阀121处于导通状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111、连通第二控制阀121,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述制动***还包括第四制动管路140,所述第二液压腔17与所述第四制动管路140的第一端相连,所述第四制动管路140的第二端与所述第二控制阀121的第一端相连,且所述第四制动管路140上设置有第四控制阀142以控制所述第四制动管路140的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第二液压腔17为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111处于断开状态,且控制所述第二控制阀121以及所述第四控制阀142处于导通状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111、连通第二控制阀121与第四控制阀142,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述第三制动管路130设置有第五控制阀131,且所述第五控制阀131控制所述第三制动管路130的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第一液压腔16为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制所述第二控制阀121均处于断开状态,且所述第一控制阀111和所述第五控制阀131处于断开状态。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,可以通过断开第一控制阀111与第五控制阀131、连通第二控制阀121,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述控制器向驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12沿着所述液压缸11的内壁运动,以增大或减小所述第一组制动轮缸28、29和/或所述第二组制动轮缸26、27中制动液的压力,包括:在为所述第二组制动轮缸26、27提供制动力的过程中,所述控制器向所述驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12压缩所述第二液压腔17的容积,以将所述第二液压腔17中的制动液通过所述第二制动管路120压入所述第二组制动轮缸26、27,以增大所述第二组制动轮缸26、27中制动液的压力。
在本申请实施例中,当为第一组制动轮缸28、29提供制动力的制动回路失效后,控制器控制活塞12压缩第二液压腔17的容积,以通过第二液压腔17中的制动液为第二组制动轮缸26、27建压,即对第二组制动轮缸26、27单独建压,以提高制动***的安全性。
可选地,作为一个实施例,所述方法还包括:在为所述第二组制动轮缸26、27提供 制动力的制动回路失效,且需要所述第二液压腔17为所述第一组制动轮缸28、29提供制动力的情况下,所述控制器控制第一控制阀111处于断开状态,且所述第二控制阀121处于导通状态。
在本申请实施例中,当为第二组制动轮缸26、27提供制动力的制动回路失效,可以通过断开第一控制阀111、连通第二控制阀121,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述制动***还包括第四制动管路140,所述第二液压腔17与所述第四制动管路140的第一端相连,所述第四制动管路140的第二端与所述第二控制阀121的第一端相连,且所述第四制动管路140上设置有第四控制阀142以控制所述第四制动管路140的通断,所述方法还包括:在为所述第二组制动轮缸26、27提供制动力的制动回路失效,且需要所述第二液压腔17为所述第一组制动轮缸28、29提供制动力的情况下,所述控制器控制所述第二控制阀121处于断开状态,且控制第一控制阀111以及第四控制阀142处于导通状态。
在本申请实施例中,当为第二组制动轮缸26、27提供制动力的制动回路失效,可以通过断开第二控制阀121、连通第一控制阀111和第四控制阀142,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述第三制动管路130设置有第五控制阀131,且所述第五控制阀131控制所述第三制动管路130的通断,所述方法还包括:在为所述第一组制动轮缸28、29提供制动力的制动回路失效,且需要所述第二液压腔17为所述第二组制动轮缸26、27提供制动力的情况下,所述控制器控制第一控制阀111和所述第五控制阀131均处于导通状态,且所述第二控制阀121处于断开状态。
在本申请实施例中,当为第二组制动轮缸26、27提供制动力的制动回路失效,可以通过断开第二控制阀121,连通第一控制阀111、以及第五控制阀131,由第二液压腔17为第二组制动轮缸26、27提供制动力,有利于提高制动***的建压效率,避免了制动液流进失效制动回路导致制动液压力泄露。
可选地,作为一个实施例,所述控制器向驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12沿着所述液压缸11的内壁运动,以增大或减小所述第一组制动轮缸28、29和/或所述第二组制动轮缸26、27中制动液的压力,包括:在为所述第一组制动轮缸28、29提供制动力的过程中,所述控制器向所述驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12压缩所述第二液压腔17的容积,以将所述第二液压腔17中的制动液通过所述第一制动管路110压入所述第一组制动轮缸28、29,以增大所述第一组制动轮缸28、29中制动液的压力。
在本申请实施例中,当为第二组制动轮缸26、27提供制动力的制动回路失效后,控制器控制活塞12压缩第二液压腔17的容积,以通过第二液压腔17中的制动液为第一组制动轮缸28、29建压,即对第一组制动轮缸28、29单独建压,以提高制动***的安全性。
为了便于理解,下文结合图13详细介绍本申请实施例的控制方法。为了便于描述,为第一组制动轮缸28、29提供制动力的制动回路称为“第一制动回路”,例如,图9至图 11中所示的制动回路950、制动回路1050或者制动回路1150。为第二组制动轮缸26、27提供制动力的制动回路称为“第二制动回路”,例如,图9至图11中所示的制动回路940、制动回路1040或者制动回路1140。
图13是本申请另一实施例的控制方法的流程图。图13所示的方法包括步骤1301至步骤1317。
1301,控制器确定制动***是否需要进行制动。若制动***需要进行制动,则执行步骤1302;若制动***不需要进行制动,则结束制动流程。
1302,液压调节装置10上电进入工作状态,或者说液压调节装置10进入增压模式。
1303,判断液压调节装置10是否进入正向增压过程。若确定液压调节装置10进入正向增压过程,则执行步骤1304;若确定液压调节装置10不进入正向增压过程,则执行步骤1310,控制均压阀141处于导通状态,以维持第一制动回路与第二制动回路中制动液压力的均衡。
具体地,液压调节装置10中活塞12向左移动,对液压调节装置10中的第二液压腔17的容积进行压缩。
1304,液压调节装置10确定制动***中的双制动回路是否均正常工作。若双制动回路均正常工作,则执行步骤1305;若双制动回路某一回路失效,则执行步骤1306。
1305,控制器控制制动***中控制阀处于通断状态一,并执行步骤1311。
1306,确定第一制动回路是否失效。若第一制动回路失效,则执行步骤1307;若第一制动回路未失效,则执行步骤1308。
1307,控制器控制制动***中控制阀处于通断状态二,并执行步骤1311。
1308,确定第二制动回路是否失效。若第二制动回路失效,则执行步骤1309。
1309,控制器控制制动***中控制阀处于通断状态三,并执行步骤1311。
1311,控制器确定制动***是否继续增压。若控制器确定制动***需要继续增压,则重新执行步骤1303;若控制器确定制动***不需要继续增压,则重新执行步骤1312。
1312,控制器确定制动***是否进入保压模式。若控制器确定制动***需要进入保压模式,则执行步骤1313;若控制器确定制动***不需要进入保压模式,则执行步骤1314。
1313,控制器控制液压调节装置10停止工作。
1314,控制器确定制动***是否进入减压模式。若控制器确定制动***需要进入减压模式,则执行步骤1315;若控制器确定制动***不需要进入减压模式,则结束制动流程。
1315,控制器控制制动***中控制阀处于通断状态四。
1316,控制器控制液压调节装置10进入正向减压模式。例如控制器控制液压调节装置10的活塞12向右移动,压缩第一液压腔16的容积。
1317,控制器确定制动***减压完成。
需要说明的是,上述通断状态一至通断状态四在不同的液压调节单元中略有不同,针对不同的液压调节单元控制阀的通断状态在上文中已经详细介绍,为了简洁,在此不再具体赘述。
还需要说明的是,上述双向减压过程中,液压调节装置可以仅执行一种减压过程,例如液压调节装置可以仅执行正向减压,不实现反向减压模式,本申请实施例对此不作限定。
上文结合图12和图13介绍了本申请实施例的控制方法,下文结合图14和图15介绍 执行上述控制方法的控制装置。需要说明的是,本申请实施例的装置可以应用于上文介绍的任意一种液压调节单元或者制动***中,实现上文介绍的任意一种控制方法,为了简洁,在此不再赘述。
图14是本申请实施例的控制装置的示意图,图14所示的控制装置1400包括获取单元1410和发送单元1420。
生成单元1410,生成控制指令,所述控制指令用于对所述驱动装置15进行控制。
发送单元1420,向驱动装置15发送所述控制指令,通过控制所述驱动装置15驱动所述活塞12沿着所述液压缸11的内壁运动,以增大或减小所述第一组制动轮缸28、29和/或所述第二组制动轮缸26、27中制动液的压力。
在可选的实施例中,上述生成单元1410可以为处理器1520,上述发送单元1420可以为通信接口1530,控制器的具体结构如图15所示。
图15是本申请另一实施例的控制器的示意性框图。图15所示的控制器1500可以包括:存储器1510、处理器1520、以及通信接口1530。其中,存储器1510、处理器1520,通信接口1530通过内部连接通路相连,该存储器1510用于存储指令,该处理器1520用于执行该存储器1520存储的指令,以控制通信接口1530接收/发送信息。可选地,存储器1510既可以和处理器1520通过接口耦合,也可以和处理器1520集成在一起。
需要说明的是,上述通信接口1530使用例如但不限于输入/输出接口(input/output interface)一类的装置,来实现控制器1500与其他设备或通信网络之间的通信。
在实现过程中,上述方法的各步骤可以通过处理器1520中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1510,处理器1520读取存储器1510中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
在本申请实施例中,“第一”、“第二”以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的管路、通孔等。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种制动***中的液压调节单元,其特征在于,包括:
    具有双向增压功能的液压调节装置(10),所述液压调节装置(10)包括第一液压腔(16)和第二液压腔(17);
    所述第二液压腔(17)分别连接至所述制动***中的第一制动管路(110)以及所述制动***中的第二制动管路(120),所述第一制动管路(110)用于为所述制动***中的第一组制动轮缸(28、29)提供制动力,所述第二制动管路(120)用于为所述制动***中的第二组制动轮缸(26、27)提供制动力,其中,所述第一制动管路(110)中设置有第一控制阀(111),所述第一控制阀(111)的通断状态控制所述第一制动管路(110)的通断状态,所述第二制动管路(120)中设置有第二控制阀(121),所述第二控制阀(121)的通断状态控制所述第二制动管路(120)的通断状态;
    所述第一液压腔(16)通过所述制动***中的第三制动管路(130)与所述第二制动管路(120)相连,所述第一液压腔(16)通过所述第二制动管路(120)为所述第二组制动轮缸(26、27)提供制动力,当所述第一控制阀(111)与所述第二控制阀(121)均处于连通状态,所述第三制动管路(130)通过所述第二制动管路(120)与所述第一制动管路(110)连通,所述第一液压腔(16)通过所述第一制动管路(110)为所述第一组制动轮缸(28、29)提供制动力。
  2. 如权利要求1所述的液压调节单元,其特征在于,所述第二液压腔(17)与所述第四制动管路(140)的第一端相连,所述第四制动管路(140)的第二端与所述第二控制阀(121)的第一端相连,所述第三制动管路(130)与所述第二制动管路(120)的接口与所述第二控制阀(121)的第二端相连。
  3. 如权利要求2所述的液压调节单元,其特征在于,所述第一控制阀(111)的第二端与所述第二控制阀(121)的第二端之间通过第三控制阀(141)相连,所述第三控制阀(141)控制所述第二控制阀(121)的第二端与所述第一控制阀(111)的第二端之间的通断。
  4. 如权利要求3所述的液压调节单元,其特征在于,所述液压调节单元的第一接口与所述液压调节单元的第二接口之间设置有第一单向阀(122),所述第一接口为所述第三制动管路(130)与所述第二制动管路(120)之间的接口,第二接口为所述第三控制阀(141)与所述第二制动管路(120)之间的接口,所述第一单向阀(122)允许制动液从所述第一接口流至所述第二接口,且所述第一单向阀(122)阻断制动液从所述第二接口流向所述第一接口。
  5. 如权利要求2所述的液压调节单元,其特征在于,所述第四制动管路(140)上设置有第四控制阀(142),所述第四控制阀(142)的通断控制所述第四制动管路(140)的通断。
  6. 如权利要求5所述的液压调节单元,其特征在于,所述第三制动管路(130)上设置有第五控制阀(131),所述第五控制阀(131)控制所述第三制动管路(130)的通断。
  7. 如权利要求1-6中任一项所述的液压调节单元,其特征在于,所述第一液压腔(16) 和所述第二液压腔(17)为通过所述液压调节单元中的活塞(12)将所述液压调节单元中的液压缸(11)进行分隔形成的,
    所述第一液压腔(16)的端部设置有推杆支撑部(14),所述推杆支撑部(14)支撑驱动所述活塞(12)运动的推杆(13),且所述推杆支撑部(14)上设置有第一液压调节口(14a),所述第一液压调节口(14a)与所述制动***的第一出液管路(190)相连;
    所述推杆(13)上设有第二液压调节口(13a),所述第二液压调节口(13a)与所述第一液压腔(16)连通,当所述活塞(12)位于活塞行程的内止点时,所述第一液压调节口(14a)与所述第二液压调节口(13a)连通,所述第一液压腔(16)中的制动液通过所述第一出液管路(150)从所述第一液压腔(16)中排出,当所述活塞(12)位于所述活塞行程中除所述内止点之外的位置时,所述第一液压调节口(14a)与所述第二液压调节口(13a)不连通。
  8. 如权利要求7所述的液压调节单元,其特征在于,所述第一液压腔(16)与第一进液管路(190)相连,所述第一进液管路(190)用于将所述液压调节单元中的制动液压入所述第一液压腔(16)。
  9. 一种制动***,其特征在于,包括第一组制动轮缸(28、29)、第二组制动轮缸(26、27)以及如权利要求1-8中任一项所述的液压调节单元,所述液压调节单元通过所述第一制动管路(110)为所述第一组制动轮缸(28、29)提供制动力,所述液压调节单元通过所述第二制动管路(120)为所述第二组制动轮缸(26、27)提供制动力。
  10. 如权利要求9所述的制动***,其特征在于,所述控制***还包括驱动装置(15),
    所述驱动装置(15)驱动所述液压调节装置(10)中的活塞(12)沿着所述液压调节单元的液压缸(11)的内壁运动,所述活塞(12)将所述液压缸(11)分隔为所述第一液压腔(16)和所述第二液压腔(17)。
  11. 一种制动***的控制方法,其特征在于,所述制动***包括:
    具有双向增压功能的液压调节装置(10),所述液压调节装置(10)的液压缸(11)被活塞(12)分隔为第一液压腔(16)和第二液压腔(17);
    所述第二液压腔(17)分别连接至所述制动***中的第一制动管路(110)以及所述制动***中的第二制动管路(120),所述第一制动管路(110)用于为所述制动***中的第一组制动轮缸(28、29)提供制动力,所述第二制动管路(120)用于为所述制动***中的第二组制动轮缸(26、27)提供制动力,其中,所述第一制动管路(110)中设置有第一控制阀(111),所述第一控制阀(111)的通断状态控制所述第一制动管路(110)的通断状态,所述第二制动管路(120)中设置有第二控制阀(121),所述第二控制阀(121)的通断状态控制所述第二制动管路(120)的通断状态;
    所述第一液压腔(16)通过所述制动***中的第三制动管路(130)与所述第二制动管路(120)相连,所述第一液压腔(16)通过所述第二制动管路(120)为所述第二组制动轮缸(26、27)提供制动力,当所述第一控制阀(111)与所述第二控制阀(121)均处于连通状态,所述第三制动管路(130)通过所述第二制动管路(120)与所述第一制动管路(110)连通,所述第一液压腔(16)通过所述第一制动管路(110)为所述第一组制动轮缸(28、29)提供制动力,
    所述方法包括:
    控制器生成控制指令,所述控制指令用于对所述驱动装置(15)进行控制;
    所述控制器向驱动装置(15)发送所述控制指令,通过控制所述驱动装置(15)驱动所述活塞(12)沿着所述液压缸(11)的内壁运动,以增大或减小所述第一组制动轮缸(28、29)和/或所述第二组制动轮缸(26、27)中制动液的压力。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    在为所述第一组制动轮缸(28、29)提供制动力的制动回路失效,且需要所述第一液压腔(16)为所述第二组制动轮缸(26、27)提供制动力的情况下,所述控制器控制第一控制阀(111)和所述第二控制阀(121)均处于断开状态。
  13. 如权利要求11所述的方法,其特征在于,所述制动***还包括第四制动管路(140),所述第二液压腔(17)与所述第四制动管路(140)的第一端相连,所述第四制动管路(140)的第二端与所述第二控制阀(121)的第一端相连,且所述第四制动管路(140)上设置有第四控制阀(142)以控制所述第四制动管路(140)的通断,
    所述方法还包括:
    在为所述第一组制动轮缸(28、29)提供制动力的制动回路失效,且需要所述第一液压腔(16)为所述第二组制动轮缸(26、27)提供制动力的情况下,所述控制器控制第一控制阀(111)、所述第二控制阀(121)以及所述第四控制阀(142)均处于断开状态。
  14. 如权利要求11所述的方法,其特征在于,所述第三制动管路(130)设置有第五控制阀(131),且所述第五控制阀(131)控制所述第三制动管路(130)的通断,
    所述方法还包括:
    在为所述第一组制动轮缸(28、29)提供制动力的制动回路失效,且需要所述第一液压腔(16)为所述第二组制动轮缸(26、27)提供制动力的情况下,所述控制器控制第一控制阀(111)和所述第二控制阀(121)均处于断开状态,且所述第五控制阀(131)处于导通状态。
  15. 如权利要求11-13中任一项所述的方法,其特征在于,所述控制器向驱动装置(15)发送所述控制指令,通过控制所述驱动装置(15)驱动所述活塞(12)沿着所述液压缸(11)的内壁运动,以增大或减小所述第一组制动轮缸(28、29)和/或所述第二组制动轮缸(26、27)中制动液的压力,包括:
    在为所述第二组制动轮缸(26、27)提供制动力的过程中,所述控制器向所述驱动装置(15)发送所述控制指令,通过控制所述驱动装置(15)驱动所述活塞(12)压缩所述第一液压腔(16)的容积,以将所述第一液压腔(16)中的制动液通过所述第二制动管路(120)压入所述第二组制动轮缸(26、27),以增大所述第二组制动轮缸(26、27)中制动液的压力。
  16. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    在为所述第一组制动轮缸(28、29)提供制动力的制动回路失效,且需要所述第二液压腔(17)为所述第二组制动轮缸(26、27)提供制动力的情况下,所述控制器控制第一控制阀(111)处于断开状态,且控制所述第二控制阀(121)处于导通状态。
  17. 如权利要求11所述的方法,其特征在于,所述制动***还包括第四制动管路(140),所述第二液压腔(17)与所述第四制动管路(140)的第一端相连,所述第四制动管路(140)的第二端与所述第二控制阀(121)的第一端相连,且所述第四制动管路(140) 上设置有第四控制阀(142)以控制所述第四制动管路(140)的通断,
    所述方法还包括:
    在为所述第一组制动轮缸(28、29)提供制动力的制动回路失效,且需要所述第二液压腔(17)为所述第二组制动轮缸(26、27)提供制动力的情况下,所述控制器控制第一控制阀(111)处于断开状态,且控制所述第二控制阀(121)以及所述第四控制阀(142)处于导通状态。
  18. 如权利要求11所述的方法,其特征在于,所述第三制动管路(130)设置有第五控制阀(131),且所述第五控制阀(131)控制所述第三制动管路(130)的通断,
    所述方法还包括:
    在为所述第一组制动轮缸(28、29)提供制动力的制动回路失效,且需要所述第二液压腔(17)为所述第二组制动轮缸(26、27)提供制动力的情况下,所述控制器控制第一控制阀(111)以及所述第五控制阀(131)处于断开状态,所述第二控制阀(121)处于导通状态。
  19. 如权利要求16-18中任一项所述的方法,其特征在于,所述控制器向驱动装置(15)发送所述控制指令,通过控制所述驱动装置(15)驱动所述活塞(12)沿着所述液压缸(11)的内壁运动,以增大或减小所述第一组制动轮缸(28、29)和/或所述第二组制动轮缸(26、27)中制动液的压力,包括:
    在为所述第二组制动轮缸(26、27)提供制动力的过程中,所述控制器向所述驱动装置(15)发送所述控制指令,通过控制所述驱动装置(15)驱动所述活塞(12)压缩所述第二液压腔(17)的容积,以将所述第二液压腔(17)中的制动液通过所述第二制动管路(120)压入所述第二组制动轮缸(26、27),以增大所述第二组制动轮缸(26、27)中制动液的压力。
  20. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    在为所述第二组制动轮缸(26、27)提供制动力的制动回路失效,且需要所述第二液压腔(17)为所述第一组制动轮缸(28、29)提供制动力的情况下,所述控制器控制第一控制阀(111)处于导通状态,且所述第二控制阀(121)处于断开状态。
  21. 如权利要求11所述的方法,其特征在于,所述制动***还包括第四制动管路(140),所述第二液压腔(17)与所述第四制动管路(140)的第一端相连,所述第四制动管路(140)的第二端与所述第二控制阀(121)的第一端相连,且所述第四制动管路(140)上设置有第四控制阀(142)以控制所述第四制动管路(140)的通断,
    所述方法还包括:
    在为所述第二组制动轮缸(26、27)提供制动力的制动回路失效,且需要所述第二液压腔(17)为所述第一组制动轮缸(28、29)提供制动力的情况下,所述控制器控制第一控制阀(111)以及第四控制阀(142)处于导通状态,且控制所述第二控制阀(121)处于断开状态。
  22. 如权利要求11所述的方法,其特征在于,所述第三制动管路(130)设置有第五控制阀(131),且所述第五控制阀(131)控制所述第三制动管路(130)的通断,
    所述方法还包括:
    在为所述第一组制动轮缸(28、29)提供制动力的制动回路失效,且需要所述第二液 压腔(17)为所述第二组制动轮缸(26、27)提供制动力的情况下,所述控制器控制第一控制阀(111)和所述第五控制阀(131)均处于导通状态,且所述第二控制阀(121)处于断开状态。
  23. 如权利要求20-22中任一项所述的方法,其特征在于,所述控制器向驱动装置(15)发送所述控制指令,通过控制所述驱动装置(15)驱动所述活塞(12)沿着所述液压缸(11)的内壁运动,以增大或减小所述第一组制动轮缸(28、29)和/或所述第二组制动轮缸(26、27)中制动液的压力,包括:
    在为所述第一组制动轮缸(28、29)提供制动力的过程中,所述控制器向所述驱动装置(15)发送所述控制指令,通过控制所述驱动装置(15)驱动所述活塞(12)压缩所述第二液压腔(17)的容积,以将所述第二液压腔(17)中的制动液通过所述第一制动管路(110)压入所述第一组制动轮缸(28、29),以增大所述第一组制动轮缸(28、29)中制动液的压力。
PCT/CN2020/090089 2020-05-13 2020-05-13 液压调节单元、制动***及控制方法 WO2021226887A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080004512.9A CN112585046B (zh) 2020-05-13 2020-05-13 液压调节单元、制动***及控制方法
EP20935487.7A EP4147928A4 (en) 2020-05-13 2020-05-13 Hydraulic adjustment unit, brake system and control method
PCT/CN2020/090089 WO2021226887A1 (zh) 2020-05-13 2020-05-13 液压调节单元、制动***及控制方法
US17/985,347 US20230077277A1 (en) 2020-05-13 2022-11-11 Hydraulic adjustment unit, brake system, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090089 WO2021226887A1 (zh) 2020-05-13 2020-05-13 液压调节单元、制动***及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/985,347 Continuation US20230077277A1 (en) 2020-05-13 2022-11-11 Hydraulic adjustment unit, brake system, and control method

Publications (1)

Publication Number Publication Date
WO2021226887A1 true WO2021226887A1 (zh) 2021-11-18

Family

ID=75145430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090089 WO2021226887A1 (zh) 2020-05-13 2020-05-13 液压调节单元、制动***及控制方法

Country Status (4)

Country Link
US (1) US20230077277A1 (zh)
EP (1) EP4147928A4 (zh)
CN (1) CN112585046B (zh)
WO (1) WO2021226887A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566824B (zh) * 2020-05-13 2022-02-11 华为技术有限公司 液压调节装置、液压调节***、制动***及控制方法
WO2021237496A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 液压调节单元、制动***及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045382A1 (ja) * 2012-09-21 2014-03-27 トヨタ自動車株式会社 車両のブレーキ制御装置
DE102012221146A1 (de) * 2012-11-20 2014-05-22 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
CN108394392A (zh) * 2018-04-26 2018-08-14 吉林大学 电机直驱并联双副缸的液压制动***及其制动控制方法
CN110758365A (zh) * 2019-12-09 2020-02-07 宁泓(深圳)汽车科技有限公司 用于车辆的集成式线控制动***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534172A (en) * 1982-11-02 1985-08-13 Lucas Industries Public Limited Company Master cylinder assembly for a vehicle hydraulic braking system
DE10244375B4 (de) * 2002-07-05 2013-08-08 Continental Teves Ag & Co. Ohg Hydraulische Fahrzeugbremsanlage
RU2531788C2 (ru) * 2010-02-02 2014-10-27 Тойота Дзидося Кабусики Кайся Тормозная система
KR102475862B1 (ko) * 2015-12-04 2022-12-09 에이치엘만도 주식회사 전자식 브레이크 시스템
CN106762888B (zh) * 2016-12-23 2019-03-01 浙江大学 Tbm变转速变排量泵控电液推进***及控制方法
KR102431715B1 (ko) * 2017-09-25 2022-08-12 주식회사 만도 전자식 브레이크 시스템
CN109591811B (zh) * 2017-09-28 2020-08-14 华为技术有限公司 车辆制动方法、装置及存储介质
US11046294B2 (en) * 2017-09-29 2021-06-29 Mando Corporation Electronic brake system and method for operating the same
EP3501926A1 (en) * 2017-12-22 2019-06-26 Filkar Otomotiv sanayi ve Ticaret Anonim Sirketi Brake system for motor vehicles with reduced reaction time
KR102021465B1 (ko) * 2018-01-30 2019-09-16 주식회사 만도 전자식 브레이크 시스템 및 그 제어방법
KR102068995B1 (ko) * 2018-03-08 2020-02-11 주식회사 만도 전자식 브레이크 시스템 및 그 제어방법
CN110562225B (zh) * 2018-06-05 2022-01-14 华为技术有限公司 液压制动装置及其控制装置及方法、新能源汽车制动***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045382A1 (ja) * 2012-09-21 2014-03-27 トヨタ自動車株式会社 車両のブレーキ制御装置
DE102012221146A1 (de) * 2012-11-20 2014-05-22 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge
CN108394392A (zh) * 2018-04-26 2018-08-14 吉林大学 电机直驱并联双副缸的液压制动***及其制动控制方法
CN110758365A (zh) * 2019-12-09 2020-02-07 宁泓(深圳)汽车科技有限公司 用于车辆的集成式线控制动***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4147928A4 *

Also Published As

Publication number Publication date
EP4147928A4 (en) 2023-06-28
CN112585046A (zh) 2021-03-30
EP4147928A1 (en) 2023-03-15
US20230077277A1 (en) 2023-03-09
CN112585046B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
KR101622152B1 (ko) 전자식 브레이크 시스템
US20230077277A1 (en) Hydraulic adjustment unit, brake system, and control method
JP6748537B2 (ja) 電子式油圧ブレーキ装置
WO2021248396A1 (zh) 踏板感觉模拟***、液压调节单元及控制方法
KR20170040358A (ko) 특히 차량 브레이크용 구동 시스템, 및 구동 시스템을 작동시키기 위한 방법
US20160214591A1 (en) Electronic brake system
US20230092225A1 (en) Hydraulic control unit, braking system, and control method
WO2021063159A1 (zh) 汽车的制动***、汽车及制动***的控制方法
WO2021208594A1 (zh) 汽车中制动***的液压调节单元、制动***及控制方法
WO2021063158A1 (zh) 汽车的分布式制动***、汽车及其控制方法
WO2021098345A1 (zh) 汽车制动***中的液压调节单元、汽车及控制方法
WO2021226889A1 (zh) 液压调节装置、液压调节***、制动***及控制方法
WO2022021106A1 (zh) 液压调节单元、制动***、车辆及控制方法
US11951955B2 (en) Electrohydraulic brake apparatus
WO2022016347A1 (zh) 制动控制装置、制动控制***及控制方法
CN216002537U (zh) 一种线控制动***用的踏板感觉模拟装置
US2636349A (en) Injector pump assisted hydraulic braking system
KR102016372B1 (ko) 전자식 브레이크 시스템
KR102339516B1 (ko) 자동차의 브레이크 시스템
KR102576408B1 (ko) 전자식 브레이크 시스템
CN115447545A (zh) 一种线控制动***用的踏板感觉模拟装置
KR20160070215A (ko) 전자식 브레이크 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202217070276

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020935487

Country of ref document: EP

Effective date: 20221207