WO2021224962A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2021224962A1
WO2021224962A1 PCT/JP2020/018529 JP2020018529W WO2021224962A1 WO 2021224962 A1 WO2021224962 A1 WO 2021224962A1 JP 2020018529 W JP2020018529 W JP 2020018529W WO 2021224962 A1 WO2021224962 A1 WO 2021224962A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
low load
low
cooling
load
Prior art date
Application number
PCT/JP2020/018529
Other languages
English (en)
French (fr)
Inventor
慎一 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022519858A priority Critical patent/JP7438342B2/ja
Priority to PCT/JP2020/018529 priority patent/WO2021224962A1/ja
Publication of WO2021224962A1 publication Critical patent/WO2021224962A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Definitions

  • the present disclosure relates to an air conditioner equipped with a plurality of compressors.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an air conditioner capable of averaging the life of a compressor.
  • the air conditioner according to the present disclosure includes a first compressor, a second compressor, a first heat exchanger, an expansion valve, and a refrigerant circuit in which a second heat exchanger is connected by a pipe to circulate the refrigerant.
  • a control device for controlling the first compressor and the second compressor is provided, and the control device is used during a cooling operation in which the first compressor and the second compressor are operated to perform cooling, or the control device. When the low load switching condition is satisfied during the heating operation in which the first compressor and the second compressor are operated to perform heating, one of the first compressor and the second compressor is operated from the cooling operation.
  • the low load cooling operation in which the compressor is operated to perform cooling, or the low load heating operation in which one of the first compressor and the second compressor is operated to perform heating is switched from the heating operation to the low load heating operation.
  • the load cooling operation or the low load heating operation after the preset continuous operation time elapses after starting one of the first compressor and the second compressor, the first compressor and the second compressor The operation target is changed to another one of the compressors.
  • the air conditioner according to the present disclosure includes a first compressor, a first heat exchanger, a first expansion valve, and a first refrigerant circuit in which a second heat exchanger is connected by a pipe and a refrigerant circulates.
  • the second compressor, the third heat exchanger, the second expansion valve, and the second compressor circuit in which the fourth heat exchanger is connected by a pipe and the refrigerant circulates, and the first compressor and the second A control device for controlling the compressor is provided, and the control device is used during a cooling operation in which the first compressor and the second compressor are operated to perform cooling, or the first compressor and the second compressor.
  • one of the first compressor and the second compressor When the low load switching condition is satisfied during the heating operation in which the compressor is operated to perform heating, one of the first compressor and the second compressor is operated from the cooling operation to perform cooling.
  • the load cooling operation or the low load heating operation in which one of the first compressor and the second compressor is operated to perform heating is switched from the heating operation to the low load cooling operation or the low load heating.
  • another one of the first compressor and the second compressor After starting one of the first compressor and the second compressor, and after a preset continuous operation time elapses, another one of the first compressor and the second compressor The operation target is changed to.
  • the cooling operation is switched to the low load cooling operation or the heating operation is switched to the low load heating operation. Then, in the low-load cooling operation or the low-load heating operation, after starting one compressor, the compressor to be operated is changed after a preset continuous operation time elapses. Therefore, the life of the compressor can be averaged.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 100 according to an embodiment.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner 100 according to the embodiment.
  • the air conditioner 100 takes in outdoor air from the outdoor space and discharges the outdoor air to the outdoor space, two outdoor units 10a and 10b, and takes in the indoor air from the indoor space to control the humidity. It is provided with an indoor unit 20 that supplies the rear indoor air to the indoor space. Further, the air conditioner 100 includes a control device 40.
  • the number of outdoor units 10a and 10b is not limited to two, and may be one or three or more.
  • the outdoor unit 10a includes a compressor 11a, a flow path switching device 12a, an outdoor heat exchanger 13a, an expansion valve 14a, and an outdoor blower 15a.
  • the outdoor unit 10b includes a compressor 11b, a flow path switching device 12b, an outdoor heat exchanger 13b, an expansion valve 14b, and an outdoor blower 15b.
  • the outdoor heat exchangers 13a and 13a are also referred to as first heat exchangers.
  • the compressors 11a and 11b suck in the low-temperature low-pressure refrigerant, compress the sucked refrigerant, and discharge the high-temperature and high-pressure refrigerant.
  • the compressors 11a and 11b include, for example, an inverter compressor whose capacitance, which is the amount of transmission per unit time, is controlled by changing the operating frequency.
  • the operating frequencies of the compressors 11a and 11b (hereinafter referred to as compressor frequencies) are controlled by the control device 40.
  • the flow path switching devices 12a and 12b are, for example, four-way valves, and switch between cooling operation and heating operation by switching the flow direction of the refrigerant.
  • the flow path switching devices 12a and 12b are switched to the states shown by the solid lines in FIG. 2 during the cooling operation, and the discharge sides of the compressors 11a and 11b are connected to the outdoor heat exchangers 13a and 13b. Further, the flow path switching devices 12a and 12b are switched to the state shown by the broken line in FIG. 2 during the heating operation, and the discharge side of the compressors 11a and 11b is connected to the indoor heat exchangers 21a and 21b. Switching of the refrigerant flow path in the flow path switching devices 12a and 12b is controlled by the control device 40.
  • the outdoor heat exchangers 13a and 13b exchange heat between the outdoor air and the refrigerant.
  • the outdoor heat exchangers 13a and 13b function as condensers that dissipate the heat of the refrigerant to the outdoor air and condense the refrigerant during the cooling operation. Further, the outdoor heat exchangers 13a and 13b function as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
  • the expansion valves 14a and 14b are, for example, electronic expansion valves capable of adjusting the opening degree of the throttle, and flow into the outdoor heat exchangers 13a and 13b or the indoor heat exchangers 21a and 21b by adjusting the opening degree. Control the pressure of the refrigerant.
  • the expansion valves 14a and 14b are provided in the outdoor units 10a and 10b, but they may be provided in the indoor unit 20 and the installation location is not limited.
  • the outdoor blowers 15a and 15b supply outdoor air to the outdoor heat exchangers 13a and 13b, and the amount of air blown to the outdoor heat exchangers 13a and 13b is adjusted by controlling the rotation speed.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor or an AC (Alternating Current) fan motor is used.
  • DC fan motor is used as a drive source for the outdoor blowers 15a and 15b
  • the amount of blown air is adjusted by changing the current value and controlling the rotation speed.
  • an AC fan motor is used as a drive source for the outdoor blowers 15a and 15b
  • the amount of blown air is adjusted by changing the power supply frequency and controlling the rotation speed by inverter control.
  • the indoor unit 20 includes indoor heat exchangers 21a and 21b, and an indoor blower 22. Further, the indoor unit 20 is formed with one suction port 23 for taking in the indoor air from the indoor space and a plurality of outlets 24 for supplying the indoor air after humidity control from the inside to the indoor space. A damper 25 is provided at each outlet 24. Further, in the indoor unit 20, an air passage 20a is formed in which the indoor air taken in from the indoor space by the indoor blower 22 passes through the indoor heat exchangers 21a and 21b and is blown into the indoor space after humidity control. ..
  • the number of indoor heat exchangers 21a and 21b is not limited to two, and the same number as the number of outdoor units 10a and 10b is provided. Further, the indoor heat exchangers 21a and 21b are also referred to as second heat exchangers.
  • the indoor heat exchangers 21a and 21b are arranged on the air passage 20a, and both exchange heat between the indoor air and the refrigerant.
  • the indoor heat exchangers 21a and 21b function as an evaporator that evaporates the refrigerant during the cooling operation and cools the outdoor air by the heat of vaporization at that time.
  • the indoor heat exchangers 21a and 21b function as condensers that dissipate the heat of the refrigerant to the outdoor air and condense the refrigerant during the heating operation.
  • a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
  • the indoor blower 22 supplies indoor air to the indoor heat exchangers 21a and 21b, and the amount of air blown to the indoor heat exchangers 21a and 21b is adjusted by controlling the rotation speed.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC fan motor or an AC fan motor is used.
  • a DC fan motor is used as the drive source of the indoor blower 22
  • the amount of blown air is adjusted by changing the current value and controlling the rotation speed.
  • an AC fan motor is used as the drive source of the indoor blower 22
  • the amount of blown air is adjusted by changing the power supply frequency by inverter control and controlling the rotation speed.
  • the damper 25 adjusts the amount of indoor air after humidity control supplied from the air outlet 24 to the indoor space, and the amount of indoor air after humidity control is adjusted by opening / closing control.
  • the outdoor unit 10a and the outdoor unit 10b are connected to the indoor unit 20 by piping, respectively.
  • the air conditioner 100 includes two refrigerant circuits 101a and 101b.
  • the compressor 11a, the flow path switching device 12a, the outdoor heat exchanger 13a, the expansion valve 14a, and the indoor heat exchanger 21a are sequentially connected by piping, and the refrigerant circulates.
  • the compressor 11b, the flow path switching device 12b, the outdoor heat exchanger 13b, the expansion valve 14b, and the indoor heat exchanger 21b are sequentially connected by piping, and the refrigerant circulates.
  • the refrigerant used in the refrigerant circuits 101a and 101b is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons or helium, chlorine-free refrigerants such as HFC-410A or HFC-407C, or chlorofluorocarbon refrigerants such as R22 or R134a used in existing products. Can be used.
  • the outdoor units 10a and 10b and the indoor unit 20 include a plurality of temperature sensors including, for example, a thermistor.
  • Discharge temperature sensors 31a and 31b for detecting the discharge temperature of the refrigerant are provided on the discharge side of the compressors 11a and 11b.
  • Outside air temperature sensors 34a and 34b for detecting the outside air temperature are provided near the suction ports (not shown) of the outdoor units 10a and 10b.
  • An indoor temperature sensor 35 for detecting the indoor temperature is provided near the suction port 23 of the indoor unit 20.
  • the outdoor units 10a and 10b are provided with a plurality of pressure sensors composed of, for example, a diaphragm gauge.
  • Discharge pressure sensors 32a and 32b for detecting the discharge pressure of the refrigerant are provided on the discharge side of the compressor 11a.
  • suction pressure sensors 33a and 33b for detecting the suction pressure of the refrigerant are provided on the suction side of the compressor 11a.
  • the condensation temperature can be obtained by converting the discharge pressure detected by the discharge pressure sensors 32a and 32b into the saturation temperature.
  • the evaporation temperature can be obtained by converting the suction pressure detected by the suction pressure sensors 33a and 33b into the saturation temperature.
  • temperature sensors are provided in the outdoor heat exchangers 13a and 13b and the indoor heat exchangers 21a and 21b, respectively, and the temperature sensors are used.
  • the condensation temperature and evaporation temperature may be determined.
  • Control device 40 The control device 40 transmits operation control signals to the outdoor units 10a and 10b and the indoor unit 20 based on the detection information of various temperature sensors and various pressure sensors, and controls them.
  • the control device 40 includes normal operation, low load operation, and low load start / stop operation as operation modes. Normal operation includes cooling operation and heating operation.
  • Low-load operation includes low-load cooling operation and low-load heating operation.
  • Low-load start / stop operation includes low-load cooling start / stop operation and low-load heating start / stop operation.
  • FIG. 3 is a block diagram showing an example of the control device 40 of the air conditioner 100 according to the embodiment. As shown in FIG. 3, on the input side of the control device 40, the discharge temperature sensors 31a and 31b, the outside air temperature sensors 34a and 34b, the room temperature sensor 35, the discharge pressure sensors 32a and 32b, and the suction pressure sensors 33a and 33b Is connected.
  • compressors 11a and 11b, flow path switching devices 12a and 12b, expansion valves 14a and 14b, outdoor blowers 15a and 15b, indoor blowers 22 and damper 25 are connected to the output side of the control device 40. ..
  • the control device 40 includes an information acquisition unit 41, an arithmetic processing unit 42, a device control unit 43, and a storage unit 44.
  • the control device 40 is composed of hardware such as a circuit device that realizes various functions by executing software on an arithmetic unit such as a microcomputer.
  • the information acquisition unit 41 obtains temperature information and pressure information detected by the discharge temperature sensors 31a and 31b, the outside air temperature sensors 34a and 34b, the room temperature sensor 35, the discharge pressure sensors 32a and 32b, and the suction pressure sensors 33a and 33b. get.
  • the arithmetic processing unit 42 performs various processes based on the temperature information and the pressure information acquired by the information acquisition unit 41.
  • the device control unit 43 generates an operation control signal for controlling each unit provided in the air conditioner 100 based on the processing result of the arithmetic processing unit 42.
  • the device control unit 43 transmits the generated operation control signal to the compressors 11a, 11b, the flow path switching devices 12a, 12b, the expansion valves 14a, 14b, the outdoor blowers 15a, 15b, the indoor blower 22, the damper 25, and the like. do.
  • the storage unit 44 stores various values used in each unit of the control device 40, and is, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, or EEPROM.
  • the storage unit 44 may be provided as a separate body from the control device 40.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11a flows into the outdoor heat exchanger 13a via the flow path switching device 12a.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13a exchanges heat with the outdoor air taken in by the outdoor blower 15a, condenses while radiating heat, becomes a high-pressure liquid refrigerant, and flows out of the outdoor heat exchanger 13a. ..
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13a is depressurized by the expansion valve 14a to become a low-temperature low-pressure gas-liquid two-phase refrigerant, which flows into the indoor heat exchanger 21a.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 21a exchanges heat with the indoor air taken in by the indoor blower 22 and evaporates while absorbing heat, cooling the indoor air and forming a low-temperature low-pressure gas refrigerant. Then, it flows out from the indoor heat exchanger 21a.
  • the low-temperature and low-pressure gas refrigerant flowing out of the indoor heat exchanger 21a is sucked into the compressor 11a and becomes the high-temperature and high-pressure gas refrigerant again.
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13b is depressurized by the expansion valve 14b to become a low-temperature low-pressure gas-liquid two-phase refrigerant, which flows into the indoor heat exchanger 21b.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 21b exchanges heat with the indoor air taken in by the indoor blower 22 and evaporates while absorbing heat, cooling the indoor air and forming a low-temperature, low-pressure gas refrigerant. Then, it flows out from the indoor heat exchanger 21b.
  • the low-temperature and low-pressure gas refrigerant flowing out of the indoor heat exchanger 21b is sucked into the compressor 11b and becomes the high-temperature and high-pressure gas refrigerant again.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11a flows into the indoor heat exchanger 21a via the flow path switching device 12a.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 21a exchanges heat with the indoor air taken in by the indoor blower 22 and condenses while radiating heat. It flows out from the exchanger 21a.
  • the high-pressure liquid refrigerant flowing out of the indoor heat exchanger 21a is depressurized by the expansion valve 14a to become a low-temperature low-pressure gas-liquid two-phase refrigerant, which flows into the outdoor heat exchanger 13a.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 13a exchanges heat with the outdoor air taken in by the outdoor blower 15a and evaporates while absorbing heat, becoming a low-temperature low-pressure gas refrigerant and becoming an outdoor heat exchanger. It flows out from 13a.
  • the low-temperature and low-pressure gas refrigerant flowing out of the outdoor heat exchanger 13a is sucked into the compressor 11a and becomes the high-temperature and high-pressure gas refrigerant again.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11b flows into the indoor heat exchanger 21b via the flow path switching device 12b.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 21b exchanges heat with the indoor air taken in by the indoor blower 22 and condenses while radiating heat. It flows out from the exchanger 21b.
  • the high-pressure liquid refrigerant flowing out of the indoor heat exchanger 21b is depressurized by the expansion valve 14b to become a low-temperature low-pressure gas-liquid two-phase refrigerant, which flows into the outdoor heat exchanger 13b.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 13b exchanges heat with the outdoor air taken in by the outdoor blower 15b and evaporates while absorbing heat, becoming a low-temperature low-pressure gas refrigerant and becoming an outdoor heat exchanger. It flows out from 13b.
  • the low-temperature and low-pressure gas refrigerant flowing out of the outdoor heat exchanger 13b is sucked into the compressor 11b and becomes the high-temperature and high-pressure gas refrigerant again.
  • FIG. 4 is a diagram showing a time-series change in the compressor frequency during low-load operation of a conventional air conditioner equipped with two compressors.
  • FIG. 5 is a diagram showing a time-series change in the compressor frequency during low-load operation of the air conditioner 100 according to the embodiment.
  • both of the two compressors 11a and 11b are started and stopped by repeating operation and stop.
  • the compressors 11a and 11b are stopped when the room temperature reaches the target temperature, and are started when the difference between the room temperature and the target temperature becomes equal to or more than a predetermined value. This is because if both of the two compressors 11a and 11b are continuously operated at a low load, the indoor space will be overcooled or overheated. Then, if the compressors 11a and 11b are repeatedly activated, the power consumption will increase.
  • the time zone in which the low-load cooling operation occurs (hereinafter referred to as the low-load cooling time zone) is a time zone in which the load due to solar radiation is small and the load generated in the indoor space is small, so that it is generally at midnight. be. Based on the general life pattern (see the life schedule specified by the Building Environment and Energy Conservation Organization (IBEC)), it is expected that low-load cooling operation will occur during the time period from 23:00 pm to 7:00 am.
  • IBEC Building Environment and Energy Conservation Organization
  • the time zone in which the low-load heating operation occurs (hereinafter referred to as the low-load heating time zone) is a time zone in which the load due to sunlight is large and the heat generation in the indoor space is large, so that it is generally in the daytime. Is. Under the general life pattern (see the life schedule specified by the Building Environment and Energy Conservation Organization (IBEC)), low-load heating operation is expected to occur during the time period from 8:00 am to 4:00 pm.
  • IBEC Building Environment and Energy Conservation Organization
  • the maximum value of the continuous operation time is set to 4 hours or less at most. Then, after the set continuous operation time has elapsed, the total operation time of the compressors 11a and 11b can be averaged by switching the compressors 11a and 11b to be operated.
  • the maximum value of the continuous operation time is set to be at most 8 hours divided by the number of compressors or less.
  • the storage unit 44 may store past operation data, and the low load cooling time zone and the low load heating time zone may be obtained based on the past operation data. Further, in the following, the low load cooling time zone and the low load heating time zone are collectively referred to as the low load time zone.
  • FIG. 6 is a diagram showing a time-series change in the compressor frequency during low-load start / stop operation of a conventional air conditioner equipped with two compressors.
  • FIG. 7 is a diagram showing a time-series change in the compressor frequency during low-load start / stop operation of the air conditioner 100 according to the embodiment.
  • the operation transitions from low load operation to low load start / stop operation.
  • the conventional low-load start / stop operation as shown in FIG. 6, one of the two compressors 11a and 11b stops, and the other repeats the start / stop operation.
  • the number of times the compressors 11a and 11b are started is biased to either side, and the life of the compressors varies. Therefore, in the low-load start / stop operation according to the embodiment, when the number of starts / stops of the compressors 11a and 11b is at least once, which is equal to or more than a preset threshold value, as shown in FIG.
  • the compressors 11a and 11b to be operated are changed. By doing so, the number of times the compressors 11a and 11b are started can be averaged, and the life of the compressors can be averaged.
  • the number of starts and stops may be the number of stops.
  • the compressors 11a and 11b are arranged in the outdoor space, the compressors 11a and 11b are cooled by the outdoor air when the compressors 11a and 11b are stopped during the low load heating start / stop operation.
  • energy for heating the compressors 11a and 11b is required, and the longer the stop time of the compressors 11a and 11b is, the larger the energy is required.
  • it is preferable that the interval from the stoppage of the same compressors 11a and 11b to the start-up time is short.
  • the threshold value of the number of starts and stops for switching the compressors 11a and 11b to be operated is set to be a larger value during the low load heating start and stop operation than during the low load cooling start and stop operation.
  • FIG. 8 is a diagram showing state transitions of the air conditioner 100 according to the embodiment: cooling operation, low load cooling operation, and low load cooling start / stop operation.
  • the cooling operation is performed as shown in FIG. 8A. Transition to low-load cooling operation.
  • the low-load cooling switching conditions are when the compressor frequency, power consumption, outside air humidity, or room temperature is below a preset threshold, when the compressor stop time is above a preset threshold, and , Either when the thermo-off control is turned from off to on, and so on.
  • thermo-off control is to stop all the compressors 11a and 11b and operate only the indoor blower 22 during the operation of the air conditioner 100. For example, when the room temperature falls within a predetermined range with respect to the set temperature, the thermo-off control is performed.
  • Cooling return conditions are when the compressor frequency, power consumption, outside air humidity, or room temperature becomes larger than the preset threshold value, when the compressor stop time becomes smaller than the preset threshold value, and when the thermostat is turned off. For example, when control is turned from on to off.
  • the low-load cooling start / stop switching condition is when the compressor frequencies of the compressors 11a and 11b during operation reach the lower limit value, or when the thermo-off control is turned from off to on.
  • the low-load cooling return condition is a case where a certain period of time has passed since the compressors 11a and 11b were started and the compressor frequency or power consumption becomes larger than a preset threshold value.
  • FIG. 9 is a diagram showing state transitions of the heating operation, the low load heating operation, and the low load heating start / stop operation of the air conditioner 100 according to the embodiment.
  • the low load heating switching condition is when the compressor frequency or power consumption is below the preset threshold, when the compressor stop time, outside air temperature, or room temperature is above the preset threshold. , When the thermo-off control is turned from off to on, or when the defrost control is turned from off to on.
  • the defrost control is an outdoor unit by controlling the flow path switching devices 12a, 12b, etc. so that one of the plurality of refrigerant circuits 101a, 101b has the same circuit configuration as that during the cooling operation during the heating operation. It is to melt the frost adhering to 10a and 10b. For example, the presence or absence of frost on the outdoor units 10a and 10b is determined based on the saturation temperature converted from the suction pressure detected by the suction pressure sensors 33a and 33b, and defrost control is performed when the presence or absence of frost is determined. It is said.
  • the air conditioning load during the low load heating operation becomes larger than the total of the minimum capacities of the compressors 11a and 11b, that is, when the heating recovery condition is satisfied during the low load heating operation, it is shown in B of FIG.
  • the heating return condition is that when the compressor frequency or power consumption becomes larger than the preset threshold value, the compressor stop time, the outside air temperature, or the room temperature becomes smaller than the preset threshold value, the thermo-off control is performed. Either from on to off, or from on to off defrost control.
  • the heating operation is performed by the two outdoor units 10a and 10b, that is, when the defrost control is turned on when the two compressors 11a and 11b are started, the defrost becomes the two outdoor units 10a and 10b. It is done against. Therefore, while the defrost control is on, the heating operation is interrupted and the heating capacity becomes zero. Therefore, it is assumed that the heating operation is performed by only one of the two outdoor units 10a and 10b, that is, only one of the two compressors 11a and 11b is operating. By doing so, even if the defrost control is turned on, the defrost is performed only on one of the two outdoor units 10a and 10b, and the heating operation can be continued by one of the outdoor units 10a and 10b. It is expected to improve comfort.
  • the range of the compressor frequency during the low-load heating operation is wider than that during the low-load cooling operation so that the load operation is as low as possible during heating and the number of compressors 11a and 11b in operation is only one. That is, when the compressor frequency is used for the low load heating switching condition and the low load cooling switching condition, the threshold value during the low load heating operation is made larger than that during the low load cooling operation. By doing so, it becomes easier to operate only one compressor 11a and 11b in the low-load heating operation than in the low-load cooling operation, and the comfort during the heating operation can be improved.
  • the low-load heating start / stop switching condition is when the compressor frequencies of the compressors 11a and 11b during operation reach the lower limit value, or when the thermo-off control is turned from off to on.
  • the low-load heating recovery condition is a case where a certain period of time has passed since the compressors 11a and 11b were started and the compressor frequency or power consumption becomes larger than a preset threshold value.
  • the transition is made in the order of cooling operation, low load cooling operation, and low load cooling start / stop operation. Further, as the load decreases, the transition is made in the order of heating operation, low load heating operation, and low load heating start / stop operation.
  • FIG. 10 is a diagram showing a time-series change in power consumption when none of the refrigerant circuits 101a and 101b satisfy the emergency control on condition during low-load operation of the air conditioner 100 according to the embodiment.
  • FIG. 11 is a diagram showing a time-series change in power consumption when any of the refrigerant circuits 101a and 101b satisfies the emergency control on condition during low-load operation of the air conditioner 100 according to the embodiment.
  • FIG. 12 is a diagram showing a time-series change in the compressor frequency during normal operation when the emergency control of the air conditioner 100 according to the embodiment is off.
  • FIG. 13 is a diagram showing a time-series change in the compressor frequency during normal operation with the emergency control of the air conditioner 100 according to the embodiment turned on.
  • emergency control is performed.
  • the necessity of emergency control is determined during the low load cooling operation or the low load heating operation.
  • the emergency control is turned on.
  • the emergency control on condition is when the compressor frequency, power consumption, discharge temperature, expansion valve opening degree, condensation temperature, or evaporation temperature becomes equal to or higher than a preset threshold value.
  • the operating time of the compressors 11a and 11b of the refrigerant circuits 101a and 101b satisfying the emergency control on condition is reduced by expanding the range of the compressor frequency. Then, the user is notified by the notification means that the emergency control is on and the compressors 11a and 11b, which are suspected of being out of order, are turned on.
  • the notification means is, for example, a remote controller (not shown) of the air conditioner 100, a communication terminal such as a mobile phone owned by the user, an information sharing terminal such as HEMS, or the like.
  • the threshold values in the low load cooling switching condition and the low load heating switching condition are changed so that the low load operation is promoted. For example, when the compressor frequency or power consumption is used for the low load cooling switching condition and the low load heating switching condition, the threshold value is made larger when the emergency control is on than when the emergency control is off.
  • the compressors 11a and 11b (hereinafter referred to as emergency control target compressors) of the refrigerant circuits 101a and 101b satisfying the emergency control on condition are stopped, and the other compressors 11a and 11b (hereinafter referred to as emergency control non-target) are stopped. Only operate the compressor). Then, when the air conditioning load becomes larger than the maximum capacity of one compressor 11a and 11b, the compressors 11a and 11b are operated when there are stopped compressors 11a and 11b except for the compressors subject to emergency control. Increase the number of units.
  • the first-aid control target compressor When the setting is changed by the user, the first-aid control target compressor is started and the operation is compared with the first-aid control non-target compressor which is a normal compressor. Then, the compressor frequencies or power consumption are compared, and if the difference is within a predetermined range, the emergency control is turned off, and if the difference is larger than the predetermined range, the emergency control is continued to be turned on. By doing so, even if the emergency control is turned on due to an erroneous determination of the emergency control on condition, the emergency control can be automatically turned off, and the influence on the user can be minimized.
  • the emergency control target compressor is activated and compared with the emergency control non-target compressor which is a normal compressor. Then, the compressor frequencies or power consumption are compared, and if the difference is within a predetermined range, the emergency control is turned off, and if the difference is larger than the predetermined range, the emergency control is continued to be turned on. By doing so, even if the emergency control is turned on due to an erroneous determination of the emergency control on condition, the emergency control can be automatically turned off, and the influence on the user can be minimized. Further, it is possible to determine the necessity of emergency control with a small amount of power consumption when the air conditioning load is small.
  • the maximum value of the continuous operation time during the low load cooling operation and the low load heating operation is specified, and the compressors 11a and 11b to be operated within the specified maximum value of the continuous operation time are switched. By doing so, the total operating time of the compressors 11a and 11b can be averaged, and the life of the compressor can be averaged.
  • the compressors 11a and 11b to be operated when the compressors 11a and 11b are stopped at least once are changed.
  • the number of times the compressors 11a and 11b are started can be averaged, and the life of the compressors can be averaged.
  • the emergency control is turned on. By doing so, even if an abnormality occurs in the specific compressors 11a and 11b, the low load operation can be continued, and the comfort of the user can be ensured.
  • the user is notified by the notification means that the emergency control is on and the maintenance work of the system is necessary, so that the maintenance time can be optimized and a serious failure can be prevented. Therefore, the life of the system can be extended.
  • the stopped compressors 11a and 11b are started, the operation is compared with the normal compressors 11a and 11b, and the emergency control is continued if the emergency control on condition is satisfied. However, if the emergency control on condition is not satisfied, the emergency control is turned off. By doing so, even if the emergency control is turned on due to an erroneous determination of the emergency control on condition, the emergency operation can be automatically turned off, and the influence on the user can be minimized.
  • the compressor targeted for emergency control should be started and compared with the compressor not targeted for emergency control, which is a normal compressor. Therefore, it is possible to determine the necessity of emergency control with a small amount of power consumption when the air conditioning load is small.
  • FIG. 14 is a refrigerant circuit diagram of a modified example of the air conditioner 100 according to the embodiment.
  • the air conditioner 100 according to the embodiment is configured to include two refrigerant circuits 101a and 101b, but is not limited thereto, and as shown in FIG. 14, the refrigerant circuit 101c having a plurality of compressors is provided. As for the configuration in which one is provided, the configuration may be used. Further, the air conditioner 100 according to the embodiment is configured to include a flow path switching device, but the configuration is not limited to this, and a configuration that does not include a flow path switching device is also applicable. good.
  • the first compressor, the second compressor, the first heat exchanger, the expansion valve, and the second heat exchanger are connected by a pipe to circulate the refrigerant. It includes a circuit and a control device 40 that controls the first compressor and the second compressor. Further, the control device 40 is used during a cooling operation in which the first compressor and the second compressor are operated to perform cooling, or in a heating operation in which the first compressor and the second compressor are operated to perform heating.
  • the low load cooling operation in which one of the first compressor and the second compressor is operated from the cooling operation to perform cooling, or the heating operation to the first compressor and the second compressor Switch to low-load heating operation in which one of the compressors is operated to heat, and in low-load cooling operation or low-load heating operation, one of the first compressor and the second compressor is started and then set in advance. After the specified continuous operation time has elapsed, the operation target is changed to another one of the first compressor and the second compressor.
  • the first compressor, the first heat exchanger, the first expansion valve, and the second heat exchanger are connected by a pipe to circulate the first refrigerant.
  • the circuit, the second compressor, the third heat exchanger, the second expansion valve, and the fourth heat exchanger are connected by a pipe to circulate the refrigerant, and the first compressor and the second It includes a control device 40 that controls the compressor. Further, the control device 40 is used during a cooling operation in which the first compressor and the second compressor are operated to perform cooling, or in a heating operation in which the first compressor and the second compressor are operated to perform heating.
  • the low load cooling operation in which one of the first compressor and the second compressor is operated from the cooling operation to perform cooling, or the heating operation to the first compressor and the second compressor Switch to low-load heating operation in which one of the compressors is operated to heat, and in low-load cooling operation or low-load heating operation, one of the first compressor and the second compressor is started and then set in advance. After the specified continuous operation time has elapsed, the operation target is changed to another one of the first compressor and the second compressor.
  • the cooling operation is switched to the low load cooling operation or the heating operation is switched to the low load heating operation.
  • the operation target is set to another one of the plurality of compressors. change. Therefore, the life of the compressor can be averaged.
  • the number of times the compressor is started and stopped is suppressed, and energy saving can be realized.
  • the number of compressors provided in the air conditioner 100 is two, the first compressor and the second compressor, but the number is not limited to two, and three or more may be used.
  • the air conditioner 100 includes a refrigerant circuit in which a compressor, a flow path switching device, a first heat exchanger, an expansion valve, and a second heat exchanger are connected by pipes to circulate refrigerant. It has more than one. Then, when the low load switching condition during the cooling operation is the compressor frequency equal to or lower than the first threshold value, and the low load switching condition during the heating operation is the case where the compressor frequency is equal to or lower than the second threshold value.
  • the second threshold is larger than the first threshold.
  • the air conditioner 100 it is possible to suppress defrosting from being performed on a plurality of outdoor units 10a and 10b, and the heating operation can be continued, so that the heating operation is comfortable.
  • the sex can be improved.
  • the air conditioner 100 includes a plurality of compressors including a first compressor and a second compressor, includes a storage unit 44 for storing past operation data, and the control device 40 includes a control device 40.
  • the low load time zone is calculated based on the past operation data, and the continuous operation time is set to be equal to or less than the value obtained by dividing the low load time zone by the number of a plurality of compressors.
  • the control device 40 has a plurality of compressors including the first compressor and the second compressor, and the control device 40 sets the continuous operation time to be equal to or less than the value obtained by dividing 8 hours by the number of the plurality of compressors.
  • the maximum value of the continuous operation time during the low load cooling operation and the low load heating operation is specified. Then, by switching the compressor to be operated within the specified maximum value of the continuous operation time, the total operation time of the compressor can be averaged, and the life of the compressor can be averaged.
  • the air conditioner 100 has a plurality of compressors including the first compressor and the second compressor, but the number of compressors may be any number as long as it is two or more.
  • the control device 40 when the low load start / stop switching condition is satisfied during the low load cooling operation or the low load heating operation, the control device 40 starts from the low load cooling operation to the first compression.
  • Low-load cooling start / stop operation that cools while starting / stopping operation with one of the machine and the second compressor, or starting / stopping operation with one of the first compressor and the second compressor from the low-load heating operation Switch to low-load heating start / stop operation that heats while operating, and in low-load cooling start / stop operation or low-load heating start / stop operation, after starting one of the first compressor and the second compressor, the number of starts and stops When is equal to or higher than the preset fourth threshold value, the operation target is changed to another one of the first compressor and the second compressor.
  • the number of starts and stops becomes equal to or higher than a preset fourth threshold value. Then, change the operation target to another one of the multiple compressors. By doing so, the number of times the compressor is started can be averaged, and the life of the compressor can be averaged.
  • the number of compressors provided in the air conditioner 100 is two, the first compressor and the second compressor, but the number is not limited to two, and three or more may be used.
  • the fourth threshold value is set to a larger value during the low load heating operation than during the low load cooling operation.
  • the number of times of switching the compressor to be operated during the low load heating start / stop operation can be reduced as compared with the low load cooling start / stop operation, and the energy for heating the compressor can be reduced. Can be suppressed. Therefore, energy saving can be realized in addition to averaging the compressor life.
  • the control device 40 is the first compressor and the second compressor that are in operation during the low load cooling operation or the low load heating operation.
  • the emergency control is turned on for the first compressor and the second compressor that satisfy the emergency control on condition, and the first compressor and the second compressor are used. If the emergency control is turned on, it will be stopped and not started.
  • the air conditioner 100 when the refrigerant circuit having the compressor during operation satisfies the emergency control on condition during the low load operation, the emergency control is turned on. By doing so, it becomes possible to continue low-load operation even if an abnormality occurs in a specific compressor, and it is possible to ensure the comfort of the user.
  • the number of compressors provided in the air conditioner 100 is two, the first compressor and the second compressor, but the number is not limited to two, and three or more may be used.
  • the air conditioner 100 is provided with a notification means for notifying the user that the emergency control is on when the emergency control is on.
  • the air conditioner 100 it is possible to optimize the maintenance time and prevent a serious failure by notifying the user by the notification means that the emergency control is on when the emergency control is turned on. Therefore, the life of the system can be extended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置は、第一圧縮機、第二圧縮機、第一熱交換器、膨張弁、および、第二熱交換器が配管で接続されて冷媒が循環する冷媒回路と、第一圧縮機および第二圧縮機を制御する制御装置と、を備え、制御装置は、第一圧縮機および第二圧縮機を運転させて冷房を行う冷房運転時、または、第一圧縮機および第二圧縮機を運転させて暖房を行う暖房運転時において、低負荷切替条件を満たした場合、冷房運転から第一圧縮機および第二圧縮機のうち1台を運転させて冷房を行う低負荷冷房運転、または、暖房運転から第一圧縮機および第二圧縮機のうち1台を運転させて暖房を行う低負荷暖房運転へと切り替え、低負荷冷房運転または低負荷暖房運転では、第一圧縮機および第二圧縮機のうち1台を起動後、あらかじめ設定された連続運転時間が経過したら、第一圧縮機および第二圧縮機のうち別の1台に運転対象を変更するものである。

Description

空気調和装置
 本開示は、複数の圧縮機を備えた空気調和装置に関するものである。
 従来、圧縮機、減圧装置および室外熱交換器をそれぞれ有する複数の室外機を備え、空調負荷に応じた能力要求を満たすように、一定以上の圧縮機効率が得られる、圧縮機に応じた特定周波数範囲に基づいて、圧縮機の運転台数を制御する空気調和システムがある(例えば、特許文献1参照)。
特許第6249932号公報
 特許文献1の空気調和システムでは、空調負荷に対して圧縮機の運転台数を制御しているが、近年の高気密かつ高断熱の住宅では、低負荷の時間が長くなるため、複数の圧縮機のうちの1台のみを運転させる低負荷運転の時間が長くなっている。そのため、圧縮機毎の運転時間に差が生じてしまい、圧縮機寿命にばらつきが生じるという課題があった。
 本開示は、以上のような課題を解決するためになされたもので、圧縮機寿命の平均化を実現することができる空気調和装置を提供することを目的としている。
 本開示に係る空気調和装置は、第一圧縮機、第二圧縮機、第一熱交換器、膨張弁、および、第二熱交換器が配管で接続されて冷媒が循環する冷媒回路と、前記第一圧縮機および前記第二圧縮機を制御する制御装置と、を備え、前記制御装置は、前記第一圧縮機および前記第二圧縮機を運転させて冷房を行う冷房運転時、または、前記第一圧縮機および前記第二圧縮機を運転させて暖房を行う暖房運転時において、低負荷切替条件を満たした場合、前記冷房運転から前記第一圧縮機および前記第二圧縮機のうち1台を運転させて冷房を行う低負荷冷房運転、または、前記暖房運転から前記第一圧縮機および前記第二圧縮機のうち1台を運転させて暖房を行う低負荷暖房運転へと切り替え、前記低負荷冷房運転または前記低負荷暖房運転では、前記第一圧縮機および前記第二圧縮機のうち1台を起動後、あらかじめ設定された連続運転時間が経過したら、前記第一圧縮機および前記第二圧縮機のうち別の1台に運転対象を変更するものである。
 また、本開示に係る空気調和装置は、第一圧縮機、第一熱交換器、第一膨張弁、および、第二熱交換器が配管で接続されて冷媒が循環する第一の冷媒回路と、第二圧縮機、第三熱交換器、第二膨張弁、および、第四熱交換器が配管で接続されて冷媒が循環する第二の冷媒回路と、前記第一圧縮機および前記第二圧縮機を制御する制御装置と、を備え、前記制御装置は、前記第一圧縮機および前記第二圧縮機を運転させて冷房を行う冷房運転時、または、前記第一圧縮機および前記第二圧縮機を運転させて暖房を行う暖房運転時において、低負荷切替条件を満たした場合、前記冷房運転から前記第一圧縮機および前記第二圧縮機のうち1台を運転させて冷房を行う低負荷冷房運転、または、前記暖房運転から前記第一圧縮機および前記第二圧縮機のうち1台を運転させて暖房を行う低負荷暖房運転へと切り替え、前記低負荷冷房運転または前記低負荷暖房運転では、前記第一圧縮機および前記第二圧縮機のうち1台を起動後、あらかじめ設定された連続運転時間が経過したら、前記第一圧縮機および前記第二圧縮機のうち別の1台に運転対象を変更するものである。
 本開示に係る空気調和装置によれば、冷房運転時または暖房運転時において、低負荷切替条件を満たした場合、冷房運転から低負荷冷房運転または暖房運転から低負荷暖房運転へと切り替える。そして、低負荷冷房運転または低負荷暖房運転では、1台の圧縮機を起動後、あらかじめ設定された連続運転時間が経過したら、運転させる圧縮機を変更する。そのため、圧縮機寿命の平均化を実現することができる。
実施の形態に係る空気調和装置の概略構成図である。 実施の形態に係る空気調和装置の冷媒回路図である。 実施の形態に係る空気調和装置の制御装置の一例を示すブロック図である。 従来の2台の圧縮機を備えた空気調和装置の低負荷運転時の圧縮機周波数の時系列変化を示す図である。 実施の形態に係る空気調和装置の低負荷運転時の圧縮機周波数の時系列変化を示す図である。 従来の2台の圧縮機を備えた空気調和装置の低負荷発停運転時の圧縮機周波数の時系列変化を示す図である。 実施の形態に係る空気調和装置の低負荷発停運転時の圧縮機周波数の時系列変化を示す図である。 実施の形態に係る空気調和装置の冷房運転、低負荷冷房運転、および、低負荷冷房発停運転の各状態遷移を示す図である。 実施の形態に係る空気調和装置の暖房運転、低負荷暖房運転、および、低負荷暖房発停運転の各状態遷移を示す図である。 実施の形態に係る空気調和装置の低負荷運転時にいずれの冷媒回路も応急制御オン条件を満たしていない場合の圧縮機周波数の時系列変化を示す図である。 実施の形態に係る空気調和装置の低負荷運転時にいずれかの冷媒回路が応急制御オン条件を満たしている場合の圧縮機周波数の時系列変化を示す図である。 実施の形態に係る空気調和装置の応急制御がオフでの通常運転時の圧縮機周波数の時系列変化を示す図である。 実施の形態に係る空気調和装置の応急制御がオンでの通常運転時の圧縮機周波数の時系列変化を示す図である。 実施の形態に係る空気調和装置の変形例の冷媒回路図である。
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態.
[空気調和装置100の構成]
 以下、実施の形態に係る空気調和装置100の構成について説明する。図1は、実施の形態に係る空気調和装置100の概略構成図である。図2は、実施の形態に係る空気調和装置100の冷媒回路図である。図1に示すように、空気調和装置100は、室外空間から室外空気を取り込んで、室外空間に室外空気を排出する2つの室外機10a、10bと、室内空間から室内空気を取り込んで、調湿後の室内空気を室内空間に供給する室内機20と、を備えている。また、空気調和装置100は、制御装置40を備えている。なお、室外機10a、10bの数は2つに限定されず、1つでも3つ以上でもよい。
(室外機10a、10b)
 図2に示すように、室外機10aは、圧縮機11a、流路切替装置12a、室外熱交換器13a、膨張弁14a、および、室外送風機15aを備えている。同様に、室外機10bは、圧縮機11b、流路切替装置12b、室外熱交換器13b、膨張弁14b、および、室外送風機15bを備えている。なお、室外熱交換器13a、13aは、第一熱交換器とも称する。
 圧縮機11a、11bは、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11a、11bは、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機などからなる。圧縮機11a、11bの運転周波数(以下、圧縮機周波数と称する)は、制御装置40によって制御される。
 流路切替装置12a、12bは、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転と暖房運転との切り替えを行う。流路切替装置12a、12bは、冷房運転時に、図2の実線で示す状態に切り替わり、圧縮機11a、11bの吐出側と室外熱交換器13a、13bとが接続される。また、流路切替装置12a、12bは、暖房運転時に、図2の破線で示す状態に切り替わり、圧縮機11a、11bの吐出側と室内熱交換器21a、21bとが接続される。流路切替装置12a、12bにおける冷媒流路の切替は、制御装置40によって制御される。
 室外熱交換器13a、13bは、室外空気と冷媒との間で熱交換を行う。室外熱交換器13a、13bは、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、室外熱交換器13a、13bは、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。室外熱交換器13a、13bとして、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられる。
 膨張弁14a、14bは、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって室外熱交換器13a、13bまたは室内熱交換器21a、21bに流入する冷媒の圧力を制御する。なお、実施の形態では、膨張弁14a、14bは室外機10a、10bに設けられているが、室内機20に設けられていてもよく、設置箇所は限定されない。
 室外送風機15a、15bは、室外熱交換器13a、13bに対して室外空気を供給するものであり、回転数が制御されることにより、室外熱交換器13a、13bに対する送風量が調整される。室外送風機15a、15bとして、例えば、DC(Direct Current)ファンモータあるいはAC(Alternating Current)ファンモータなどのモータによって駆動される遠心ファンまたは多翼ファンなどが用いられる。なお、室外送風機15a、15bの駆動源としてDCファンモータが用いられる場合は、電流値を変化させて回転数を制御することで送風量が調整される。また、室外送風機15a、15bの駆動源としてACファンモータが用いられる場合は、インバータ制御により電源周波数を変化させて回転数を制御することで送風量が調整される。
(室内機20)
 室内機20は、室内熱交換器21a、21b、および、室内送風機22を備えている。また、室内機20には、室内空間から室内空気を内部に取り込む1つの吸込口23と、調湿後の室内空気を内部から室内空間に供給する複数の吹出口24とが、それぞれ形成されており、各吹出口24には、ダンパ25が設けられている。また、室内機20内には、室内送風機22によって室内空間から取り込まれた室内空気が室内熱交換器21a、21bを通過して調湿後に室内空間に送風される風路20aが形成されている。なお、室内熱交換器21a、21bの数は2つに限定されず、室外機10a、10bとの数と同数設けられる。また、室内熱交換器21a、21bは、第二熱交換器とも称する。
 室内熱交換器21a、21bは、風路20a上に配置されており、いずれも室内空気と冷媒との間で熱交換を行う。室内熱交換器21a、21bは、冷房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。また、室内熱交換器21a、21bは、暖房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。室内熱交換器21a、21bとして、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられる。
 室内送風機22は、室内熱交換器21a、21bに対して室内空気を供給するものであり、回転数が制御されることにより、室内熱交換器21a、21bに対する送風量が調整される。室内送風機22として、例えば、DCファンモータあるいはACファンモータなどのモータによって駆動される遠心ファンまたは多翼ファンなどが用いられる。なお、室内送風機22の駆動源としてDCファンモータが用いられる場合は、電流値を変化させて回転数を制御することで送風量が調整される。また、室内送風機22の駆動源としてACファンモータが用いられる場合は、インバータ制御により電源周波数を変化させて回転数を制御することで送風量が調整される。
 ダンパ25は、吹出口24から室内空間に供給される調湿後の室内空気の量を調節するものであり、開閉制御により調湿後の室内空気の供給量が調整される。
 室外機10aおよび室外機10bは、それぞれ室内機20と配管によって接続されている。また、空気調和装置100は、2つの冷媒回路101a、101bを備えている。冷媒回路101aは、圧縮機11a、流路切替装置12a、室外熱交換器13a、膨張弁14a、室内熱交換器21aが、順次配管で接続され、冷媒が循環するものである。冷媒回路101bは、圧縮機11b、流路切替装置12b、室外熱交換器13b、膨張弁14b、室内熱交換器21bが、順次配管で接続され、冷媒が循環するものである。
 冷媒回路101a、101bに使用される冷媒は、特に限定されない。例えば、二酸化炭素、炭化水素もしくはヘリウムのような自然冷媒、HFC-410AもしくはHFC-407Cなどの塩素を含まない冷媒、または既存の製品に使用されているR22もしくはR134aなどのフロン系冷媒などの冷媒を使用できる。
(センサ類)
 室外機10a、10bおよび室内機20は、例えばサーミスタなどで構成される複数の温度センサを備えている。圧縮機11a、11bの吐出側には、冷媒の吐出温度を検出する吐出温度センサ31a、31bが設けられている。室外機10a、10bの吸込口(図示せず)付近には、外気温度を検出する外気温度センサ34a、34bが設けられている。室内機20の吸込口23付近には、室内温度を検出する室内温度センサ35が設けられている。
 また、室外機10a、10bは、例えばダイアフラムゲージなどで構成される複数の圧力センサを備えている。圧縮機11aの吐出側には、冷媒の吐出圧力を検出する吐出圧力センサ32a、32bが設けられている。圧縮機11aの吸入側には、冷媒の吸入圧力を検出する吸入圧力センサ33a、33bが設けられている。そして、吐出圧力センサ32a、32bが検出した吐出圧力を飽和温度に換算することにより、凝縮温度を求めることができる。また、吸入圧力センサ33a、33bが検出した吸入圧力を飽和温度に換算することにより、蒸発温度を求めることができる。なお、吐出圧力センサ32a、32bおよび吸入圧力センサ33a、33bを設ける代わりに、室外熱交換器13a、13b、および、室内熱交換器21a、21bのそれぞれに温度センサを設け、それらの温度センサから凝縮温度および蒸発温度を求めてもよい。
(制御装置40)
 制御装置40は、各種温度センサおよび各種圧力センサの検出情報に基づいて、室外機10a、10bおよび室内機20に対して運転制御信号を送信し、それらを制御する。なお、実施の形態では、制御装置40は運転モードとして、通常運転と、低負荷運転と、低負荷発停運転とを備えている。通常運転としては、冷房運転および暖房運転がある。低負荷運転としては、低負荷冷房運転および低負荷暖房運転がある。低負荷発停運転としては、低負荷冷房発停運転および低負荷暖房発停運転がある。
 図3は、実施の形態に係る空気調和装置100の制御装置40の一例を示すブロック図である。図3に示すように、制御装置40の入力側には、吐出温度センサ31a、31b、外気温度センサ34a、34b、室内温度センサ35、吐出圧力センサ32a、32b、および、吸入圧力センサ33a、33bが接続されている。
 また、制御装置40の出力側には、圧縮機11a、11b、流路切替装置12a、12b、膨張弁14a、14b、室外送風機15a、15b、室内送風機22、および、ダンパ25が接続されている。
 制御装置40は、情報取得部41、演算処理部42、機器制御部43、および、記憶部44を備えている。制御装置40は、マイクロコンピュータなどの演算装置上でソフトウェアを実行することにより各種機能が実現されている、もしくは各種機能を実現する回路デバイスなどのハードウェアなどで構成されている。
 情報取得部41は、吐出温度センサ31a、31b、外気温度センサ34a、34b、室内温度センサ35、吐出圧力センサ32a、32b、および、吸入圧力センサ33a、33bで検出された温度情報および圧力情報を取得する。
 演算処理部42は、情報取得部41で取得された温度情報および圧力情報に基づき、各種処理を行う。
 機器制御部43は、演算処理部42による処理結果に基づき、空気調和装置100に設けられた各部を制御するための運転制御信号を生成する。機器制御部43は、生成した運転制御信号を、圧縮機11a、11b、流路切替装置12a、12b、膨張弁14a、14b、室外送風機15a、15b、室内送風機22、および、ダンパ25などに送信する。
 記憶部44は、制御装置40の各部で用いられる各種の値を記憶するものであり、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの、不揮発性または揮発性の半導体メモリである。なお、記憶部44は制御装置40とは別体として設けられていてもよい。
 以下、実施の形態に係る空気調和装置100の各運転時の冷媒の流れについて説明する。
<冷房運転時の冷媒の流れ>
 冷房運転時は、圧縮機11a、11bの吐出側が室外熱交換器13a、13bとそれぞれ接続されるように、流路切替装置12a、12bが切り替えられる。
(冷媒回路101a)
 圧縮機11aから吐出された高温高圧のガス冷媒は、流路切替装置12aを介して室外熱交換器13aに流入する。室外熱交換器13aに流入した高温高圧のガス冷媒は、室外送風機15aによって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13aから流出する。室外熱交換器13aから流出した高圧の液冷媒は、膨張弁14aによって減圧され、低温低圧の気液二相冷媒となり、室内熱交換器21aに流入する。室内熱交換器21aに流入した低温低圧の気液二相冷媒は、室内送風機22によって取り込まれた室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却するとともに低温低圧のガス冷媒となって室内熱交換器21aから流出する。室内熱交換器21aから流出した低温低圧のガス冷媒は、圧縮機11aへ吸入され、再び高温高圧のガス冷媒となる。
(冷媒回路101b)
 圧縮機11bから吐出された高温高圧のガス冷媒は、流路切替装置12bを介して室外熱交換器13bに流入する。室外熱交換器13bに流入した高温高圧のガス冷媒は、室外送風機15bによって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13bから流出する。室外熱交換器13bから流出した高圧の液冷媒は、膨張弁14bによって減圧され、低温低圧の気液二相冷媒となり、室内熱交換器21bに流入する。室内熱交換器21bに流入した低温低圧の気液二相冷媒は、室内送風機22によって取り込まれた室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却するとともに低温低圧のガス冷媒となって室内熱交換器21bから流出する。室内熱交換器21bから流出した低温低圧のガス冷媒は、圧縮機11bへ吸入され、再び高温高圧のガス冷媒となる。
 なお、低負荷冷房運転時および低負荷冷房発停運転時の冷媒の流れは、上記の冷房運転時と同様であるため、説明を省略する。
<暖房運転時の冷媒の流れ>
 暖房運転時は、圧縮機11a、11bの吐出側が室内熱交換器21a、21bとそれぞれ接続されるように、流路切替装置12a、12bが切り替えられる。
(冷媒回路101a)
 圧縮機11aから吐出された高温高圧のガス冷媒は、流路切替装置12aを介して室内熱交換器21aに流入する。室内熱交換器21aに流入した高温高圧のガス冷媒は、室内送風機22によって取り込まれた室内空気と熱交換して放熱しながら凝縮し、室内空気を加熱するとともに高圧の液冷媒となって室内熱交換器21aから流出する。室内熱交換器21aから流出した高圧の液冷媒は、膨張弁14aによって減圧され、低温低圧の気液二相冷媒となり、室外熱交換器13aに流入する。室外熱交換器13aに流入した低温低圧の気液二相冷媒は、室外送風機15aによって取り込まれた室外空気と熱交換して吸熱しながら蒸発し、低温低圧のガス冷媒となって室外熱交換器13aから流出する。室外熱交換器13aから流出した低温低圧のガス冷媒は、圧縮機11aへ吸入され、再び高温高圧のガス冷媒となる。
(冷媒回路101b)
 圧縮機11bから吐出された高温高圧のガス冷媒は、流路切替装置12bを介して室内熱交換器21bに流入する。室内熱交換器21bに流入した高温高圧のガス冷媒は、室内送風機22によって取り込まれた室内空気と熱交換して放熱しながら凝縮し、室内空気を加熱するとともに高圧の液冷媒となって室内熱交換器21bから流出する。室内熱交換器21bから流出した高圧の液冷媒は、膨張弁14bによって減圧され、低温低圧の気液二相冷媒となり、室外熱交換器13bに流入する。室外熱交換器13bに流入した低温低圧の気液二相冷媒は、室外送風機15bによって取り込まれた室外空気と熱交換して吸熱しながら蒸発し、低温低圧のガス冷媒となって室外熱交換器13bから流出する。室外熱交換器13bから流出した低温低圧のガス冷媒は、圧縮機11bへ吸入され、再び高温高圧のガス冷媒となる。
 なお、低負荷暖房運転時および低負荷暖房発停運転時の冷媒の流れは、上記の暖房運転時の動作と同様であるため、説明を省略する。
<低負荷運転時の圧縮機動作>
 図4は、従来の2台の圧縮機を備えた空気調和装置の低負荷運転時の圧縮機周波数の時系列変化を示す図である。図5は、実施の形態に係る空気調和装置100の低負荷運転時の圧縮機周波数の時系列変化を示す図である。
 従来の低負荷運転では、図4に示すように、2台の圧縮機11a、11bの両方が運転と停止とを繰り返す発停運転となる。発停運転では、室内温度が目標温度に到達したら圧縮機11a、11bが停止し、室内温度と目標温度との差が所定値以上となったら起動する。これは、低負荷時に2台の圧縮機11a、11bの両方を運転させ続けると室内空間を過冷房または過暖房してしまうためである。そして、圧縮機11a、11bの起動が繰り返されると消費電力が多くなってしまう。
 一方、実施の形態に係る低負荷運転では、図5に示すように、2台の圧縮機11a、11bのうち一方のみを運転させ続け、もう一方は停止させる。このようにすることで、低負荷時であっても発停運転を回避することができ、省エネルギー化を実現することができる。また、2台の圧縮機11a、11bの運転時間が同じになるように、2台の圧縮機11a、11bのうち一方を起動後、あらかじめ設定された連続運転時間が経過後に運転させる圧縮機11a、11bを切り替える。そうすることで、圧縮機11a、11bの総運転時間を平均化することができ、圧縮機寿命の平均化を実現することができる。
<低負荷運転時の連続運転時間の最大値>
 低負荷運転時に運転させる圧縮機11a、11bを切り替えるためには、連続運転時間の最大値を規定する必要がある。低負荷冷房運転が発生する時間帯(以下、低負荷冷房時間帯と称する)は、日射による負荷が少なく、かつ、室内空間で発生する負荷が少ない時間帯であるため、一般的には深夜である。一般的な生活パターン(建築環境・省エネルギー機構(IBEC)規定の生活スケジュール参照)とした場合、低負荷冷房運転は夜23時から朝7時までの時間帯に発生することが予想される。また、低負荷暖房運転が発生する時間帯(以下、低負荷暖房時間帯と称する)は、日射による負荷が多く、かつ、室内空間での発熱が多い時間帯であるため、一般的には昼間である。一般的な生活パターン(建築環境・省エネルギー機構(IBEC)規定の生活スケジュール参照)とした場合、低負荷暖房運転は朝8時から夕方4時までの時間帯に発生することが予想される。
 このように、低負荷冷房時間帯および低負荷暖房時間帯はそれぞれ1日当たり8時間が予想されるため、連続運転時間の最大値を多くとも4時間以下に設定する。そして、その設定した連続運転時間の経過後には、運転させる圧縮機11a、11bを切り替えることで、圧縮機11a、11bの総運転時間を平均化することができる。なお、空気調和装置100が圧縮機を3台以上備えている場合、連続運転時間の最大値を多くとも8時間を台数で割った時間以下とする。ここで、連続運転時間の最大値を4時間よりも多い時間に設定すると、1日当たりの低負荷冷房運転および低負荷暖房運転の時間である8時間を均等にできず、圧縮機11a、11bの総運転時間を平均化できないためである。なお、記憶部44に過去の運転データを記憶させておき、その過去の運転データに基づいて低負荷冷房時間帯および低負荷暖房時間帯を求めてもよい。また、以下において、低負荷冷房時間帯および低負荷暖房時間帯の総称を低負荷時間帯とする。
<低負荷発停運転時の圧縮機動作>
 図6は、従来の2台の圧縮機を備えた空気調和装置の低負荷発停運転時の圧縮機周波数の時系列変化を示す図である。図7は、実施の形態に係る空気調和装置100の低負荷発停運転時の圧縮機周波数の時系列変化を示す図である。
 低負荷運転時に空調負荷が、圧縮機11a、11bの運転台数が1台での最低能力以下となった場合に、低負荷運転から低負荷発停運転へと遷移する。従来の低負荷発停運転では、図6に示すように2台の圧縮機11a、11bのうち一方が停止し、もう一方が発停運転を繰り返す。この場合、圧縮機11a、11bの起動回数がどちらかに偏ってしまい、圧縮機寿命にばらつきが生じてしまう。そこで、実施の形態に係る低負荷発停運転では、図7に示すように圧縮機11a、11bの発停回数が、少なくとも1回以上の、あらかじめ設定された閾値以上となった場合に、次に運転させる圧縮機11a、11bを変更する。そうすることで、圧縮機11a、11bの起動回数を平均化することができ、圧縮機寿命の平均化を実現することができる。なお、上記の発停回数は停止回数としてもよい。
 また、圧縮機11a、11bは室外空間に配置されているため、低負荷暖房発停運転時では、圧縮機11a、11bの停止時には圧縮機11a、11bが室外空気によって冷却される。その結果、圧縮機11a、11bの再起動時に冷媒圧力を上昇させるためには圧縮機11a、11bを加熱するエネルギーが必要となり、圧縮機11a、11bの停止時間が長くなるほどより大きなエネルギーが必要となる。そのため、圧縮機11a、11bの起動直後の立ち上がり性能を改善して省エネルギー化を実現するためには、同じ圧縮機11a、11bが停止してから起動するまでの間隔は短い方がよい。したがって、運転させる圧縮機11a、11bを切り替えるための発停回数の閾値を、低負荷冷房発停運転時よりも低負荷暖房発停運転時の方が大きな値となるように設定する。そうすることで、低負荷暖房発停運転時の運転させる圧縮機11a、11bの切り替え回数を低負荷冷房発停運転時よりも減らすことができ、圧縮機11a、11bを加熱するエネルギーを抑制できる。そのため、圧縮機寿命の平均化に加えて省エネルギー化を実現することができる。
<各運転の遷移条件:冷房運転、低負荷冷房運転、低負荷冷房発停運転>
 図8は、実施の形態に係る空気調和装置100の冷房運転、低負荷冷房運転、および、低負荷冷房発停運転の各状態遷移を示す図である。
 冷房運転時に空調負荷が、各圧縮機11a、11bの最低能力の合計以下となった場合、つまり、冷房運転時に低負荷冷房切替条件を満たした場合、図8のAに示すように、冷房運転から低負荷冷房運転へと遷移する。低負荷冷房切替条件は、圧縮機周波数、消費電力、外気湿度、または、室内温度があらかじめ設定された閾値以下となった場合、圧縮機停止時間があらかじめ設定された閾値以上となった場合、および、サーモオフ制御がオフからオンとなった場合のいずれかなどである。
 ここで、サーモオフ制御とは、空気調和装置100の運転中に全ての圧縮機11a、11bを停止させ、室内送風機22のみを運転させることである。例えば、室内温度が設定温度に対して所定の範囲内となったら、サーモオフ制御が行われる。
 また、低負荷冷房運転時の空調負荷が、各圧縮機11a、11bの最低能力の合計より大きくなった場合、つまり、低負荷冷房運転時に冷房復帰条件を満たした場合、図8のBに示すように、低負荷冷房運転から冷房運転へと遷移する。冷房復帰条件は、圧縮機周波数、消費電力、外気湿度、または、室内温度があらかじめ設定された閾値より大きくなった場合、圧縮機停止時間があらかじめ設定された閾値より小さくなった場合、および、サーモオフ制御がオンからオフとなった場合のいずれかなどである。
 低負荷冷房運転時に圧縮機11a、11bの運転台数が1台での最低能力以下となった場合、つまり、低負荷冷房運転時に低負荷冷房発停切替条件を満たした場合、図8のCに示すように、低負荷冷房運転から低負荷冷房発停運転へと遷移する。低負荷冷房発停切替条件は、運転中の圧縮機11a、11bの圧縮機周波数が下限値に到達した場合、もしくはサーモオフ制御がオフからオンとなった場合などである。
 また、低負荷冷房発停運転時に低負荷冷房復帰条件を満たした場合、図8のDに示すように、低負荷冷房発停運転から低負荷冷房運転へと遷移する。低負荷冷房復帰条件は、圧縮機11a、11bを起動してから一定時間経過し、かつ、圧縮機周波数または消費電力があらかじめ設定された閾値より大きくなった場合などである。
 また、低負荷冷房発停運転時にユーザーが冷房運転を停止した場合、図8のEに示すように、次の運転開始時に低負荷冷房発停運転時から冷房運転へと遷移する。そうすることで、次回の冷房運転時の圧縮機11a、11bの起動直後の立ち上がり性能の低下を抑制することができる。
<各運転の遷移条件:暖房運転、低負荷暖房運転、低負荷暖房発停運転>
 図9は、実施の形態に係る空気調和装置100の暖房運転、低負荷暖房運転、および、低負荷暖房発停運転の各状態遷移を示す図である。
 暖房運転時に空調負荷が、各圧縮機11a、11bの最低能力の合計以下となった場合、つまり、暖房運転時に低負荷暖房切替条件を満たした場合、図9のAに示すように、暖房運転から低負荷暖房運転へと遷移する。低負荷暖房切替条件は、圧縮機周波数、または、消費電力があらかじめ設定された閾値以下となった場合、圧縮機停止時間、外気温度、または、室内温度があらかじめ設定された閾値以上となった場合、サーモオフ制御がオフからオンとなった場合、および、デフロスト制御がオフからオンとなった場合のいずれかなどである。
 ここで、デフロスト制御とは、暖房運転時に複数の冷媒回路101a、101bのうち1つが冷房運転時と同じ回路構成となるように、流路切替装置12a、12bなどを制御することで、室外機10a、10bに付着した霜を溶かすことである。例えば、吸入圧力センサ33a、33bが検出した吸入圧力から換算される飽和温度に基づいて室外機10a、10bへの着霜の有無を判定し、着霜有りの判定の場合に、デフロスト制御が行われる。
 また、低負荷暖房運転時の空調負荷が、各圧縮機11a、11bの最低能力の合計より大きくなった場合、つまり、低負荷暖房運転時に暖房復帰条件を満たした場合、図9のBに示すように、低負荷暖房運転から暖房運転へと遷移する。暖房復帰条件は、圧縮機周波数または消費電力があらかじめ設定された閾値より大きくなった場合、圧縮機停止時間、外気温度、または、室内温度があらかじめ設定された閾値より小さくなった場合、サーモオフ制御がオンからオフとなった場合、および、デフロスト制御がオンからオフとなった場合のいずれかなどである。
 ここで、2つの室外機10a、10bで暖房運転が行われているとき、つまり2つの圧縮機11a、11bが起動時にデフロスト制御がオンとなった場合、デフロストが2つの室外機10a、10bに対して行われる。そのため、デフロスト制御がオンの間は暖房運転が中断され、暖房能力がゼロになる。そこで、2つの室外機10a、10bのうち一方のみで暖房運転が行われる状態、つまり2つの圧縮機11a、11bのうち一方のみが運転している状態とする。そうすることで、デフロスト制御がオンとなった場合でも、デフロストが2つの室外機10a、10bのうち一方に対してのみ行われ、一方の室外機10a、10bで暖房運転の継続が可能となり、快適性の向上が見込まれる。
 そこで、暖房時にはできるだけ低負荷運転にして圧縮機11a、11bの運転台数が1台のみとなるように、低負荷暖房運転時の圧縮機周波数の範囲を低負荷冷房運転時よりも広くする。つまり、低負荷暖房切替条件および低負荷冷房切替条件に圧縮機周波数を用いた場合、低負荷暖房運転時の閾値を低負荷冷房運転時よりも大きくする。そうすることで、低負荷暖房運転の方が低負荷冷房運転よりも圧縮機11a、11bの運転台数を1台のみにしやすくなり、暖房運転時の快適性を向上させることができる。
 低負荷暖房運転時に圧縮機11a、11bの運転台数が1台での最低能力以下となった場合、つまり、低負荷暖房運転時に低負荷暖房発停切替条件を満たした場合、図9のCに示すように、低負荷暖房運転から低負荷暖房発停運転へと遷移する。低負荷暖房発停切替条件は、運転中の圧縮機11a、11bの圧縮機周波数が下限値に到達した場合、もしくはサーモオフ制御がオフからオンとなった場合などである。
 また、低負荷暖房発停運転時に低負荷暖房復帰条件を満たした場合、図9のDに示すように、低負荷暖房発停運転から低負荷暖房運転へと遷移する。低負荷暖房復帰条件は、圧縮機11a、11bを起動してから一定時間経過し、かつ、圧縮機周波数または消費電力があらかじめ設定された閾値より大きくなった場合などである。
 また、低負荷暖房発停運転時にユーザーが暖房運転を停止した場合、図9のEに示すように、次の運転開始時には低負荷暖房発停運転から暖房運転へと遷移する。そうすることで、次回の暖房運転時の圧縮機11a、11bの起動直後の立ち上がり性能の低下を抑制することができる。
 以上のように、負荷が低下するについて、冷房運転、低負荷冷房運転、低負荷冷房発停運転の順に遷移する。また、負荷が低下するについて、暖房運転、低負荷暖房運転、低負荷暖房発停運転の順に遷移する。
<応急制御>
 図10は、実施の形態に係る空気調和装置100の低負荷運転時にいずれの冷媒回路101a、101bも応急制御オン条件を満たしていない場合の消費電力の時系列変化を示す図である。図11は、実施の形態に係る空気調和装置100の低負荷運転時にいずれかの冷媒回路101a、101bが応急制御オン条件を満たしている場合の消費電力の時系列変化を示す図である。図12は、実施の形態に係る空気調和装置100の応急制御がオフでの通常運転時の圧縮機周波数の時系列変化を示す図である。図13は、実施の形態に係る空気調和装置100の応急制御がオンでの通常運転時の圧縮機周波数の時系列変化を示す図である。
 実施の形態に係る空気調和装置100では、圧縮機11a、11bに故障の疑いがあり、保守が必要な場合には、応急制御が行われる。応急制御の要否判定は、低負荷冷房運転時または低負荷暖房運転時に行われる。低負荷冷房運転時または低負荷暖房運転時に、運転中の圧縮機11a、11bを有する冷媒回路101a、101bが応急制御オン条件を満たした場合、応急制御をオンする。応急制御オン条件は、圧縮機周波数、消費電力、吐出温度、膨張弁開度、凝縮温度、または、蒸発温度が予め設定された閾値以上となった場合である。応急制御オン条件に消費電力を用いた場合において、低負荷運転時にいずれの冷媒回路101a、101bも応急制御オン条件を満たしていないと、図10に示すように2つの冷媒回路101a、101bの消費電力が同等となり、どちらも閾値より小さくなる。一方、低負荷運転時にいずれかの冷媒回路101a、101bが応急制御オン条件を満たしている場合、図11に示すように2つの冷媒回路101a、101bのうち一方の消費電力が高くなり、閾値以上となる。応急制御がオフでの冷房運転時または暖房運転時の圧縮機周波数の時系列変化は、図12に示す通りであり、応急制御がオンでの冷房運転時または暖房運転時の圧縮機周波数の時系列変化は、図13に示す通りである。
 応急制御では、圧縮機周波数の範囲を拡大することで、応急制御オン条件を満たした冷媒回路101a、101bの圧縮機11a、11bの運転時間を減らす。そして、応急制御オンであることおよび故障の疑いがある圧縮機11a、11b、を報知手段によりユーザーに通知する。報知手段は、例えば、空気調和装置100のリモコン(図示せず)、ユーザーが所持する携帯電話などの通信端末、あるいはHEMSなどの情報共有端末などである。
 応急制御オン時では、低負荷冷房切替条件および低負荷暖房切替条件における閾値を変え、低負荷運転が促進されるようにする。例えば、低負荷冷房切替条件および低負荷暖房切替条件に圧縮機周波数または消費電力を用いた場合、応急制御オン時は応急制御オフ時よりも閾値の値を大きくする。加えて、応急制御オン条件を満たした冷媒回路101a、101bの圧縮機11a、11b(以下、応急制御対象圧縮機と称する)を停止させ、その他の圧縮機11a、11b(以下、応急制御非対象圧縮機と称する)のみを運転させる。そして、空調負荷が圧縮機11a、11bの運転台数が1台での最大能力より大きくなった場合に、応急制御対象圧縮機を除いて、停止している圧縮機11a、11bがある場合は運転台数を増加させる。
 ユーザーによる設定変更が行われた場合に、応急制御対象圧縮機を起動させて正常な圧縮機である応急制御非対象圧縮機と動作を比較する。そして、それらの圧縮機周波数または消費電力などを比較し、差異が所定範囲内であれば応急制御をオフにし、差異が所定範囲よりも大きければ応急制御のオンを継続する。そうすることにより、応急制御オン条件の誤判定により応急制御がオンした場合でも、応急制御のオフを自動で行うことができ、ユーザーへの影響を最小にすることができる。
 また、応急制御オン後所定時間が経過し、かつ低負荷発停運転へと遷移した場合に、応急制御対象圧縮機を起動させて正常な圧縮機である応急制御非対象圧縮機と比較する。そして、それらの圧縮機周波数または消費電力などを比較し、差異が所定範囲内であれば応急制御をオフにし、差異が所定範囲よりも大きければ応急制御のオンを継続する。そうすることにより、応急制御オン条件の誤判定により応急制御がオンした場合でも、応急制御のオフを自動で行うことができ、ユーザーへの影響を最小にすることができる。さらに、空調負荷が少ない時間に少ない消費電力で応急制御の要否判定することができる。
 低負荷冷房運転時および低負荷暖房運転時に圧縮機11a、11bの運転台数を1台とすることで、従来では発停運転となっていた空調負荷であっても連続運転を行うことが可能となる。そのため、圧縮機11a、11bの起動直後の立ち上がり性能が改善されて省エネルギー化を実現することができる。また、冷媒回路101a、101b内の冷媒の圧力が安定することから、圧縮機11a、11bへのダメージが減少し、圧縮機11a、11bの故障率を下げることができる。
 また、低負荷冷房運転時および低負荷暖房運転時の連続運転時間の最大値を規定し、規定した連続運転時間の最大値内に運転させる圧縮機11a、11bを切り替える。そうすることで、圧縮機11a、11bの総運転時間を平均化することができ、圧縮機寿命の平均化を実現することができる。
 また、低負荷発停運転時では、圧縮機11a、11bが少なくとも1回以上停止した場合に運転する圧縮機11a、11bを変更する。そうすることで、圧縮機11a、11bの起動回数を平均化することができ、圧縮機寿命の平均化を実現することができる。
 また、低負荷運転時に、運転中の圧縮機11a、11bを有する冷媒回路101a、101bが応急制御オン条件を満たした場合、応急制御をオンする。そうすることにより、特定の圧縮機11a、11bに異常が発生しても低負荷運転を継続することが可能となり、ユーザーの快適性を担保することができる。
 また、応急制御オン時は、応急制御オンでありシステムの保守作業の必要性があることを報知手段によりユーザーに通知することで、メンテナンス時期の適正化および重大な故障を未然に防ぐことが可能となり、システムの寿命を延ばすことができる。
 さらに、ユーザーによる設定変更が行われた場合に、停止させていた圧縮機11a、11bを起動させて正常な圧縮機11a、11bと動作を比較し、応急制御オン条件を満たせば応急制御を継続し、応急制御オン条件を満たさなければ、応急制御をオフする。そうすることにより、応急制御オン条件の誤判定により応急制御をオンした場合でも、応急運転のオフを自動で行うことができ、ユーザーへの影響を最小にすることができる。また、応急制御オン後所定時間が経過し、かつ低負荷発停運転へと遷移した場合に、応急制御対象圧縮機を起動させて正常な圧縮機である応急制御非対象圧縮機と比較することで、空調負荷が少ない時間に少ない消費電力で応急制御の要否判定することができる。
 図14は、実施の形態に係る空気調和装置100の変形例の冷媒回路図である。
 なお、実施の形態に係る空気調和装置100は、2つの冷媒回路101a、101bを備えている構成としたが、それに限定されず、図14に示すように、複数の圧縮機を有する冷媒回路101cを1つ備えた構成でも成立するものに関しては、その構成でもよい。また、実施の形態に係る空気調和装置100は、流路切替装置を備えている構成としたが、それに限定されず、流路切替装置を備えていない構成でも成立するものに関しては、その構成でもよい。
 以上、実施の形態に係る空気調和装置100は、第一圧縮機、第二圧縮機、第一熱交換器、膨張弁、および、第二熱交換器が配管で接続されて冷媒が循環する冷媒回路と、第一圧縮機および第二圧縮機を制御する制御装置40と、を備えている。また、制御装置40は、第一圧縮機および第二圧縮機を運転させて冷房を行う冷房運転時、または、第一圧縮機および第二圧縮機を運転させて暖房を行う暖房運転時において、低負荷切替条件を満たした場合、冷房運転から第一圧縮機および第二圧縮機のうち1台を運転させて冷房を行う低負荷冷房運転、または、暖房運転から第一圧縮機および第二圧縮機のうち1台を運転させて暖房を行う低負荷暖房運転へと切り替え、低負荷冷房運転または低負荷暖房運転では、第一圧縮機および第二圧縮機のうち1台を起動後、あらかじめ設定された連続運転時間が経過したら、第一圧縮機および第二圧縮機のうち別の1台に運転対象を変更するものである。
 また、実施の形態に係る空気調和装置100は、第一圧縮機、第一熱交換器、第一膨張弁、および、第二熱交換器が配管で接続されて冷媒が循環する第一の冷媒回路と、第二圧縮機、第三熱交換器、第二膨張弁、および、第四熱交換器が配管で接続されて冷媒が循環する第二の冷媒回路と、第一圧縮機および第二圧縮機を制御する制御装置40と、を備えている。また、制御装置40は、第一圧縮機および第二圧縮機を運転させて冷房を行う冷房運転時、または、第一圧縮機および第二圧縮機を運転させて暖房を行う暖房運転時において、低負荷切替条件を満たした場合、冷房運転から第一圧縮機および第二圧縮機のうち1台を運転させて冷房を行う低負荷冷房運転、または、暖房運転から第一圧縮機および第二圧縮機のうち1台を運転させて暖房を行う低負荷暖房運転へと切り替え、低負荷冷房運転または低負荷暖房運転では、第一圧縮機および第二圧縮機のうち1台を起動後、あらかじめ設定された連続運転時間が経過したら、第一圧縮機および第二圧縮機のうち別の1台に運転対象を変更するものである。
 実施の形態に係る空気調和装置100によれば、冷房運転時または暖房運転時において、低負荷切替条件を満たした場合、冷房運転から低負荷冷房運転または暖房運転から低負荷暖房運転へと切り替える。そして、低負荷冷房運転または低負荷暖房運転では、複数の圧縮機のうち1台を起動後、あらかじめ設定された連続運転時間が経過したら、複数の圧縮機のうち別の1台に運転対象を変更する。そのため、圧縮機寿命の平均化を実現することができる。また、圧縮機の発停回数が抑制され、省エネルギー化を実現することができる。なお、上記では、空気調和装置100が備えている圧縮機の台数を第一圧縮機および第二圧縮機の2台としたが、それに限定されず、3台以上としてもよい。
 また、実施の形態に係る空気調和装置100は、圧縮機、流路切替装置、第一熱交換器、膨張弁、および、第二熱交換器が配管で接続されて冷媒が循環する冷媒回路を複数備えている。そして、冷房運転時の低負荷切替条件が、圧縮機周波数が前記第一閾値以下となった場合、かつ、暖房運転時の低負荷切替条件が、圧縮機周波数が第二閾値以下となった場合において、第二閾値が第一閾値よりも大きい。
 実施の形態に係る空気調和装置100によれば、デフロストが複数の室外機10a、10bに対して行われるのを抑制することができ、暖房運転の継続が可能となるため、暖房運転時の快適性を向上させることができる。
 また、実施の形態に係る空気調和装置100は、第一圧縮機および第二圧縮機を含む複数の圧縮機を有し、過去の運転データを記憶する記憶部44を備え、制御装置40は、過去の運転データに基づいて低負荷時間帯を算出し、低負荷時間帯を複数の圧縮機の台数で割った値以下を連続運転時間に設定する。または、第一圧縮機および第二圧縮機を含む複数の圧縮機を有し、制御装置40は、8時間を複数の圧縮機の台数で割った値以下を連続運転時間に設定する。
 実施の形態に係る空気調和装置100によれば、低負荷冷房運転時および低負荷暖房運転時の連続運転時間の最大値を規定している。そして、規定した連続運転時間の最大値内に運転させる圧縮機を切り替えることで、圧縮機の総運転時間を平均化することができ、圧縮機寿命の平均化を実現することができる。なお、上記では、空気調和装置100が第一圧縮機および第二圧縮機を含む複数の圧縮機を有するとしたが、圧縮機の台数は2台以上であれば何台でもよい。
 また、実施の形態に係る空気調和装置100において、制御装置40は、低負荷冷房運転時または低負荷暖房運転時において、低負荷発停切替条件を満たした場合、低負荷冷房運転から第一圧縮機および第二圧縮機のうち1台で発停運転しながら冷房を行う低負荷冷房発停運転、または、低負荷暖房運転から第一圧縮機および第二圧縮機のうち1台で発停運転しながら暖房を行う低負荷暖房発停運転へと切り替え、低負荷冷房発停運転または低負荷暖房発停運転では、第一圧縮機および第二圧縮機のうち1台を起動後、発停回数があらかじめ設定された第四閾値以上となったら、第一圧縮機および第二圧縮機のうち別の1台に運転対象を変更する。
 実施の形態に係る空気調和装置100によれば、低負荷冷房運転または低負荷暖房運転では、複数の圧縮機のうち1台を起動後、発停回数があらかじめ設定された第四閾値以上となったら、複数の圧縮機のうち別の1台に運転対象を変更する。そうすることで、圧縮機の起動回数を平均化することができ、圧縮機寿命の平均化を実現することができる。なお、上記では、空気調和装置100が備えている圧縮機の台数を第一圧縮機および第二圧縮機の2台としたが、それに限定されず、3台以上としてもよい。
 また、実施の形態に係る空気調和装置100において、第四閾値は、低負荷冷房運転時よりも低負荷暖房運転時の方が大きい値が設定される。
 実施の形態に係る空気調和装置100によれば、低負荷暖房発停運転時の運転させる圧縮機の切り替え回数を低負荷冷房発停運転時よりも減らすことができ、圧縮機を加熱するエネルギーを抑制できる。そのため、圧縮機寿命の平均化に加えて省エネルギー化を実現することができる。
 また、実施の形態に係る空気調和装置100において、制御装置40は、低負荷冷房運転時、または、低負荷暖房運転時において、第一圧縮機および前記第二圧縮機のうち運転中のものが応急制御オン条件を満たした場合、第一圧縮機および前記第二圧縮機のうち応急制御オン条件を満たしたものに対して応急制御をオンにし、第一圧縮機および前記第二圧縮機のうち応急制御がオンとなっているものは停止させたまま起動させない。
 実施の形態に係る空気調和装置100によれば、低負荷運転時に、運転中の圧縮機を有する冷媒回路が応急制御オン条件を満たした場合、応急制御をオンする。そうすることにより、特定の圧縮機に異常が発生しても低負荷運転を継続することが可能となり、ユーザーの快適性を担保することができる。なお、上記では、空気調和装置100が備えている圧縮機の台数を第一圧縮機および第二圧縮機の2台としたが、それに限定されず、3台以上としてもよい。
 また、実施の形態に係る空気調和装置100は、応急制御オン時に応急制御オンであることをユーザーに報知する報知手段を備えたものである。
 実施の形態に係る空気調和装置100によれば、応急制御オン時に応急制御オンであることを報知手段によりユーザに通知することで、メンテナンス時期の適正化および重大な故障を未然に防ぐことが可能となり、システムの寿命を延ばすことができる。
 10a、10b 室外機、11a、11b 圧縮機、12a、12b 流路切替装置、13a、13b 室外熱交換器、14a、14b 膨張弁、15a、15b 室外送風機、20 室内機、20a 風路、21a、21b 室内熱交換器、22 室内送風機、23 吸込口、24 吹出口、25 ダンパ、31a、31b 吐出温度センサ、32a、32b 吐出圧力センサ、33a、33b 吸入圧力センサ、34a、34b 外気温度センサ、35 室内温度センサ、40 制御装置、41 情報取得部、42 演算処理部、43 機器制御部、44 記憶部、100 空気調和装置、101a、101b、101c 冷媒回路。

Claims (15)

  1.  第一圧縮機、第二圧縮機、第一熱交換器、膨張弁、および、第二熱交換器が配管で接続されて冷媒が循環する冷媒回路と、
     前記第一圧縮機および前記第二圧縮機を制御する制御装置と、を備え、
     前記制御装置は、
     前記第一圧縮機および前記第二圧縮機を運転させて冷房を行う冷房運転時、または、前記第一圧縮機および前記第二圧縮機を運転させて暖房を行う暖房運転時において、低負荷切替条件を満たした場合、
     前記冷房運転から前記第一圧縮機および前記第二圧縮機のうち1台を運転させて冷房を行う低負荷冷房運転、または、前記暖房運転から前記第一圧縮機および前記第二圧縮機のうち1台を運転させて暖房を行う低負荷暖房運転へと切り替え、
     前記低負荷冷房運転または前記低負荷暖房運転では、
     前記第一圧縮機および前記第二圧縮機のうち1台を起動後、あらかじめ設定された連続運転時間が経過したら、前記第一圧縮機および前記第二圧縮機のうち別の1台に運転対象を変更する
     空気調和装置。
  2.  第一圧縮機、第一熱交換器、第一膨張弁、および、第二熱交換器が配管で接続されて冷媒が循環する第一の冷媒回路と、
     第二圧縮機、第三熱交換器、第二膨張弁、および、第四熱交換器が配管で接続されて冷媒が循環する第二の冷媒回路と、
     前記第一圧縮機および前記第二圧縮機を制御する制御装置と、を備え、
     前記制御装置は、
     前記第一圧縮機および前記第二圧縮機を運転させて冷房を行う冷房運転時、または、前記第一圧縮機および前記第二圧縮機を運転させて暖房を行う暖房運転時において、低負荷切替条件を満たした場合、
     前記冷房運転から前記第一圧縮機および前記第二圧縮機のうち1台を運転させて冷房を行う低負荷冷房運転、または、前記暖房運転から前記第一圧縮機および前記第二圧縮機のうち1台を運転させて暖房を行う低負荷暖房運転へと切り替え、
     前記低負荷冷房運転または前記低負荷暖房運転では、
     前記第一圧縮機および前記第二圧縮機のうち1台を起動後、あらかじめ設定された連続運転時間が経過したら、前記第一圧縮機および前記第二圧縮機のうち別の1台に運転対象を変更する
     空気調和装置。
  3.  前記冷房運転時の前記低負荷切替条件は、圧縮機周波数、消費電力、外気温度、または、室内温度があらかじめ設定された第一閾値以下となった場合、あるいは、サーモオフ制御がオフからオンとなった場合である
     請求項1または2に記載の空気調和装置。
  4.  冷媒の流れる方向を切り替える流路切替装置を備えた
     請求項1~3のいずれか一項に記載の空気調和装置。
  5.  前記暖房運転時の前記低負荷切替条件は、圧縮機周波数、または、消費電力があらかじめ設定された第二閾値以下となった場合、外気温度、または、室内温度があらかじめ設定された第三閾値以上となった場合、サーモオフ制御がオフからオンとなった場合、および、デフロスト制御がオフからオンとなった場合のいずれかである
     請求項4に記載の空気調和装置。
  6.  前記冷房運転時の前記低負荷切替条件が、前記圧縮機周波数が前記第一閾値以下となった場合、かつ、前記暖房運転時の前記低負荷切替条件が、前記圧縮機周波数が前記第二閾値以下となった場合において、
     前記第二閾値が前記第一閾値よりも大きい
     請求項2および3に従属する請求項5に記載の空気調和装置。
  7.  前記第一圧縮機および前記第二圧縮機を含む複数の圧縮機を有し、
     過去の運転データを記憶する記憶部を備え、
     前記制御装置は、
     前記運転データに基づいて低負荷時間帯を求め、
     前記低負荷時間帯を前記複数の圧縮機の台数で割った値以下を前記連続運転時間に設定する
     請求項1~6のいずれか一項に記載の空気調和装置。
  8.  前記第一圧縮機および前記第二圧縮機を含む複数の圧縮機を有し、
     前記制御装置は、
     8時間を前記複数の圧縮機の台数で割った値以下を前記連続運転時間に設定する
     請求項1~6のいずれか一項に記載の空気調和装置。
  9.  前記制御装置は、
     前記低負荷冷房運転時または前記低負荷暖房運転時において、低負荷発停切替条件を満たした場合、
     前記低負荷冷房運転から前記第一圧縮機および前記第二圧縮機のうち1台で発停運転しながら冷房を行う低負荷冷房発停運転、または、前記低負荷暖房運転から前記第一圧縮機および前記第二圧縮機のうち1台で発停運転しながら暖房を行う低負荷暖房発停運転へと切り替え、
     前記低負荷冷房発停運転または前記低負荷暖房発停運転では、
     前記第一圧縮機および前記第二圧縮機のうち1台を起動後、発停回数があらかじめ設定された第四閾値以上となったら、前記第一圧縮機および前記第二圧縮機のうち別の1台に運転対象を変更する
     請求項1~8のいずれか一項に記載の空気調和装置。
  10.  前記低負荷冷房運転時および前記低負荷暖房運転時の低負荷発停切替条件は、前記第一圧縮機および前記第二圧縮機のうち運転中のものの圧縮機周波数が下限値に到達した場合、もしくはサーモオフ制御がオフからオンとなった場合である
     請求項9に記載の空気調和装置。
  11.  前記第四閾値は、前記低負荷冷房運転時よりも前記低負荷暖房運転時の方が大きい値が設定される
     請求項9または10に記載の空気調和装置。
  12.  前記制御装置は、
     前記低負荷冷房運転時、または、前記低負荷暖房運転時において、前記第一圧縮機および前記第二圧縮機のうち運転中のものが応急制御オン条件を満たした場合、
     前記第一圧縮機および前記第二圧縮機のうち前記応急制御オン条件を満たしたものに対して応急制御をオンにし、
     前記第一圧縮機および前記第二圧縮機のうち前記応急制御がオンとなっているものは停止させたまま起動させない
     請求項1~11のいずれか一項に記載の空気調和装置。
  13.  前記応急制御オン条件は、圧縮機周波数、消費電力、膨張弁開度、吐出温度、凝縮温度、または、蒸発温度が予め設定された第五閾値以上となった場合である
     請求項12に記載の空気調和装置。
  14.  前記応急制御オン時に応急制御オンであることをユーザーに報知する報知手段を備えた
     請求項12または13に記載の空気調和装置。
  15.  前記報知手段は、携帯電話あるいはHEMSである
     請求項14に記載の空気調和装置。
PCT/JP2020/018529 2020-05-07 2020-05-07 空気調和装置 WO2021224962A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022519858A JP7438342B2 (ja) 2020-05-07 2020-05-07 空気調和装置
PCT/JP2020/018529 WO2021224962A1 (ja) 2020-05-07 2020-05-07 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018529 WO2021224962A1 (ja) 2020-05-07 2020-05-07 空気調和装置

Publications (1)

Publication Number Publication Date
WO2021224962A1 true WO2021224962A1 (ja) 2021-11-11

Family

ID=78467915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018529 WO2021224962A1 (ja) 2020-05-07 2020-05-07 空気調和装置

Country Status (2)

Country Link
JP (1) JP7438342B2 (ja)
WO (1) WO2021224962A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151948A (zh) * 2021-11-15 2022-03-08 广东西屋康达空调有限公司 一种变频热泵空调机组的温度恒定控制方法、设备和***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154950A (ja) * 1998-11-19 2000-06-06 Denso Corp エンジン駆動式ヒートポンプサイクル
JP2003166740A (ja) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 空気調和装置
JP2013108681A (ja) * 2011-11-21 2013-06-06 Daikin Industries Ltd 空調システム
JP2018121445A (ja) * 2017-01-25 2018-08-02 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル機器の遠隔制御システムおよび家電機器の遠隔制御システム
JP2018146171A (ja) * 2017-03-06 2018-09-20 ダイキン工業株式会社 空調システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139097B2 (ja) * 2012-10-26 2017-05-31 シャープ株式会社 空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154950A (ja) * 1998-11-19 2000-06-06 Denso Corp エンジン駆動式ヒートポンプサイクル
JP2003166740A (ja) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 空気調和装置
JP2013108681A (ja) * 2011-11-21 2013-06-06 Daikin Industries Ltd 空調システム
JP2018121445A (ja) * 2017-01-25 2018-08-02 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル機器の遠隔制御システムおよび家電機器の遠隔制御システム
JP2018146171A (ja) * 2017-03-06 2018-09-20 ダイキン工業株式会社 空調システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151948A (zh) * 2021-11-15 2022-03-08 广东西屋康达空调有限公司 一种变频热泵空调机组的温度恒定控制方法、设备和***

Also Published As

Publication number Publication date
JPWO2021224962A1 (ja) 2021-11-11
JP7438342B2 (ja) 2024-02-26

Similar Documents

Publication Publication Date Title
CN108700347B (zh) 用于控制制冷***的***和方法
EP2270405B1 (en) Refrigerating device
US20180156505A1 (en) Methods and systems for controlling integrated air conditioning systems
CN111780362B (zh) 一种空调器及其控制方法
KR101806839B1 (ko) 멀티 공기 조화기 및 그 제어 방법
CN109716035B (zh) 用于空气调节和热水供给的***
US6807817B2 (en) Method for operating compressors of air conditioner
US10914476B2 (en) Method for sequencing compressor operation based on space humidity
KR101702178B1 (ko) 칠러 시스템
CN107076476B (zh) 带独立除霜的可变制冷剂hvac***
JP2008025901A (ja) 空気調和装置
WO2021224962A1 (ja) 空気調和装置
JP5517891B2 (ja) 空気調和装置
JP7316759B2 (ja) 空気調和装置及び空気調和システム
JP4074422B2 (ja) 空調機とその制御方法
KR101029988B1 (ko) 직접팽창방식 공조기의 냉매 흐름량 변화에 따른 송풍기 풍량 자동 제어 방법
JP6047381B2 (ja) 空調機
CN109790984B (zh) 用于空气调节和热水供给的***
JP6716024B2 (ja) 空気調和装置
KR100667097B1 (ko) 멀티형 공기조화기의 운전방법
KR20140091794A (ko) 공기 조화기 및 그 제어 방법
JP6490095B2 (ja) 空気調和システム
EP4390260A1 (en) Air conditioning device
JPH10332186A (ja) 空気調和機
JP2008190767A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934368

Country of ref document: EP

Kind code of ref document: A1