WO2021220742A1 - 車両駆動装置 - Google Patents

車両駆動装置 Download PDF

Info

Publication number
WO2021220742A1
WO2021220742A1 PCT/JP2021/014709 JP2021014709W WO2021220742A1 WO 2021220742 A1 WO2021220742 A1 WO 2021220742A1 JP 2021014709 W JP2021014709 W JP 2021014709W WO 2021220742 A1 WO2021220742 A1 WO 2021220742A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
engine
battery
motor
control means
Prior art date
Application number
PCT/JP2021/014709
Other languages
English (en)
French (fr)
Inventor
達 鹿野
Original Assignee
株式会社石川エナジーリサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石川エナジーリサーチ filed Critical 株式会社石川エナジーリサーチ
Publication of WO2021220742A1 publication Critical patent/WO2021220742A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/17Control strategies specially adapted for achieving a particular effect for noise reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a vehicle drive device, and more particularly to a vehicle drive device mounted on a vehicle having a motor and an engine as drive sources.
  • a hybrid vehicle equipped with a motor and an engine has been used as a drive source.
  • the hybrid vehicle obtains driving force from a motor supplied from a battery when the traveling load is small, such as when traveling at low speed.
  • the hybrid vehicle obtains driving force from the engine when the traveling load is large, such as when traveling at high speed.
  • the above-mentioned conventional hybrid vehicle obtains the driving force from the engine, so that the driving force is increased by the engine being driven. Noise and vibration can be problematic.
  • the battery is charged by driving the generator with the engine, but there is also a problem that the engine drive for this charging becomes a noise source and a vibration source.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vehicle drive device capable of reducing noise and vibration generated from a vehicle.
  • the vehicle driving device of the present invention includes an engine, a supercharging device for supercharging the engine, a motor for applying a driving force to the vehicle body, a battery for supplying power to the motor, and the engine, the motor, and the supercharging device.
  • a calculation control means for controlling driving is provided, and the calculation control means can switch between a first operation state, a second operation state, and a third operation state based on a vehicle speed and a traveling load.
  • the engine gives a driving force to the vehicle body
  • the motor driven by the electric power supplied from the battery gives a driving force to the vehicle body
  • the motor which is driven by the electric power generated by rotating the generator by the supercharging device with the engine stopped, gives a driving force to the vehicle body.
  • the vehicle driving device of the present invention is characterized in that the arithmetic control means switches the driving state according to the vehicle speed and the traveling load.
  • the arithmetic control means executes the second operating state if the remaining capacity of the battery is a certain value or more, and the remaining capacity of the battery is less than a certain value. If the traveling load is constant or higher or the traveling speed is constant or higher, the first operating state is executed, the remaining capacity of the battery is less than constant, the traveling load is less than constant, and the traveling load is less than constant. If the traveling speed is less than a certain value, the third operating state is executed.
  • the vehicle body is driven by an engine when a large driving force is required, and the vehicle body is driven by a gas turbine when quietness is required. It is possible to achieve both driveability and quietness depending on the situation.
  • FIG. 1 is a schematic view showing a vehicle 10 including a vehicle drive device 11.
  • vehicle 10 includes a vehicle body 12, an engine 13, a motor 14, a battery 15, a generator 36, a gas turbine 16, and an arithmetic control means 17 provided in the vehicle body 12.
  • an EV Electric Vehicle
  • a HEV Hybrid Electric Vehicle
  • a PHEV Plug-in Hybrid Electric Vehicle
  • the vehicle 10 is provided with a hybrid mechanism, it may be a series hybrid type or a parallel hybrid type.
  • a passenger car is illustrated as the vehicle 10, but the vehicle drive device 11 can also be applied to other vehicles.
  • the engine 13 is an internal combustion engine that gives a driving force to the vehicle body 12, and specifically, a gasoline engine, a diesel engine, or the like can be adopted. Further, the engine 13 gives a driving force to the vehicle body 12, and further gives a driving force to the generator 36. As will be described later, the engine 13 may be provided with a supercharging device 18.
  • the motor 14 gives a driving force to the vehicle body 12.
  • the motor 14 is driven by the electric power supplied from the battery 15, the generator 36, or the generator 25 described later connected to the gas turbine 16.
  • the gas turbine 16 is a device that supplies electric power to the battery 15 or the motor 14 while the engine 13 is stopped.
  • the gas turbine 16 may be provided as a dedicated mechanism for supplying electric power to the battery 15 or the motor 14, or may be provided as another function of the supercharging device 18 described later.
  • the gas turbine 16 is also referred to as a micro gas turbine.
  • the battery 15 is a rechargeable secondary battery such as a lithium ion battery.
  • the battery 15 supplies electric power to the electric components of the motor 14 and the vehicle 10. Further, the battery 15 is charged by a generator 36 operated by the engine 13 or a generator 25 operated by the battery 15 which will be described later.
  • the arithmetic control means 17 is composed of a CPU and controls the operations of the motor 14, the battery 15, the engine 13, the gas turbine 16 and the generator 36 based on the outputs of various sensors (not shown) attached to the vehicle body 12.
  • FIG. 2 is a schematic view showing an engine 13, a supercharging device 18, an inverter 26, and a battery 15 constituting the vehicle driving device 11.
  • the engine 13 has a cylinder 35, a piston 33, a connecting rod 34, and a crankshaft 32. Further, the intake port 23 and the exhaust port 24 communicate with the cylinder 35.
  • the supercharging device 18 has a compression unit 19 and a turbine unit 21. Rotating blades are built in each of the compression unit 19 and the turbine unit 21, and the rotating blades are connected to the rotating shaft 31 so as not to rotate relative to each other. Further, the rotor of the generator 25 is connected to the end of the rotating shaft 31 so as not to rotate relative to each other.
  • the combustion unit 20 is interposed in a bypass path 29, which will be described later, and a fuel supply unit 22 is connected to the combustion unit 20. Fuel such as gasoline is injected from the fuel supply unit 22 into the combustion unit 20.
  • the generator 25 of the supercharger 18 is connected to the inverter 26, and the inverter 26 is connected to the battery 15.
  • the generator 25 generates AC power
  • the inverter 26 converts the AC power into DC power
  • the DC power is stored in the battery 15.
  • the compression unit 19 of the supercharging device 18 and the intake port 23 of the engine 13 communicate with each other via the intake route 27. Further, the exhaust port 24 of the engine 13 and the turbine portion 21 of the supercharging device 18 communicate with each other via the exhaust path 28. The intermediate portion of the intake route 27 and the intermediate portion of the intake route 27 communicate with each other by a bypass route 29.
  • a valve 30 is interposed at the connection point between the bypass path 29 and the intake path 27, and a valve 37 is interposed at the connection point between the bypass path 29 and the exhaust path 28.
  • the valve 30 communicates the upstream side and the downstream side of the intake air passage 27 with each other and cuts off the intake route 27 and the bypass route 29. With such a configuration, it is possible to prevent the compressed air from the compression unit 19 from being inadvertently supplied to the combustion unit 20. Further, the valve 37 communicates the upstream side and the downstream side of the exhaust path 28 with each other, and shuts off the exhaust path 28 and the bypass path 29. With such a configuration, it is possible to prevent the exhaust gas exhausted from the exhaust port 24 from unnecessarily entering the combustion unit 20 side.
  • An air-fuel mixture containing fuel such as gasoline is sent to the cylinder 35 of the engine 13 via the intake air passage 27.
  • the piston 33 reciprocates in the vertical direction.
  • the crankshaft 32 rotatably connected to the piston 33 via the connecting rod 34 rotates in a predetermined direction.
  • the vehicle 10 and the generator 36 described above are driven by the power taken out from the crankshaft 32.
  • Exhaust gas discharged from the cylinder 35 with the operation of the engine 13 is introduced into the turbine section 21 of the supercharging device 18 via the exhaust path 28, and the rotary blades built in the turbine section 21 are rotated.
  • the rotary blades built in the compression unit 19 also rotate, and the intake gas is compressed inside the compression unit 19.
  • the compressed intake gas is sent to the cylinder 35 via the intake route 27 and the intake port 23. With such a configuration, the intake gas is supercharged to the cylinder 35, and the output of the engine 13 can be increased.
  • the intake path 27, the exhaust path 28, and the bypass path 29 are blocked by the valves 30 and 37. By doing so, it is possible to prevent gas from entering the bypass route 29 from the intake route 27 and the exhaust route 28. Further, when the engine 13 is in operation, the generator 25 can generate electricity and the battery 15 can be charged via the inverter 26.
  • valve 30 and the valve 37 are switched so that the intake path 27, the bypass path 29, and the exhaust path 28 communicate with each other.
  • the compression section 19, the intake path 27, the valve 30, the combustion section 20, the bypass path 29, the valve 37, and the exhaust path 28 communicate with each other.
  • the air-fuel mixture compressed by the supercharging device 18 is sent to the turbine unit 21 after being burned by the combustion unit 20.
  • the intake path 27 is cut off at the portion where the valve 30 is interposed, so that the air-fuel mixture compressed by the compression unit 19 is not unnecessarily sent to the cylinder 35.
  • 28 is shut off at the portion where the valve 37 is interposed. As a result, the gas burned in the combustion unit 20 does not enter from the exhaust path 28 toward the exhaust port 24 side.
  • the rotating blades connected to the rotating shaft 31 rotate inside the compression unit 19, so that the air is compressed inside the compression unit 19.
  • the compressed air is introduced into the combustion unit 20 via the intake route 27, the bypass route 29, and the exhaust route 28.
  • the combustion unit 20 the fuel ejected from the fuel supply unit 22 is burned, and the combustion causes the rotary blades to rotate inside the turbine unit 21.
  • the rotating shaft 31 connected to the rotating blade rotates, and the generator 25 generates electricity.
  • the AC power generated by the generator 25 is converted into DC power by the inverter 26, and the battery 15 is charged by the DC power. Further, the electric power generated by the generator 25 can drive the motor 14 described above without going through the battery 15.
  • step S10 the arithmetic control means 17 determines whether or not the remaining capacity of the battery 15 is less than the specified value.
  • the remaining capacity of the battery 15 is also referred to as SOC (State Of Charge).
  • SOC State Of Charge
  • step S10 that is, if the remaining capacity of the battery 15 is less than a certain level, the arithmetic control means 17 shifts to step S11. As a result, it is possible to prevent the remaining amount of the battery 15 from being further reduced.
  • step S10 that is, if the remaining capacity of the battery 15 is equal to or higher than a certain level, the arithmetic control means 17 shifts to step S16.
  • the vehicle 10 can be driven by the motor 14 without operating the battery 15 and the gas turbine 16.
  • step S11 the arithmetic control means 17 determines whether or not the traveling speed V of the vehicle 10 is equal to or higher than the specified vehicle speed.
  • the specified vehicle speed V is, for example, 30 km / h.
  • step S11 that is, if the traveling speed V of the vehicle 10 is equal to or higher than the specified vehicle speed
  • the calculation control means 17 shifts to step S12. That is, the arithmetic control means 17 determines that the vehicle 10 is traveling in a suburb other than the urban area, and causes the vehicle 10 to travel in a state in which the drivability is prioritized over the quietness.
  • step S11 that is, if the traveling speed of the vehicle 10 is less than the specified vehicle, the arithmetic control means 17 shifts to step S16 and the power generated from the motor 14 rotated by the electric power generated from the battery 15. Then, the vehicle 10 is driven. That is, the arithmetic control means 17 determines that the vehicle 10 is traveling in an urban area or the like, and causes the vehicle 10 to travel in a state in which quietness is prioritized.
  • step S12 the arithmetic control means 17 determines whether or not the traveling load of the vehicle 10 is less than the specified load.
  • the traveling load is a load generated by the traveling of the vehicle 10, and is, for example, an opening degree of the accelerator.
  • the opening degree ⁇ of the accelerator is 20% as the specified opening degree.
  • step S12 that is, if the accelerator opening ⁇ is less than the specified opening, the calculation control means 17 shifts to step S13. That is, the arithmetic control means 17 determines that the vehicle 10 does not require so much drivability, and realizes a traveling state in which both quietness and drivability are compatible.
  • step S12 that is, when the opening degree ⁇ of the accelerator is equal to or greater than the specified opening degree
  • the calculation control means 17 shifts to step S15. That is, the arithmetic control means 17 determines that a large driving force is required, and realizes a traveling state in which high-speed traveling is prioritized.
  • step S13 the arithmetic control means 17 determines whether or not the traveling speed V of the vehicle 10 is less than the specified vehicle speed.
  • the specified vehicle speed is, for example, 80 km / h.
  • step S13 that is, if the traveling speed V of the vehicle 10 is less than the specified vehicle speed, the calculation control means 17 shifts to step S14. That is, the arithmetic control means 17 determines that the vehicle 10 does not require so much driveability, and realizes a traveling state in which quietness is prioritized.
  • step S13 that is, if the traveling speed V of the vehicle 10 is equal to or higher than the specified vehicle speed, the calculation control means 17 shifts to step S15. That is, the arithmetic control means 17 determines that a large driving force is required, and realizes a traveling state in which high-speed traveling is prioritized.
  • step S14 the arithmetic control means 17 operates the gas turbine 16 which is a micro gas turbine, and drives the vehicle 10 with the electric power generated by the generator 25 connected to the gas turbine 16.
  • the electric power generated by the generator 25 rotates the motor 14, thereby obtaining the driving force of the vehicle 10.
  • the electric power obtained by the generator 25 driven by the gas turbine 16 can be temporarily stored in the battery 15, and the motor 14 can be driven by the electric power from the battery 15.
  • the engine 13 may be stopped.
  • the noise generated by the turbine unit 21 during operation is much smaller than the noise generated by the engine 13 during operation. Therefore, by applying the driving force to the vehicle 10 by using the turbine unit 21 in step S14, it is not necessary to operate the engine 13 even if the remaining capacity of the battery 15 is small, so that the noise generated when the vehicle 10 is running can be generated. It can be made smaller.
  • the gas turbine is used when high-speed driving is required in such an area when the SOC of the battery 15 is low. By driving the vehicle 10 using the vehicle 16, the quietness required for the vehicle 10 can be sufficiently satisfied.
  • step S15 the arithmetic control means 17 drives the vehicle 10 by the driving force obtained only by the engine 13. At this time, the motor 14 and the gas turbine 16 may be stopped.
  • the opening degree of the accelerator is large, or when the vehicle 10 is traveling at high speed, it can be determined that the vehicle 10 is traveling in the suburbs. In such a case, the vehicle 10 is not so required to be quiet, so that the vehicle 10 can be effectively driven at high speed with a large driving force of the engine 13.
  • step S16 (second operating state), the vehicle 10 is driven by the power generated by the motor 14 that is rotated by the electric power generated by the battery 15.
  • step S16 since the SOC of the motor 14 is sufficient, the vehicle 10 can travel while maintaining quietness and low vibration by the driving force of the motor 14.
  • step S16 the engine 13 may be stopped.
  • the vehicle driving device of the present invention includes an engine, a supercharging device for supercharging the engine, a motor for applying a driving force to the vehicle body, a battery for supplying power to the motor, and the engine, the motor, and the supercharging device.
  • a calculation control means for controlling driving is provided, and the calculation control means can switch between a first operation state, a second operation state, and a third operation state based on a vehicle speed and a traveling load.
  • the engine gives a driving force to the vehicle body
  • the motor driven by the electric power supplied from the battery gives a driving force to the vehicle body
  • the motor which is driven by the electric power generated by rotating the generator by the supercharging device with the engine stopped, gives a driving force to the vehicle body.
  • the vehicle drive device of the present invention includes an engine and a supercharging device for supercharging the engine, and the supercharging device functions as a gas turbine when the engine is stopped. do.
  • the vehicle body is driven by the engine when a large driving force is required, and the vehicle body is driven by the gas turbine when quietness is required. It is possible to achieve both drivability and quietness according to the vehicle conditions.
  • the supercharger has a compression unit and a turbine unit drivenly connected to the compression unit, and when the supercharger functions as the gas turbine.
  • the compression unit and the turbine unit are communicated with each other without passing through the engine, and fuel is supplied to the turbine unit.
  • the turbine section of the supercharger can be used as the combustion section of the gas turbine.
  • the intake path that communicates the compression portion of the supercharging device and the intake port of the engine, and the turbine portion of the supercharging device and the exhaust port of the engine communicate with each other.
  • An exhaust route, a bypass route that bypasses an intermediate portion of the intake route and an intermediate portion of the exhaust route, and a combustion portion interposed in the bypass route are further provided, and supercharging is performed by the supercharging device.
  • the intake route, the exhaust route, and the bypass route are blocked by a valve, and when the supercharging device functions as the gas turbine, the intake route and the exhaust route are referred to by the valve. It is characterized in that it is bypassed by the bypass route.
  • the supercharger can be used as a gas turbine by opening and closing a valve interposed in the bypass path. Therefore, when the supercharger is used as a gas turbine, the device is used. It is possible to suppress the complexity of.
  • the vehicle drive device of the present invention further includes a motor that applies a driving force to the vehicle body, a battery that supplies power to the motor, and arithmetic control means that controls the drive of the engine, the motor, and the gas turbine.
  • the arithmetic control means is characterized in that the motor is rotated by the electric power generated by the gas turbine according to the conditions of the battery and the vehicle.
  • the motor is rotated by the electric power generated by the gas turbine according to the running condition of the battery and the vehicle, so that the noise generated from the drive source is generated while maintaining quietness. Can be reduced.
  • the vehicle driving device of the present invention in the calculation control means, the first operating state in which the engine gives a driving force to the vehicle body and the motor driven by the electric power supplied from the battery drive the vehicle body.
  • the second operating state is switched between the second operating state in which the motor gives a driving force to the vehicle body and the third operating state in which the motor driven by the electric power generated by the gas turbine gives a driving force to the vehicle body.
  • the arithmetic control means switches the driving state according to the vehicle speed and the traveling load of the vehicle.
  • the vehicle can be driven at high speed in the suburbs, for example, by switching the driving state according to the vehicle speed and the traveling load of the vehicle, and in the city. Then, the quietness of the vehicle can be ensured.
  • the arithmetic control means executes the second operating state when the remaining capacity of the battery is a certain value or more, and the remaining capacity of the battery is less than a certain value and If the traveling load is constant or higher or the traveling speed is constant or higher, the first operating state is executed, the remaining capacity of the battery is less than constant, the traveling load is less than constant, and the traveling is performed. If the speed is less than a certain value, the third operating state is executed.
  • each state is executed in consideration of the remaining capacity of the battery, the running load, and the running speed, so that high-speed running and quietness are realized according to the state of the vehicle and the battery. can do.
  • Vehicle 11 Vehicle drive device 12 Body 13 Engine 14 Motor 15 Battery 16 Gas turbine 17 Computational control means 18 Supercharger 19 Compressor 20 Combustion section 21 Turbine section 22 Fuel supply section 23 Intake port 24 Exhaust port 25 Generator 26 Inverter 27 Intake route 28 Exhaust route 29 Bypass route 30 Valve 31 Rotating shaft 32 Crank shaft 33 Piston 34 Connecting rod 35 Cylinder 36 Generator 37 Valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Supercharger (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

車両から発生する騒音を低減することができる車両駆動装置を提供する。 本発明の車両駆動装置11は、エンジン13と、エンジン13に過給する過給装置18と、を具備し、エンジン13が停止している際に、過給装置18がガスタービンとして機能する。これにより、大きな駆動力が必要とされる際にはエンジン13により車体12を駆動し、静粛性が必要とされる際にはガスタービン16で車体12を駆動することで、車体12の状況に応じて駆動性と静粛性を両立することができる。

Description

車両駆動装置
 本発明は、車両駆動装置に関し、特に、駆動源としてモータおよびエンジンを備えた車両に搭載される車両駆動装置に関する。
 従来から、駆動源としてモータおよびエンジンを備えたハイブリッド自動車が用いられている。ハイブリッド自動車は、低速走行時等の走行負荷が小さいときには、バッテリから給電されたモータから駆動力を得る。一方、ハイブリッド自動車は、高速走行時等の走行負荷が大きいときには、エンジンから駆動力を得る。このように制御することで、ハイブリッド自動車では、燃費を向上することができる。係るハイブリッド自動車は、例えば特許文献1に記載されている。
特開2000-8924号公報
 しかしながら、上記した一般的なハイブリッド自動車では、車両が走行する状況に合わせた駆動に関して改良の余地があった。
 具体的には、例えば都市部の道路に於いて車両に多少大きな駆動力が必要な場合、上記した従来型のハイブリッド自動車では、エンジンから駆動力を得ることから、エンジンが運転されることで大きな騒音および振動が問題となることが考えられる。
 更にまた、バッテリの残容量が一定以下となると、エンジンで発電機を駆動することでバッテリを充電するが、この充電のためのエンジン駆動が騒音源および振動源となる課題も考えられる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、車両から発生する騒音および振動を低減することができる車両駆動装置を提供することにある。
 本発明の車両駆動装置は、エンジンと、前記エンジンに過給する過給装置と、車体に駆動力を与えるモータと、前記モータに給電するバッテリと、前記エンジン、前記モータ、前記過給装置の駆動を制御する演算制御手段と、を具備し、前記演算制御手段は、車速および走行負荷に基づいて、第1運転状態と、第2運転状態と、第3運転状態と、を切り替えることができ、前記第1運転状態では、前記エンジンが前記車体に駆動力を与え、前記第2運転状態では、前記バッテリから供給される電力により駆動する前記モータが前記車体に駆動力を与え、前記第3運転状態では、前記エンジンを停止させた状態で、前記過給装置で発電機を回転することで発電された電力により駆動する前記モータが、前記車体に駆動力を与えることを特徴とする。
 また、本発明の車両駆動装置は、前記演算制御手段は、車速および走行負荷に応じて、運転状態を切り替えることを特徴とする。
 また、本発明の車両駆動装置は、前記演算制御手段は、前記バッテリの残容量が一定以上であれば、前記第2運転状態を実行し、前記バッテリの残容量が一定未満であり、且つ、前記走行負荷が一定以上または走行速度が一定以上であれば、前記第1運転状態を実行し、前記バッテリの残容量が一定未満であり、且つ、前記走行負荷が一定未満であり、且つ、前記走行速度が一定未満であれば、前記第3運転状態を実行することを特徴とする。
 本発明の車両駆動装置によれば、大きな駆動力が必要とされる際にはエンジンにより車体を駆動し、静粛性が必要とされる際にはガスタービンで車体を駆動することで、車両の状況に応じて駆動性と静粛性を両立することができる。
本発明の実施形態に係る車両駆動装置を備えた車両を示す模式図である。 本発明の実施形態に係る車両駆動装置を示す模式図である。 本発明の実施形態に係る車両駆動装置の機能を示すフローチャートである。
 以下、図を参照して本実施形態に係る車両駆動装置11を説明する。以下の説明では、同一の部材には原則的に同一の符号を付し、繰り返しの説明は省略する。
 図1は、車両駆動装置11を含む車両10を示す模式図である。車両10は、車体12と、車体12に備えられたエンジン13、モータ14、バッテリ15、発電機36、ガスタービン16および演算制御手段17を備えている。
 車両10としては、EV(Electric Vehicle)、HEV(Hybrid Electric Vehicle)またはPHEV(Plug-in Hybrid Electric Vehicle)等を採用することができる。また、車両10がハイブリッド機構を備える場合は、シリーズハイブリッド形式でも良いし、パラレルハイブリッド形式でも良い。ここでは、車両10として乗用車を例示しているが、車両駆動装置11を他の車両に適用することもできる。
 エンジン13は、車体12に駆動力を与える内燃機関であり、具体的には、ガソリンエンジン、ディーゼルエンジン等を採用することができる。また、エンジン13は、車体12に駆動力を与え、更に、発電機36にも駆動力を与える。後述するように、エンジン13には、過給装置18が備えられても良い。
 モータ14は、車体12に駆動力を与える。モータ14は、バッテリ15、発電機36、またはガスタービン16と連結された後述する発電機25から供給される電力で駆動する。
 ガスタービン16は、エンジン13が停止している間に、バッテリ15またはモータ14に電力を供給する装置である。ガスタービン16としては、バッテリ15またはモータ14に電力を供給するための専用機構として設けられても良いし、後述する過給装置18の別機能として設けられてもよい。ここで、ガスタービン16はマイクロガスタービンとも称される。
 バッテリ15は、例えば、リチウムイオン電池等の充電可能な二次電池である。バッテリ15は、モータ14や車両10の電装品に電力を供給する。更に、バッテリ15は、エンジン13により稼働される発電機36、または、バッテリ15により稼働される後述する発電機25により充電される。
 演算制御手段17は、CPUから成り、車体12に取り付けられた図示しない各種センサの出力に基づいて、モータ14、バッテリ15、エンジン13、ガスタービン16および発電機36の動作を制御する。
 図2を参照して、車両駆動装置11の構成を詳述する。図2は車両駆動装置11を構成するエンジン13、過給装置18、インバータ26およびバッテリ15を示す模式図である。
 エンジン13は、シリンダ35、ピストン33、コネクティングロッド34およびクランクシャフト32を有している。また、シリンダ35には、吸気口23および排気口24が連通している。
 過給装置18は、圧縮部19およびタービン部21を有している。圧縮部19およびタービン部21の内部には夫々回転羽根が内蔵されており、回転羽根は回転軸31に対して相対回転不能に接続されている。また、回転軸31の端部には発電機25の回転子が相対回転不可能に接続されている。
 燃焼部20は、後述するバイパス径路29に介装されており、燃焼部20には燃料供給部22が繋がっている。燃料供給部22から、燃焼部20にガソリン等の燃料が噴射される。
 過給装置18の発電機25は、インバータ26と接続されており、インバータ26はバッテリ15と接続されている。発電機25は交流電力を発電し、インバータ26は当該交流電力を直流電力に変換し、当該直流電力はバッテリ15に蓄電される。
 過給装置18の圧縮部19と、エンジン13の吸気口23とは、吸気径路27を介して連通している。また、エンジン13の排気口24と過給装置18のタービン部21とは、排気径路28を介して連通している。吸気径路27の途中部分と、吸気径路27の途中部分とは、バイパス径路29で連通している。
 バイパス径路29と吸気径路27との接続箇所には弁30が介装されており、バイパス径路29と排気径路28との接続箇所には弁37が介装されている。
 上記した構成の車両駆動装置11の動作を説明する。圧縮部19およびタービン部21が過給装置18として用いられる際には、弁30は、吸気径路27の上流側と下流側を連通し、吸気径路27とバイパス径路29とを遮断している。かかる構成により、圧縮部19からの圧縮空気が、不用意に燃焼部20に供給されることを防止できる。また、弁37は、排気径路28の上流側と下流側とを連通し、排気径路28とバイパス径路29とを遮断する。かかる構成により、排気口24から排気される排気ガスが、不必要に燃焼部20の側に進入することを防止できる。
 エンジン13のシリンダ35には、吸気径路27を介してガソリン等の燃料を含有する混合気が送り込まれる。エンジン13にて、吸入、圧縮、燃焼、排気を繰り返すことで、ピストン33は上下方向に往復運動する。この往復運動に伴い、コネクティングロッド34を介してピストン33に回転可能に接続されているクランクシャフト32は、所定方向に回転する。クランクシャフト32から取り出される動力により、車両10および上記した発電機36が駆動される。
 エンジン13の運転に伴い、シリンダ35から排出される排気ガスは、排気径路28を介して過給装置18のタービン部21に導入し、タービン部21に内蔵された回転羽根を回転させる。これにより、圧縮部19に内蔵された回転羽根も回転し、圧縮部19の内部で吸気ガスが圧縮される。圧縮された吸気ガスは、吸気径路27および吸気口23を経由して、シリンダ35に送り込まれる。係る構成により、シリンダ35に吸気ガスは過給され、エンジン13の出力を大きくすることができる。
 エンジン13が運転されている際は、弁30および弁37により、吸気径路27および排気径路28とバイパス径路29とは遮断されている。このようにすることで、吸気径路27および排気径路28からバイパス径路29に気体が進入することを防止できる。また、エンジン13が運転されている際は、発電機25で発電を行い、インバータ26を介してバッテリ15を充電することもできる。
 次に、エンジン13を停止した状態で、過給装置18をガスタービン16として用いる方法を説明する。
 先ず、弁30と弁37とを切り替え、吸気径路27、バイパス径路29および排気径路28を連通する。これより、圧縮部19、吸気径路27、弁30、燃焼部20、バイパス径路29、弁37、排気径路28が、連通する。これにより、過給装置18で圧縮された混合気は、燃焼部20で燃焼した後に、タービン部21に送られる。
 一方、弁30が介装された部分で吸気径路27を遮断し、これにより圧縮部19が圧縮した混合気が不必要にシリンダ35に送られない。また、弁37が介装された部分で28を遮断する。これにより、燃焼部20で燃焼された気体が、排気径路28から排気口24側に向かって進入することは無い。
 次に、回転軸31に接続された回転羽根が圧縮部19の内部で回転することで、圧縮部19の内部で空気が圧縮される。圧縮された空気は、吸気径路27、バイパス径路29および排気径路28を介して、燃焼部20に導入される。燃焼部20では、燃料供給部22から噴出された燃料が燃焼し、この燃焼によりタービン部21の内部で回転羽根が回転する。
 これにより、当該回転羽根に接続されている回転軸31が回転し、発電機25による発電が行われる。発電機25により発電された交流電力は、インバータ26で直流電力に変換され、当該直流電力によりバッテリ15は充電される。また、発電機25で発電した電力により、バッテリ15を経由せずに、上記したモータ14を駆動させることもできる。
 図3のフローチャートを参照して、上記した車両駆動装置11の動作を説明する。
 ステップS10では、演算制御手段17は、バッテリ15の残容量が規定値未満であるか否かを判断する。ここで、バッテリ15の残容量は、SOC(State Of Charge)とも称される。例えばリチウムイオン電池であるバッテリ15は、SOCが30%以上80%以下の範囲となるように制御される。
 ステップS10でYESの場合、即ちバッテリ15の残容量が一定未満の場合は、演算制御手段17は、ステップS11に移行する。これにより、バッテリ15の残量が更に減少することを防止できる。
 一方、ステップS10でNOの場合、即ちバッテリ15の残容量が一定以上の場合は、演算制御手段17は、ステップS16に移行する。これにより、バッテリ15およびガスタービン16を運転することなく、モータ14で車両10を走行させることができる。
 ステップS11では、演算制御手段17は、車両10の走行速度Vが規定車速以上であるか否かを判断する。ここで、規定車速Vとは例えば、30Km/hである。
 ステップS11でYESの場合、即ち車両10の走行速度Vが規定車速以上の場合は、演算制御手段17は、ステップS12に移行する。即ち、演算制御手段17は、車両10が市街地等以外の例えば郊外を走行していると判断し、静粛性よりも駆動性を優先した状態で車両10を走行させる。
 一方、ステップS11でNOの場合、即ち車両10の走行速度が規定車未満の場合は、演算制御手段17は、ステップS16に移行し、バッテリ15から発生する電力により回転するモータ14から発生する動力で、車両10を駆動する。即ち、演算制御手段17は、車両10が市街地等を走行していると判断し、静粛性を優先した状態で車両10を走行させる。
 ステップS12では、演算制御手段17は、車両10の走行負荷が規定負荷未満であるか否かを判断する。ここで、走行負荷とは車両10が走行することで生じている負荷であり、例えば、アクセルの開度である。ここでは、規定開度としてアクセルの開度θが20%であることを採用している。
 ステップS12でYESの場合、即ちアクセルの開度θが規定開度未満の場合は、演算制御手段17は、ステップS13に移行する。即ち、演算制御手段17は、車両10にそれほど大きな駆動性が必要とされていないと判断し、静粛性と駆動性を両立する走行状態を実現する。
 一方、ステップS12でNOの場合、即ちアクセルの開度θが規定開度以上の場合は、演算制御手段17は、ステップS15に移行する。即ち、演算制御手段17は、大きな駆動力が必要されていると判断し、高速走行性を優先した走行状態を実現する。
 ステップS13では、演算制御手段17は、車両10の走行速度Vが規定車速未満であるか否かを判断する。ここで、規定車速とは、例えば80Km/hである。
 ステップS13でYESの場合、即ち車両10の走行速度Vが規定車速未満の場合は、演算制御手段17は、ステップS14に移行する。即ち、演算制御手段17は、車両10にそれほど大きな駆動性が必要とされていないと判断し、静粛性を優先した走行状態を実現する。
 一方、ステップS13でNOの場合、即ち車両10の走行速度Vが規定車速以上の場合は、演算制御手段17は、ステップS15に移行する。即ち、演算制御手段17は、大きな駆動力が必要されていると判断し、高速走行性を優先した走行状態を実現する。
 ステップS14(第3運転状態)では、演算制御手段17は、マイクロガスタービンであるガスタービン16を運転し、ガスタービン16と接続された発電機25で発電した電力により車両10を駆動させる。例えば、発電機25で発電した電力でモータ14を回転させ、これにより車両10の駆動力を得る。また、ガスタービン16で駆動された発電機25で得られた電力を一旦バッテリ15に蓄電し、バッテリ15からの電力によりモータ14を駆動することもできる。ステップS14では、エンジン13は停止状態で良い。
 タービン部21が運転時に発生させる騒音は、エンジン13が運転時に発生させる騒音よりも遙かに小さい。よって、ステップS14でタービン部21を用いて車両10に駆動力を与えることで、バッテリ15の残容量が少なくても、エンジン13を運転する必要が無いので、車両10が走行時に発生する騒音を小さくすることができる。特に、都市部等に於いては車両10に要求される静粛性は厳しいことから、バッテリ15のSOCが低い状況に於いて、このような地域で高速走行が必要とされる際に、ガスタービン16を用いて車両10を駆動させることで、車両10に必要とされる静粛性を充分に満たすことができる。
 ステップS15(第1運転状態)では、演算制御手段17は、エンジン13のみにより得られる駆動力により車両10を駆動する。この時、モータ14およびガスタービン16は停止状態としても良い。アクセルの開度が大きい場合、または、車両10が高速で走行している場合は、車両10は郊外を走行していると判断できる。このような場合は、車両10には静粛性はそれほど必要とされないので、エンジン13の大きな駆動力で車両10を効果的に高速走行させることができる。
 ステップS16(第2運転状態)では、バッテリ15から発生する電力により回転するモータ14から発生する動力で、車両10を駆動する。ステップS16では、モータ14のSOCが充分であるので、モータ14の駆動力で静粛性および低振動を保った状態で車両10は走行することができる。ステップS16では、エンジン13は停止状態で良い。
 以上が車両駆動装置11の動作に関する説明である。
 以上、本発明の実施形態を示したが、本発明は、上記実施形態に限定されるものではない。また、上記した各形態は相互に組み合わせることが可能である。
 以下に、前述した本実施形態から把握できる発明を、その効果と共に記載する。
 本発明の車両駆動装置は、エンジンと、前記エンジンに過給する過給装置と、車体に駆動力を与えるモータと、前記モータに給電するバッテリと、前記エンジン、前記モータ、前記過給装置の駆動を制御する演算制御手段と、を具備し、前記演算制御手段は、車速および走行負荷に基づいて、第1運転状態と、第2運転状態と、第3運転状態と、を切り替えることができ、前記第1運転状態では、前記エンジンが前記車体に駆動力を与え、前記第2運転状態では、前記バッテリから供給される電力により駆動する前記モータが前記車体に駆動力を与え、前記第3運転状態では、前記エンジンを停止させた状態で、前記過給装置で発電機を回転することで発電された電力により駆動する前記モータが、前記車体に駆動力を与えることを特徴とする。
 本発明の車両駆動装置は、エンジンと、前記エンジンに過給する過給装置と、を具備し、前記エンジンが停止している際に、前記過給装置がガスタービンとして機能することを特徴とする。これにより、本発明の車両駆動装置によれば、大きな駆動力が必要とされる際にはエンジンにより車体を駆動し、静粛性が必要とされる際にはガスタービンで車体を駆動することで、車両の状況に応じて駆動性と静粛性を両立することができる。
 また、本発明の車両駆動装置では、前記過給装置は、圧縮部と、前記圧縮部と駆動的に接続されたタービン部と、を有し、前記過給装置を前記ガスタービンとして機能させる際には、前記エンジンを経由せずに前記圧縮部と前記タービン部とを連通させ、前記タービン部に燃料を供給することを特徴とする。これにより、本発明の車両駆動装置によれば、過給装置のタービン部を、ガスタービンの燃焼部として用いることができる。
 また、本発明の車両駆動装置では、前記過給装置の前記圧縮部と前記エンジンの吸気口とを連通する吸気径路と、前記過給装置の前記タービン部と前記エンジンの排気口とを連通する排気径路と、前記吸気径路の途中部分と前記排気径路の途中部分とをバイパスするバイパス径路と、前記バイパス径路に介装された燃焼部と、を更に具備し、前記過給装置で過給する際には、前記吸気径路および前記排気径路と前記バイパス径路とは弁で遮断され、前記過給装置が前記ガスタービンとして機能する際には、前記吸気径路と前記排気径路とは、前記弁を介して、前記バイパス径路によりバイパスされることを特徴とする。これにより、本発明の車両駆動装置によれば、バイパス径路に介装された弁の開閉により、過給装置をガスタービンとして用いることができるので、過給装置をガスタービンとして用いる際に、装置の複雑化を抑制することができる。
 また、本発明の車両駆動装置では、車体に駆動力を与えるモータと、前記モータに給電するバッテリと、前記エンジン、前記モータ、前記ガスタービンの駆動を制御する演算制御手段と、を更に具備し、前記演算制御手段は、前記バッテリおよび車両の状況に応じて、前記ガスタービンにより発電した電力で前記モータを回転させることを特徴とする。これにより、本発明の車両駆動装置によれば、バッテリおよび車両の走行状況に応じて、ガスタービンにより発電した電力でモータを回転させることで、静粛性を保ちつつ、駆動源から発生する騒音を低減することができる。
 また、本発明の車両駆動装置では、前記演算制御手段は、前記エンジンが前記車体に駆動力を与える第1運転状態と、前記バッテリから供給される電力により駆動する前記モータが前記車体に駆動力を与える第2運転状態と、前記ガスタービンにより発電された電力により駆動する前記モータが前記車体に駆動力を与える第3運転状態と、を切り替えることを特徴とする。これにより、本発明の車両駆動装置によれば、走行状況に応じて、第1運転状態、第2運転状態および第3運転状態を切り替えることで、状況に応じて車両の駆動性および静粛性を高いレベルで両立することができる。
 また、本発明の車両駆動装置では、前記演算制御手段は、前記車両の車速および走行負荷に応じて、運転状態を切り替えることを特徴とする。これにより、本発明の車両駆動装置によれば、車両の車速および走行負荷に応じて、運転状態を切り替えることで、例えば郊外に於いては車両を高速で走行させることができ、また、都市内では車両の静粛性を確保することができる。
 また、本発明の車両駆動装置では、前記演算制御手段は、前記バッテリの残容量が一定以上であれば、前記第2運転状態を実行し、前記バッテリの残容量が一定未満であり、且つ、走行負荷が一定以上または走行速度が一定以上であれば、前記第1運転状態を実行し、前記バッテリの残容量が一定未満であり、且つ、前記走行負荷が一定未満であり、且つ、前記走行速度が一定未満であれば、前記第3運転状態を実行することを特徴とする。これにより、本発明の車両駆動装置によれば、バッテリの残容量、走行負荷および走行速度を勘案して各状態を実行するので、車両およびバッテリの状態に応じて、高速走行および静粛性を実現することができる。
10 車両
11 車両駆動装置
12 車体
13 エンジン
14 モータ
15 バッテリ
16 ガスタービン
17 演算制御手段
18 過給装置
19 圧縮部
20 燃焼部
21 タービン部
22 燃料供給部
23 吸気口
24 排気口
25 発電機
26 インバータ
27 吸気径路
28 排気径路
29 バイパス径路
30 弁
31 回転軸
32 クランクシャフト
33 ピストン
34 コネクティングロッド
35 シリンダ
36 発電機
37 弁

Claims (3)

  1.  エンジンと、
     前記エンジンに過給する過給装置と、
     車体に駆動力を与えるモータと、
     前記モータに給電するバッテリと、
     前記エンジン、前記モータ、前記過給装置の駆動を制御する演算制御手段と、を具備し、
     前記演算制御手段は、車速および走行負荷に基づいて、第1運転状態と、第2運転状態と、第3運転状態と、を切り替えることができ、
     前記第1運転状態では、前記エンジンが前記車体に駆動力を与え、
     前記第2運転状態では、前記バッテリから供給される電力により駆動する前記モータが前記車体に駆動力を与え、
     前記第3運転状態では、前記エンジンを停止させた状態で、前記過給装置で発電機を回転することで発電された電力により駆動する前記モータが、前記車体に駆動力を与えることを特徴とする車両駆動装置。
  2.  前記演算制御手段は、車速および走行負荷に応じて、運転状態を切り替えることを特徴とする請求項1に記載の車両駆動装置。
  3.  前記演算制御手段は、
     前記バッテリの残容量が一定以上であれば、前記第2運転状態を実行し、
     前記バッテリの残容量が一定未満であり、且つ、前記走行負荷が一定以上または走行速度が一定以上であれば、前記第1運転状態を実行し、
     前記バッテリの残容量が一定未満であり、且つ、前記走行負荷が一定未満であり、且つ、前記走行速度が一定未満であれば、前記第3運転状態を実行することを特徴とする請求項2に記載の車両駆動装置。
PCT/JP2021/014709 2020-04-27 2021-04-07 車両駆動装置 WO2021220742A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-078606 2020-04-27
JP2020078606A JP6867060B1 (ja) 2020-04-27 2020-04-27 車両駆動装置

Publications (1)

Publication Number Publication Date
WO2021220742A1 true WO2021220742A1 (ja) 2021-11-04

Family

ID=75638900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014709 WO2021220742A1 (ja) 2020-04-27 2021-04-07 車両駆動装置

Country Status (2)

Country Link
JP (1) JP6867060B1 (ja)
WO (1) WO2021220742A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961199A (en) * 1974-04-08 1976-06-01 Ormat Turbines (1965) Ltd. Supercharger system for combustion engine
JPS6345419A (ja) * 1986-08-12 1988-02-26 Yanmar Diesel Engine Co Ltd タ−ボコンパウンド機関
JPS6412026A (en) * 1987-07-03 1989-01-17 Isuzu Motors Ltd Turbocharger with rotary electrical equipment
JPS6453022A (en) * 1987-08-19 1989-03-01 Jinichi Nishiwaki Compound heat engine
JPH01193033A (ja) * 1988-01-29 1989-08-03 Mitsui Eng & Shipbuild Co Ltd ディーゼル・ガスタービンコンバインドシステム
JPH04124428A (ja) * 1990-09-13 1992-04-24 Isuzu Ceramics Kenkyusho:Kk ターボコンパウンドエンジン
JPH06229251A (ja) * 1993-02-03 1994-08-16 Isuzu Motors Ltd 車両用発電装置
JPH0742572A (ja) * 1993-07-31 1995-02-10 Isuzu Ceramics Kenkyusho:Kk ガスエンジンの非常用発電装置
JP2001231109A (ja) * 2000-02-17 2001-08-24 Toyota Motor Corp 運転状態報知装置およびこれを備える燃料電池搭載車両
JP2001298806A (ja) * 2000-04-17 2001-10-26 Toyota Motor Corp 車両用制御装置、制御方法および車両
JP2013536911A (ja) * 2010-09-06 2013-09-26 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー 電力ステーション
JP2018535356A (ja) * 2015-11-18 2018-11-29 フィンノ・エナジー・オサケユフティオFinno Energy Oy パワー生成のためのシステム及び方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961199A (en) * 1974-04-08 1976-06-01 Ormat Turbines (1965) Ltd. Supercharger system for combustion engine
JPS6345419A (ja) * 1986-08-12 1988-02-26 Yanmar Diesel Engine Co Ltd タ−ボコンパウンド機関
JPS6412026A (en) * 1987-07-03 1989-01-17 Isuzu Motors Ltd Turbocharger with rotary electrical equipment
JPS6453022A (en) * 1987-08-19 1989-03-01 Jinichi Nishiwaki Compound heat engine
JPH01193033A (ja) * 1988-01-29 1989-08-03 Mitsui Eng & Shipbuild Co Ltd ディーゼル・ガスタービンコンバインドシステム
JPH04124428A (ja) * 1990-09-13 1992-04-24 Isuzu Ceramics Kenkyusho:Kk ターボコンパウンドエンジン
JPH06229251A (ja) * 1993-02-03 1994-08-16 Isuzu Motors Ltd 車両用発電装置
JPH0742572A (ja) * 1993-07-31 1995-02-10 Isuzu Ceramics Kenkyusho:Kk ガスエンジンの非常用発電装置
JP2001231109A (ja) * 2000-02-17 2001-08-24 Toyota Motor Corp 運転状態報知装置およびこれを備える燃料電池搭載車両
JP2001298806A (ja) * 2000-04-17 2001-10-26 Toyota Motor Corp 車両用制御装置、制御方法および車両
JP2013536911A (ja) * 2010-09-06 2013-09-26 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー 電力ステーション
JP2018535356A (ja) * 2015-11-18 2018-11-29 フィンノ・エナジー・オサケユフティオFinno Energy Oy パワー生成のためのシステム及び方法

Also Published As

Publication number Publication date
JP2021172253A (ja) 2021-11-01
JP6867060B1 (ja) 2021-04-28

Similar Documents

Publication Publication Date Title
US6356042B1 (en) Engine shut off system for a hybrid electric vehicle
JP3209046B2 (ja) ハイブリッド車
US8250864B2 (en) Method for controlling the torque of a hybrid drive unit and hybrid drive unit
CN101516705A (zh) 混合动力车辆及其控制方法
US20210179067A1 (en) Apparatus and method of controlling hybrid vehicle having electric supercharger
JP2013181393A (ja) エンジンの過給システム
US20160251011A1 (en) Controller for vehicle
US11584354B2 (en) Apparatus and method of controlling a hybrid vehicle
CN112918460A (zh) 混合动力车辆
WO2021220742A1 (ja) 車両駆動装置
JP2002038962A (ja) ターボチャージャ付き内燃機関の制御装置
EP3199819A1 (en) Electric supercharging apparatus and electric supercharging system
WO2017086420A1 (ja) ハイブリッド車両及びその制御方法
CN111734524B (zh) 混合动力车辆和控制混合动力车辆的方法
US8868269B2 (en) System and method for increasing operating efficiency of a hybrid vehicle
JPH07123512A (ja) 電動補助機能付自動車
Khan et al. Hybrid Electric Vehicles
KR101619616B1 (ko) 전동식 터보차저의 발전 제어 장치 및 방법
JP7183928B2 (ja) 車両
JP3846439B2 (ja) ハイブリッド自動車
WO2017086423A1 (ja) ハイブリッド車両及びその制御方法
JP6098037B2 (ja) ハイブリッド車両
JP6759604B2 (ja) ハイブリッド車両及びハイブリッド車両の制御方法
JP6028342B2 (ja) ハイブリッド車両
JP6696319B2 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796893

Country of ref document: EP

Kind code of ref document: A1