WO2021212344A1 - 无人机的故障管理方法、设备及存储介质 - Google Patents

无人机的故障管理方法、设备及存储介质 Download PDF

Info

Publication number
WO2021212344A1
WO2021212344A1 PCT/CN2020/085995 CN2020085995W WO2021212344A1 WO 2021212344 A1 WO2021212344 A1 WO 2021212344A1 CN 2020085995 W CN2020085995 W CN 2020085995W WO 2021212344 A1 WO2021212344 A1 WO 2021212344A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
fault
remote control
drone
control terminal
Prior art date
Application number
PCT/CN2020/085995
Other languages
English (en)
French (fr)
Inventor
龙召
李兴
毛慧
袁嘉樑
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/085995 priority Critical patent/WO2021212344A1/zh
Priority to CN202080005241.9A priority patent/CN112752714A/zh
Publication of WO2021212344A1 publication Critical patent/WO2021212344A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems

Definitions

  • This application relates to the technical field of unmanned aerial vehicles, and in particular to an unmanned aerial vehicle fault management method, equipment and storage medium.
  • drones often include multiple different components, and each component has its own failure handling mechanism.
  • the failure push mechanism and push content of each component are different, which may cause the same failure.
  • the expression in different parts is different.
  • the component directly pushes fault information to the remote control terminal, and when the same fault A causes multiple components to malfunction, multiple components push fault A information to the remote control terminal separately, resulting in There are repeated pushes in the fault push, so that the remote control terminal receives redundant fault information, which reduces the accuracy of the fault information push, and is not conducive to subsequent maintenance personnel to analyze the fault information, making the maintenance personnel need to analyze multiple fault information Repeated analysis is a waste of human resources.
  • the embodiments of the present application provide a method, equipment, and storage medium for fault management of an unmanned aerial vehicle, which can improve the accuracy of obtaining fault information.
  • an embodiment of the present application provides a method for managing a failure of an unmanned aerial vehicle, which is applied to a remote control terminal and an unmanned aerial vehicle that communicates with the remote control terminal, and the method includes:
  • the remote control terminal sends to the drone to obtain fault request information of each component of the drone;
  • the drone In response to the failure request information, the drone obtains the failure information sent by each component, generates a failure identification according to the failure information of each component, and sends the failure identification to the remote control terminal; wherein, the failure identification Including component information and fault information;
  • the component information and fault information corresponding to the fault indicator are displayed in the display interface of the remote control terminal.
  • an embodiment of the present application provides a method for managing a failure of a drone, which is applied to a remote control terminal, where the remote control terminal is used to communicate with the drone, and the method includes:
  • the component information and fault information corresponding to the fault identifier are displayed in the display interface of the remote control terminal.
  • an embodiment of the present application provides a method for managing a failure of an unmanned aerial vehicle, which is applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle is used to communicate with a remote control terminal.
  • the method includes:
  • the fault indicator is sent to the remote control terminal, so that the remote control terminal displays component information and fault information corresponding to the fault indicator in a display interface.
  • the embodiments of the present application also provide a fault management system for drones.
  • the fault management system for drones includes a remote control terminal and a drone, and the remote control terminal communicates with the drone. ,in:
  • the drone In response to the failure request information, the drone obtains the failure information sent by each component, generates a failure identification according to the failure information of each component, and sends the failure identification to the remote control terminal; wherein, the failure identification Including component information and fault information;
  • the component information and fault information corresponding to the fault indicator are displayed in the display interface of the remote control terminal.
  • an embodiment of the present application also provides a remote control terminal, including:
  • the display is used to display the component information and fault information corresponding to the fault identification
  • Memory used to store computer programs
  • the processor is configured to call a computer program in the memory to execute any of the UAV fault management methods provided in the embodiments of the present application.
  • an embodiment of the present application also provides a drone, including:
  • Memory used to store computer programs
  • the processor is configured to call a computer program in the memory to execute any of the UAV fault management methods provided in the embodiments of the present application.
  • an embodiment of the present application also provides a movable platform, including:
  • Memory used to store computer programs
  • the processor is configured to call a computer program in the memory to execute any of the UAV fault management methods provided in the embodiments of the present application.
  • an embodiment of the present application also provides a storage medium, the storage medium is used to store a computer program, and the computer program is loaded by a processor to execute any of the unmanned aerial vehicles provided in the embodiments of the present application. Fault management methods.
  • an embodiment of the present application also provides a computer program that is loaded by a processor to execute any of the failure management methods for drones provided in the embodiments of the present application.
  • the remote control terminal of the embodiment of the present application can send to the UAV the request information for obtaining the failure of each component of the UAV; the UAV obtains the failure information sent by each component in response to the failure request information, and generates the failure according to the failure information of each component Identification, the fault identification is sent to the remote control terminal; where the fault identification includes component information and fault information; after the remote control terminal receives the fault identification, the component information and fault information corresponding to the fault identification can be displayed on the display interface of the remote control terminal.
  • This solution can generate the fault identification of the fault information of each component, so that the remote control terminal can accurately obtain the component information and the fault information for display according to the fault identification, avoiding the repeated acquisition of the fault information, so as to effectively analyze the fault information and improve the failure. Accuracy of information acquisition.
  • FIG. 1 is a schematic diagram of a remote control terminal provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario of a method for fault management of a drone provided by an embodiment of the present application;
  • FIG. 3 is a schematic flowchart of a method for managing a failure of a drone provided by an embodiment of the present application
  • Fig. 4 is a schematic diagram of fault information subscription provided by an embodiment of the present application.
  • FIG. 5 is another schematic diagram of fault information subscription provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of interaction between a remote control terminal and a drone provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of the interaction between the main chip of the drone and the chip interaction of each component provided by an embodiment of the present application;
  • FIG. 8 is a schematic diagram of a pop-up window provided by an embodiment of the present application displaying failure information
  • FIG. 9 is a schematic diagram of displaying fault information in the health management system of the drone provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the display interface of the UAV health management system provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of details of a help document for fault handling provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram showing maintenance suggestions provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram showing a maintenance strategy provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of selecting target sorting information from a sorting information list provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of download progress display provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of upload progress display provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of log file pulling and uploading provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of another flow chart of a method for managing a failure of a drone according to an embodiment of the present application.
  • 19 is a schematic diagram of another flow chart of a method for managing a failure of a drone provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a fault management system for a drone provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a remote control terminal provided by an embodiment of the present application.
  • Fig. 22 is a schematic structural diagram of a drone provided by an embodiment of the present application.
  • the embodiments of the present application provide a method, equipment, and storage medium for fault management of a drone, where the storage medium is a computer-readable storage medium, and the device may include a fault management system of the drone, a remote control terminal, and a
  • the types of man-machines and movable platforms, the fault management system, remote control terminals, drones and movable platforms of the drone can be flexibly set according to actual needs, and the specific content is not limited here.
  • the movable platform may be a mobile terminal, drone, robot, or unmanned vehicle.
  • the remote control terminal 100 may be a remote control device provided with a display 101 and control buttons 102, etc., which are used to establish a communication connection with the drone and control the drone.
  • the display 101 can be used In order to display the component information and fault information corresponding to the fault identification, the display 101 can also be used to display the health management system of the drone, and the relevant status of the drone can be viewed through the health management system of the drone.
  • the remote control terminal can also be a third-party mobile phone or tablet computer, etc., which establish a communication connection with the drone through a preset protocol and control the drone.
  • the fault management system of the unmanned aerial vehicle may include a remote control terminal that establishes a communication connection, an unmanned aerial vehicle, etc.
  • the unmanned aerial vehicle may include a camera, a distance measuring device, an obstacle sensing device, and the like.
  • the unmanned aerial vehicle may also include a pan/tilt for carrying a camera, and the pan/tilt may drive the camera to a suitable position so that the required image can be collected by the camera.
  • the types of cameras can be ultra-wide-angle cameras, wide-angle cameras, telephoto cameras (ie zoom cameras), infrared cameras, far-infrared cameras, ultraviolet cameras, and time of flight (TOF, Time of Flight) depth cameras (TOF for short). Depth camera) and so on.
  • the drone can include a rotary-wing drone (such as a quad-rotor drone, a hexa-rotor drone, or an eight-rotor drone, etc.), a fixed-wing drone, or a rotary-wing and fixed-wing drone
  • a rotary-wing drone such as a quad-rotor drone, a hexa-rotor drone, or an eight-rotor drone, etc.
  • a fixed-wing drone such as a quad-rotor drone, a hexa-rotor drone, or an eight-rotor drone, etc.
  • a fixed-wing drone such as a quad-rotor drone, a hexa-rotor drone, or an eight-rotor drone, etc.
  • a fixed-wing drone such as a quad-rotor drone, a hexa-rotor drone, or an eight-rotor drone, etc.
  • a rotary-wing and fixed-wing drone The combination of is not limited here.
  • FIG. 2 is a schematic diagram of a scenario for implementing the method for managing the failure of a drone provided by an embodiment of the present application.
  • the drone 200 can obtain the fault information sent by each component in response to the fault request information, and generate a fault identifier according to the fault information of each component, and send the fault identifier to the remote control terminal 100.
  • the fault identification includes component information and fault information; after the remote control terminal 100 receives the fault identification, the component information and fault information corresponding to the fault identification can be displayed in the display interface of the remote control terminal 100.
  • the UAV 200 can generate a fault identification based on the fault information of each component, so that the remote control terminal 100 can accurately obtain the component information and the fault information for display according to the fault identification, so as to effectively analyze the fault information and improve the accuracy of the fault information acquisition. This makes the analysis of UAV faults more accurate and ensures the safety of UAV 200 flight.
  • the remote control terminal 100 can also be used to control the flight of the drone 200 or perform corresponding actions, and obtain corresponding motion information from the drone 200.
  • the motion information can include flight direction, flight attitude, flight height, flight speed, and position. Information, etc., and the acquired exercise information is sent to the remote control terminal 100, and the remote control terminal 100 performs analysis and display.
  • the remote control terminal 100 can also receive control instructions input by the user, and perform corresponding control on the distance measuring device or camera on the UAV 200 based on the control instructions.
  • the remote control terminal 100 may receive a shooting instruction or a distance measurement instruction input by a user, and send the shooting instruction or a distance measurement instruction to the drone 200, and the drone 200 can control the camera to shoot the captured image according to the shooting instruction. Or control the distance measuring device to measure the distance of the target according to the distance measuring instruction.
  • the obstacle sensing device of the UAV 200 can obtain the sensing signals around the UAV 200, and by analyzing the sensing signals, the obstacle information can be obtained and displayed on the display of the UAV 200.
  • the obstacle information is displayed inside, so that the user can learn the obstacles sensed by the drone 200, and it is convenient for the user to control the drone 200 to avoid the obstacles.
  • the display may be a liquid crystal display, or a touch screen, etc.
  • the obstacle sensing device may include at least one sensor for acquiring sensing signals from the drone 200 in at least one direction.
  • the obstacle sensing device may include a sensor for detecting obstacles in front of the drone 200.
  • the obstacle sensing device may include two sensors for detecting obstacles in front of and behind the drone 200, respectively.
  • the obstacle sensing device may include four sensors for detecting obstacles in the front, rear, left, and right of the drone 200, respectively.
  • the obstacle sensing device may include five sensors, which are used to detect obstacles in the front, rear, left, right, and above of the drone 200, respectively.
  • the obstacle sensing device may include six sensors for detecting obstacles in front, rear, left, right, above, and below the drone 200, respectively.
  • the sensors in the obstacle sensing device can be implemented separately or integrated.
  • the detection direction of the sensor can be set according to specific needs to detect obstacles in various directions or combinations of directions, and is not limited to the above-mentioned forms disclosed in this application.
  • the drone 200 may have one or more propulsion units to support the drone 200 to fly in the air.
  • the one or more propulsion units can make the drone 200 at one or more, two or more, three or more, four or more, five or more, six or more free angles move.
  • the drone 200 can rotate around one, two, three, or more rotation axes.
  • the rotation axes may be perpendicular to each other.
  • the rotation axes can be maintained perpendicular to each other during the entire flight of the drone 200.
  • the rotation axis may include a pitch axis, a roll axis, and/or a yaw axis.
  • the drone 200 can move in one or more dimensions.
  • the drone 200 can move upward due to the lifting force generated by one or more rotors.
  • the drone 200 can move along the Z axis (which can be in a direction relative to the drone 200), the X axis, and/or the Y axis (which can be lateral).
  • the drone 200 can move along one, two, or three axes that are perpendicular to each other.
  • the drone 200 may be a rotary wing aircraft.
  • the drone 200 may be a multi-rotor drone that may include multiple rotors.
  • the multiple rotors can rotate to generate lifting force for the drone 200.
  • the rotor may be a propulsion unit, which allows the drone 200 to move freely in the air.
  • the rotor can rotate at the same rate and/or can generate the same amount of lift or thrust.
  • the rotor can rotate at different speeds at will, generating different amounts of lifting force or thrust, and/or allowing the drone 200 to rotate.
  • one, two, three, four, five, six, seven, eight, nine, ten or more rotors may be provided on the drone 200.
  • These rotors can be arranged such that their rotation axes are parallel to each other.
  • the rotation axis of the rotors can be at any angle with respect to each other, which can affect the movement of the drone 200.
  • the drone 200 may have multiple rotors.
  • the rotor may be connected to the main body of the drone 200, and the main body may include a control unit, an inertial measurement unit (IMU), a processor, a battery, a power supply, and/or other sensors.
  • the rotor may be connected to the body by one or more arms or extensions branching from the central part of the body.
  • one or more arms may extend radially from the central body of the drone 200, and may have a rotor at or near the end of the arm.
  • each device in FIG. 1 and FIG. 2 does not constitute a limitation on the application scenario of the UAV fault management method.
  • FIG. 3 is a schematic flowchart of a method for managing a failure of a drone according to an embodiment of the present application.
  • the fault management method of the drone can be applied to the fault management system of the drone, which can realize the fault definition, fault collection, fault reporting, and log collection of the various components of the drone.
  • the fault definition refers to the formulation of Standards for judging whether a certain state is reasonable, for example, the temperature of the drone is higher than how many degrees Celsius is a high temperature abnormality; fault collection means that when a fault occurs, the fault is monitored and stored; fault reporting means that when a fault occurs, the fault is Actively report to the UAV's health management system, from hardware knowable to user knowable; log collection refers to the collection of log files generated at the time when a failure occurs.
  • Standards for judging whether a certain state is reasonable for example, the temperature of the drone is higher than how many degrees Celsius is a high temperature abnormality
  • fault collection means that when a fault occurs, the fault is monitored and stored
  • fault reporting means that when a fault occurs, the fault is Actively report to the UAV's health management system, from hardware knowable to user knowable
  • log collection refers to the collection of log files generated at the time when a failure occurs.
  • the fault management method of the UAV may include steps S101 to S103, etc., which may be specifically as follows:
  • the remote control terminal sends to the drone to obtain fault request information of each component of the drone.
  • the remote control terminal can send to the drone the fault request information of each component of the drone according to the actual needs through the preset agreement negotiated with the drone.
  • each component and the fault request information can be flexibly set according to the actual needs.
  • the specific content is not limited here.
  • each component may include a battery, a camera, a pan/tilt, a motor, and a gyroscope, etc.
  • the fault request information may be fault subscription information.
  • the remote control terminal can send to the UAV every preset time or timing to obtain the failure request information of each component of the UAV.
  • the remote control terminal may send the UAV to obtain the failure request information of each component of the UAV after controlling the UAV to land and stop flying.
  • the remote control terminal in order to obtain fault information in time, can send a parameter acquisition request to the drone, and receive the drone based on the parameter acquisition request to return the operating parameters of the drone to the remote control terminal.
  • the operating parameters can include flight duration and flight time. Mileage, battery cycles, take-offs and landings, and activation time, etc., and then the remote control terminal can judge whether the drone is abnormal according to the operating parameters. When it is determined that the drone has an abnormal component based on the operating parameters, it can be reported to the drone at this time. Send and obtain the fault request information of each component of the UAV that is abnormal.
  • sending the remote control terminal to the drone to obtain the fault request information of each component of the drone may include: the remote control terminal sends to the main chip of the drone to obtain the fault request information of each component of the drone.
  • the drone can interact with the remote control terminal through the main chip.
  • the remote control terminal can The main chip of the drone sends and obtains the fault request information of each component of the drone, so that the main chip of the drone obtains the corresponding fault information from each component based on the fault request information.
  • sending the remote control terminal to the main chip of the drone to obtain the failure request information of each component of the drone may include: the remote control terminal obtains a subscription request, and sends to the main chip of the drone according to the subscription request to obtain the failure request information. Request information about the failure of each component of the machine.
  • the remote control terminal can send fault request information to the drone according to the subscription demand.
  • the remote control terminal can self-subscribe to the push of fault information in a default manner, and generate subscription requests based on automatic subscriptions. Request to send to the main chip of the UAV to obtain the failure request information of each component of the UAV.
  • acquiring the subscription request by the remote control terminal may include: the remote control terminal receives the subscription request that the user triggers the subscription control input in the health management system of the drone.
  • the remote control terminal can send fault request information to the drone according to the user’s subscription requirements.
  • the remote control terminal can be equipped with a useful drone health management system.
  • the drone’s health management system can be installed in The application program (ie APP) on the remote control terminal.
  • APP The application program
  • the UAV's health management system is used to manage the operation status, abnormal state, and maintenance status of the UAV. It has data collection, timely feedback, abnormal reporting, abnormal handling guidelines, and maintenance for UAVs. A complete set of closed-loop functions such as reminders, maintenance guidelines, and log uploads, so that users can intuitively view all the conditions of the drone through the drone's health management system.
  • the UAV's health management system Through the UAV's health management system, the overall status of the current UAV can be reflected centrally, and through the UAV's health management system, the potential risks of the UAV can be learned in advance, and measures can be taken to reduce the occurrence of failures.
  • the specific management content of the UAV's health management system can be flexibly set according to actual needs, and is not limited here.
  • the UAV's health management system can also provide a separate diagnostic interface for the UAV.
  • the diagnostic interface contains the status of all the components of the UAV, helping users to obtain, analyze and judge the UAV’s overall health more accurately.
  • the health of the aircraft For another example, the UAV's health management system can also provide a set of troubleshooting instruction manuals, which include, but are not limited to, solutions, guidance instructions, and error searches.
  • the health management system of the drone can be set with a subscription control for pushing fault information.
  • the subscription control can subscribe to the switch button. Click the switch button in the closed state, and you can turn the switch button Switch to the on state; click the switch button in the on state to switch the switch button to the off state.
  • the switch button is a sliding bar that can slide left and right. When the switch button slides to the far left end, it enters the off state, and when the switch button slides to the far right end, it enters the on state.
  • a subscription request can be generated when it is turned on.
  • the subscription control may be a trigger button, and the trigger button needs to be clicked for each subscription to activate the trigger button and generate a subscription request.
  • the remote control terminal can receive the subscription request that the user triggers the subscription control input in the UAV's health management system.
  • the drone obtains the fault information sent by each component, generates a fault identifier according to the fault information of each component, and sends the fault identifier to the remote control terminal; where the fault identifier includes component information and fault information.
  • the fault identification is used to uniquely identify different fault information of different components.
  • the fault identification can be composed of numbers, letters and/or text.
  • the fault identification can be a fault name or a fault number, for example, 0x1610001c or 0x1a020101.
  • the component information may include the name of the component and its location on the drone, for example, a forward-looking infrared sensor or a No. 1 pan/tilt.
  • the fault information may include fault details, for example, abnormal calibration of the forward-looking infrared sensor or excessive battery temperature. After the drone receives the fault request information sent by the remote control terminal, it can respond to the fault request information.
  • the UAV in response to the failure request information, obtains the failure information sent by each component including: the UAV receives the failure information sent by each component in response to the failure request information through the main chip.
  • the drone can interact with the remote control terminal through the main chip.
  • the main chip of the drone is After receiving the fault request information, the main chip can respond to the fault request information.
  • the remote control terminal can send fault request information to the drone through the drone’s health management system (ie APP).
  • the drone receives the fault request information through the main chip, and the main chip is responding to the fault.
  • a fault information acquisition request can be sent to the chip corresponding to each component.
  • the main chip can receive the fault information sent by the chip of each component.
  • the main chip can also interact with the camera, the auxiliary chip, and the remote control chip, etc., so that when the remote control terminal obtains the fault information of each component, it does not need to send a separate request to each component, but only through Just request the main chip.
  • the way of storing the fault information of each component on the drone can be: when the component has a chip, the fault information for the component can be stored on its own chip; when the component does not have a chip, the component The fault information can be stored on the main chip, which can prevent the fault information from being stored in the same location and reduce the pressure on the storage space.
  • the main chip can directly obtain the fault information of the component from its own storage space without sending a request to the component.
  • the main chip of the drone After the main chip of the drone obtains the fault information of each component, it can generate a fault identification according to the fault information of each component, and the fault identification includes the component information and the fault information. For example, after obtaining the fault information of the abnormal calibration of the rear-view infrared sensor, the fault identification of the rear-view infrared sensor can be generated: the calibration of the front-view infrared sensor is abnormal (0x1a020101). Then, the main chip of the UAV can send the fault identification to the remote control terminal, which realizes the standardized and integrated push of the fault information of each component through the main chip, avoiding the repeated push of the same fault information.
  • the drone responds to the fault request information through the main chip, and receiving the fault information sent by each component may include: the drone obtains the operating parameters, and when it is determined that the component is abnormal according to the operating parameters, the main chip sends the information to each component.
  • the abnormal component sends an acquisition request; the main chip of the drone receives the fault information sent by each abnormal component based on the acquisition request.
  • the drone can obtain its own operating parameters in real time or at preset intervals.
  • the operating parameters can include flight duration, flight mileage, battery cycle times, battery temperature, number of takeoffs and landings, and activation time, etc. Then, judge whether there is a component abnormality according to the operating parameters.
  • the main chip can send an acquisition request to each abnormal component. At this time, the main chip of the drone can receive each abnormal component based on the acquisition request Returned fault information.
  • the main chip of the drone can compress and encrypt the fault identification to obtain the compressed and encrypted fault identification, and send the compressed and encrypted fault identification to the remote control terminal .
  • the remote control terminal After the remote control terminal receives the compressed and encrypted failure identification, it can compress and encrypt the compressed and encrypted failure identification to obtain the failure identification.
  • the remote control terminal After receiving the fault indicator, the remote control terminal displays the component information and the fault information corresponding to the fault indicator in the display interface of the remote control terminal.
  • the remote control terminal After receiving the fault identification sent by the drone, the remote control terminal can store the component information and fault information corresponding to the fault identification in the local database, and display the component information and fault information corresponding to the fault identification in the display interface, so that the user can timely Learn about the component information and fault information.
  • the fault identification may include one or more.
  • the remote control terminal may display component information and fault information corresponding to the multiple fault identifications in the display interface.
  • the user can click on a certain fault information to enter the display interface of fault information details and fault handling guidelines, so that the user can obtain the overall equipment status of the drone, and realize the self-check of each component by itself, and conduct unified display to avoid
  • the unreliable inspection before flight can only be performed through empirical operations, which reduces the risk rate of UAV flight.
  • displaying the component information and fault information corresponding to the fault identifier in the display interface of the remote control terminal may include: the remote control terminal displays the component information and fault information corresponding to the fault identifier in a pop-up window on the display interface.
  • the remote control terminal can display the component information and fault information corresponding to the fault identification in the pop-up window on the display interface.
  • the size, background color, and display position of the pop-up window can be flexibly set according to actual needs. For example, as shown in Figure 8, after getting the calibration abnormality of the front-viewing infrared sensor of the drone, a pop-up window can display information such as "abnormal calibration of the front-looking infrared sensor (0x1a020101)".
  • the dialog box displayed by the pop-up window can be automatically closed after the display time reaches the preset time, or the user can click the close button in the upper right corner to close, etc.
  • the preset time can be flexibly set according to actual needs.
  • displaying the component information and fault information corresponding to the fault identification in the display interface of the remote control terminal may include: the remote control terminal displays the UAV's health management system in the display interface, and combining the component information corresponding to the fault identification and The fault information is added to the UAV's health management system.
  • the remote control terminal can display the component information and failure information corresponding to the failure identification in the display interface of the UAV's health management system.
  • the display interface of the health management system of the drone can be displayed in the form of a list of "Unable to take off: Simulator has been running (0x1610001c) , The drone needs to be restarted for takeoff", "Please confirm whether the usb is connected or the system is being upgraded (0x161000c8)", "The battery cell pressure difference is too large, please return or land, and then maintain the battery (0x16100082)", 11 fault messages such as "abnormal calibration of rear-view infrared sensor (0x1a020103)” and "abnormal calibration of forward-looking infrared sensor (0x1a020101)".
  • the user can click on a certain fault information to enter the display interface of fault information details and fault handling guidelines, so that the user can obtain the overall equipment status of the drone, and realize the self-check of each component by itself, and conduct unified display to avoid
  • the unreliable inspection before flight can only be performed through empirical operations, which reduces the risk rate of UAV flight.
  • the remote control terminal can also broadcast the component information and the fault information corresponding to the fault identification through voice.
  • the decibel size of the voice broadcast and the language of the voice broadcast (such as Chinese or English) can be flexibly set according to actual needs.
  • the voice broadcast can be automatically closed after the number of loops reaches a preset number, or the user can click the close button to close, etc.
  • the preset number of times can be flexibly set according to actual needs.
  • the remote control terminal can also send component information and fault information corresponding to the fault identification to a preset mailbox or instant messaging window, where the type of mailbox or the type of instant messaging can be flexibly set according to actual needs.
  • the fault management method of the drone may further include: the remote control terminal receives the information acquisition request input by the user; the remote control terminal obtains the pre-stored history of the drone from the locally preset database according to the information acquisition request. accident details.
  • the remote control terminal can pull the historical fault information of the UAV according to actual needs. Specifically, the remote control terminal receives the information acquisition request input by the user. For example, the remote control terminal receives the information acquisition request generated by the user triggering the historical fault information pull control in the UAV's health management system, or the remote control terminal receives the user in the unmanned The information acquisition request generated by the input voice signal in the machine’s health management system. Because the remote control terminal can pre-store the historical failure information of the UAV in the local preset database, at this time, the remote control terminal can obtain the pre-stored UAV history from the local preset database according to the information acquisition request. Fault information, the information acquisition request may request to acquire historical fault information of a certain component or multiple components. It realizes the recording of each fault, provides the viewing of historical fault information, and improves the user experience.
  • the remote control terminal receiving the information acquisition request input by the user may include: the remote control terminal receives the voice signal, gesture, touch operation, or fingerprint information input by the user, and generates information based on the voice signal, gesture, touch operation, or fingerprint information. Get the request.
  • the user can input a voice signal related to viewing historical fault information, and after receiving the voice signal input by the user, the remote control terminal can generate an information acquisition request for the historical fault information of the drone.
  • the mapping relationship between gestures for example, fist or OK gesture, etc.
  • the information acquisition request of historical fault information can be preset, the user can input the gesture corresponding to the historical fault information, and the remote control terminal receives the gesture input by the user. After determining that the gesture is consistent with the gesture for viewing historical fault information (for example, the similarity is greater than 96%, etc.), an information acquisition request for historical fault information of the drone can be generated.
  • the user can input a touch operation such as tap, press or double-click on the view control of historical fault information preset in the display interface of the UAV's health management system, and the remote control terminal can generate a touch operation after receiving the touch operation input by the user.
  • Information acquisition request for the historical fault information of the UAV can be set in advance.
  • the fingerprint of the right thumb or index finger of user A can trigger the information acquisition request for historical fault information
  • user B’s left thumb or The fingerprint of the middle finger can trigger an information acquisition request for historical fault information.
  • the remote control terminal After the remote control terminal receives the fingerprint information input by the user and determines that the user’s fingerprint is consistent with the fingerprint information for viewing historical fault information (for example, the similarity is greater than 99%, etc.), The information acquisition request of the historical fault information of the UAV can be generated.
  • the corresponding historical fault information can be obtained according to the fault identifier.
  • the remote control terminal can correspondingly store the fault identifier and historical fault information, and the information acquisition request received by the remote control terminal can be carried There are one or more fault identifiers.
  • the remote control terminal can extract one or more fault identifiers from the information acquisition request, and then obtain the pre-stored historical fault information corresponding to the one or more fault identifiers from the locally preset database .
  • the fault management method of the drone may further include: the remote control terminal outputs the drone The historical fault information, so that the user can view the historical fault information.
  • outputting the historical failure information of the drone by the remote control terminal may include: the remote control terminal displays the historical failure information of the drone in a pop-up window on the display interface.
  • the remote control terminal can display the historical fault information of the UAV in a pop-up window on the display screen.
  • the size, background color and display position of the pop-up window can be flexibly set according to actual needs.
  • the pop-up window can display the historical fault information such as "abnormal calibration of the front-looking infrared sensor (0x1a020101)".
  • the dialog box displayed by the pop-up window can be automatically closed after the display time reaches the preset time, or the user can click the close button in the upper right corner to close, etc.
  • the preset time can be flexibly set according to actual needs.
  • outputting the historical fault information of the drone by the remote control terminal may include: the remote control terminal broadcasts the historical fault information of the drone through voice.
  • the remote control terminal can voice broadcast the historical fault information of the UAV.
  • the decibel size of the voice broadcast and the language of the voice broadcast (such as Chinese or English) can be flexibly set according to actual needs.
  • the voice broadcast can be automatically closed after the number of loops reaches a preset number, or the user can click the close button to close, etc.
  • the preset number of times can be flexibly set according to actual needs.
  • outputting the historical fault information of the drone by the remote control terminal may include: the remote control terminal displays the historical fault information of the drone in the display interface of the health management system of the drone.
  • the remote control terminal can display the historical fault information of the drone in the display interface of the UAV's health management system.
  • the display interface of the health management system of the drone can be displayed in the form of a list of "Unable to take off: Simulator is already running ( 0x1610001c), the drone needs to be restarted for takeoff", "Please confirm whether the usb is connected or the system is being upgraded (0x161000c8)", "The battery cell voltage difference is too large, please return or land, and then maintain the battery (0x16100082) ", "rear-view infrared sensor calibration abnormal (0x1a020103)", and “front-looking infrared sensor calibration abnormal (0x1a020101)” and other 11 fault messages.
  • the user can click on a certain fault information to enter the display interface of fault information details and fault handling guidelines, so that the user can obtain the overall equipment status of the drone, and reduce the
  • outputting the historical fault information of the drone by the remote control terminal may include: the remote control terminal sends the historical fault information of the drone to a preset mailbox or instant messaging window.
  • the remote control terminal can send the historical fault information of the drone to a preset mailbox (such as a mailbox designated by a maintenance staff) or an instant messaging window (such as a mini program, an official account, a designated QQ window) , Or designated WeChat window) so that users can view and learn the status of the drone.
  • a preset mailbox such as a mailbox designated by a maintenance staff
  • an instant messaging window such as a mini program, an official account, a designated QQ window) , Or designated WeChat window
  • the type of mailbox or the type of instant messaging can be flexibly set according to actual needs.
  • the remote control terminal displays the historical fault information of the drone in the display interface of the UAV's health management system, which may include: the remote control terminal according to the types of different components of the UAV in the display interface of the health management system Each component is displayed in a partition; the remote control terminal displays the historical failure information of the UAV in the health management system, and identifies the area where the abnormal component corresponding to the historical failure information is located.
  • the remote control terminal can display the historical fault information of each component in the display interface of the UAV's health management system.
  • the types of different parts of the man-machine are displayed separately.
  • the power system, avionics system, vision system, battery system, image transmission system, and pan/tilt are displayed separately.
  • the abnormal state components are identified.
  • the identification method can be flexibly set according to actual needs. The specific content is not limited here.
  • the display interface of the drone's health management system can also display the drone maintenance interface, firmware version interface, log management interface, and abnormal recording interface, etc., through the abnormal recording interface, you can enter the display interface of the drone's historical fault information , So that users can visually view and effectively manage all aspects of the UAV status.
  • the remote control terminal marking the area where the abnormal component corresponding to the historical fault information is located may include: marking the remote control terminal with a preset color in the area where the abnormal component corresponding to the historical fault information is located; and/or, in the historical fault
  • the area where the abnormal component corresponding to the information is located is identified by text; and/or the area where the abnormal component corresponding to the historical fault information is located is identified with a preset icon.
  • the remote control terminal can determine the abnormality level of the abnormal component corresponding to the historical fault information, and mark it in a preset color in the area where the abnormal component is located according to the abnormality level.
  • the preset color can be flexibly set according to actual needs, for example, avionics
  • the system anomaly is more serious, and its corresponding anomaly level is higher. At this time, it is marked in dark red in the area where the avionics system is located.
  • the abnormality of the battery system is normal, and the corresponding abnormality level is medium. At this time, it is marked in orange in the area where the battery system is located.
  • the remote control terminal may be marked with the same red color in the area where each component in the abnormal state is located.
  • the remote control terminal can also be marked with text in the area where the abnormal component is located. For example, if the avionics system is abnormally serious, at this time, mark the word "serious” or mark the word "abnormally serious” in the area where the avionics system is located. For another example, the abnormality of the battery system is normal, and the word "abnormal" is marked in the area where the battery system is located at this time. Alternatively, the remote control terminal can be marked with the same word "abnormal" in the area where each component in an abnormal state is located
  • the remote control terminal can also be identified by a preset icon in the area where the abnormal component is located, and the preset icon can be flexibly set according to actual needs. For example, if the avionics system is abnormally serious, a triangle icon is used to mark the area where the avionics system is located. For another example, the abnormality of the battery system is normal. At this time, the circle icon is located in the area for marking. Alternatively, the remote control terminal may be marked with the same icon in the area where each component in the abnormal state is located.
  • the remote control terminal may only perform color identification on abnormal components, or only perform text identification on abnormal components, or only perform icon identification on abnormal components.
  • the remote control terminal can also carry out color identification, text identification and icon identification for abnormal components at the same time.
  • the remote control terminal can also carry out color identification and text identification for abnormal parts, or carry out color identification and icon identification for abnormal parts, or carry out text identification and icon identification for abnormal parts.
  • the fault management method of the drone may further include: the remote control terminal receives the information acquisition request input by the user; the remote control terminal sends the path acquisition request to the main chip of the drone according to the information acquisition request; The main chip returns the fault path to the remote control terminal based on the path acquisition request; the remote control terminal downloads historical fault files from the UAV according to the fault path; the remote control terminal analyzes the historical fault files to obtain historical fault information.
  • the remote control terminal can pull the historical fault information from the drone.
  • the remote control terminal may receive an information acquisition request input by the user in the health management system of the drone, or an information acquisition request generated by receiving a voice signal input by the user.
  • the information acquisition request is an acquisition request for historical fault information.
  • the remote control terminal sends a path acquisition request to the main chip of the drone through a preset protocol.
  • the path acquisition request is the acquisition request of the path stored in the historical fault information.
  • the path acquisition request can carry one or more Requests for obtaining paths.
  • the main chip of the drone determines the location of historical fault information storage based on the path acquisition request, generates a fault path, and returns the fault path to the remote control terminal through a preset protocol.
  • the remote control terminal can download historical fault files from the drone according to the file transfer protocol (FTP, File Transfer Protocol) of the fault path.
  • FTP File Transfer Protocol
  • the remote control terminal can send a historical fault file download request to the main chip of the drone, according to the historical fault file Download the historical fault file returned by the main chip of the request receiving drone.
  • the remote control terminal analyzes historical fault files, such as Json analysis, to obtain historical fault information.
  • the remote control terminal can receive multiple fault paths sent by the main chip of the drone, and download multiple historical fault files based on the multiple fault paths. The information is analyzed separately to obtain historical fault information corresponding to each component.
  • the remote control terminal can receive the fault handling instructions input by the user.
  • the remote control terminal can receive the fault handling instructions generated by the user input for the click operation in the area where the avionics system is located.
  • the fault handling instructions the help document details of the exception handling corresponding to the avionics system of the drone as shown in FIG. 11 are displayed.
  • the fault handling instruction generated by the user input on the click operation of the exception record interface can be received in the display interface shown in FIG.
  • the help document details of the exception handling corresponding to the avionics system of the drone as shown in Figure 11 can be displayed, so that the user can independently maintain the drone according to the tips in the help document details Operation, so that users can solve some problems by themselves, and for problems that users cannot solve by themselves, they can return to the factory for maintenance, so as to extend the life of the drone and solve abnormal problems to ensure the flight safety of the drone.
  • the UAV's health management system is also equipped with a log upload function. For abnormal parts, the log files of the abnormal parts can be uploaded to the server through the log upload interface, so that the maintenance personnel can analyze the log files and solve the abnormal problem.
  • the remote control terminal can obtain the operating parameters of the drone.
  • the operating parameters can be matched with the maintenance strategy preset by the drone.
  • the remote control terminal can display the maintenance suggestion information corresponding to the maintenance item in the drone's health management system.
  • the maintenance suggestion information display interface can include maintenance The project name and the working status of the drone, etc.
  • the working status of the drone can include the flight duration, the number of takeoffs and landings, the flight mileage, the activation time, the number of charging and discharging times of battery I and the number of charging and discharging times of battery II, etc., maintenance
  • the project name includes drones, batteries, and vision systems, etc., as well as corresponding maintenance suggestions including drones, batteries, and vision systems.
  • the remote control terminal can also display the maintenance strategy corresponding to the maintenance item in the UAV's health management system, for example, as shown in Figure 13, in the display interface of the maintenance strategy It can include maintenance types, maintenance items, maintenance methods (i.e. maintenance recommendations), and work cycles.
  • maintenance types can include routine inspections and in-depth inspections
  • maintenance items can include component replacement (for example, replacement of vulnerable components or core components) , Component maintenance (maintenance of vulnerable components or core components), component cleaning (such as deep cleaning), regular maintenance or component parameter calibration (such as visual calibration), etc.
  • the maintenance methods can include user maintenance or return to the factory for maintenance, etc.
  • the work cycle can be Including flight time or accumulated operating time, etc. At this time, the user can perform independent maintenance according to the displayed maintenance strategy, or return to the factory for in-depth maintenance to extend the life of the drone.
  • the fault management method of the drone further includes: the remote control terminal sends a log acquisition request to the drone; the drone returns multiple sort information of the drone to the remote control terminal based on the log acquisition request; After receiving multiple sorting information, select the target sorting information from the multiple sorting information; the remote control terminal downloads the log file according to the target sorting information.
  • the sorting information may be flight sorting information of the UAV.
  • the sorting information may include flight information such as flight time and flight position, and the flight time may include take-off time and landing time.
  • the remote control terminal can send a log acquisition request to the drone.
  • the remote control terminal can generate a log acquisition request when receiving an acquisition instruction input by the user and send it to the drone Log acquisition request.
  • the drone After the drone receives the log acquisition request, it can acquire multiple pre-stored sorting information according to the log acquisition request through the main chip, and return the multiple sorting information of the drone to the remote control terminal.
  • the remote control terminal After the remote control terminal receives multiple sorting information, it can select one or more sorting information from the multiple sorting information as the target sorting information, and then the remote control terminal may download the log file according to the target sorting information. In this way, the log files required for the accuracy of the sorting information can be used to avoid missing or wrong collections during log collection.
  • the remote control terminal may acquire the log file according to the fault identification.
  • the remote control terminal may send a download request carrying the fault identifier to the drone after receiving the log file acquisition instruction carrying the fault identifier, and receive the log file returned by the drone based on the download request carrying the target fault identifier.
  • the remote control terminal can pre-store the corresponding relationship between the fault identifier and the log identifier locally.
  • the remote control terminal After receiving the log file acquisition instruction carrying the log identifier, the remote control terminal can determine the corresponding fault identifier according to the log identifier, and then send the The drone sends a download request carrying the fault identifier, and receives the log file returned by the drone based on the download request carrying the target fault identifier. For another example, the remote control terminal sends a log acquisition request to the drone, and the drone returns multiple sort information of the drone to the remote control terminal based on the log acquisition request.
  • the sort information can carry a fault identifier
  • the remote control terminal receives multiple After sorting information, select the target sorting information from multiple sorting information, and extract the target failure identification from the target sorting information, the remote control terminal sends a download request carrying the target failure identification to the drone, and receives the drone based on the carrying target The log file returned by the download request of the fault identification, in which the drone can associate the fault identification and the log file for storage.
  • the remote control terminal sending the log acquisition request to the drone may include: the remote control terminal receives the user in the drone's health management system interface and triggers the upload of the log control or the acquisition instruction generated by the log management control; The acquisition instruction sends a log acquisition request to the drone.
  • upload log controls or log management controls can be set in the drone's health management system.
  • the drone's health management system The display interface is provided with a log management control (ie, a log management interface).
  • the display interface of the UAV's health management system is provided with an upload log control.
  • the remote control terminal can receive the user in the UAV's health management system interface, trigger the upload log control to generate an acquisition instruction, and then generate a log acquisition request according to the acquisition instruction, and send the log acquisition request to the drone.
  • the remote control terminal can receive the user in the UAV's health management system interface, trigger the log management control to enter the log management list, trigger one or more log generation and acquisition instructions from the log management list, and then generate the log acquisition according to the acquisition instructions Request and send a log acquisition request to the drone.
  • the remote control terminal sending a log acquisition request to the drone may include: the remote control terminal sends a file transfer protocol start request to the drone; the remote control terminal receives that the drone successfully opens the file transfer protocol based on the start request, and returns The file transfer protocol is successfully opened; the remote control terminal sends a log acquisition request to the drone through the file transfer protocol after receiving the message that the file transfer protocol has been successfully opened.
  • the remote control terminal can interact with the drone through a file transfer protocol (ie FTP protocol). Specifically, when data transmission is required, the remote control terminal can send a request to open the FTP protocol to the drone. After the drone receives the request to open the FTP protocol, it opens the FTP protocol, and after the FTP protocol is successfully opened, it sends the FTP protocol to the drone. The remote control terminal returns a message indicating that the FTP protocol has been successfully opened. The remote control terminal receives the message that the FTP protocol is successfully turned on returned by the drone, and after receiving the message that the FTP protocol is successfully turned on, sends a log acquisition request to the drone through the FTP protocol.
  • FTP protocol file transfer protocol
  • the drone returning multiple sort information of the drone to the remote control terminal based on the log acquisition request may include: the drone obtains the sort path through the main chip based on the log acquisition request, and sends the sort path to the remote control terminal ; The remote control terminal downloads the information text file corresponding to the flight path from the drone through the file transfer protocol; the remote control terminal parses the information text file to obtain multiple flight information.
  • sorting information can be obtained through sorting paths.
  • the drone can obtain sorting paths based on log acquisition requests through the main chip, and sending the sorting paths to the remote control terminal.
  • the remote control terminal sends a download request carrying the flight path to the main chip of the drone through the FTP protocol.
  • the main chip of the drone obtains the information text file corresponding to the flight path according to the download request of the flight path, and assigns the corresponding information to the flight path.
  • the information text file is sent to the remote control terminal.
  • the remote control terminal can parse the information text file (for example, perform Json analysis) to obtain multiple sorties information.
  • selecting the target sortie information from the plurality of sorties information may include: the remote control terminal displays the plural sortation information; the remote control terminal receives a selection instruction input by the user based on the displayed plural sortation information; Select the target sort information from the sort information.
  • the remote control terminal can display multiple sorting information on the display interface of the UAV's health management system for users to choose, for example, As shown in Figure 14. Then the remote control terminal may receive a selection instruction input by the user based on the displayed multiple flight information, and select one or more flight information from the multiple flight information as the target flight information according to the selection instruction.
  • selecting the target sortie information from the plurality of sorties information includes: the remote control terminal obtains the priority of each sortie information; and the remote control terminal sets the sort information with the highest priority as the target sortie information.
  • the remote control terminal can automatically determine the target sorting information.
  • the remote control terminal can obtain the priority of each sorting information after obtaining multiple sorting information.
  • different sorting information corresponds to the priority
  • the level can be flexibly set according to actual needs.
  • the priority can be determined in chronological order: the closer the time the flight information is generated to the current time, the higher the priority (or the earlier the time the flight information is generated, the priority is The higher the level).
  • the priority can be determined according to the abnormal severity level (ie, the failure severity level) corresponding to the flight information: the higher the abnormal severity level is set, the higher the priority is.
  • the remote control terminal sets the sort information with the highest priority as the target sort information, or sets the information of the first 3 or 6 sorties with the highest priority as the target sort information, and so on.
  • the priority of acquiring the sort information by the remote control terminal may include: the order in which the remote control terminal obtains the sort information, and setting the sort information acquired first as the sort information with the highest priority according to the acquisition time sequence; or , The remote control terminal obtains the abnormal severity level of the drone corresponding to the sort information, and sets the sort information corresponding to the highest abnormal severity level as the sort information with the highest priority.
  • the remote control terminal can obtain the time sequence of obtaining various sorting information.
  • the flight time corresponding to sorting information A is from 8:00 to 9:00 on December 16, 2019, and sorting information B corresponds to The flight time is from 11:00 to 12:00 on December 16, 2019.
  • the flight time corresponding to sortie information C is from 14:00 to 16:00 on December 16, 2019, and the first one will be obtained according to the order of acquisition time.
  • the order information is set as the order information with the highest priority.
  • the order information A can be set as the order information with the highest priority
  • the order information C can be set as the order information with the lowest priority.
  • the remote control terminal can obtain the abnormal severity level of the drone corresponding to the sorting information, where the abnormal severity level can be flexibly set according to actual needs.
  • the sorting information A corresponding to the UAV can not take off failure information
  • sorting information The UAV corresponding to B has abnormal visual calibration failure information
  • the UAV corresponding to sorting information C appears out of control failure information during flight.
  • sorting information B corresponds to Has the lowest anomaly severity level.
  • the sort information C corresponding to the highest abnormal severity level may be set as the sort information with the highest priority, or the sort information C and B corresponding to the first two abnormal severity levels may be set as the sort information with the highest priority.
  • the remote control terminal downloading the log file according to the target sorting information may include: the remote control terminal sending a log file path acquisition request to the drone according to the target sorting information; Log file path; the remote control terminal downloads the log file corresponding to the log file path from the drone.
  • the log file can be obtained through the log file path.
  • the remote control terminal can generate a log file path acquisition request based on the target sort information and send the log to the main chip of the drone File path acquisition request.
  • the main chip of the drone can obtain the log file path and send the log file path to the remote control terminal.
  • the remote control terminal can send a download request carrying the log file path to the main chip of the drone.
  • the drone receives the download request carrying the log file path, it can use its own storage space and/or The chip of each component obtains the log file corresponding to the log file path, and sends the log file corresponding to the log file path to the remote control terminal.
  • the remote control terminal downloading the log file corresponding to the log file path from the drone may include: the remote control terminal sends a log file download request to the drone according to the log file path; the remote control terminal receives the drone download request based on the log file The returned compressed log file and the download progress; display the download progress, and after the compressed log file is downloaded, the drone's log file is obtained.
  • log files can be compressed.
  • the remote control terminal can send a log file download request to the drone according to the log file path.
  • the drone receives the log file download request, it can obtain the log file download request from its own storage space and/or various components.
  • the chip obtains the log file corresponding to the log file path, then compresses the log file to obtain the compressed log file, and sends the compressed log file to the remote control terminal, and the drone can obtain the download of the compressed log file Progress, the download progress is sent to the remote control terminal.
  • the remote control terminal can receive the compressed log file returned by the drone based on the log file download request, as well as the download progress.
  • the download progress is updated in real time as the download progresses.
  • the remote control terminal can dynamically display the download progress in real time, for example, As shown in Figure 15, after the download of the compressed log file is completed, the remote control terminal can display the information that the download is completed. At this time, the compressed log file can be decompressed to obtain the log file of the drone.
  • the drone can compress each log file separately, and send the compressed log file to the remote control terminal first. At this time, it can be based on the location of each log file. The download progress is calculated by the proportion or weight, and the download progress is sent to the remote control terminal. When the remote control terminal receives all the compressed log files, the download is completed. Alternatively, the drone can pack and compress multiple log files together, and send the compressed log file containing multiple log files to the remote control terminal. After the remote control terminal receives the compressed log file, the compressed log file Unzip it and get multiple log files.
  • the drone when it compresses the log file corresponding to the obtained log file path, it can also encrypt the log file to obtain the compressed and encrypted log file. , And send the compressed and encrypted log file to the remote control terminal.
  • the remote control terminal can decompress and decrypt the compressed and encrypted log file to obtain the log file of the drone.
  • the remote control terminal downloading the log file according to the target order information may include: the remote control terminal establishes a download task according to the target order information.
  • the download task includes the chip location of the log file, the size of the log file, and the log identifier; the remote control terminal according to the download task , Download the log file corresponding to the log ID from the chip location where the log file is located.
  • the remote control terminal can establish a download task according to the target sort information, where the download task includes the chip location where the log file is located (that is, the log file path) and the size of the log file , And a log identifier, which can be a log name or log number, etc.
  • the remote control terminal can download the log file corresponding to the log identifier from the chip location where the log file is located according to the download task.
  • the remote control terminal downloading the log file corresponding to the log identifier from the chip location where the log file is located according to the download task may include: the remote control terminal sends a download request to the main chip of the drone according to the download task; In response to the download request, the chip receives the log file corresponding to the log identifier sent by each component at the chip location where the log file is located, and sends the log file to the remote control terminal; the remote control terminal receives the log file.
  • the remote control terminal can send a download request carrying the log file path and log identifier to the main chip of the drone according to the download task.
  • the main chip of the drone can log the file path from its own storage space or the chip of the corresponding component. Obtain the log file corresponding to the log identifier on the upper side, compress the log file and send it to the remote control terminal.
  • log files are stored on the chip where each component is located. When some components have a chip, they can store their own log files on their own chip. For example, the battery log file is stored on the battery chip, and the camera log file is stored on the camera.
  • the remote control terminal can only initiate a log pull request to the main chip, and then the main chip initiates a request to each component.
  • the fault management method of the drone may further include: the remote control terminal sends the information that the file transfer protocol is closed to the drone; the drone receives the file transfer protocol After closing the information, close the file transfer protocol.
  • the remote control terminal can send a message that the file transfer protocol is closed to the drone.
  • the drone After the drone receives the message that the file transfer protocol is closed, it closes the file transfer protocol to make the file transfer protocol It can be closed in time when not in use.
  • the method for managing the failure of the drone may further include: the remote control terminal uploads the log file to a preset server.
  • the remote control terminal can upload the log file to the preset server after obtaining the log file. For example, after obtaining the compressed log file, the remote control terminal can directly upload the compressed log file to the preset server, or the remote control terminal can decompress the compressed log file after obtaining the compressed log file. Obtain the log file and verify the integrity of the log file. If the log file is complete, compress the log file and upload the compressed log file to the preset server. It should be noted that, in order to improve the security of uploading log files, the remote control terminal may compress and encrypt the log files and upload them to a preset server.
  • the remote control terminal uploading the log file to the preset server may include: the remote control terminal creates an upload task.
  • the task information of the upload task includes the upload destination address, source file address, log size, and log identifier; the remote control terminal uploads according to the upload task.
  • the task uploads the log file to the preset server.
  • the remote control terminal can create an upload task after obtaining the log file.
  • the task information of the upload task can include the upload destination address, source file address, log size, and log identifier, etc.
  • the remote control terminal can package the log file according to the upload task.
  • the packaged log file can carry information such as the source file address, log size, and log identifier, and upload the packaged log file to the server corresponding to the upload destination address.
  • the remote control terminal uploading the log file to the preset server according to the upload task may include: the remote control terminal obtains the upload password of the server; the remote control terminal uploads the log file to the server according to the upload password and the upload task, and displays the upload progress ; When the upload is successful, the remote control terminal outputs a prompt message indicating that the upload is successful.
  • the remote control terminal can obtain the upload password of the server.
  • the upload password can be generated by the server.
  • the upload password can be an upload interface to allow the remote control terminal to upload log files.
  • the upload password can be performed according to actual needs. Flexible settings.
  • the remote control terminal uploads the log file to the server according to the upload password and upload task, and obtains the upload progress in real time, and displays the upload progress for the user to view.
  • the remote control terminal can output a prompt message indicating that the upload is successful, so that the user can know in time that the log file has been uploaded.
  • the prompt information can include the uploaded log file information, upload time, and query method, etc.
  • the query method can be an order number such as a QR code or a barcode, and subsequent users can use the order number such as a QR code or a barcode to download from the server. Download the corresponding log file.
  • the drone in order to reduce the burden of the main chip, the drone can be equipped with auxiliary chips.
  • the types of the main chip and the auxiliary chip of the drone can be flexibly set according to actual needs and are not limited here.
  • the remote control terminal can only pull log files from the main chip of the drone, or the remote control terminal can only pull log files from the secondary chip of the drone, or the remote control terminal can The log files are pulled from the main chip and auxiliary chip of the drone, and the process of pulling and uploading the log files can be as follows:
  • the remote control terminal sends an FTP start request to the main chip/auxiliary chip of the drone.
  • the main chip/auxiliary chip of the UAV turns on FTP.
  • the main chip/secondary chip of the drone After the FTP is successfully turned on, the main chip/secondary chip of the drone returns a message indicating that the FTP is turned on successfully to the remote control terminal.
  • the remote control terminal After receiving the message that the FTP is opened successfully, the remote control terminal sends a log acquisition request to the main chip/auxiliary chip of the UAV via FTP.
  • the main chip/auxiliary chip of the UAV sends sorting information to the UAV based on the log acquisition request.
  • the remote control terminal displays multiple sorting information, selecting target sorting information from the multiple sorting information, and establishing a download task according to the target sorting information.
  • the remote control terminal sends a log file path acquisition request to the main chip/auxiliary chip of the drone according to the download task.
  • the main chip/auxiliary chip of the drone sends the log file path to the remote control terminal based on the log file path acquisition request.
  • the remote control terminal sends a log file download request to the main chip/secondary chip of the drone according to the path of the log file.
  • the main chip/auxiliary chip of the drone obtains log files from various components and compresses the log files.
  • the main chip/auxiliary chip of the drone sends the compressed log file to the remote control terminal.
  • the remote control terminal After receiving the contracted log file, the remote control terminal sends a message to close the FTP to the main chip/auxiliary chip of the drone.
  • the main chip/auxiliary chip of the UAV closes the FTP based on the received information to close the FTP.
  • the remote control terminal After receiving the contracted log file, the remote control terminal creates an upload task.
  • the remote control terminal uploads the log file to the server according to the upload task.
  • the remote control terminal of the embodiment of the present application can send to the UAV the request information for obtaining the failure of each component of the UAV; the UAV obtains the failure information sent by each component in response to the failure request information, and generates the failure according to the failure information of each component Identification, the fault identification is sent to the remote control terminal; where the fault identification includes component information and fault information; after the remote control terminal receives the fault identification, the component information and fault information corresponding to the fault identification can be displayed on the display interface of the remote control terminal.
  • This solution can generate the fault identification of the fault information of each component, so that the remote control terminal can accurately obtain the component information and the fault information for display according to the fault identification, avoiding the repeated acquisition of the fault information, so as to effectively analyze the fault information and improve the failure. Accuracy of information acquisition.
  • FIG. 18 is a schematic flowchart of a method for managing a failure of an unmanned aerial vehicle according to an embodiment of the present application.
  • the failure management method of the UAV can be applied to a remote control terminal, which will be described in detail below.
  • the fault management method of the UAV may include steps S201 to S203, etc., which may be specifically as follows:
  • S201 Send to the drone the request information for obtaining the failure of each component of the drone.
  • sending to the drone the request information for obtaining the failure of each component of the drone may include: sending the request information for obtaining the failure of each component of the drone to the main chip of the drone.
  • sending to the main chip of the drone to obtain the failure request information of each component of the drone may include: obtaining a subscription request, and sending to the main chip of the drone according to the subscription request to obtain the various components of the drone The fault request information.
  • obtaining the subscription request may include: receiving a subscription request that the user triggers a subscription control input in the health management system of the drone.
  • the receiving drone returns a fault identification based on the information in response to the fault request.
  • the fault identification is generated by the drone acquiring fault information sent by each component based on the response to the fault request information, and the fault identification includes component information and fault information.
  • S203 Display component information and fault information corresponding to the fault identifier in the display interface of the remote control terminal.
  • displaying the component information and fault information corresponding to the fault indicator in the display interface of the remote control terminal may include: displaying the component information and fault information corresponding to the fault indicator in a pop-up window on the display interface; or, displaying on the display interface
  • the health management system of the drone, and the component information and fault information corresponding to the fault identification are added to the health management system of the drone.
  • the fault management method of the drone may further include: receiving an information acquisition request input by a user; and acquiring the pre-stored historical fault information of the drone from a locally preset database according to the information acquisition request.
  • the method for managing the fault of the drone may further include: outputting the historical fault information of the drone .
  • outputting historical fault information of the drone may include: displaying the historical fault information of the drone in a pop-up window on the display interface; or, broadcasting the historical fault information of the drone through voice;
  • the UAV’s historical failure information is displayed; or, the UAV’s historical failure information is sent to a preset mailbox or instant messaging window.
  • displaying the historical failure information of the UAV may include: displaying the components in the display interface of the UAV according to the types of different components of the UAV. ; Display the historical failure information of the UAV in the health management system, and identify the area where the abnormal component corresponding to the historical failure information is located.
  • identifying the area where the abnormal component corresponding to the historical fault information is located may include: marking with a preset color in the area where the abnormal component corresponding to the historical fault information is located; and/or, marking the abnormality corresponding to the historical fault information.
  • the area where the component is located is marked with text; and/or, the area where the abnormal component corresponding to the historical fault information is located is marked with a preset icon.
  • acquiring the pre-stored historical failure information of the UAV from the locally preset database may include: extracting the failure identifier from the information acquisition request; acquiring the advance information from the locally preset database. Stored historical failure information of the UAV corresponding to the failure identification.
  • receiving an information acquisition request input by a user may include: receiving a voice signal, gesture, touch operation, or fingerprint information input by the user, and generating an information acquisition request based on the voice signal, gesture, touch operation, or fingerprint information.
  • the fault management method of the drone may further include: receiving an information acquisition request input by the user; sending a path acquisition request to the main chip of the drone according to the information acquisition request; and receiving the main chip of the drone based on The fault path returned by the path acquisition request; download historical fault files from the drone according to the fault path; analyze the historical fault files to obtain historical fault information.
  • the fault management method of the drone further includes: sending a log acquisition request to the drone; receiving multiple sort information of the drone returned by the drone based on the log acquisition request; Select the target sorting information; download the log file according to the target sorting information.
  • receiving multiple sort information of the drone returned by the drone based on the log acquisition request may include: receiving the sort path returned by the drone based on the log acquisition request; downloading and downloading from the drone through a file transfer protocol The information text file corresponding to the flight path; the information text file is parsed to obtain multiple flight information.
  • selecting the target flight information from a plurality of flight information may include: displaying a plurality of flight information; receiving a selection instruction input by a user based on the displayed plurality of flight information; and selecting a target from the plurality of flight information according to the selection instruction Sort information.
  • selecting the target order information from the plurality of order information may include: obtaining the priority of each order information; and setting the order information with the highest priority as the target order information.
  • obtaining the priority of each sorting information may include: obtaining the sorting time sequence of the sorting information, and setting the first sorted sorting information as the sorting information with the highest priority according to the sorting time sequence; or, obtaining sorting information.
  • the sort information corresponding to the highest abnormal severity level is set as the sort information with the highest priority.
  • sending a log acquisition request to the drone may include: receiving an acquisition instruction generated by the user in the health management system interface of the drone and triggering the upload of the log control or the log management control; and sending the acquisition instruction to the drone according to the acquisition instruction. Send a log acquisition request.
  • sending a log acquisition request to the drone may include: sending a file transfer protocol opening request to the drone; after the receiving drone successfully opens the file transfer protocol based on the opening request, the returned file transfer protocol is opened successfully After receiving the message that the file transfer protocol is successfully opened, it sends a log acquisition request to the drone through the file transfer protocol.
  • the fault management method of the drone may further include: sending the information that the file transfer protocol is closed to the drone, so that the drone receives the information that the file transfer protocol is closed. After the information, close the file transfer protocol.
  • downloading the log file according to the target sorting information may include: sending a log file path acquisition request to the drone according to the target sorting information; receiving the log file path returned by the drone based on the log file path acquisition request; never Download the log file corresponding to the log file path on the HMI.
  • downloading the log file corresponding to the log file path from the drone may include: sending a log file download request to the drone according to the log file path; receiving the compressed log returned by the drone based on the log file download request File and download progress; display the download progress, and after the compressed log file is downloaded, the log file of the drone is obtained.
  • downloading the log file according to the target sort information may include: establishing a download task according to the target sort information.
  • the download task includes the chip location where the log file is located, the log file size, and the log identifier; Download the log file corresponding to the log ID at the location.
  • downloading the log file corresponding to the log identifier from the chip location where the log file is located may include: sending a download request to the main chip of the drone according to the download task; receiving the response returned by the main chip in response to the download request
  • the log file is a log file corresponding to the log identifier sent by each component at the chip location where the log file received by the main chip is located.
  • the method for managing the failure of the drone may further include: uploading the log file to a preset server.
  • uploading the log file to the preset server may include: creating an upload task.
  • the task information of the upload task includes the upload destination address, source file address, log size, and log identifier; uploading the log file to the The preset server.
  • uploading the log file to the preset server according to the upload task may include: obtaining the upload password of the server; uploading the log file to the server according to the upload password and upload task, and displaying the upload progress; when the upload is successful, A prompt message indicating that the upload is successful is output.
  • the remote control terminal of the embodiment of the present application can send to the drone to obtain the fault request information of each component of the drone, and receive the fault identification returned by the drone based on the response to the fault request information, where the fault identification is the drone based on the response fault
  • the request information is generated by acquiring the fault information sent by each component, and the fault identification includes component information and fault information.
  • the component information and fault information corresponding to the fault identification can be displayed in the display interface of the remote control terminal.
  • the remote control terminal of the solution can generate fault identification according to the fault information sent by each component to accurately obtain the component information and fault information for display, so as to effectively analyze the fault information and improve the accuracy of the fault information acquisition.
  • FIG. 19 is a schematic flowchart of a method for managing a failure of an unmanned aerial vehicle according to an embodiment of the present application.
  • the fault management method of the UAV can be applied to the UAV, which will be described in detail below.
  • the fault management method of the UAV may include steps S301 to S303, etc., which may be specifically as follows:
  • S301 Receive fault request information sent by the remote control terminal to obtain each component of the drone.
  • receiving the request information for acquiring the failure of each component of the drone sent by the remote control terminal may include: receiving, through the main chip of the drone, the request for acquiring the failure information of each component of the drone sent by the remote control terminal.
  • obtaining the fault information sent by each component may include: receiving the fault information sent by each component in response to the fault request information through the main chip.
  • receiving the fault information sent by each component may include: obtaining operating parameters, and when it is determined that the component is abnormal according to the operating parameters, sending an obtaining request to each abnormal component through the main chip; The main chip receives the fault information sent by each abnormal component based on the acquisition request.
  • the fault management method of the drone may further include: receiving the path acquisition request sent by the remote control terminal through the main chip of the drone; returning the fault path to the remote control terminal based on the path acquisition request through the main chip; receiving the remote control The terminal sends historical fault file download requests to each component chip based on the fault path; through each component chip based on the historical fault file download request, historical fault information is returned to the remote control terminal.
  • the fault management method of the drone may further include: receiving a log acquisition request sent by the remote control terminal; returning multiple sorts of drone information to the remote control terminal based on the log acquisition request; receiving the remote control terminal based on the multiple sorts The log file download request of the information transmission; the log file is returned to the remote control terminal based on the log file download request.
  • returning multiple sort information of the drone to the remote control terminal based on the log acquisition request includes: obtaining the sorting path based on the log acquisition request through the main chip of the drone, and sending the sorting path to the remote control terminal; The chip receives the sort information download request sent by the remote control terminal based on the sort path; and sends multiple sort information to the remote control terminal based on the sort information download request through the main chip.
  • returning the log file to the remote control terminal based on the log file download request may include: obtaining the log file from each component chip based on the log file download request through the main chip of the drone, and sending the log file to the remote control terminal.
  • receiving the log acquisition request sent by the remote control terminal may include: receiving a file transfer protocol activation request sent by the remote control terminal; opening the file transfer protocol based on the activation request, and after successfully opening the file transfer protocol, returning to the remote control terminal A message indicating that the file transfer protocol is successfully opened; the file transfer protocol is used to receive the log acquisition request sent by the remote control terminal after receiving the message that the file transfer protocol is successfully opened.
  • the fault management method of the drone may further include: receiving the information that the file transfer protocol is closed sent by the remote control terminal; and based on the information that the file transfer protocol is closed, Close the file transfer protocol.
  • receiving the log file download request sent by the remote control terminal based on multiple sort information may include: receiving a log file path acquisition request sent by the remote control terminal according to the target sort information; Log file path; to receive log file download requests sent by the remote control terminal based on the log file path.
  • returning the log file to the remote control terminal based on the log file download request may include: the compressed log file returned to the remote control terminal based on the log file download request, and the download progress.
  • receiving the log file download request sent by the remote control terminal based on the multiple sort information, and returning the log file to the remote control terminal based on the log file download request may include: receiving the download task established by the remote control terminal based on the multiple sort information to the unmanned The download request sent by the main chip of the computer, the download task includes the chip location where the log file is located, the size of the log file, and the log identifier; in response to the download request through the main chip, the main chip receives the log file corresponding to the log identifier sent by each component of the chip location where the log file is located. Log files and send the log files to the remote control terminal.
  • the unmanned aerial vehicle of the embodiment of the present application can receive the fault request information of each component of the drone sent by the remote control terminal, and then in response to the fault request information, obtain the fault information sent by each component, and generate a fault identifier according to the fault information of each component ,
  • the fault identification includes component information and fault information.
  • the fault indicator can be sent to the remote control terminal, so that the remote control terminal displays the component information and fault information corresponding to the fault indicator in the display interface.
  • the drone can generate a fault identification based on the fault information sent by each component, and send the fault identification to the remote control terminal, so that the remote control terminal can accurately obtain component information and fault information based on the fault identification for display, so as to effectively display the fault information Analysis improves the accuracy of fault information acquisition.
  • FIG. 20 is a schematic block diagram of a fault management system for a drone provided by an embodiment of the present application.
  • the fault management system 11 of the UAV may include a remote control terminal 111 and a UAV 112. Both the remote control terminal 111 and the UAV 112 may include a processor and a memory. The processor and the memory are connected by a bus.
  • the bus is, for example, I2C (Inter-integrated Circuit) bus.
  • the processor is used to call a computer program stored in the memory, and when executing the computer program, implement the UAV fault management method provided in the embodiment of the present application.
  • the remote control terminal sends to the drone to obtain the fault request information of each component of the drone; the drone responds to the fault request information, obtains the fault information sent by each component, and generates the fault identification according to the fault information of each component, and
  • the fault identification is sent to the remote control terminal; the fault identification includes component information and fault information; after the remote control terminal receives the fault identification, the component information and fault information corresponding to the fault identification are displayed on the display interface of the remote control terminal.
  • the remote control terminal receives the information acquisition request input by the user; the remote control terminal acquires the pre-stored historical failure information of the drone from a locally preset database according to the information acquisition request.
  • the remote control terminal sends a log acquisition request to the drone; the drone returns multiple sorts of drone information to the remote control terminal based on the log acquisition request; Select the target sorting information from each sorting information; the remote control terminal downloads the log file according to the target sorting information.
  • FIG. 21 is a schematic block diagram of a remote control terminal according to an embodiment of the present application.
  • the remote control terminal 12 may include a processor 121 and a memory 122, and the processor 121 and the memory 122 are connected by a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 121 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU central processing unit
  • DSP Digital Signal Processor
  • the memory 122 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk, etc., and may be used to store computer programs.
  • ROM Read-Only Memory
  • the memory 122 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk, etc., and may be used to store computer programs.
  • the remote control terminal 12 may also include a display 123, etc., for displaying component information and fault information corresponding to the fault identification.
  • the display 123 may also display other information.
  • the specific content is not limited here.
  • the type and size of the display 123 may be based on In fact, flexible settings are required.
  • the processor 121 is used to call a computer program stored in the memory 122, and when executing the computer program, implement the UAV fault management method provided in the embodiment of the present application. For example, the following steps may be performed:
  • the fault identification includes component information and fault information; the component information and fault information corresponding to the fault identification are displayed in the display interface of the remote control terminal. For example, the component information and the fault information corresponding to the fault identification are displayed on the display 123.
  • the processor 121 is further configured to perform: receiving an information acquisition request input by a user, and obtaining pre-stored historical failure information of the drone from a locally preset database according to the information acquisition request.
  • the processor 121 is further configured to execute: send a log acquisition request to the drone, receive multiple sort information of the drone returned by the drone based on the log acquisition request; select a target from the multiple sort information Sort information, download the log file according to the target sort information.
  • FIG. 22 is a schematic block diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • the drone 13 may include a processor 131 and a memory 132, and the processor 131 and the memory 132 are connected by a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 131 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU central processing unit
  • DSP Digital Signal Processor
  • the memory 132 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk, etc., and may be used to store computer programs.
  • ROM Read-Only Memory
  • the memory 132 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk, etc., and may be used to store computer programs.
  • the processor 131 is used to call a computer program stored in the memory 132, and when executing the computer program, implement the UAV fault management method provided in the embodiment of the present application. For example, the following steps may be performed:
  • the processor 131 is further configured to perform: receive a log acquisition request sent by the remote control terminal, and return multiple sorts of drone information to the remote control terminal based on the log acquisition request; The log file download request, based on the log file download request, returns the log file to the remote control terminal.
  • An embodiment of the present application also provides a computer program.
  • the computer program includes program instructions, and the processor executes the program instructions to implement the UAV fault management method provided in the embodiments of the present application.
  • the embodiment of the present application also provides a storage medium, the storage medium is a computer-readable storage medium, the storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the The failure management method of UAV.
  • the storage medium may be the fault management system of the drone described in any of the foregoing embodiments or the internal storage unit of the remote control terminal, such as the hard disk or memory of the remote control terminal.
  • the storage medium can also be an external storage device of the remote control terminal, such as a plug-in hard disk equipped on the remote control terminal, a smart memory card (Smart Media Card, SMC), a Secure Digital (SD) card, and a flash card (Flash Card) Wait.
  • the computer program stored in the storage medium can execute any of the UAV fault management methods provided in the embodiments of the present application, it can implement any type of UAV faults provided in the embodiments of the present application.
  • the beneficial effects that can be achieved by the management method see the previous embodiments for details, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种无人机的故障管理办法、设备及存储介质,包括:遥控终端向无人机发送获取无人机的各个部件的故障请求信息(S101);无人机响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将故障标识发送至遥控终端;其中,故障标识包括部件信息和故障信息(S102);遥控终端接收到故障标识后,在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息(S103)。提高了故障信息获取的精准性。

Description

无人机的故障管理方法、设备及存储介质 技术领域
本申请涉及无人机技术领域,尤其涉及一种无人机的故障管理方法、设备及存储介质。
背景技术
随着无人机的技术发展,无人机的应用越来越广泛。无人机在使用的过程中,随着使用时间的增加,难免会出现一些故障,此时往往需要获取无人机的故障信息,以便对故障进行分析。
现有技术中,无人机往往包括多个不同的部件,而每个部件都有各自的故障处理机制,例如每个部件的故障推送机制以及推送内容等都不一样,这可能使同一个故障在不同部件的表达不一样。当无人机的某个部件出现故障时,直接由该部件向遥控终端推送故障信息,而当同一个故障A引发多个部件出现故障时,多个部件分别向遥控终端推送故障A信息,导致在故障推送上存在重复推送,从而使得遥控终端收到冗余的故障信息,降低了故障信息推送的准确性,并且不利于后续维护人员对故障信息进行分析,使得维护人员需要对多条故障信息进行重复分析,浪费人力资源。
发明内容
本申请实施例提供一种无人机的故障管理方法、设备及存储介质,可以提高故障信息获取的精准性。
第一方面,本申请实施例提供了一种无人机的故障管理方法,应用于遥控终端和与所述遥控终端通信的无人机,所述方法包括:
遥控终端向所述无人机发送获取所述无人机的各个部件的故障请求信息;
所述无人机响应于所述故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将所述故障标识发送至所述遥控终端;其中,所述故障标识包括部件信息和故障信息;
所述遥控终端接收到所述故障标识后,在所述遥控终端的显示界面内显示所述故障标识对应的部件信息和故障信息。
第二方面,本申请实施例提供了一种无人机的故障管理方法,应用于遥控 终端,所述遥控终端用于与无人机进行通信,所述方法包括:
向所述无人机发送获取所述无人机的各个部件的故障请求信息;
接收所述无人机基于响应所述故障请求信息返回的故障标识,所述故障标识为无人机基于响应所述故障请求信息获取各个部件发送的故障信息生成,所述故障标识包括部件信息和故障信息;
在所述遥控终端的显示界面内显示所述故障标识对应的部件信息和故障信息。
第三方面,本申请实施例提供了一种无人机的故障管理方法,应用于无人机,所述无人机用于与遥控终端进行通信,所述方法包括:
接收所述遥控终端发送的获取所述无人机的各个部件的故障请求信息;
响应于所述故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,所述故障标识包括部件信息和故障信息
将所述故障标识发送至所述遥控终端,以使得所述遥控终端在显示界面内显示所述故障标识对应的部件信息和故障信息。
第四方面,本申请实施例还提供了一种无人机的故障管理***,所述无人机的故障管理***包括遥控终端和无人机,所述遥控终端与所述无人机进行通信,其中:
所述遥控终端向所述无人机发送获取所述无人机的各个部件的故障请求信息;
所述无人机响应于所述故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将所述故障标识发送至所述遥控终端;其中,所述故障标识包括部件信息和故障信息;
所述遥控终端接收到所述故障标识后,在所述遥控终端的显示界面内显示所述故障标识对应的部件信息和故障信息。
第五方面,本申请实施例还提供了一种遥控终端,包括:
显示器,用于显示故障标识对应的部件信息和故障信息;
存储器,用于存储计算机程序;
处理器,用于调用所述存储器中的计算机程序,以执行本申请实施例提供的任一种无人机的故障管理方法。
第六方面,本申请实施例还提供了一种无人机,包括:
存储器,用于存储计算机程序;
处理器,用于调用所述存储器中的计算机程序,以执行本申请实施例提供的任一种无人机的故障管理方法。
第七方面,本申请实施例还提供了一种可移动平台,包括:
平台本体;
存储器,用于存储计算机程序;
处理器,用于调用所述存储器中的计算机程序,以执行本申请实施例提供的任一种无人机的故障管理方法。
第八方面,本申请实施例还提供了一种存储介质,所述存储介质用于存储计算机程序,所述计算机程序被处理器加载,以执行本申请实施例提供的任一种无人机的故障管理方法。
第九方面,本申请实施例还提供了一种计算机程序,所述计算机程序被处理器加载,以执行本申请实施例提供的任一种无人机的故障管理方法。
本申请实施例遥控终端可以向无人机发送获取无人机的各个部件的故障请求信息;无人机响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将故障标识发送至遥控终端;其中,故障标识包括部件信息和故障信息;遥控终端接收到故障标识后,可以在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息。该方案可以各个部件的故障信息生成故障标识,以使得遥控终端可以根据故障标识准确获取部件信息和故障信息进行显示,避免了对故障信息的重复获取,以便对故障信息进行有效分析,提高了故障信息获取的精准性。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的遥控终端的示意图;
图2是本申请实施例提供的无人机的故障管理方法应用场景的示意图;
图3是本申请实施例提供的无人机的故障管理方法的流程示意图;
图4是本申请实施例提供的故障信息订阅的示意图;
图5是本申请实施例提供的故障信息订阅的另一示意图;
图6是本申请实施例提供的遥控终端和无人机交互的示意图;
图7是本申请实施例提供的无人机的主芯片和各个部件的芯片交互的示意图;
图8是本申请实施例提供的弹窗显示故障信息的示意图;
图9是本申请实施例提供的在无人机的健康管理***内显示故障信息的示意图;
图10是本申请实施例提供的无人机的健康管理***显示界面的示意图;
图11是本申请实施例提供的故障处理的帮助文档详情的示意图;
图12是本申请实施例提供的显示维护建议的示意图;
图13是本申请实施例提供的显示维护策略的示意图;
图14是本申请实施例提供的从架次信息列表中选择目标架次信息的示意图;
图15是本申请实施例提供的下载进度显示的示意图;
图16是本申请实施例提供的上传进度显示的示意图;
图17是本申请实施例提供的日志文件拉取及上传的示意图;
图18是本申请实施例提供的无人机的故障管理方法的另一流程示意图;
图19是本申请实施例提供的无人机的故障管理方法的另一流程示意图;
图20是本申请实施例提供的无人机的故障管理***的示意图;
图21是本申请实施例提供的遥控终端的结构示意图;
图22是本申请实施例提供的无人机的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请的实施例提供了一种无人机的故障管理方法、设备及存储介质,其中,该存储介质为计算机可读存储介质,该设备可以包括无人机的故障管理系 统、遥控终端、无人机以及可移动平台等,无人机的故障管理***、遥控终端、无人机以及可移动平台等的类型可以根据实际需要进行灵活设置,具体内容在此处不做限定。例如,可移动平台可以为移动终端、无人机、机器人或无人驾驶车辆等。又例如,如图1所示,遥控终端100可以是设置有显示器101和控制按键102等的遥控设备,用于与无人机建立通信连接,并对无人机进行控制,该显示器101可以用于显示故障标识对应的部件信息和故障信息等,该显示器101还可以用于显示无人机的健康管理***,通过无人机的健康管理***可以查看无人机的相关状态。该遥控终端还可以是第三方手机或平板电脑等,通过预设的协议与无人机建立通信连接,并对无人机进行控制。
无人机的故障管理***可以包括建立通信连接的遥控终端和无人机等,该无人机可以包括相机、测距装置以及障碍物感知装置等。该无人机还可以包括用于搭载相机的云台,该云台可以带动相机移动到合适位置,以便通过相机采集所需的图像。其中,相机的类型可以是超广角相机、广角相机、长焦相机(即变焦相机)、红外相机、远红外相机、紫外相机、以及飞行时间测距(TOF,Time of Flight)深度相机(简称TOF深度相机)等。该无人机可以包括旋翼型无人机(例如四旋翼无人机、六旋翼无人机、或八旋翼无人机等)、固定翼无人机、或者是旋翼型与固定翼无人机的组合,在此不作限定。
图2是实施本申请实施例提供的无人机的故障管理方法的一场景示意图,如图2所示,遥控终端100与一无人机200通信连接,遥控终端100可以向无人机发送获取无人机的各个部件的故障请求信息,无人机200可以响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将故障标识发送至遥控终端100,故障标识包括部件信息和故障信息;遥控终端100接收到故障标识后,可以在遥控终端100的显示界面内显示故障标识对应的部件信息和故障信息。从而无人机200可以通过各个部件的故障信息生成故障标识,以使得遥控终端100可以根据故障标识准确获取部件信息和故障信息进行显示,以便对故障信息进行有效分析,提高了故障信息获取的精准性,使得对无人机故障分析较为准确,保证了无人机200飞行的安全性。
遥控终端100还可以用于控制无人机200的飞行或执行相应的动作,并从无人机200中获取相应的运动信息,运动信息可以包括飞行方向、飞行姿态、飞行高度、飞行速度和位置信息等,并将获取的运动信息发送给遥控终端100,由遥控终端100进行分析及显示等。遥控终端100还可以接收用户输入的控制 指令,基于控制指令对无人机200上的测距装置或相机等进行相应的控制。例如,遥控终端100可以接收用户输入的拍摄指令或测距指令,并将拍摄指令或测距指令发送给无人机200,无人机200可以根据拍摄指令控制相机对采集到的画面进行拍摄,或者根据测距指令控制测距装置对目标物进行测距等。
在一些实施方式中,无人机200的障碍物感知装置可以获取无人机200周围的感测信号,通过对感测信号进行分析,可以得到障碍物信息,并在该无人机200的显示器内显示障碍物信息,使得用户可以获知无人机200感知到的障碍物,便于用户控制无人机200避开障碍物。其中,该显示器可以为液晶显示屏,也可以为触控屏等。
在一些实施方式中,障碍物感知装置可以包括至少一个传感器,用于获取来自无人机200的至少一个方向上的感测信号。例如,障碍物感知装置可以包括一个传感器,用于检测无人机200的前方的障碍物。例如,障碍物感知装置可以包括两个传感器,分别用于检测无人机200的前方和后方的障碍物。例如,障碍物感知装置可以包括四个传感器,分别用于检测无人机200的前方、后方、左方、以及右方的障碍物等。例如,障碍物感知装置可以包括五个传感器,分别用于检测无人机200的前方、后方、左方、右方、以及上方的障碍物等。例如,障碍物感知装置可以包括六个传感器,分别用于检测无人机200的前方、后方、左方、右方、上方、以及下方的障碍物。障碍物感知装置中的各个传感器可以是分离实现的,也可以是集成实现的。传感器的检测方向可以根据具体需要进行设置,以检测各种方向或方向组合的障碍物,而不仅限于本申请公开的上述形式。
无人机200可具有一个或多个推进单元,以支持无人机200在空中飞行。该一个或多个推进单元可使得无人机200以一个或多个、两个或多个、三个或多个、四个或多个、五个或多个、六个或多个自由角度移动。在某些情形下,无人机200可以绕一个、两个、三个或多个旋转轴旋转。旋转轴可彼此垂直。旋转轴在无人机200的整个飞行过程中可维持彼此垂直。旋转轴可包括俯仰轴、横滚轴和/或偏航轴。无人机200可沿一个或多个维度移动。例如,无人机200能够因一个或多个旋翼产生的提升力而向上移动。在某些情形下,无人机200可沿Z轴(可相对无人机200方向上)、X轴和/或Y轴(可为横向)移动。无人机200可沿彼此垂直的一个、两个或三个轴移动。
无人机200可以是旋翼飞机。在某些情形下,无人机200可以是可包括多 个旋翼的多旋翼无人机。多个旋翼可旋转而为无人机200产生提升力。旋翼可以是推进单元,可使得无人机200在空中自由移动。旋翼可按相同速率旋转和/或可产生相同量的提升力或推力。旋翼可按不同的速率随意地旋转,产生不同量的提升力或推力和/或允许无人机200旋转。在某些情形下,在无人机200上可提供一个、两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个旋翼。这些旋翼可布置成其旋转轴彼此平行。在某些情形下,旋翼的旋转轴可相对于彼此呈任意角度,从而可影响无人机200的运动。
无人机200可具有多个旋翼。旋翼可连接至无人机200的本体,本体可包含控制单元、惯性测量单元(inertial measuring unit,IMU)、处理器、电池、电源和/或其他传感器。旋翼可通过从本体中心部分分支出来的一个或多个臂或延伸而连接至本体。例如,一个或多个臂可从无人机200的中心本体放射状延伸出来,而且在臂末端或靠近末端处可具有旋翼。
需要说明的是,图1和图2中的各设备结构并未构成对无人机的故障管理方法的应用场景的限定。
请参阅图3,图3是本申请一实施例提供的一种无人机的故障管理方法的流程示意图。该无人机的故障管理方法可以应用于无人机的故障管理***中,可以实现对无人机各个部件进行故障定义、故障收集、故障上报、以及日志采集等,其中,故障定义是指制定判断某状态是否合理的标准,如无人机的温度高于多少摄氏度为高温异常;故障收集是指当发生故障时,该故障被监听并存储;故障上报是指当发生故障时,将该故障主动汇报给无人机的健康管理***,由硬件可知变成用户可知;日志采集是指当故障发生后,对当时生成的日志文件进行收集。以下将进行详细说明。
如图3所示,该无人机的故障管理方法可以包括步骤S101至步骤S103等,具体可以如下:
S101、遥控终端向无人机发送获取无人机的各个部件的故障请求信息。
遥控终端可以根据实际需求通过与无人机协商好的预设协议,向无人机发送获取无人机的各个部件的故障请求信息,其中,各个部件以及故障请求信息可以根据实际需要进行灵活设置,具体内容在此处不作限定,例如,各个部件可以包括电池、相机、云台、电机、以及陀螺仪等,该故障请求信息可以是故障订阅信息。
例如,遥控终端可以每间隔预设时间或定时向无人机发送获取无人机的各 个部件的故障请求信息。又例如,为了保证无人机的飞行安全,遥控终端可以在控制无人机降落并停止飞行后,向无人机发送获取无人机的各个部件的故障请求信息。又例如,为了及时获取故障信息,遥控终端可以向无人机发送参数获取请求,并接收无人机基于参数获取请求向遥控终端返回无人机的运行参数,该运行参数可以包括飞行时长、飞行里程、电池循环次数、起降次数、以及激活时间等,然后遥控终端可以根据运行参数判断无人机是否存在异常,当根据运行参数确定无人机存在部件异常时,此时可以向无人机发送获取无人机存在异常的各个部件的故障请求信息。
在一些实施方式中,遥控终端向无人机发送获取无人机的各个部件的故障请求信息可以包括:遥控终端向无人机的主芯片发送获取无人机的各个部件的故障请求信息。
为了提高遥控终端与无人机之间交互的效率可靠性,及方便无人机的对各个部件统一管理的,无人机可以通过主芯片与遥控终端进行数据交互,此时,遥控终端可以向无人机的主芯片发送获取无人机的各个部件的故障请求信息,以便无人机的主芯片基于故障请求信息从各个部件获取对应的故障信息。
在一些实施方式中,遥控终端向无人机的主芯片发送获取无人机的各个部件的故障请求信息可以包括:遥控终端获取订阅请求,根据订阅请求向无人机的主芯片发送获取无人机的各个部件的故障请求信息。
为了提高故障信息获取的便捷性,遥控终端可以根据订阅需求向无人机发送故障请求信息,例如,遥控终端可以以默认的方式自定订阅故障信息的推送,基于自动订阅生成订阅请求,根据订阅请求向无人机的主芯片发送获取无人机的各个部件的故障请求信息。
在一些实施方式中,遥控终端获取订阅请求可以包括:遥控终端接收用户在无人机的健康管理***内触发订阅控件输入的订阅请求。
为了提高故障信息获取的灵活性,遥控终端可以根据用户订阅需求向无人机发送故障请求信息,遥控终端可以设置有用无人机的健康管理***,该无人机的健康管理***可以是安装在遥控终端上的应用程序(即APP)。其中,无人机的健康管理***用于对无人机的运行状态、异常状态、维护状态等各方面进行管理,具有对无人机的数据收集、及时反馈、异常上报、异常处理指引、维护提醒、维护指引以及日志上传等一整套的闭环功能,以便用户可以通过无人机的健康管理***直观查看无人机的所有情况。通过无人机的健康管理*** 可以集中反映当前无人机的整体状况,以及通过无人机的健康管理***可以提前获知无人机潜在的风险,并以及采取措施,减少故障发生。无人机的健康管理***的具体管理内容可以根据实际需要进灵活设置,在此处不作限定。例如,无人机的健康管理***还可以提供单独的对无人机的诊断界面,该诊断界面包含无人机整机所有部件的状态,帮助用户更准确的获得、分析以及判断无人机整机的健康情况。又例如,无人机的健康管理***还可以提供一套故障解决指导手册,其内容包含但不限于解决措施、引导说明以及错误搜索等。
无人机的健康管理***可以设置有故障信息推送的订阅控件,例如,如图4所示,该订阅控件可以订阅的开关按钮,对处于关闭状态下的开关按钮进行点击操作,可以将开关按钮切换至开启状态;对处于开状态下的开关按钮进行点击操作,可以将开关按钮切换至关闭状态。或者,如图5所示,开关按钮是可以左右滑动的滑动条,开关按钮的滑动块滑动至最左端时进入关闭状态,开关按钮的滑动块滑动至最右端时进入开启状态,当开关按钮处于开启状态时可以生成订阅请求。又例如,该订阅控件可以是触发按钮,每次订阅均需要点击该触发按钮,以激活触发按钮,生成订阅请求。此时,遥控终端可以接收用户在无人机的健康管理***内触发订阅控件输入的订阅请求。
S102、无人机响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将故障标识发送至遥控终端;其中,故障标识包括部件信息和故障信息。
其中,故障标识用于唯一识别不同部件的不同故障信息,故障标识可以由数字、字母和/或文字等组成,该故障标识可以是故障名称或故障编号等,例如,0x1610001c或0x1a020101等。部件信息可以包括部件的名称以及在无人机上的位置等,例如,前视红外传感器或1号云台等。故障信息可以包括故障详情,例如,前视红外传感器标定异常或电池温度过高等。无人机在接收到遥控终端发送的故障请求信息后,可以响应该故障请求信息。
在一些实施方式中,无人机响应于故障请求信息,获取各个部件发送的故障信息包括:无人机通过主芯片响应于故障请求信息,接收各个部件发送的故障信息。
为了提高遥控终端与无人机之间交互的效率可靠性,及方便无人机的对各个部件统一管理的,无人机可以通过主芯片与遥控终端进行数据交互,无人机的主芯片在接收到故障请求信息后,可以通过主芯片响应于故障请求信息。例 如,如图6所示,遥控终端可以通过无人机的健康管理***(即APP)向无人机发送故障请求信息,无人机通过主芯片在接收故障请求信息,主芯片在响应于故障请求信息的过程中,可以向各个部件对应的芯片发送故障信息获取请求,此时主芯片可以接收各个部件的芯片发送的故障信息。其中,如图7所示,主芯片还可以与相机、辅芯片以及遥控器芯片等进行数据交互,使得遥控终端在获取各个部件的故障信息时,不需要单独向各个部件发送请求,只需通过请求主芯片即可。
需要说明的是,对于各个部件的故障信息在无人机上的存储方式可以是:当部件存在芯片时,该部件对于的故障信息可以存储在自身的芯片上;当部件不存在芯片时,该部件对于的故障信息可以存储在主芯片上,这样可以避免故障信息存储在同一个位置,减轻存储空间的压力。当某些部件的故障信息存储在主芯片上时,主芯片可以直接从自身的存储空间中获取到该部件的故障信息,而不需要向该部件发送请求。
在无人机的主芯片在得到各个部件的故障信息后,可以根据各个部件的故障信息生成故障标识,该故障标识包括部件信息和故障信息。例如,在得到后视红外传感器标定异常的故障信息,可以生成后视红外传感器的故障标识:前视红外传感器标定异常(0x1a020101)。然后,无人机的主芯片可以将故障标识发送至遥控终端,实现了通过主芯片对各个部件的故障信息进行标准化整合推送,避免重复推送同一故障信息。
在一些实施方式中,无人机通过主芯片响应于故障请求信息,接收各个部件发送的故障信息可以包括:无人机获取运行参数,当根据运行参数确定存在部件异常时,通过主芯片向各个异常部件发送获取请求;无人机的主芯片接收各个异常部件基于获取请求发送的故障信息。
为了及时推送取故障信息,无人机可以实时或每间隔预设时间获取自身的运行参数,该运行参数可以包括飞行时长、飞行里程、电池循环次数、电池温度、起降次数、以及激活时间等,然后,根据运行参数判断是否存在部件异常,当根据运行参数确定存在部件异常时,可以通过主芯片向各个异常部件发送获取请求,此时无人机的主芯片可以接收各个异常部件基于获取请求返回的故障信息。
需要说明的是,为了提高故障标识传输的效率和安全性,无人机的主芯片可以将故障标识进行压缩及加密,得到压缩加密后的故障标识,将压缩加密后 的故障标识发送至遥控终端。遥控终端在接收到压缩加密后的故障标识,可以对压缩加密后的故障标识进行压缩及加密,得到故障标识。
S103、遥控终端接收到故障标识后,在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息。
遥控终端在接收到无人机发送的故障标识后,可以将故障标识对应的部件信息和故障信息存储至本地数据库中,以及在显示界面内显示故障标识对应的部件信息和故障信息,以便用户及时获知该部件信息和故障信息等。其中,该故障标识可以包括一个或多个,当故障标识为多个时,遥控终端可以在显示界面内显示多个故障标识对应的部件信息和故障信息。此时用户可以点击某个故障信息进入故障信息详情以及故障处理指引等的显示界面,使得用户可以获取无人机的整机设备情况,实现了自行完成对各个部件自检,进行统一展示,避免只能通过经验性的操作进行飞行前的不可靠检查,降低了无人机飞行的风险率。
在一些实施方式中,在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息可以包括:遥控终端在显示界面内弹窗显示故障标识对应的部件信息和故障信息。
为了提高维护信息显示的灵活性,遥控终端可以在显示界面内弹窗显示故障标识对应的部件信息和故障信息,其中,弹窗的大小、背景颜色以及显示位置等可以根据实际需要进行灵活设置。例如,如图8所示,在得到无人机的前视红外传感器标定异常后,可以弹窗显示“前视红外传感器标定异常(0x1a020101)”等信息。此时,弹窗显示的对话框可以在显示时间达到预设时间后自动关闭,或者由用户点击右上角的关闭按钮进行关闭等,该预设时间可以根据实际需要进行灵活设置。
在一些实施方式中,在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息可以包括:遥控终端在显示界面内显示无人机的健康管理***,并将故障标识对应的部件信息和故障信息添加至无人机的健康管理***中。
为了提高维护提醒信息输出的准确性,遥控终端可以在无人机的健康管理***的显示界面内,显示故障标识对应的部件信息和故障信息。例如,如图9所示,在确定无人机的多个故障后,可以在显示无人机的健康管理***的显示界面内,以列表的形式显示“无法起飞:已运行模拟器(0x1610001c),起飞需要重启无人机”、“请确认usb是否已连接或者***正在升级中(0x161000c8)”、 “电池电芯压差过大,请返航或降落,再对电池进行维护(0x16100082)”、“后视红外传感器标定异常(0x1a020103)”、以及“前视红外传感器标定异常(0x1a020101)”等11个故障信息。此时用户可以点击某个故障信息进入故障信息详情以及故障处理指引等的显示界面,使得用户可以获取无人机的整机设备情况,实现了自行完成对各个部件自检,进行统一展示,避免只能通过经验性的操作进行飞行前的不可靠检查,降低了无人机飞行的风险率。
需要说明的是,为了提高维护提醒信息输出的便捷性以灵活性,遥控终端还可以通过语音播报故障标识对应的部件信息和故障信息,其中,语音播报的分贝大小、以及语音播报的语言(如中文或英文)等可以根据实际需要进行灵活设置。此时可以在语音播报的循环次数达到预设次数后自动关闭,或者由用户点击关闭按钮进行关闭等,该预设次数可以根据实际需要进行灵活设置。遥控终端还可以将故障标识对应的部件信息和故障信息发送至预设邮箱或即时通信窗口,其中邮箱的类型或即时通信的类型等可以根据实际需要进行灵活设置。
在一些实施方式中,无人机的故障管理方法还可以包括:遥控终端接收用户输入的信息获取请求;遥控终端根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息。
为了方便查看无人机的整机设备情况,遥控终端可以根据实际需要对无人机的历史故障信息进行拉取。具体地,遥控终端接收用户输入的信息获取请求,例如,遥控终端接收用户在无人机的健康管理***内触发历史故障信息拉取控件生成的信息获取请求,或者,遥控终端接收用户在无人机的健康管理***内输入语音信号生成的信息获取请求。由于遥控终端可以在本地预设的数据库中预先存储的无人机的历史故障信息,因此,此时遥控终端可以根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息,该信息获取请求可以请求获取某个部件或多个部件的历史故障信息。实现了对每一个故障进行记录,提供历史故障信息的查看,提高用户体验。
在一些实施方式中,遥控终端接收用户输入的信息获取请求可以包括:遥控终端接收用户输入的语音信号、手势、触摸操作、或指纹信息,根据语音信号、手势、触摸操作、或指纹信息生成信息获取请求。
例如,用户可以输入查看历史故障信息相关的语音信号,遥控终端在接收到用户输入的语音信号后,可以生成无人机的历史故障信息的信息获取请求。或者,可以预先设置手势(例如,拳头或OK手势等)与历史故障信息的信息 获取请求之间的映射关系,用户可以输入查看历史故障信息对应的手势,遥控终端在接收到用户输入的手势,并确定该手势与查看历史故障信息的手势一致(例如相似度大于96%等)后,可以生成无人机的历史故障信息的信息获取请求。或者,用户可以在无人机的健康管理***显示界面内预设的历史故障信息的查看控件上,输入点击、按压或双击等触摸操作,遥控终端在接收到用户输入的触摸操作后,可以生成无人机的历史故障信息的信息获取请求。或者,可以预先设置用户的手指的指纹信息与历史故障信息的信息获取请求之间的对应关系,例如,用户A右手拇指或食指的指纹可以触发历史故障信息的信息获取请求,用户B左手拇指或中指的指纹可以触发历史故障信息的信息获取请求,遥控终端在接收到用户输入的指纹信息,并确定该用户的指纹与查看历史故障信息的指纹信息一致(例如相似度大于99%等)后,可以生成无人机的历史故障信息的信息获取请求。
在一些实施方式中,遥控终端根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息可以包括:遥控终端从信息获取请求中提取故障标识;遥控终端从本地预设的数据库中获取预先存储的与故障标识对应的无人机的历史故障信息。
为了提高历史故障信息获取的准确性,可以根据故障标识获取对应的历史故障信息,具体地,遥控终端可以将故障标识与历史故障信息进行对应存储,以及遥控终端接收到的信息获取请求中可以携带有一个或多个故障标识,此时遥控终端可以从信息获取请求中提取一个或多个故障标识,然后从本地预设的数据库中获取预先存储的与一个或多个故障标识对应的历史故障信息。
在一些实施方式中,遥控终端根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息之后,无人机的故障管理方法还可以包括:遥控终端输出无人机的历史故障信息,以便用户查看该历史故障信息。
在一些实施方式中,遥控终端输出无人机的历史故障信息可以包括:遥控终端在显示界面内弹窗显示无人机的历史故障信息。
为了提高历史故障信息输出的灵活性,遥控终端可以在显示屏内弹窗显示无人机的历史故障信息,其中,弹窗的大小、背景颜色以及显示位置等可以根据实际需要进行灵活设置。例如,如图8所示,在得到无人机的前视红外传感器标定异常后,可以弹窗显示“前视红外传感器标定异常(0x1a020101)”等历史故障信息。此时,弹窗显示的对话框可以在显示时间达到预设时间后自动关 闭,或者由用户点击右上角的关闭按钮进行关闭等,该预设时间可以根据实际需要进行灵活设置。
在一些实施方式中,遥控终端输出无人机的历史故障信息可以包括:遥控终端通过语音播报无人机的历史故障信息。
为了提高历史故障信息输出的便捷性,遥控终端可以语音播报无人机的历史故障信息,其中,语音播报的分贝大小、以及语音播报的语言(如中文或英文)等可以根据实际需要进行灵活设置。例如,在得到无人机数据传输异常后,可以语音播报“请确认usb是否已连接或者***正在升级中(0x161000c8)”相关的历史故障信息。此时,可以在语音播报的循环次数达到预设次数后自动关闭,或者由用户点击关闭按钮进行关闭等,该预设次数可以根据实际需要进行灵活设置。
在一些实施方式中,遥控终端输出无人机的历史故障信息可以包括:遥控终端在无人机的健康管理***的显示界面内,显示无人机的历史故障信息。
为了提高历史故障信息输出的准确性,遥控终端可以在无人机的健康管理***的显示界面内,显示无人机的历史故障信息。例如,如图9所示,在得到无人机的多个历史故障信息后,可以在显示无人机的健康管理***的显示界面内,以列表的形式显示“无法起飞:已运行模拟器(0x1610001c),起飞需要重启无人机”、“请确认usb是否已连接或者***正在升级中(0x161000c8)”、“电池电芯压差过大,请返航或降落,再对电池进行维护(0x16100082)”、“后视红外传感器标定异常(0x1a020103)”、以及“前视红外传感器标定异常(0x1a020101)”等11个故障信息。此时用户可以点击某个故障信息进入故障信息详情以及故障处理指引等的显示界面,使得用户可以获取无人机的整机设备情况,降低了无人机飞行的风险率。
在一些实施方式中,遥控终端输出无人机的历史故障信息可以包括:遥控终端将无人机的历史故障信息发送至预设邮箱或即时通信窗口。
为了提高历史故障信息输出的灵活性,遥控终端可以将无人机的历史故障信息发送至预设邮箱(例如维护人员指定的邮箱)或即时通信窗口(例如小程序、公众号、指定的QQ窗口、或指定的微信窗口),以便用户查看并获知无人机的状态。其中,邮箱的类型或即时通信的类型等可以根据实际需要进行灵活设置。
在一些实施方式中,遥控终端在无人机的健康管理***的显示界面内,显 示无人机的历史故障信息可以包括:遥控终端在健康管理***的显示界面内按照无人机不同部件的类型分区显示各部件;遥控终端在健康管理***内显示无人机的历史故障信息,以及对历史故障信息对应的异常部件所在区域进行标识。
例如,如图10所示,遥控终端可以将各部件的历史故障信息显示在无人机的健康管理***的显示界面内,具体地,可以在无人机的健康管理***的显示界面内按照无人机不同部件的类型分区显示各部件,例如,动力***、航电***、视觉***、电池***、图传***、以及云台等各部件分区独立显示,并对航电***和电池***等处于异常状态的部件进行标识,该标识方式可以根据实际需要进行灵活设置,具体内容在此处不作限定。在无人机的健康管理***的显示界面内还可以显示无人机维护接口、固件版本接口、日志管理接口以及异常记录接口等,通过异常记录接口可以进入无人机的历史故障信息的显示界面,以便用户直观查看即有效管理无人机各方面状态。
在一些实施方式中,遥控终端对历史故障信息对应的异常部件所在区域进行标识可以包括:遥控终端在历史故障信息对应的异常部件所在区域内以预设颜色进行标识;和/或,在历史故障信息对应的异常部件所在区域内以文字进行标识;和/或,在历史故障信息对应的异常部件所在区域内以预设图标进行标识。
具体地,遥控终端可以确定历史故障信息对应的异常部件的异常等级,根据异常等级在异常部件所在区域内以预设颜色进行标识,该预设颜色可以根据实际需要进行灵活设置,例如,航电***异常较为严重,其对应的异常等级较高,此时以深红色在航电***所在区域内进行标识。又例如,电池***异常为一般,其对应的异常等级为中等,此时以橙色在电池***所在区域内进行标识。或者,遥控终端可以在处于异常状态的各个部件所在区域内,均以相同的红色进行标识。
遥控终端还可以在异常部件所在区域内以文字进行标识,例如,航电***异常较为严重,此时在航电***所在区域内标识“严重”字样或者标识“异常严重”字样。又例如,电池***异常为一般,此时在电池***所在区域内标识“异常”字样。或者,遥控终端可以在处于异常状态的各个部件所在区域内,均以相同的“异常”字样进行标识
遥控终端还可以在异常部件所在区域内以预设图标进行标识,该预设图标可以根据实际需要进行灵活设置。例如,航电***异常较为严重,此时以三角形图标在航电***所在区域内进行标识。又例如,电池***异常为一般,此时 以圆形图标所在区域内进行标识。或者,遥控终端可以在处于异常状态的各个部件所在区域内,均以相同的图标进行标识。
需要说明的是,遥控终端可以仅对异常部件进行颜色标识,或者仅对异常部件进行文字标识,或者仅对异常部件进行图标标识。遥控终端还可以同时对对异常部件进行颜色标识、文字标识和图标标识。遥控终端还可以对异常部件进行颜色标识和文字标识,或者对异常部件进行颜色标识和图标标识,或者对异常部件进行文字标识和图标标识。
在一些实施方式中,无人机的故障管理方法还可以包括:遥控终端接收用户输入的信息获取请求;遥控终端根据信息获取请求,向无人机的主芯片发送路径获取请求;无人机的主芯片基于路径获取请求向遥控终端返回故障路径;遥控终端根据故障路径从无人机上下载历史故障文件;遥控终端对历史故障文件进行解析,得到历史故障信息。
为了提高历史故障信息获取的可靠在,当遥控终端本地数据库中未存储历史故障信息时,遥控终端可以从无人机上拉取历史故障信息。具体地,遥控终端可以接收用户在无人机的健康管理***内输入的信息获取请求,或者接收用户输入的语音信号生成的信息获取请求等,该信息获取请求即为历史故障信息的获取请求。遥控终端根据信息获取请求,通过预设协议向无人机的主芯片发送路径获取请求,该路径获取请求即为历史故障信息所存储路径的获取请求,该路径获取请求可以携带有对一条或多条路径的获取请求。此时无人机的主芯片基于路径获取请求确定历史故障信息存储的位置,生成故障路径,并通过预设协议向遥控终端返回故障路径。遥控终端可以根据故障路通过径文件传输协议(FTP,File Transfer Protocol)从无人机上下载历史故障文件,例如,遥控终端可以向无人机的主芯片发送历史故障文件下载请求,根据历史故障文件下载请求接收无人机的主芯片返回的历史故障文件。遥控终端对历史故障文件进行解析,例如进行Json解析,得到历史故障信息。当需要对多个部件的历史故障信息进行下载时,遥控终端可以接收无人机的主芯片发送的多个故障路径,并基于多个故障路径下载得到多个历史故障文件,对多个历史故障信息分别进行解析,得到各个部件对应的历史故障信息。
需要说明的是,在得到故障信息或历史故障信息后,遥控终端可以接收用户输入的故障处理指令,例如,遥控终端可以接收用户输入对航电***所在区域内的点击操作生成的故障处理指令,根据根据故障处理指令显示如图11所示 的无人机的航电***对应的异常处理的帮助文档详情。或者,可以在图10所示的显示界面内接收用户输入对异常记录接口的点击操作生成的故障处理指令,根据根据故障处理指令显示包含所有异常部件的异常列表,以供用户选择,在用户从异常列表中选择航电***后,可以显示如图11所示的无人机的航电***对应的异常处理的帮助文档详情,以供用户按照帮助文档详情中的提示对无人机进行自主维护操作,以使得用户可以自行解决掉部分问题,对于用户无法自行解决的问题可以返厂进行维护,以延长无人机的寿命以及解决异常问题,保证无人机的飞行安全。图11中,无人机的健康管理***还设置有日志上传功能,对于异常部件可以通过上传日志的接口将异常部件的日志文件上传至服务器,以便维护人员对日志文件进行分析,解决异常问题。
需要说明的是,遥控终端可以获取无人机的运行参数,当根据无人机的运行参数确定需要对无人机进行维护时,可以将运行参数与无人机预设的维护策略进行匹配,得到无人机对应的维护信息,根据维护信息输出需要对无人机进行维护的维护提醒信息。为了方便用户对无人机进行正确维护,遥控终端可以在无人机的健康管理***内显示维护项目对应的维护建议信息,例如,如图12所示,维护建议信息的显示界面内可以包括维护项目名称和无人机的工作状态等,无人机的工作状态可以包括无人机的飞行时长、起降次数、飞行里程、激活时间、电池I充放次数以及电池II充放次数等,维护项目名称包括无人机、电池、以及视觉***等,以及包括无人机、电池、以及视觉***等对应的维护建议。为了方便用户按照正确的维护方式对无人机进行维护,遥控终端还可以在无人机的健康管理***内显示维护项目对应的维护策略,例如,如图13所示,维护策略的显示界面内可以包括维护类型、维护项目、维护方式(即维护建议)、以及工作周期等,其中,维护类型可以包括常规检查和深度检查等,维护项目可以包括部件更换(例如更换易损部件或核心部件)、部件检修(检修易损部件或核心部件)、部件清洁(例如深度清洁)、定期维护或部件参数校准(例如视觉标定)等,维护方式可以包括用户自行维护或返厂维护等,工作周期可以包括飞行时长或累计作业时间等。此时用户可以按照显示的维护策略进行自主维护,或者返厂进行深层次的维护,以延长无人机的寿命。
在一些实施方式中,无人机的故障管理方法还包括:遥控终端向无人机发送日志获取请求;无人机基于日志获取请求向遥控终端返回无人机的多个架次信息;遥控终端在接收到多个架次信息后,从多个架次信息中选择目标架次信 息;遥控终端根据目标架次信息下载日志文件。
其中,架次信息可以是无人机的飞行架次信息,该架次信息可以包括飞行时间以及飞行位置等飞行信息,该飞行时间可以包括起飞时间和降落时间等。为了提高日志文件获取的准确性和有效性,遥控终端可以向无人机发送日志获取请求,例如,遥控终端可以在接收到用户输入的获取指令时,生成日志获取请求,并向无人机发送日志获取请求。无人机在接收到日志获取请求后,可以通过主芯片根据日志获取请求获取预先存储的多个架次信息,并向遥控终端返回无人机的多个架次信息。遥控终端在接收到多个架次信息后,可以从多个架次信息中选择一个或多个架次信息作为目标架次信息,然后遥控终端可以根据目标架次信息下载日志文件。从而可以通过架次信息准确性所需的日志文件,避免在日志采集时出现漏采或错采。
需要说明的是,为了提高日志文件获取的精准性,遥控终端可以根据故障标识获取日志文件。例如,遥控终端可以在接收到携带故障标识的日志文件获取指令后,向无人机发送携带故障标识的下载请求,并接收无人机基于携带目标故障标识的下载请求返回的日志文件。又例如,遥控终端可以在本地预先存储故障标识和日志标识之间的对应关系,遥控终端可以在接收到携带日志标识的日志文件获取指令后,根据日志标识确定对应的故障标识,然后向无人机发送携带故障标识的下载请求,并接收无人机基于携带目标故障标识的下载请求返回的日志文件。又例如,遥控终端向无人机发送日志获取请求,无人机基于日志获取请求向遥控终端返回无人机的多个架次信息,架次信息中可以携带有故障标识,遥控终端在接收到多个架次信息后,从多个架次信息中选择目标架次信息,并从目标架次信息中提取出目标故障标识,遥控终端向无人机发送携带目标故障标识的下载请求,并接收无人机基于携带目标故障标识的下载请求返回的日志文件,其中,无人机可以将故障标识和日志文件进行关联存储。
在一些实施方式中,遥控终端向无人机发送日志获取请求可以包括:遥控终端接收用户在无人机的健康管理***界面内,触发上传日志控件或日志管理控件生成的获取指令;遥控终端根据获取指令向无人机发送日志获取请求。
为了提高日志获取请求触发的灵活性和便捷性,在无人机的健康管理***内可以设置有上传日志控件或日志管理控件等,例如,如图10所示,无人机的健康管理***的显示界面内设置有日志管理控件(即日志管理接口),如图11所示,无人机的健康管理***的显示界面内设置有上传日志控件。遥控终端可 以接收用户在无人机的健康管理***界面内,触发上传日志控件生成获取指令,然后根据获取指令生成日志获取请求,并向无人机发送日志获取请求。或者,遥控终端可以接收用户在无人机的健康管理***界面内,触发日志管理控件进入日志管理列表,从日志管理列表中触发某个或多个日志生成获取指令,然后根据获取指令生成日志获取请求,并向无人机发送日志获取请求。
在一些实施方式中,遥控终端向无人机发送日志获取请求可以包括:遥控终端向无人机发送文件传输协议的开启请求;遥控终端接收无人机基于开启请求成功开启文件传输协议后,返回的文件传输协议开启成功的消息;遥控终端在接收到文件传输协议开启成功的消息后,通过文件传输协议向无人机发送日志获取请求。
为了提高数据传输的效率和安全性,遥控终端可以通过文件传输协议(即FTP协议)与无人机进行数据交互。具体地,当需要进行数据传输时,遥控终端可以向无人机发送FTP协议的开启请求,无人机在接收到FTP协议的开启请求后,开启FTP协议,并在FTP协议开启成功后,向遥控终端返回FTP协议开启成功的消息。遥控终端接收无人机返回的FTP协议开启成功的消息,并在接收到FTP协议开启成功的消息后,通过FTP协议向无人机发送日志获取请求。
在一些实施方式中,无人机基于日志获取请求向遥控终端返回无人机的多个架次信息可以包括:无人机通过主芯片基于日志获取请求获取架次路径,并将架次路径发送给遥控终端;遥控终端通过文件传输协议从无人机上下载与架次路径对应的信息文本文件;遥控终端对信息文本文件进行解析,得到多个架次信息。
为了提高架次信息获取的准确性,可以通过架次路径来获取架次信息,例如,无人机可以通过主芯片基于日志获取请求获取架次路径,并将架次路径发送给遥控终端。遥控终端通过FTP协议向无人机的主芯片发送携带架次路径的下载请求,无人机的主芯片根据携带架次路径的下载请求,获取与架次路径对应的信息文本文件,并将架次路径对应的信息文本文件发送给遥控终端。遥控终端在接收到信息文本文件后,可以对信息文本文件进行解析(例如进行Json解析),得到多个架次信息。
在一些实施方式中,从多个架次信息中选择目标架次信息可以包括:遥控终端显示多个架次信息;遥控终端接收用户基于显示的多个架次信息输入的选择指令;遥控终端根据选择指令从多个架次信息中选择目标架次信息。
为了提高目标架次信息确定的精准性和可靠性,遥控终端在得到多个架次信息后,可以在无人机的健康管理***的显示界面内显示显示多个架次信息,以供用户选择,例如,如图14所示。然后遥控终端可以接收用户基于显示的多个架次信息输入的选择指令,根据选择指令从多个架次信息中选择一个或者多个架次信息作为目标架次信息。
在一些实施方式中,从多个架次信息中选择目标架次信息包括:遥控终端获取各个架次信息的优先级;遥控终端将优先级最高的架次信息设置为目标架次信息。
为了提高目标架次信息确定的灵活性和效率,遥控终端可以自动确定目标架次信息,例如,遥控终端在得到多个架次信息后,可以获取各个架次信息的优先级,其中,不同架次信息对应的优先级的高低可以根据实际需要进行灵活设置,例如,可以按照时间顺序确定优先级:设置架次信息生成的时间越接近当前时间,则优先级越高(或者设置架次信息生成的时间越早,则优先级越高)。或者,可以按照架次信息对应的异常严重等级(即故障严重等级)确定优先级:设置异常严重等级越高,则优先级越高。此时,遥控终端将优先级最高的架次信息设置为目标架次信息,或者将优先级最高前3个或6个架次信息设置为目标架次信息,等等。
在一些实施方式中,遥控终端获取各个架次信息的优先级可以包括:遥控终端获取架次信息的获取时间顺序,根据获取时间顺序将最先获取到的架次信息设置为优先级最高的架次信息;或者,遥控终端获取架次信息对应的无人机的异常严重等级,将异常严重等级最高所对应的架次信息设置为优先级最高的架次信息。
为了提高优先级确定的灵活性,遥控终端可以获取各个架次信息的获取时间顺序,例如,架次信息A对应的飞行时间为2019年12月16日8:00至9:00,架次信息B对应的飞行时间为2019年12月16日11:00至12:00,架次信息C对应的飞行时间为2019年12月16日14:00至16:00,然后根据获取时间顺序将最先获取到的架次信息设置为优先级最高的架次信息,此时可以将架次信息A设置为优先级最高的架次信息,将架次信息C设置为优先级最低的架次信息。或者,遥控终端可以获取架次信息对应的无人机的异常严重等级,其中,异常严重等级可以根据实际需要进行灵活设置,例如,架次信息A对应的无人机出现无法起飞的故障信息,架次信息B对应的无人机出现视觉标定异常的故障信 息,架次信息C对应的无人机出现飞行过程中失控的故障信息,此时可以设置:架次信息C对应的异常严重等级最高,架次信息B对应的异常严重等级最低。然后可以将异常严重等级最高所对应的架次信息C设置为优先级最高的架次信息,或者可以将异常严重等级最高的前2个所对应的架次信息C和B设置为优先级最高的架次信息。
在一些实施方式中,遥控终端根据目标架次信息下载日志文件可以包括:遥控终端根据目标架次信息向无人机发送日志文件路径获取请求;遥控终端接收无人机基于日志文件路径获取请求,返回的日志文件路径;遥控终端从无人机上下载日志文件路径对应的日志文件。
为了提高日志文件获取的准确性,可以通过日志文件路径获取日志文件,例如,遥控终端在得到目标架次信息后,可以根据目标架次信息生成日志文件路径获取请求,向无人机的主芯片发送日志文件路径获取请求。无人机的主芯片在接收到日志文件路径获取请求后,可以获取日志文件路径,并将日志文件路径发送给遥控终端。遥控终端在接收到日志文件路径后,可以向无人机的主芯片发送携带日志文件路径的下载请求,无人机在接收到携带日志文件路径的下载请求,可以从自身的存储空间和/或各个部件的芯片上获取日志文件路径对应的日志文件,并将日志文件路径对应的日志文件发送给遥控终端。
在一些实施方式中,遥控终端从无人机上下载日志文件路径对应的日志文件可以包括:遥控终端根据日志文件路径向无人机发送日志文件下载请求;遥控终端接收无人机基于日志文件下载请求返回的压缩后的日志文件,以及下载进度;显示下载进度,并在压缩后的日志文件下载完成后,得到无人机的日志文件。
为了提高日志文件传输的效率,可以对日志文件进行压缩。具体地,遥控终端在得到日志文件路径后,可以根据日志文件路径向无人机发送日志文件下载请求,无人机在接收到日志文件下载请求,可以从自身的存储空间和/或各个部件的芯片上获取日志文件路径对应的日志文件,然后对日志文件进行压缩,得到压缩后的日志文件,并将压缩后的日志文件发送给遥控终端,以及无人机可以获取压缩后的日志文件的下载进度,将该下载进度发送给遥控终端。遥控终端可以接收无人机基于日志文件下载请求返回的压缩后的日志文件,以及下载进度,该下载进度随着下载的进行而实时更新,遥控终端可以将下载进度进行动态的实时显示,例如,如图15所示,在压缩后的日志文件下载完成后,遥 控终端可以显示下载完成的信息,此时可以对压缩后的日志文件进行解压操作,得到无人机的日志文件。
需要说明的是,当存在多个日志文件需要发送时,无人机可以分别对各个日志文件进行压缩,并优先将已经压缩完成的日志文件发送给遥控终端,此时可以按照各个日志文件所在的比例或权重等计算下载进度,并将下载进度发送给遥控终端,当遥控终端接收到所有的压缩后的日志文件时,下载完成。或者,无人机可以对多个日志文件一起打包压缩,并将包含多个日志文件的压缩后的日志文件发送给遥控终端,遥控终端接收到压缩后的日志文件后,对压缩后的日志文件进行解压,得到多个日志文件。
需要说明的是,为了提高日志文件传输的安全性,无人机在对获取到的日志文件路径对应的日志文件进行压缩的过程中,还可以对日志文件进行加密,得到压缩加密后的日志文件,并将压缩加密后的日志文件发送给遥控终端。遥控终端可以对压缩加密后的日志文件进行解压及解密操作,得到无人机的日志文件。
在一些实施方式中,遥控终端根据目标架次信息下载日志文件可以包括:遥控终端根据目标架次信息建立下载任务,下载任务包括日志文件所在芯片位置、日志文件大小、以及日志标识;遥控终端根据下载任务,从日志文件所在芯片位置下载与日志标识对应的日志文件。
为了提高日志文件下载的可靠性和稳定性,遥控终端在确定目标架次信息后,可以根据目标架次信息建立下载任务,其中,下载任务包括日志文件所在芯片位置(即日志文件路径)、日志文件大小、以及日志标识,该日志标识可以是日志名称或日志编号等。遥控终端可以根据下载任务从日志文件所在芯片位置下载与日志标识对应的日志文件。
在一些实施方式中,遥控终端根据下载任务,从日志文件所在芯片位置下载与日志标识对应的日志文件可以包括:遥控终端根据下载任务向无人机的主芯片发送下载请求;无人机的主芯片响应于下载请求,接收日志文件所在芯片位置的各个部件发送的与日志标识对应的日志文件,并将日志文件发送给遥控终端;遥控终端接收日志文件。
例如,遥控终端可以根据下载任务,将携带日志文件路径和日志标识等的下载请求发送给无人机的主芯片,无人机的主芯片可以日志文件路径从自身的存储空间或对应部件的芯片上获取与日志标识对应的日志文件,并将日志文件 压缩后发送给遥控终端。其中,日志文件存储在各个部件所在的芯片上,当某些部件存在芯片时,可以将自身的日志文件存储在自身的芯片上,例如电池的日志文件存在电池芯片上,相机的日志文件存在相机芯片上;当某些部件不存在芯片时,可以将自身的日志文件存储在主芯片,这样分布式的存储方式可以减少日志文件堆积在同一个位置,减轻存储空间的压力,而为了解决分布式存储造成在拉取日志时需要对每个部件都进行拉取操作的问题,遥控终端可以只向主芯片发起日志拉取请求,再由主芯片向各个部件发起请求。
在一些实施方式中,遥控终端根据目标架次信息下载日志文件之后,无人机的故障管理方法还可以包括:遥控终端向无人机发送文件传输协议关闭的信息;无人机接收到文件传输协议关闭的信息后,关闭文件传输协议。
遥控终端与无人机之间完成数据交互后,遥控终端可以向无人机发送文件传输协议关闭的信息,无人机接收到文件传输协议关闭的信息后,关闭文件传输协议,使得文件传输协议在不使用时能够及时关闭。
在一些实施方式中,遥控终端根据目标架次信息下载日志文件之后,无人机的故障管理方法还可以包括:遥控终端将日志文件上传至预设的服务器。
为了对日志文件进行分析,解决无人机存在的故障,遥控终端在得到日志文件后,可以日志文件上传至预设的服务器。例如,遥控终端在得到压缩后的日志文件后,可以直接将压缩后的日志文件上传至预设的服务器,或者遥控终端在得到压缩后的日志文件后,可以对压缩后的日志文件进行解压,得到日志文件,并校验日志文件的完整性,若日志文件完整,则将日志文件进行压缩,并将压缩后的日志文件上传至预设的服务器。需要说明的是,为了提高日志文件上传的安全性,遥控终端可以对日志文件进行压缩及加密后上传至预设的服务器。
在一些实施方式中,遥控终端将日志文件上传至预设的服务器可以包括:遥控终端创建上传任务,上传任务的任务信息包括上传目标地址、源文件地址、日志大小以及日志标识;遥控终端根据上传任务将日志文件上传至预设的服务器。
为了提高日志文件上传的可靠性和稳定性,遥控终端在得到日志文件后,可以创建上传任务,其中,上传任务的任务信息可以包括上传目标地址、源文件地址、日志大小以及日志标识等,然后遥控终端可以根据上传任务对日志文件进行打包,打包后的日志文件可以携带有源文件地址、日志大小以及日志标 识等信息,将打包后的日志文件上传至该上传目标地址对应的服务器。
在一些实施方式中,遥控终端根据上传任务将日志文件上传至预设的服务器可以包括:遥控终端获取服务器的上传口令;遥控终端根据上传口令和上传任务将日志文件上传至服务器,并显示上传进度;当上传成功后,遥控终端输出上传成功的提示信息。
为了提高日志文件上传的准确性,遥控终端可以获取服务器的上传口令,该上传口令可以由服务器生成,该上传口令可以是上传接口,以允许遥控终端上传日志文件,该上传口令可以根据实际需要进行灵活设置。此时遥控终端根据上传口令和上传任务将日志文件上传至服务器,以及实时获取上传进度,并显示上传进度,以供用户查看。例如,如图16所示,当上传成功后,遥控终端可以输出上传成功的提示信息,以便用户及时获知日志文件已经上传完毕。其中,提示信息可以包括上传的日志文件信息、上传时间、以及查询方式等,该该查询方式可以是二维码或条形码等订单号,后续用户可以通过二维码或条形码等订单号从服务器上下载对应的额日志文件。
需要说明的是,为了减轻主芯片的负担,无人机可以设置有辅芯片,其中,无人机主芯片和辅芯片的类型可以根据实际需要进行灵活设置,在此处不作限定。例如,如图17所示,遥控终端可以仅从无人机的主芯片上拉取日志文件,或者,遥控终端可以仅从无人机的辅芯片上拉取日志文件,或者,遥控终端可以从无人机的主芯片和辅芯片上拉取日志文件,日志文件的拉取及上传流程可以如下:
S10、遥控终端向无人机的主芯片/辅芯片发送FTP开启请求。
S11、无人机的主芯片/辅芯片在接收到FTP开启请求后,开启FTP。
S12、在FTP开启成功后,无人机的主芯片/辅芯片向遥控终端返回FTP开启成功的消息。
S13、遥控终端在接收到FTP开启成功的消息后,通过FTP向无人机的主芯片/辅芯片发送日志获取请求。
S14、无人机的主芯片/辅芯片基于日志获取请求向无人机发送架次信息。
S15、遥控终端显示多个架次信息,并从多个架次信息中选择目标架次信息,根据目标架次信息建立下载任务。
S16、遥控终端根据下载任务向无人机的主芯片/辅芯片发送日志文件路径获取请求。
S17、无人机的主芯片/辅芯片基于日志文件路径获取请求向遥控终端发送日志文件路径。
S18、遥控终端根据日志文件路径向无人机的主芯片/辅芯片发送日志文件下载请求。
S19、无人机的主芯片/辅芯片基于日志文件下载请求,从各个部件获取日志文件,并对日志文件进行压缩。
S20、无人机的主芯片/辅芯片向遥控终端发送压缩后的日志文件。
S21、遥控终端在接收到缩后的日志文件后,向无人机的主芯片/辅芯片发送关闭FTP的信息。
S22、无人机的主芯片/辅芯片基于接收到的关闭FTP的信息,关闭FTP。
S23、无人机的主芯片/辅芯片在成功关闭FTP后,向遥控终端返回关闭成功的消息。
S24、遥控终端在接收到缩后的日志文件后,创建上传任务。
S25、遥控终端根据上传任务将日志文件上传至服务器。
图17的各个步骤中没有详述的部分,可以参见上文针对无人机的故障管理方法的详细描述,此处不再赘述。
本申请实施例遥控终端可以向无人机发送获取无人机的各个部件的故障请求信息;无人机响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将故障标识发送至遥控终端;其中,故障标识包括部件信息和故障信息;遥控终端接收到故障标识后,可以在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息。该方案可以各个部件的故障信息生成故障标识,以使得遥控终端可以根据故障标识准确获取部件信息和故障信息进行显示,避免了对故障信息的重复获取,以便对故障信息进行有效分析,提高了故障信息获取的精准性。
请参阅图18,图18是本申请一实施例提供的一种无人机的故障管理方法的流程示意图。该无人机的故障管理方法可以应用于遥控终端中,以下将进行详细说明。
如图18所示,该无人机的故障管理方法可以包括步骤S201至步骤S203等,具体可以如下:
S201、向无人机发送获取无人机的各个部件的故障请求信息。
在一些实施方式中,向无人机发送获取无人机的各个部件的故障请求信息 可以包括:向无人机的主芯片发送获取无人机的各个部件的故障请求信息。
在一些实施方式中,向无人机的主芯片发送获取无人机的各个部件的故障请求信息可以包括:获取订阅请求,根据订阅请求向无人机的主芯片发送获取无人机的各个部件的故障请求信息。
在一些实施方式中,获取订阅请求可以包括:接收用户在无人机的健康管理***内触发订阅控件输入的订阅请求。
S202、接收无人机基于响应故障请求信息返回的故障标识,故障标识为无人机基于响应故障请求信息获取各个部件发送的故障信息生成,故障标识包括部件信息和故障信息。
S203、在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息。
在一些实施方式中,在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息可以包括:在显示界面内弹窗显示故障标识对应的部件信息和故障信息;或者,在显示界面内显示无人机的健康管理***,并将故障标识对应的部件信息和故障信息添加至无人机的健康管理***中。
在一些实施方式中,无人机的故障管理方法还可以包括:接收用户输入的信息获取请求;根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息。
在一些实施方式中,根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息之后,无人机的故障管理方法还可以包括:输出无人机的历史故障信息。
在一些实施方式中,输出无人机的历史故障信息可以包括:在显示界面内弹窗显示无人机的历史故障信息;或者,通过语音播报无人机的历史故障信息;或者,在无人机的健康管理***的显示界面内,显示无人机的历史故障信息;或者,将无人机的历史故障信息发送至预设邮箱或即时通信窗口。
在一些实施方式中,在无人机的健康管理***的显示界面内,显示无人机的历史故障信息可以包括:在健康管理***的显示界面内按照无人机不同部件的类型分区显示各部件;在健康管理***内显示无人机的历史故障信息,以及对历史故障信息对应的异常部件所在区域进行标识。
在一些实施方式中,对历史故障信息对应的异常部件所在区域进行标识可以包括:在历史故障信息对应的异常部件所在区域内以预设颜色进行标识;和/或,在历史故障信息对应的异常部件所在区域内以文字进行标识;和/或,在历 史故障信息对应的异常部件所在区域内以预设图标进行标识。
在一些实施方式中,根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息可以包括:从信息获取请求中提取故障标识;从本地预设的数据库中获取预先存储的与故障标识对应的无人机的历史故障信息。
在一些实施方式中,接收用户输入的信息获取请求可以包括:接收用户输入的语音信号、手势、触摸操作、或指纹信息,根据语音信号、手势、触摸操作、或指纹信息生成信息获取请求。
在一些实施方式中,无人机的故障管理方法还可以包括:接收用户输入的信息获取请求;根据信息获取请求,向无人机的主芯片发送路径获取请求;接收无人机的主芯片基于路径获取请求返回的故障路径;根据故障路径从无人机上下载历史故障文件;对历史故障文件进行解析,得到历史故障信息。
在一些实施方式中,无人机的故障管理方法还包括:向无人机发送日志获取请求;接收无人机基于日志获取请求返回的无人机的多个架次信息;从多个架次信息中选择目标架次信息;根据目标架次信息下载日志文件。
在一些实施方式中,接收无人机基于日志获取请求返回的无人机的多个架次信息可以包括:接收无人机基于日志获取请求返回的架次路径;通过文件传输协议从无人机上下载与架次路径对应的信息文本文件;对信息文本文件进行解析,得到多个架次信息。
在一些实施方式中,从多个架次信息中选择目标架次信息可以包括:显示多个架次信息;接收用户基于显示的多个架次信息输入的选择指令;根据选择指令从多个架次信息中选择目标架次信息。
在一些实施方式中,从多个架次信息中选择目标架次信息可以包括:获取各个架次信息的优先级;将优先级最高的架次信息设置为目标架次信息。
在一些实施方式中,获取各个架次信息的优先级可以包括:获取架次信息的获取时间顺序,根据获取时间顺序将最先获取到的架次信息设置为优先级最高的架次信息;或者,获取架次信息对应的无人机的异常严重等级,将异常严重等级最高所对应的架次信息设置为优先级最高的架次信息。
在一些实施方式中,向无人机发送日志获取请求可以包括:接收用户在无人机的健康管理***界面内,触发上传日志控件或日志管理控件生成的获取指令;根据获取指令向无人机发送日志获取请求。
在一些实施方式中,向无人机发送日志获取请求可以包括:向无人机发送 文件传输协议的开启请求;接收无人机基于开启请求成功开启文件传输协议后,返回的文件传输协议开启成功的消息;在接收到文件传输协议开启成功的消息后,通过文件传输协议向无人机发送日志获取请求。
在一些实施方式中,根据目标架次信息下载日志文件之后,无人机的故障管理方法还可以包括:向无人机发送文件传输协议关闭的信息,以使得无人机接收到文件传输协议关闭的信息后,关闭文件传输协议。
在一些实施方式中,根据目标架次信息下载日志文件可以包括:根据目标架次信息向无人机发送日志文件路径获取请求;接收无人机基于日志文件路径获取请求,返回的日志文件路径;从无人机上下载日志文件路径对应的日志文件。
在一些实施方式中,从无人机上下载日志文件路径对应的日志文件可以包括:根据日志文件路径向无人机发送日志文件下载请求;接收无人机基于日志文件下载请求返回的压缩后的日志文件,以及下载进度;显示下载进度,并在压缩后的日志文件下载完成后,得到无人机的日志文件。
在一些实施方式中,根据目标架次信息下载日志文件可以包括:根据目标架次信息建立下载任务,下载任务包括日志文件所在芯片位置、日志文件大小、以及日志标识;根据下载任务,从日志文件所在芯片位置下载与日志标识对应的日志文件。
在一些实施方式中,根据下载任务,从日志文件所在芯片位置下载与日志标识对应的日志文件可以包括:根据下载任务向无人机的主芯片发送下载请求;接收主芯片响应于下载请求返回的日志文件,日志文件为主芯片接收到的日志文件所在芯片位置的各个部件发送的与日志标识对应的日志文件。
在一些实施方式中,根据目标架次信息下载日志文件之后,无人机的故障管理方法还可以包括:将日志文件上传至预设的服务器。
在一些实施方式中,将日志文件上传至预设的服务器可以包括:创建上传任务,上传任务的任务信息包括上传目标地址、源文件地址、日志大小以及日志标识;根据上传任务将日志文件上传至预设的服务器。
在一些实施方式中,根据上传任务将日志文件上传至预设的服务器可以包括:获取服务器的上传口令;根据上传口令和上传任务将日志文件上传至服务器,并显示上传进度;当上传成功后,输出上传成功的提示信息。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详 述的部分,可以参见上文针对无人机的故障管理方法的详细描述,此处不再赘述。
本申请实施例遥控终端可以向无人机发送获取无人机的各个部件的故障请求信息,以及接收无人机基于响应故障请求信息返回的故障标识,其中,故障标识为无人机基于响应故障请求信息获取各个部件发送的故障信息生成,故障标识包括部件信息和故障信息,此时可以在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息。该方案遥控终端可以根据由各个部件发送的故障信息生成故障标识准确获取部件信息和故障信息进行显示,以便对故障信息进行有效分析,提高了故障信息获取的精准性。
请参阅图19,图19是本申请一实施例提供的一种无人机的故障管理方法的流程示意图。该无人机的故障管理方法可以应用于无人机中,以下将进行详细说明。
如图19所示,该无人机的故障管理方法可以包括步骤S301至步骤S303等,具体可以如下:
S301、接收遥控终端发送的获取无人机的各个部件的故障请求信息。
在一些实施方式中,接收遥控终端发送的获取无人机的各个部件的故障请求信息可以包括:通过无人机的主芯片接收遥控终端发送的获取无人机的各个部件的故障请求信息。
S302、响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,故障标识包括部件信息和故障信息。
在一些实施方式中,响应于故障请求信息,获取各个部件发送的故障信息可以包括:通过主芯片响应于故障请求信息,接收各个部件发送的故障信息。
在一些实施方式中,通过主芯片响应于故障请求信息,接收各个部件发送的故障信息可以包括:获取运行参数,当根据运行参数确定存在部件异常时,通过主芯片向各个异常部件发送获取请求;通过主芯片接收各个异常部件基于获取请求发送的故障信息。
S303、将故障标识发送至遥控终端,以使得遥控终端在显示界面内显示故障标识对应的部件信息和故障信息。
在一些实施方式中,无人机的故障管理方法还可以包括:接收通过无人机的主芯片接收遥控终端发送的路径获取请求;通过主芯片基于路径获取请求向遥控终端返回故障路径;接收遥控终端基于故障路径向各个部件芯片发送的历 史故障文件下载请求;通过各个部件芯片基于历史故障文件下载请求,向遥控终端返回历史故障信息。
在一些实施方式中,无人机的故障管理方法还可以包括:接收遥控终端发送的日志获取请求;基于日志获取请求向遥控终端返回无人机的多个架次信息;接收遥控终端基于多个架次信息发送的日志文件下载请求;基于日志文件下载请求向遥控终端返回日志文件。
在一些实施方式中,基于日志获取请求向遥控终端返回无人机的多个架次信息包括:通过无人机的主芯片基于日志获取请求获取架次路径,并将架次路径发送给遥控终端;通过主芯片接收遥控终端基于架次路径发送的架次信息下载请求;通过主芯片基于架次信息下载请求向遥控终端发送多个架次信息。
在一些实施方式中,基于日志文件下载请求向遥控终端返回日志文件可以包括:通过无人机的主芯片基于日志文件下载请求向各个部件芯片获取日志文件,将日志文件发送给遥控终端。
在一些实施方式中,接收遥控终端发送的日志获取请求可以包括:接收遥控终端发送的文件传输协议的开启请求;基于开启请求开启文件传输协议,并在成功开启文件传输协议后,向遥控终端返回的文件传输协议开启成功的消息;通过文件传输协议接收遥控终端在接收到文件传输协议开启成功的消息后发送的日志获取请求。
在一些实施方式中,基于日志文件下载请求向遥控终端返回日志文件之后,无人机的故障管理方法还可以包括:接收遥控终端发送的文件传输协议关闭的信息;基于文件传输协议关闭的信息,关闭文件传输协议。
在一些实施方式中,接收遥控终端基于多个架次信息发送的日志文件下载请求可以包括:接收遥控终端根据目标架次信息发送的日志文件路径获取请求;基于日志文件路径获取请求,向遥控终端返回的日志文件路径;接收遥控终端基于日志文件路径发送的日志文件下载请求。
在一些实施方式中,基于日志文件下载请求向遥控终端返回日志文件可以包括:基于日志文件下载请求向遥控终端返回的压缩后的日志文件,以及下载进度。
在一些实施方式中,接收遥控终端基于多个架次信息发送的日志文件下载请求,基于日志文件下载请求向遥控终端返回日志文件可以包括:接收遥控终端基于多个架次信息建立的下载任务向无人机的主芯片发送的下载请求,下载 任务包括日志文件所在芯片位置、日志文件大小、以及日志标识;通过主芯片响应于下载请求,接收日志文件所在芯片位置的各个部件发送的与日志标识对应的日志文件,并将日志文件发送给遥控终端。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对无人机的故障管理方法的详细描述,此处不再赘述。
本申请实施例无人机可以接收遥控终端发送的获取无人机的各个部件的故障请求信息,然后响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,故障标识包括部件信息和故障信息。此时可以将故障标识发送至遥控终端,以使得遥控终端在显示界面内显示故障标识对应的部件信息和故障信息。该方案无人机可以根据各个部件发送的故障信息生成故障标识,并将故障标识发送给遥控终端,以使得遥控终端可以基于故障标识准确获取部件信息和故障信息进行显示,以便对故障信息进行有效分析,提高了故障信息获取的精准性。
请参阅图20,图20是本申请一实施例提供的无人机的故障管理***的示意性框图。该无人机的故障管理***11可以包括遥控终端111和无人机112,其中,遥控终端111和无人机112均可以包括处理器和存储器,处理器和存储器通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。,处理器用于调用存储在存储器中的计算机程序,并在执行计算机程序时实现本申请实施例提供的无人机的故障管理方法。
其中,遥控终端向无人机发送获取无人机的各个部件的故障请求信息;无人机响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将故障标识发送至遥控终端;其中,故障标识包括部件信息和故障信息;遥控终端接收到故障标识后,在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息。
在一些实施方式中,遥控终端接收用户输入的信息获取请求;遥控终端根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息。
在一些实施方式中,遥控终端向无人机发送日志获取请求;无人机基于日志获取请求向遥控终端返回无人机的多个架次信息;遥控终端在接收到多个架次信息后,从多个架次信息中选择目标架次信息;遥控终端根据目标架次信息 下载日志文件。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对无人机的故障管理方法的详细描述,此处不再赘述。
请参阅图21,图21是本申请一实施例提供的遥控终端的示意性框图。该遥控终端12可以包括处理器121和存储器122,处理器121和存储器122通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器121可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器122可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等,可以用于存储计算机程序。
遥控终端12还可以包括显示器123等,用于显示故障标识对应的部件信息和故障信息,该显示器123还可以显示其他信息,具体内容在此处不作限定,该显示器123的类型和大小等可以根据实际需要进行灵活设置。
其中,处理器121用于调用存储在存储器122中的计算机程序,并在执行计算机程序时实现本申请实施例提供的无人机的故障管理方法,例如可以执行如下步骤:
向无人机发送获取无人机的各个部件的故障请求信息;接收无人机基于响应故障请求信息返回的故障标识,故障标识为无人机基于响应故障请求信息获取各个部件发送的故障信息生成,故障标识包括部件信息和故障信息;在遥控终端的显示界面内显示故障标识对应的部件信息和故障信息。例如,通过显示器123显示故障标识对应的部件信息和故障信息。
在一些实施方式中,处理器121还用于执行:接收用户输入的信息获取请求,根据信息获取请求,从本地预设的数据库中获取预先存储的无人机的历史故障信息。
在一些实施方式中,处理器121还用于执行:向无人机发送日志获取请求,接收无人机基于日志获取请求返回的无人机的多个架次信息;从多个架次信息中选择目标架次信息,根据目标架次信息下载日志文件。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对无人机的故障管理方法的详细描述,此处不再赘 述。
请参阅图22,图22是本申请一实施例提供的无人机的示意性框图。该无人机13可以包括处理器131和存储器132,处理器131和存储器132通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器131可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器132可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等,可以用于存储计算机程序。
其中,处理器131用于调用存储在存储器132中的计算机程序,并在执行计算机程序时实现本申请实施例提供的无人机的故障管理方法,例如可以执行如下步骤:
接收遥控终端发送的获取无人机的各个部件的故障请求信息;响应于故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,故障标识包括部件信息和故障信息;将故障标识发送至遥控终端,以使得遥控终端在显示界面内显示故障标识对应的部件信息和故障信息。
在一些实施方式中,处理器131还用于执行:接收遥控终端发送的日志获取请求,基于日志获取请求向遥控终端返回无人机的多个架次信息;接收遥控终端基于多个架次信息发送的日志文件下载请求,基于日志文件下载请求向遥控终端返回日志文件。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文针对无人机的故障管理方法的详细描述,此处不再赘述。
本申请的实施例中还提供一种计算机程序,该计算机程序中包括程序指令,处理器执行程序指令,实现本申请实施例提供的无人机的故障管理方法。
本申请的实施例中还提供一种存储介质,该存储介质为计算机可读存储介质,该存储介质存储有计算机程序,计算机程序中包括程序指令,处理器执行程序指令,实现本申请实施例提供的无人机的故障管理方法。
其中,存储介质可以是前述任一实施例所述的无人机的故障管理***或遥控终端的内部存储单元,例如遥控终端的硬盘或内存。存储介质也可以是遥控终端的外部存储设备,例如遥控终端上配备的插接式硬盘,智能存储卡(Smart  Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
由于该存储介质中所存储的计算机程序,可以执行本申请实施例所提供的任一种无人机的故障管理方法,因此,可以实现本申请实施例所提供的任一种无人机的故障管理方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者***中还存在另外的相同要素。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (73)

  1. 一种无人机的故障管理方法,其特征在于,应用于遥控终端和与所述遥控终端通信的无人机,所述方法包括:
    所述遥控终端向所述无人机发送获取所述无人机的各个部件的故障请求信息;
    所述无人机响应于所述故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将所述故障标识发送至所述遥控终端;其中,所述故障标识包括部件信息和故障信息;
    所述遥控终端接收到所述故障标识后,在所述遥控终端的显示界面内显示所述故障标识对应的部件信息和故障信息。
  2. 根据权利要求1所述的无人机的故障管理方法,其特征在于,所述遥控终端向所述无人机发送获取所述无人机的各个部件的故障请求信息包括:
    所述遥控终端向所述无人机的主芯片发送获取所述无人机的各个部件的故障请求信息;
    所述无人机响应于所述故障请求信息,获取各个部件发送的故障信息包括:
    所述无人机通过所述主芯片响应于所述故障请求信息,接收各个部件发送的故障信息。
  3. 根据权利要求2所述的无人机的故障管理方法,其特征在于,所述遥控终端向所述无人机的主芯片发送获取所述无人机的各个部件的故障请求信息包括:
    所述遥控终端获取订阅请求,根据所述订阅请求向所述无人机的主芯片发送获取所述无人机的各个部件的故障请求信息。
  4. 根据权利要求3所述的无人机的故障管理方法,其特征在于,所述遥控终端获取订阅请求包括:
    所述遥控终端接收用户在所述无人机的健康管理***内触发订阅控件输入的订阅请求。
  5. 根据权利要求2所述的无人机的故障管理方法,其特征在于,所述无人机通过所述主芯片响应于所述故障请求信息,接收各个部件发送的故障信息包括:
    所述无人机获取运行参数,当根据所述运行参数确定存在部件异常时,通过所述主芯片向各个异常部件发送获取请求;
    所述无人机的主芯片接收各个异常部件基于所述获取请求发送的故障信息。
  6. 根据权利要求1所述的无人机的故障管理方法,其特征在于,在所述遥控终端的显示界面内显示所述故障标识对应的部件信息和故障信息包括:
    所述遥控终端在显示界面内弹窗显示所述故障标识对应的部件信息和故障信息;或者,
    所述遥控终端在显示界面内显示所述无人机的健康管理***,并将所述故障标识对应的部件信息和故障信息添加至所述无人机的健康管理***中。
  7. 根据权利要求1所述的无人机的故障管理方法,其特征在于,所述无人机的故障管理方法还包括:
    所述遥控终端接收用户输入的信息获取请求;
    所述遥控终端根据所述信息获取请求,从本地预设的数据库中获取预先存储的所述无人机的历史故障信息。
  8. 根据权利要求7所述的无人机的故障管理方法,其特征在于,所述遥控终端根据所述信息获取请求,从本地预设的数据库中获取预先存储的所述无人机的历史故障信息之后,所述无人机的故障管理方法还包括:
    所述遥控终端输出所述无人机的历史故障信息。
  9. 根据权利要求8所述的无人机的故障管理方法,其特征在于,所述遥控终端输出所述无人机的历史故障信息包括:
    所述遥控终端在显示界面内弹窗显示所述无人机的历史故障信息;或者,
    所述遥控终端通过语音播报所述无人机的历史故障信息;或者,
    所述遥控终端在所述无人机的健康管理***的显示界面内,显示所述无人机的历史故障信息;或者,
    所述遥控终端将所述无人机的历史故障信息发送至预设邮箱或即时通信窗口。
  10. 根据权利要求9所述的无人机的故障管理方法,其特征在于,所述遥控终端在所述无人机的健康管理***的显示界面内,显示所述无人机的历史故障信息包括:
    所述遥控终端在所述健康管理***的显示界面内按照所述无人机不同部件的类型分区显示各部件;
    所述遥控终端在所述健康管理***内显示所述无人机的历史故障信息,以及对所述历史故障信息对应的异常部件所在区域进行标识。
  11. 根据权利要求10所述的无人机的故障管理方法,其特征在于,所述遥控终端对所述历史故障信息对应的异常部件所在区域进行标识包括:
    所述遥控终端在所述历史故障信息对应的异常部件所在区域内以预设颜色进行标识;和/或,在所述历史故障信息对应的异常部件所在区域内以文字进行标识;和/或,在所述历史故障信息对应的异常部件所在区域内以预设图标进行标识。
  12. 根据权利要求7所述的无人机的故障管理方法,其特征在于,所述遥控终端根据所述信息获取请求,从本地预设的数据库中获取预先存储的所述无人机的历史故障信息包括:
    所述遥控终端从所述信息获取请求中提取故障标识;
    所述遥控终端从本地预设的数据库中获取预先存储的与所述故障标识对应的所述无人机的历史故障信息。
  13. 根据权利要求7所述的无人机的故障管理方法,其特征在于,所述遥控终端接收用户输入的信息获取请求包括:
    所述遥控终端接收用户输入的语音信号、手势、触摸操作、或指纹信息,根据所述语音信号、手势、触摸操作、或指纹信息生成信息获取请求。
  14. 根据权利要求1所述的无人机的故障管理方法,其特征在于,所述无人机的故障管理方法还包括:
    所述遥控终端接收用户输入的信息获取请求;
    所述遥控终端根据所述信息获取请求,向所述无人机的主芯片发送路径获取请求;
    所述无人机的主芯片基于所述路径获取请求向所述遥控终端返回故障路径;
    所述遥控终端根据所述故障路径从所述无人机上下载历史故障文件;
    所述遥控终端对所述历史故障文件进行解析,得到历史故障信息。
  15. 根据权利要求1至14任一项所述的无人机的故障管理方法,其特征在于,所述无人机的故障管理方法还包括:
    所述遥控终端向所述无人机发送日志获取请求;
    所述无人机基于所述日志获取请求向所述遥控终端返回所述无人机的多个架次信息;
    所述遥控终端在接收到所述多个所述架次信息后,从所述多个所述架次信息中选择目标架次信息;
    所述遥控终端根据所述目标架次信息下载日志文件。
  16. 根据权利要求15所述的无人机的故障管理方法,其特征在于,所述无人机基于所述日志获取请求向所述遥控终端返回所述无人机的多个架次信息包括:
    所述无人机通过主芯片基于所述日志获取请求获取架次路径,并将所述架次路径发送给所述遥控终端;
    所述遥控终端通过文件传输协议从所述无人机上下载与所述架次路径对应的信息文本文件;
    所述遥控终端对所述信息文本文件进行解析,得到多个架次信息。
  17. 根据权利要求15所述的无人机的故障管理方法,其特征在于,所述从所述多个所述架次信息中选择目标架次信息包括:
    所述遥控终端显示所述多个所述架次信息;
    所述遥控终端接收用户基于显示的所述多个所述架次信息输入的选择指令;
    所述遥控终端根据所述选择指令从所述多个所述架次信息中选择目标架次信息。
  18. 根据权利要求15所述的无人机的故障管理方法,其特征在于,所述从所述多个所述架次信息中选择目标架次信息包括:
    所述遥控终端获取各个架次信息的优先级;
    所述遥控终端将所述优先级最高的架次信息设置为目标架次信息。
  19. 根据权利要求18所述的无人机的故障管理方法,其特征在于,所述遥控终端获取各个架次信息的优先级包括:
    所述遥控终端获取所述架次信息的获取时间顺序,根据所述获取时间顺序将最先获取到的架次信息设置为优先级最高的架次信息;或者,
    所述遥控终端获取所述架次信息对应的所述无人机的异常严重等级,将异常严重等级最高所对应的架次信息设置为优先级最高的架次信息。
  20. 根据权利要求15所述的无人机的故障管理方法,其特征在于,所述遥控终端向所述无人机发送日志获取请求包括:
    所述遥控终端接收用户在所述无人机的健康管理***界面内,触发上传日志控件或日志管理控件生成的获取指令;
    所述遥控终端根据所述获取指令向所述无人机发送日志获取请求。
  21. 根据权利要求15所述的无人机的故障管理方法,其特征在于,所述遥控终端向所述无人机发送日志获取请求包括:
    所述遥控终端向所述无人机发送文件传输协议的开启请求;
    所述遥控终端接收所述无人机基于所述开启请求成功开启文件传输协议后,返回的文件传输协议开启成功的消息;
    所述遥控终端在接收到所述文件传输协议开启成功的消息后,通过所述文件传输协议所述向所述无人机发送日志获取请求。
  22. 根据权利要求21所述的无人机的故障管理方法,其特征在于,所述遥控终端根据所述目标架次信息下载日志文件之后,所述无人机的故障管理方法还包括:
    所述遥控终端向所述无人机发送文件传输协议关闭的信息;
    所述无人机接收到所述文件传输协议关闭的信息后,关闭所述文件传输协议。
  23. 根据权利要求15所述的无人机的故障管理方法,其特征在于,所述遥控终端根据所述目标架次信息下载日志文件包括:
    所述遥控终端根据所述目标架次信息向所述无人机发送日志文件路径获取请求;
    所述遥控终端接收所述无人机基于所述日志文件路径获取请求,返回的日志文件路径;
    所述遥控终端从所述无人机上下载所述日志文件路径对应的日志文件。
  24. 根据权利要求23所述的无人机的故障管理方法,其特征在于,所述遥控终端从所述无人机上下载所述日志文件路径对应的日志文件包括:
    所述遥控终端根据所述日志文件路径向所述无人机发送日志文件下载请求;
    所述遥控终端接收所述无人机基于所述日志文件下载请求返回的压缩后的日志文件,以及下载进度;
    显示所述下载进度,并在所述压缩后的日志文件下载完成后,得到所述无人机的日志文件。
  25. 根据权利要求15所述的无人机的故障管理方法,其特征在于,所述遥控终端根据所述目标架次信息下载日志文件包括:
    所述遥控终端根据所述目标架次信息建立下载任务,所述下载任务包括日 志文件所在芯片位置、日志文件大小、以及日志标识;
    所述遥控终端根据所述下载任务,从所述日志文件所在芯片位置下载与所述日志标识对应的日志文件。
  26. 根据权利要求25所述的无人机的故障管理方法,其特征在于,所述遥控终端根据所述下载任务,从所述日志文件所在芯片位置下载与所述日志标识对应的日志文件包括:
    所述遥控终端根据所述下载任务向所述无人机的主芯片发送下载请求;
    所述无人机的主芯片响应于所述下载请求,接收所述日志文件所在芯片位置的各个部件发送的与所述日志标识对应的日志文件,并将所述日志文件发送给所述遥控终端;
    所述遥控终端接收所述日志文件。
  27. 根据权利要求15所述的无人机的故障管理方法,其特征在于,所述遥控终端根据所述目标架次信息下载日志文件之后,所述无人机的故障管理方法还包括:
    所述遥控终端将所述日志文件上传至预设的服务器。
  28. 根据权利要求27所述的无人机的故障管理方法,其特征在于,所述遥控终端将所述日志文件上传至预设的服务器包括:
    所述遥控终端创建上传任务,所述上传任务的任务信息包括上传目标地址、源文件地址、日志大小以及日志标识;
    所述遥控终端根据所述上传任务将所述日志文件上传至预设的服务器。
  29. 根据权利要求28所述的无人机的故障管理方法,其特征在于,所述遥控终端根据所述上传任务将所述日志文件上传至预设的服务器包括:
    所述遥控终端获取所述服务器的上传口令;
    所述遥控终端根据所述上传口令和所述上传任务将所述日志文件上传至所述服务器,并显示上传进度;
    当上传成功后,所述遥控终端输出上传成功的提示信息。
  30. 一种无人机的故障管理方法,其特征在于,应用于遥控终端,所述遥控终端用于与无人机进行通信,所述方法包括:
    向所述无人机发送获取所述无人机的各个部件的故障请求信息;
    接收所述无人机基于响应所述故障请求信息返回的故障标识,所述故障标识为无人机基于响应所述故障请求信息获取各个部件发送的故障信息生成,所 述故障标识包括部件信息和故障信息;
    在所述遥控终端的显示界面内显示所述故障标识对应的部件信息和故障信息。
  31. 根据权利要求30所述的无人机的故障管理方法,其特征在于,所述向所述无人机发送获取所述无人机的各个部件的故障请求信息包括:
    向所述无人机的主芯片发送获取所述无人机的各个部件的故障请求信息。
  32. 根据权利要求31所述的无人机的故障管理方法,其特征在于,所述向所述无人机的主芯片发送获取所述无人机的各个部件的故障请求信息包括:
    获取订阅请求,根据所述订阅请求向所述无人机的主芯片发送获取所述无人机的各个部件的故障请求信息。
  33. 根据权利要求32所述的无人机的故障管理方法,其特征在于,所述获取订阅请求包括:
    接收用户在所述无人机的健康管理***内触发订阅控件输入的订阅请求。
  34. 根据权利要求30所述的无人机的故障管理方法,其特征在于,所述在所述遥控终端的显示界面内显示所述故障标识对应的部件信息和故障信息包括:
    在显示界面内弹窗显示所述故障标识对应的部件信息和故障信息;或者,
    在显示界面内显示所述无人机的健康管理***,并将所述故障标识对应的部件信息和故障信息添加至所述无人机的健康管理***中。
  35. 根据权利要求30所述的无人机的故障管理方法,其特征在于,所述无人机的故障管理方法还包括:
    接收用户输入的信息获取请求;
    根据所述信息获取请求,从本地预设的数据库中获取预先存储的所述无人机的历史故障信息。
  36. 根据权利要求35所述的无人机的故障管理方法,其特征在于,所述根据所述信息获取请求,从本地预设的数据库中获取预先存储的所述无人机的历史故障信息之后,所述无人机的故障管理方法还包括:
    输出所述无人机的历史故障信息。
  37. 根据权利要求36所述的无人机的故障管理方法,其特征在于,所述输出所述无人机的历史故障信息包括:
    在显示界面内弹窗显示所述无人机的历史故障信息;或者,
    通过语音播报所述无人机的历史故障信息;或者,
    在所述无人机的健康管理***的显示界面内,显示所述无人机的历史故障信息;或者,
    将所述无人机的历史故障信息发送至预设邮箱或即时通信窗口。
  38. 根据权利要求37所述的无人机的故障管理方法,其特征在于,所述在所述无人机的健康管理***的显示界面内,显示所述无人机的历史故障信息包括:
    在所述健康管理***的显示界面内按照所述无人机不同部件的类型分区显示各部件;
    在所述健康管理***内显示所述无人机的历史故障信息,以及对所述历史故障信息对应的异常部件所在区域进行标识。
  39. 根据权利要求38所述的无人机的故障管理方法,其特征在于,所述对所述历史故障信息对应的异常部件所在区域进行标识包括:
    在所述历史故障信息对应的异常部件所在区域内以预设颜色进行标识;和/或,在所述历史故障信息对应的异常部件所在区域内以文字进行标识;和/或,在所述历史故障信息对应的异常部件所在区域内以预设图标进行标识。
  40. 根据权利要求35所述的无人机的故障管理方法,其特征在于,所述根据所述信息获取请求,从本地预设的数据库中获取预先存储的所述无人机的历史故障信息包括:
    从所述信息获取请求中提取故障标识;
    从本地预设的数据库中获取预先存储的与所述故障标识对应的所述无人机的历史故障信息。
  41. 根据权利要求35所述的无人机的故障管理方法,其特征在于,所述接收用户输入的信息获取请求包括:
    接收用户输入的语音信号、手势、触摸操作、或指纹信息,根据所述语音信号、手势、触摸操作、或指纹信息生成信息获取请求。
  42. 根据权利要求30所述的无人机的故障管理方法,其特征在于,所述无人机的故障管理方法还包括:
    接收用户输入的信息获取请求;
    根据所述信息获取请求,向所述无人机的主芯片发送路径获取请求;
    接收所述无人机的主芯片基于所述路径获取请求返回的故障路径;
    根据所述故障路径从所述无人机上下载历史故障文件;
    对所述历史故障文件进行解析,得到历史故障信息。
  43. 根据权利要求30至42任一项所述的无人机的故障管理方法,其特征在于,所述无人机的故障管理方法还包括:
    向所述无人机发送日志获取请求;
    接收所述无人机基于所述日志获取请求返回的所述无人机的多个架次信息;
    从所述多个所述架次信息中选择目标架次信息;
    根据所述目标架次信息下载日志文件。
  44. 根据权利要求43所述的无人机的故障管理方法,其特征在于,接收所述无人机基于所述日志获取请求返回的所述无人机的多个架次信息包括:
    接收所述无人机基于所述日志获取请求返回的架次路径;
    通过文件传输协议从所述无人机上下载与所述架次路径对应的信息文本文件;
    对所述信息文本文件进行解析,得到多个架次信息。
  45. 根据权利要求43所述的无人机的故障管理方法,其特征在于,所述从所述多个所述架次信息中选择目标架次信息包括:
    显示所述多个所述架次信息;
    接收用户基于显示的所述多个所述架次信息输入的选择指令;
    根据所述选择指令从所述多个所述架次信息中选择目标架次信息。
  46. 根据权利要求43所述的无人机的故障管理方法,其特征在于,所述从所述多个所述架次信息中选择目标架次信息包括:
    获取各个架次信息的优先级;
    将所述优先级最高的架次信息设置为目标架次信息。
  47. 根据权利要求46所述的无人机的故障管理方法,其特征在于,所述获取各个架次信息的优先级包括:
    获取所述架次信息的获取时间顺序,根据所述获取时间顺序将最先获取到的架次信息设置为优先级最高的架次信息;或者,
    获取所述架次信息对应的所述无人机的异常严重等级,将异常严重等级最高所对应的架次信息设置为优先级最高的架次信息。
  48. 根据权利要求43所述的无人机的故障管理方法,其特征在于,所述向所述无人机发送日志获取请求包括:
    接收用户在所述无人机的健康管理***界面内,触发上传日志控件或日志 管理控件生成的获取指令;
    根据所述获取指令向所述无人机发送日志获取请求。
  49. 根据权利要求43所述的无人机的故障管理方法,其特征在于,所述向所述无人机发送日志获取请求包括:
    向所述无人机发送文件传输协议的开启请求;
    接收所述无人机基于所述开启请求成功开启文件传输协议后,返回的文件传输协议开启成功的消息;
    在接收到所述文件传输协议开启成功的消息后,通过所述文件传输协议所述向所述无人机发送日志获取请求。
  50. 根据权利要求49所述的无人机的故障管理方法,其特征在于,所述根据所述目标架次信息下载日志文件之后,所述无人机的故障管理方法还包括:
    向所述无人机发送文件传输协议关闭的信息,以使得所述无人机接收到所述文件传输协议关闭的信息后,关闭所述文件传输协议。
  51. 根据权利要求43所述的无人机的故障管理方法,其特征在于,所述根据所述目标架次信息下载日志文件包括:
    根据所述目标架次信息向所述无人机发送日志文件路径获取请求;
    接收所述无人机基于所述日志文件路径获取请求,返回的日志文件路径;
    从所述无人机上下载所述日志文件路径对应的日志文件。
  52. 根据权利要求51所述的无人机的故障管理方法,其特征在于,所述从所述无人机上下载所述日志文件路径对应的日志文件包括:
    根据所述日志文件路径向所述无人机发送日志文件下载请求;
    接收所述无人机基于所述日志文件下载请求返回的压缩后的日志文件,以及下载进度;
    显示所述下载进度,并在所述压缩后的日志文件下载完成后,得到所述无人机的日志文件。
  53. 根据权利要求43所述的无人机的故障管理方法,其特征在于,根据所述目标架次信息下载日志文件包括:
    根据所述目标架次信息建立下载任务,所述下载任务包括日志文件所在芯片位置、日志文件大小、以及日志标识;
    根据所述下载任务,从所述日志文件所在芯片位置下载与所述日志标识对应的日志文件。
  54. 根据权利要求53所述的无人机的故障管理方法,其特征在于,所述根据所述下载任务,从所述日志文件所在芯片位置下载与所述日志标识对应的日志文件包括:
    根据所述下载任务向所述无人机的主芯片发送下载请求;
    接收所述主芯片响应于所述下载请求返回的日志文件,所述日志文件为所述主芯片接收到的所述日志文件所在芯片位置的各个部件发送的与所述日志标识对应的日志文件。
  55. 根据权利要求43所述的无人机的故障管理方法,其特征在于,所述根据所述目标架次信息下载日志文件之后,所述无人机的故障管理方法还包括:
    将所述日志文件上传至预设的服务器。
  56. 根据权利要求55所述的无人机的故障管理方法,其特征在于,所述将所述日志文件上传至预设的服务器包括:
    创建上传任务,所述上传任务的任务信息包括上传目标地址、源文件地址、日志大小以及日志标识;
    根据所述上传任务将所述日志文件上传至预设的服务器。
  57. 根据权利要求56所述的无人机的故障管理方法,其特征在于,所述根据所述上传任务将所述日志文件上传至预设的服务器包括:
    获取所述服务器的上传口令;
    根据所述上传口令和所述上传任务将所述日志文件上传至所述服务器,并显示上传进度;
    当上传成功后,输出上传成功的提示信息。
  58. 一种无人机的故障管理方法,其特征在于,应用于无人机,所述无人机用于与遥控终端进行通信,所述方法包括:
    接收所述遥控终端发送的获取所述无人机的各个部件的故障请求信息;
    响应于所述故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,所述故障标识包括部件信息和故障信息;
    将所述故障标识发送至所述遥控终端,以使得所述遥控终端在显示界面内显示所述故障标识对应的部件信息和故障信息。
  59. 根据权利要求58所述的无人机的故障管理方法,其特征在于,所述接收所述遥控终端发送的获取所述无人机的各个部件的故障请求信息包括:
    通过所述无人机的主芯片接收所述遥控终端发送的获取所述无人机的各个 部件的故障请求信息;
    所述响应于所述故障请求信息,获取各个部件发送的故障信息包括:
    通过所述主芯片响应于所述故障请求信息,接收各个部件发送的故障信息。
  60. 根据权利要求59所述的无人机的故障管理方法,其特征在于,所述通过所述主芯片响应于所述故障请求信息,接收各个部件发送的故障信息包括:
    获取运行参数,当根据所述运行参数确定存在部件异常时,通过所述主芯片向各个异常部件发送获取请求;
    通过所述主芯片接收各个异常部件基于所述获取请求发送的故障信息。
  61. 根据权利要求58所述的无人机的故障管理方法,其特征在于,所述无人机的故障管理方法还包括:
    接收通过所述无人机的主芯片接收所述遥控终端发送的路径获取请求;
    通过所述主芯片基于所述路径获取请求向所述遥控终端返回故障路径;
    接收所述遥控终端基于所述故障路径向各个部件芯片发送的历史故障文件下载请求;
    通过所述各个部件芯片基于所述历史故障文件下载请求,向所述遥控终端返回历史故障信息。
  62. 根据权利要求58至61任一项所述的无人机的故障管理方法,其特征在于,所述无人机的故障管理方法还包括:
    接收所述遥控终端发送的日志获取请求;
    基于所述日志获取请求向所述遥控终端返回所述无人机的多个架次信息;
    接收所述遥控终端基于所述多个架次信息发送的日志文件下载请求;
    基于所述日志文件下载请求向所述遥控终端返回日志文件。
  63. 根据权利要求62所述的无人机的故障管理方法,其特征在于,所述基于所述日志获取请求向所述遥控终端返回所述无人机的多个架次信息包括:
    通过所述无人机的主芯片基于所述日志获取请求获取架次路径,并将所述架次路径发送给所述遥控终端;
    通过所述主芯片接收所述遥控终端基于所述架次路径发送的架次信息下载请求;
    通过所述主芯片基于所述架次信息下载请求向所述遥控终端发送多个架次信息。
  64. 根据权利要求62所述的无人机的故障管理方法,其特征在于,所述基 于所述日志文件下载请求向所述遥控终端返回日志文件包括:
    通过所述无人机的主芯片基于所述日志文件下载请求向各个部件芯片获取日志文件,将所述日志文件发送给所述遥控终端。
  65. 根据权利要求62所述的无人机的故障管理方法,其特征在于,所述接收所述遥控终端发送的日志获取请求包括:
    接收所述遥控终端发送的文件传输协议的开启请求;
    基于所述开启请求开启所述文件传输协议,并在成功开启文件传输协议后,向所述遥控终端返回的文件传输协议开启成功的消息;
    通过所述文件传输协议接收所述遥控终端在接收到所述文件传输协议开启成功的消息后发送的日志获取请求。
  66. 根据权利要求65所述的无人机的故障管理方法,其特征在于,所述基于所述日志文件下载请求向所述遥控终端返回日志文件之后,所述无人机的故障管理方法还包括:
    接收所述遥控终端发送的文件传输协议关闭的信息;
    基于所述文件传输协议关闭的信息,关闭所述文件传输协议。
  67. 根据权利要求62所述的无人机的故障管理方法,其特征在于,所述接收所述遥控终端基于所述多个架次信息发送的日志文件下载请求包括:
    接收所述遥控终端根据所述目标架次信息发送的日志文件路径获取请求;
    基于所述日志文件路径获取请求,向所述遥控终端返回的日志文件路径;
    接收所述遥控终端基于所述日志文件路径发送的日志文件下载请求。
  68. 根据权利要求67所述的无人机的故障管理方法,其特征在于,所述基于所述日志文件下载请求向所述遥控终端返回日志文件包括:
    基于所述日志文件下载请求向所述遥控终端返回的压缩后的日志文件,以及下载进度。
  69. 根据权利要求62所述的无人机的故障管理方法,其特征在于,所述接收所述遥控终端基于所述多个架次信息发送的日志文件下载请求,基于所述日志文件下载请求向所述遥控终端返回日志文件包括:
    接收所述遥控终端基于所述多个架次信息建立的下载任务向所述无人机的主芯片发送的下载请求,所述下载任务包括日志文件所在芯片位置、日志文件大小、以及日志标识;
    通过所述主芯片响应于所述下载请求,接收所述日志文件所在芯片位置的 各个部件发送的与所述日志标识对应的日志文件,并将所述日志文件发送给所述遥控终端。
  70. 一种无人机的故障管理***,其特征在于,所述无人机的故障管理***遥包括控终端和无人机,所述遥控终端与所述无人机进行通信,其中:
    所述遥控终端向所述无人机发送获取所述无人机的各个部件的故障请求信息;
    所述无人机响应于所述故障请求信息,获取各个部件发送的故障信息,并根据各个部件的故障信息生成故障标识,将所述故障标识发送至所述遥控终端;其中,所述故障标识包括部件信息和故障信息;
    所述遥控终端接收到所述故障标识后,在所述遥控终端的显示界面内显示所述故障标识对应的部件信息和故障信息。
  71. 一种遥控终端,其特征在于,包括:
    显示器,用于显示故障标识对应的部件信息和故障信息;
    存储器,用于存储计算机程序;
    处理器,用于调用所述存储器中的计算机程序,以执行如权利要求30至57任一项所述的无人机的故障管理方法。
  72. 一种无人机,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于调用所述存储器中的计算机程序,以执行如权利要求58至69任一项所述的无人机的故障管理方法。
  73. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,所述计算机程序被处理器加载以执行权利要求1至29任一项所述的无人机的故障管理方法,或者所述计算机程序被处理器加载以执行权利要求30至57任一项所述的无人机的故障管理方法,或者所述计算机程序被处理器加载以执行权利要求58至69任一项所述的无人机的故障管理方法。
PCT/CN2020/085995 2020-04-21 2020-04-21 无人机的故障管理方法、设备及存储介质 WO2021212344A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/085995 WO2021212344A1 (zh) 2020-04-21 2020-04-21 无人机的故障管理方法、设备及存储介质
CN202080005241.9A CN112752714A (zh) 2020-04-21 2020-04-21 无人机的故障管理方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085995 WO2021212344A1 (zh) 2020-04-21 2020-04-21 无人机的故障管理方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021212344A1 true WO2021212344A1 (zh) 2021-10-28

Family

ID=75651302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085995 WO2021212344A1 (zh) 2020-04-21 2020-04-21 无人机的故障管理方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112752714A (zh)
WO (1) WO2021212344A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115562466A (zh) * 2022-11-21 2023-01-03 深圳市好盈科技股份有限公司 一种无人机硬件复位的控制方法、装置和电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4266307A1 (en) * 2022-04-20 2023-10-25 Goodrich Aerospace Services Pvt Ltd Voice command and audio output to obtain built-in test equipment data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120191373A1 (en) * 2011-01-21 2012-07-26 Soles Alexander M Event detection system having multiple sensor systems in cooperation with an impact detection system
CN102830691A (zh) * 2012-07-20 2012-12-19 南京航空航天大学 一种基于云计算的无人机自动检测及故障诊断方法
CN105974222A (zh) * 2016-04-27 2016-09-28 乐视控股(北京)有限公司 一种无人机故障检测的方法、装置和***
CN106656683A (zh) * 2017-02-27 2017-05-10 北京中船信息科技有限公司 一种无人机通信链路故障检测装置及方法
CN109131937A (zh) * 2018-10-30 2019-01-04 佛山市神风航空科技有限公司 一种分布式无人机自动检测***及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207851A (zh) * 2015-09-30 2015-12-30 小米科技有限责任公司 故障的检测方法、装置、***、终端及智能设备
CN105607516A (zh) * 2016-01-07 2016-05-25 谭圆圆 一种飞行监控装置及飞行状态监控方法
CN105867181A (zh) * 2016-04-01 2016-08-17 腾讯科技(深圳)有限公司 无人机的控制方法和装置
CN109976297B (zh) * 2017-12-27 2021-11-09 西安远智电子科技有限公司 一种失控保护的检测方法、装置及无人机
CN110209639B (zh) * 2019-04-16 2022-05-20 深圳绿米联创科技有限公司 信息处理方法、装置及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120191373A1 (en) * 2011-01-21 2012-07-26 Soles Alexander M Event detection system having multiple sensor systems in cooperation with an impact detection system
CN102830691A (zh) * 2012-07-20 2012-12-19 南京航空航天大学 一种基于云计算的无人机自动检测及故障诊断方法
CN105974222A (zh) * 2016-04-27 2016-09-28 乐视控股(北京)有限公司 一种无人机故障检测的方法、装置和***
CN106656683A (zh) * 2017-02-27 2017-05-10 北京中船信息科技有限公司 一种无人机通信链路故障检测装置及方法
CN109131937A (zh) * 2018-10-30 2019-01-04 佛山市神风航空科技有限公司 一种分布式无人机自动检测***及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115562466A (zh) * 2022-11-21 2023-01-03 深圳市好盈科技股份有限公司 一种无人机硬件复位的控制方法、装置和电子设备
CN115562466B (zh) * 2022-11-21 2023-03-03 深圳市好盈科技股份有限公司 一种无人机硬件复位的控制方法、装置和电子设备

Also Published As

Publication number Publication date
CN112752714A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
US10846075B2 (en) Host applications of modular assembly system
CN111964922A (zh) 智能驾驶车辆测试***
US20190171540A1 (en) Apparatus fault detecting system and fault detection device
WO2021212344A1 (zh) 无人机的故障管理方法、设备及存储介质
EP3910910B1 (en) Flight log upload method and device, mobile terminal, and unmanned aerial vehicle
WO2019227282A1 (zh) 无人机的飞行日志处理方法及装置
US10252788B2 (en) Systems and methods for configurable user interfaces
WO2023025197A1 (zh) 无人机管理控制方法、飞行控制方法、管理平台和机巢
WO2019104554A1 (zh) 无人机的控制方法及控制终端
CN112867981B (zh) 实验室仪器状态监测
CN207600478U (zh) 一种独立式无人机状态监测***
CN113721648A (zh) 一种无人机飞行控制方法、装置、管理平台和存储介质
WO2019061224A1 (zh) 一种控制终端的控制方法及控制终端
WO2021142850A1 (zh) 部件维护提醒方法、设备、***及计算机可读存储介质
EP3825801A1 (en) Scalable analytics system
US20190370689A1 (en) Learning data acquiring apparatus and method, program, and storing medium
WO2021212345A1 (zh) 飞行器状态管理方法、装置、***、遥控终端及存储介质
CN108021141B (zh) 无人机控制终端及无人机动力监控***操作界面显示方法
WO2022143925A1 (zh) 换电提示方法、***、设备及可读存储介质
KR102228804B1 (ko) 지능형학습 기반의 드론 비행안전 보조시스템
WO2020118500A1 (zh) 控制方法、控制***、计算机可读存储介质和可飞行设备
WO2020107465A1 (zh) 控制方法、无人机和计算机可读存储介质
US20240144833A1 (en) Customized preoperational graphical user interface and remote vehicle monitoring for aircraft systems check
WO2023097579A1 (zh) 无人机的控制方法、控制装置、无人机及存储介质
CN114397901A (zh) 无人机及无人机巡检方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932699

Country of ref document: EP

Kind code of ref document: A1