WO2021200795A1 - イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 - Google Patents

イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 Download PDF

Info

Publication number
WO2021200795A1
WO2021200795A1 PCT/JP2021/013218 JP2021013218W WO2021200795A1 WO 2021200795 A1 WO2021200795 A1 WO 2021200795A1 JP 2021013218 W JP2021013218 W JP 2021013218W WO 2021200795 A1 WO2021200795 A1 WO 2021200795A1
Authority
WO
WIPO (PCT)
Prior art keywords
isobutylene
isobutanol
catalyst
producing
gas
Prior art date
Application number
PCT/JP2021/013218
Other languages
English (en)
French (fr)
Inventor
鈴木 達也
加藤 裕樹
二宮 航
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020227032097A priority Critical patent/KR20220143085A/ko
Priority to EP21778952.8A priority patent/EP4129962A4/en
Priority to CN202180014928.3A priority patent/CN115135624A/zh
Priority to BR112022017268A priority patent/BR112022017268A2/pt
Priority to JP2022512192A priority patent/JP7355226B2/ja
Publication of WO2021200795A1 publication Critical patent/WO2021200795A1/ja
Priority to US17/932,441 priority patent/US20230027797A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/885Molybdenum and copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • B01J27/192Molybdenum with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina

Definitions

  • the present invention relates to a method for producing isobutylene, a method for producing methacrylic acid, and a method for producing methyl methacrylate.
  • the present application claims priority based on Japanese Patent Application No. 2020-064207 filed in Japan on March 31, 2020, the contents of which are incorporated herein by reference.
  • Isobutylene is one of the important chemical raw materials converted into ethyl tert-butyl ether, para-xylene, methyl methacrylate and the like.
  • methyl methacrylate can be produced by vapor-phase catalytic oxidation of isobutylene or tert-butyl alcohol hydrated with isobutylene to obtain methacrylic acid, and then esterifying with methanol.
  • isobutylene for example, a method is known in which isobutanol is brought into contact with a catalyst such as alumina under pressure to dehydrate isobutanol to produce isobutylene (for example, Patent Document 1).
  • a catalyst such as alumina under pressure to dehydrate isobutanol to produce isobutylene
  • the present invention comprises a method for producing isobutylene, which produces isobutylene from isobutanol with a high selectivity while suppressing a decrease in the conversion rate of isobutanol under pressure, and a method for producing methacrylic acid using the method for producing isobutylene. It is an object of the present invention to provide a method and a method for producing methyl methacrylate.
  • the present invention has the following aspects.
  • a method for producing isobutylene in which a raw material gas containing isobutanol is brought into contact with a catalyst to produce isobutylene from isobutanol.
  • the raw material gas containing isobutanol is produced under a pressure of 120 kPa or more as an absolute pressure.
  • a method for producing isobutylene which comprises contacting a catalyst with a linear velocity of 1.20 cm / s or more to produce isobutylene from isobutanol.
  • [3] The method for producing isobutylene according to [1] or [2], wherein the catalyst has a particle size of 700 ⁇ m or more and 10000 ⁇ m or less.
  • [4] The method for producing isobutylene according to any one of [1] to [3], wherein the catalyst is a catalyst containing alumina.
  • [5] A method for producing methacrylic acid, wherein isobutylene is produced by the method for producing isobutylene according to any one of [1] to [4], and methacrylic acid is produced from the obtained isobutylene.
  • Isobutylene is produced by the method for producing isobutylene according to any one of [1] to [4], tert-butyl alcohol is obtained from the isobutylene, and then methacrylic acid is obtained from the obtained tert-butyl alcohol.
  • a method for producing methacrylic acid A method for producing methacrylic acid.
  • a method for producing methyl methacrylate wherein methacrylic acid is produced by the method for producing methacrylic acid according to [5] or [6], and methyl methacrylate is produced from the obtained methacrylic acid and methanol.
  • the present invention it is possible to provide a method for producing isobutylene, which produces isobutylene from isobutanol with a high selectivity while suppressing a decrease in the conversion rate of isobutanol under pressure. According to the present invention, it is possible to provide a method for producing methacrylic acid and a method for producing methyl methacrylate using the method for producing isobutylene of the present invention.
  • isobutylene is produced from isobutanol by contacting a raw material gas containing isobutanol with a catalyst.
  • a raw material gas containing isobutanol is supplied to a reactor filled with a catalyst to form a catalyst layer, the raw material gas containing isobutanol can be brought into contact with the catalyst.
  • the form of dehydration of isobutanol is not particularly limited, and for example, a fixed bed or a fluidized bed can be adopted.
  • a raw material gas containing isobutanol is brought into contact with the catalyst at a linear velocity of 1.20 cm / s or more, and isobutanol is dehydrated under a pressure of 120 kPa or more as an absolute pressure.
  • isobutylene can be produced with a high selectivity while suppressing a decrease in the conversion rate of isobutanol under pressure.
  • the factors capable of producing isobutylene with a high selectivity while suppressing a decrease in the conversion rate under pressure are considered as follows.
  • the linear velocity of the raw material gas to be brought into contact with the catalyst is 1.20 cm / s or more, preferably 1.40 cm / s or more, more preferably 1.60 cm / s or more, still more preferably 1.80 cm / s or more, 2 .00 cm / s or more is particularly preferable, 2.20 cm / s or more is particularly preferable, and 2.40 cm / s or more is most preferable.
  • the linear velocity of the raw material gas is at least the above lower limit value, the decrease in the conversion rate of isobutanol under pressure can be suppressed, and the selectivity of isobutylene is improved.
  • the linear velocity of the raw material gas is equal to or higher than the lower limit value, the conversion rate tends to improve, so that the upper limit of the linear velocity is not particularly limited.
  • the linear velocity of the raw material gas can be 5000 cm / s or less.
  • the absolute pressure in dehydration of isobutanol is 120 kPa or more, preferably 150 kPa or more, more preferably 170 kPa or more, further preferably 190 kPa or more, and particularly preferably 210 kPa or more. 230 kPa or more is particularly preferable.
  • the selectivity of isobutylene is improved.
  • the pressure for dehydration of isobutanol is preferably 100,000 kPa or less, more preferably 50,000 kPa or less, further preferably 10,000 kPa or less, particularly preferably 5,000 kPa or less, particularly preferably 2500 kPa or less, and most preferably 1000 kPa or less.
  • the upper and lower limits can be combined arbitrarily.
  • the pressure for dehydration of isobutanol is preferably 120 kPa or more and 100,000 kPa or less, more preferably 150 kPa or more and 50,000 kPa or less, further preferably 170 kPa or more and 10000 kPa or less, further preferably 190 kPa or more and 5000 kPa or less, and particularly preferably 210 kPa or more and 2500 kPa or less. 230 kPa or more and 1000 kPa or less are particularly preferable.
  • the pressure in dehydration of isobutanol is not more than the above upper limit, the supply amount of isobutanol required to bring the linear velocity of the raw material gas in contact with the catalyst to 1.20 cm / s or more can be reduced, and the process enlargement can be prevented. Can be done.
  • the pressure in dehydration is a value measured by a pressure sensor installed at a position where the influence of pressure loss can be ignored with respect to the pressure at the inlet of the reactor.
  • the reaction temperature in dehydration of isobutanol is preferably 390 ° C. or lower, more preferably 380 ° C. or lower, further preferably 370 ° C. or lower, particularly preferably 360 ° C. or lower, and most preferably 350 ° C. or lower.
  • the reaction temperature in dehydration of isobutanol is preferably 240 ° C. or higher, more preferably 250 ° C. or higher, further preferably 260 ° C. or higher, particularly preferably 270 ° C. or higher, and most preferably 280 ° C. or higher.
  • the reaction temperature in dehydration of isobutanol is preferably 240 ° C. or higher and 390 ° C. or lower, more preferably 250 ° C. or higher and 380 ° C. or lower, further preferably 260 ° C. or higher and 370 ° C. or lower, and particularly preferably 270 ° C. or higher and 360 ° C. or lower. It is particularly preferably 280 ° C. or higher and 350 ° C. or lower.
  • the lowest temperature of the catalyst layer in the reactor that can be confirmed after the reaction has reached a steady state is defined as the reaction temperature. Therefore, when the temperature of the catalyst layer varies, it is preferable to increase the number of measurement points or measure the temperature continuously in the catalyst filling direction.
  • the method for controlling the reaction temperature is not particularly limited, and a known method can be adopted.
  • the isobutanol used as a starting material is not particularly limited, and may be biomass-derived isobutanol from the viewpoint of environmental protection.
  • “Biomass-derived isobutanol” is isobutanol purified from an organic compound obtained through a fermentation process using fermentable sugar of biomass, or any one of catalytic chemical conversion and thermochemical conversion of biomass. Isobutanol obtained by a process containing one or more. Biomass can be broadly divided into those derived from resource crops and those derived from waste. Examples of biomass derived from resource crops include food crops, wood, and flowers, and unused portions of these crops can also be used. Examples of biomass derived from waste include food waste, sludge such as sewage, livestock manure, and waste paper.
  • the evaporator is not particularly limited, and for example, a jacket type, a natural circulation type horizontal tube type, a natural circulation type immersion tube type, a natural circulation type vertical short tube type, a vertical long tube rising film type, a horizontal tube descending film type, Examples include a forced circulation type horizontal tube type, a forced circulation type vertical tube type, and a coil type.
  • the isobutanol concentration can be adjusted by diluting isobutanol with a diluting gas.
  • the raw material gas may be a gas consisting only of isobutanol.
  • the diluting gas may be any gas that does not affect the dehydration of isobutanol, for example, nitrogen, helium, neon, krypton, xenone, radon, argon, methane, ethane, propane, butane, isobutane, carbon monoxide, etc. Examples thereof include carbon dioxide, nitric oxide, nitrogen dioxide, nitrous oxide, dinitrogen trioxide, dinitrogen tetroxide, dinitrogen pentoxide, and water vapor.
  • Oxygen or hydrogen may be used as a diluting gas as long as it does not affect the dehydration of isobutanol.
  • the dilution gas contained in the raw material gas may be one type or two or more types. Moisture may be contained in the raw material gas.
  • the isobutanol concentration in the raw material gas is preferably 15.0% by volume or more, more preferably 20% by volume or more, further preferably 30% by volume or more, and particularly preferably 40% by volume or more, based on the total volume of the raw material gas. , 50% by volume or more is particularly preferable, and 55% by volume or more is most preferable.
  • the isobutanol concentration is at least the above lower limit value, the isomerization reaction is easily suppressed and the selectivity of isobutylene is improved.
  • the reactor can be easily miniaturized, the equipment cost can be reduced, and the energy cost required for the recovery of isobutylene can be reduced. There is no particular upper limit, and it is 100% by volume or less.
  • the catalyst used for dehydration of isobutanol is not particularly limited as long as it is a catalyst capable of dehydrating isobutanol, and examples thereof include a dehydration catalyst, and an acid catalyst is particularly preferable.
  • the acid catalyst include alumina, silica alumina, zeolite, solid phosphoric acid, and titania.
  • the catalyst preferably contains alumina because the selectivity of isobutylene is high.
  • the alumina catalyst means a catalyst in which the ratio of alumina to the total mass of the catalyst is 90% by mass or more.
  • the catalyst one type may be used alone, or two or more types may be used in combination.
  • the crystal form of alumina used in the present invention is not particularly limited.
  • ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and alumina hydrate can be mentioned.
  • a catalyst containing ⁇ -alumina is preferable from the viewpoint of activity and selectivity.
  • Alumina in these crystal forms may be used alone or in combination of two or more. When two or more kinds are used in combination, those having different crystal forms may be used, or a mixed phase crystal state may be taken.
  • the alumina used in the catalyst of the present invention can be easily produced by a known method including, for example, a thermal decomposition method, a precipitation method, a deposition method, a kneading method, or a method in which these methods are used in combination.
  • the raw material for alumina include materials that produce alumina or alumina hydrate by heating or hydrolysis, such as nitrates, acetates, alkoxides, sulfates, chlorides, alkali aluminates, and myoban.
  • the alkali used for hydrolysis include caustic alkali, alkali carbonate, aqueous ammonia, and ammonium carbonate.
  • the alumina used in the catalyst of the present invention may be molded and used if necessary.
  • the alumina catalyst used in the present invention may contain a compound other than alumina.
  • the content of alumina in the catalyst is preferably 95.0% by mass or more, more preferably 97.0% by mass or more, and 98.0% by mass with respect to the total mass of the catalyst.
  • the above is more preferable, 99.0% by mass or more is particularly preferable, and 99.5% by mass or more is most preferable.
  • Examples of compounds other than alumina include SiO 2 and Na 2 O.
  • the content of SiO 2 in the alumina catalyst is preferably 1.0% by mass or less, more preferably 0.75% by mass or less, still more preferably 0.50% by mass or less, and 0. 40% by mass or less is even more preferable, 0.30% by mass or less is particularly preferable, and 0.20% by mass or less is particularly preferable. SiO 2 may not be contained in the alumina.
  • the content of Na 2 O in the alumina catalyst is preferably 0.20% by mass or less, more preferably 0.15% by mass or less, still more preferably 0.10% by mass or less, and 0. .075% by mass or less is even more preferable, 0.050% by mass or less is particularly preferable, and 0.025% by mass or less is particularly preferable.
  • Na 2 O may not be contained in alumina.
  • the contents of alumina, SiO 2 and Na 2 O in the catalyst are measured by ICP emission spectroscopy (ICP-AES).
  • ICP-AES ICP emission spectroscopy
  • Optima 8300 ICP-OES Spectrometer manufactured by PerkinElmer.
  • BET specific surface area of the catalyst is preferably at least 40.0m 2 / g, more preferably not less than 50.0 m 2 / g, more preferably not less than 60.0m 2 / g, 70 particularly preferred .0m 2 / g or more, 80.0m 2 / g or more it is most preferred.
  • the upper limit of the BET specific surface area of alumina is not particularly limited, but is preferably 350 m 2 / g or less.
  • BET specific surface area of the catalyst is a value calculated from the N 2 adsorption-desorption isotherms, for example, it can be measured using a Tristar 3000 (product name, manufactured by Shimadzu Corporation).
  • the size of the catalyst particles is preferably 700 ⁇ m or more and 10000 ⁇ m or less, more preferably 800 ⁇ m or more and 9500 ⁇ m or less, and most preferably 1000 ⁇ m or more and 9000 ⁇ m or less.
  • the particle size of the catalyst is defined as the size of the mesh opening of the sieve when the particles are sized with a sieve or the like. Further, in the case of a molded catalyst, for example, in the case of a cylindrical pellet, the diameter is defined as the particle size. If the particle size is too small, the pressure loss in the catalyst layer filled in the reactor becomes high, and the equipment cost and energy cost for circulating the reaction gas increase. On the other hand, if the particle size is too large, the catalyst effective coefficient becomes small, the activity per catalyst mass is lowered, and the selectivity of isobutylene is lowered.
  • the method for producing methacrylic acid of the present invention is a method for producing methacrylic acid using isobutylene produced by the method for producing isobutylene of the present invention.
  • the following method (A) and method (B) can be mentioned.
  • methacrylic acid can be produced from isobutylene with a high selectivity.
  • (A) The step of producing isobutylene by the method for producing isobutylene of the present invention (a1) and the step of producing methacrylic acid by vapor phase oxidation of isobutylene (a2) are included.
  • (B) A step of producing isobutylene by the method for producing isobutylene of the present invention (b1), a step of hydrating isobutylene to produce tert-butyl alcohol (b2), and a step of hydrating isobutylene to produce tert-.
  • the step (b3) of producing methacrylic acid by vapor phase oxidation of butyl alcohol is included.
  • the hydration of isobutylene in step (b2) can be performed by a known method.
  • the acid catalyst used for hydration of isobutylene include an ion exchange resin and a heteropolyacid.
  • a strongly acidic cation exchange resin is preferable as the acid catalyst because tert-butyl alcohol can be produced in a high yield.
  • the vapor phase oxidation of isobutylene in the step (a2) or the vapor phase oxidation of tert-butyl alcohol in the step (b3) may be carried out in one step or in two steps. Two-stage vapor phase oxidation is preferable because of the high selectivity of methacrylic acid.
  • first stage oxidation When gas phase oxidation is carried out in two stages, it is preferable to use a catalyst for first stage oxidation in the first stage gas phase oxidation (first stage oxidation).
  • the catalyst used may be a known catalyst.
  • a catalyst containing at least molybdenum and bismuth is preferable.
  • a catalyst having a composition represented by the formula (1) is preferable.
  • Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively.
  • M represents at least one element selected from the group consisting of cobalt and nickel.
  • X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc.
  • Y represents at least one element selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium.
  • Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
  • a3 1.0 ⁇ 12
  • a4 0 ⁇ 8.0
  • a5 0 ⁇ 5.0
  • a6 0.001 ⁇ 2.0
  • a7 satisfies the atomic value of each component. It is the atomic ratio of oxygen required for.
  • First-stage oxidation can be performed on a fixed bed.
  • the mode of the catalyst layer for the first-stage oxidation is not particularly limited, and may be an undiluted layer containing only the catalyst for the first-stage oxidation, or a diluted layer containing an inert carrier.
  • the catalyst layer for the first-stage oxidation may be a single layer or a mixed layer composed of a plurality of layers.
  • the concentration of isobutylene or tert-butyl alcohol in the raw material gas for the first-stage oxidation is preferably 1.0% by volume or more, more preferably 3.0% by volume or more.
  • the concentration of isobutylene or tert-butyl alcohol in the raw material gas for the first-stage oxidation is preferably 20.0% by volume or less, more preferably 10.0% by volume or less.
  • the upper and lower limits can be combined arbitrarily.
  • the concentration of isobutylene or tert-butyl alcohol in the raw material gas for the first-stage oxidation is preferably 1.0% by volume or more and 20.0% by volume or less, and more preferably 3.0% by volume or more and 20.0% by volume or less. It is preferable, and more preferably 3.0% by volume or more and 10.0% by volume or less.
  • reaction gas diluted with an inert gas such as nitrogen or carbon dioxide gas, water vapor or the like in addition to isobutylene or tert-butyl alcohol and molecular oxygen.
  • inert gas such as nitrogen or carbon dioxide gas, water vapor or the like
  • the reaction temperature of the first-stage oxidation is preferably 200 ° C. or higher and 450 ° C. or lower, and more preferably 250 ° C. or higher and 400 ° C. or lower.
  • the contact time between isobutylene and molecular oxygen in the first-stage oxidation is preferably 0.5 seconds or longer, more preferably 1.0 seconds or longer.
  • the contact time between isobutylene and molecular oxygen in the first-stage oxidation is preferably 10.0 seconds or less, more preferably 6.0 seconds or less.
  • the upper and lower limits can be combined arbitrarily.
  • the contact time between isobutylene and molecular oxygen in the first-stage oxidation is preferably 0.5 seconds or more and 10.0 seconds or less, more preferably 0.5 seconds or more and 6.0 seconds or less, and 1.0 seconds or more and 6 More preferably, it is 0.0 seconds or less.
  • Methacrolein and methacrylic acid are obtained by the first-stage oxidation. Methacrolein is converted to methacrylic acid by the second stage vapor phase oxidation (second stage oxidation).
  • a known catalyst can be used.
  • a catalyst containing at least molybdenum and phosphorus is preferable.
  • a catalyst having a composition represented by the formula (2) is preferable.
  • P, Mo, V, Cu and O represent phosphorus, molybdenum, vanadium, copper and oxygen, respectively.
  • A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron.
  • E represents at least one element selected from the group consisting of potassium, rubidium, cesium, thallium, magnesium and barium.
  • G is at least one selected from the group consisting of iron, zinc, chromium, calcium, strontium, tantalum, cobalt, nickel, manganese, titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum.
  • the second stage oxidation can be performed on a fixed bed.
  • the catalyst layer for the second-stage oxidation is not particularly limited, and may be an undiluted layer containing only the catalyst for the second-stage oxidation, or a diluted layer containing an inert carrier.
  • the catalyst layer for the second stage oxidation may be a single layer or a mixed layer composed of a plurality of layers.
  • the concentration of methacrolein in the reaction gas of the second stage oxidation is not limited and can be set to any concentration, but 1.0% by volume or more is preferable, and 3.0% by volume or more is more preferable.
  • the concentration of methacrolein in the reaction gas for the second stage oxidation is preferably 20.0% by volume or less, more preferably 10.0% by volume or less.
  • the upper and lower limits can be combined arbitrarily.
  • the concentration of methacrolein in the reaction gas of the second stage oxidation is preferably 1.0% by volume or more and 20.0% by volume or less, more preferably 1.0% by volume or more and 10.0% by volume or less. More preferably, it is 0% by volume or more and 10.0% by volume or less.
  • the concentration of molecular oxygen in the reaction gas for the second-stage oxidation is preferably 0.5 mol or more, more preferably 1.0 mol or more, with respect to 1.0 mol of methacrolein.
  • the molecular oxygen concentration in the reaction gas for the second stage oxidation is preferably 4.0 mol or less, more preferably 3.0 mol or less, with respect to 1.0 mol of methacrolein. The upper and lower limits can be combined arbitrarily.
  • the concentration of molecular oxygen in the second stage oxidation is preferably 0.5 mol or more and 4.0 mol or less, more preferably 1.0 mol or more and 4.0 mol or less, and 1.0 mol or more, with respect to 1.0 mol of methacrolein. 3.0 mol or less is more preferable.
  • Water water vapor
  • methacrolein and molecular oxygen may be added as the reaction gas for the second stage oxidation in addition to methacrolein and molecular oxygen.
  • the reaction gas for the second stage oxidation may contain a small amount of impurities such as lower saturated aldehyde, but the amount is preferably as small as possible. Further, the reaction gas for the second stage oxidation may contain an inert gas such as nitrogen or carbon dioxide.
  • the reaction pressure of the second stage oxidation can be set in the range from atmospheric pressure to several hundred kPaG.
  • the reaction temperature of the second stage oxidation is preferably 230 ° C. or higher, more preferably 250 ° C. or higher.
  • the reaction temperature of the second stage oxidation is preferably 450 ° C. or lower, more preferably 400 ° C. or lower.
  • the upper and lower limits can be combined arbitrarily.
  • the reaction temperature of the second stage oxidation is preferably 230 ° C. or higher and 400 ° C. or lower, more preferably 250 ° C. or higher and 450 ° C. or lower, and further preferably 250 ° C. or higher and 400 ° C. or lower.
  • the method for producing methyl methacrylate of the present invention is a method for producing methyl methacrylate using the methacrylic acid of the present invention.
  • the method for producing methyl methacrylate of the present invention includes a step of producing methacrylic acid of the present invention and a step of producing methyl methacrylate by esterifying methacrylic acid with methanol.
  • methyl methacrylate can be produced from isobutylene with a high selectivity.
  • methacrylic acid produced by the production method of the present invention is recovered by extraction, distillation or the like, and esterified with methanol in the presence of an acid catalyst. It is preferable to use a catalyst for esterification.
  • the catalyst to be used is preferably an acid catalyst, and for example, sulfuric acid or an ion exchange resin can be used.
  • As the ion exchange resin a strongly acidic cation exchange resin is preferable.
  • Specific examples of the strong acid cation exchange resin include Diaion (registered trademark), PK216, RCP12H (manufactured by Mitsubishi Chemical Corporation), Rebatit (registered trademark), K2431 (manufactured by Bayer), and Amberlist (registered trademark). 15 WET (manufactured by Roam and Hearth Japan) can be mentioned. One of these may be used alone, or two or more thereof may be used in combination.
  • the flow direction of the reaction fluid in esterification may be either vertically upward or vertically downward, and can be appropriately selected.
  • the flow direction of the reaction fluid is preferably vertically upward.
  • the flow direction of the reaction fluid is preferably vertically downward.
  • the amount of the raw material containing methacrylic acid and methanol is preferably 0.10 times or more in terms of the mass ratio to the amount of the ion exchange resin, and is 0. .20 times or more is more preferable.
  • the amount of liquid flowing through the raw material is preferably 10.0 times or less, more preferably 5.0 times or less, in terms of mass ratio with respect to the amount of ion exchange resin.
  • the upper and lower limits can be combined arbitrarily.
  • the amount of liquid flowing through the raw material containing methacrylic acid and methanol is preferably 0.10 times or more and 10.0 times or less, and more preferably 0.20 times or more and 10.0 times or less in terms of mass ratio with respect to the amount of ion exchange resin. , 0.20 times or more and 5.0 times or less is more preferable.
  • the reaction temperature for esterification is preferably 40 ° C. or higher and 130 ° C. or lower.
  • the reaction temperature is 40 ° C. or higher, the reaction rate is high and esterification can be carried out efficiently.
  • the reaction temperature is 130 ° C. or lower, the deterioration rate of the ion exchange resin becomes low, and the ion exchange resin can be continuously esterified for a long time.
  • the reaction temperature for esterification can be appropriately determined to be the optimum temperature from the viewpoint of chemical equilibrium.
  • the raw material composition can be simplified by increasing the concentration of either methacrylic acid or methanol and increasing the conversion rate of the raw material having the lower concentration.
  • the mass space velocity (WHSV) per unit time of the raw material gas is defined by the following equation (3).
  • WHSV (h -1 ) W1 / W2 ... (3)
  • W1 is the amount of isobutanol supplied per unit time (g / h).
  • W2 is the amount of catalyst (g) used.
  • the flow rate and linear velocity of the raw material gas supplied to the catalyst layer are defined as follows.
  • the following raw material gas flow rate (L / h) is the total flow rate of the mixed gas composed of the raw material isobutanol and the diluted gas.
  • Raw material gas flow rate (L / h) Raw material gas flow rate (NL / h) measured under standard conditions x 101.3 (kPa) / reaction pressure (kPa) x reaction temperature (K) / 273 (K)
  • Raw material gas linear velocity (cm / s) Raw material gas flow rate (L / h) x 1000/3600 ⁇ Cross-sectional area of reaction tube (cm 2 )
  • a dehydration catalyst (cylindrical pellet-shaped, crushed alumina formed to a diameter of 3.0 mm, ⁇ -alumina phase is the main component of the crystal phase in a vertical tubular reaction tube with an inner diameter of 0.75 cm and a length of 40 cm.
  • the set temperature of the electric furnace for the reaction tube was adjusted so that the catalyst layer temperature became a predetermined temperature.
  • reaction pressure was adjusted by using a back pressure valve so that the reaction pressure became a predetermined pressure.
  • isobutanol manufactured by Nacalai Tesque, the amount of water measured by the Karl Fischer method: 411 ppm
  • isobutanol manufactured by Nacalai Tesque, the amount of water measured by the Karl Fischer method: 411 ppm
  • Nitrogen gas as a dilution gas was supplied into the evaporator at a flow rate of 16 ml (standard state) / minute using a mass flow meter, and supplied to the reactor together with the evaporated isobutanol.
  • the isobutanol concentration in the raw material gas supplied to the catalyst layer was 79.9% by volume, and the temperature of the catalyst layer during the reaction (reaction temperature) was 340 ° C.
  • the reaction evaluation was started 5 minutes after the catalyst layer temperature and the reaction pressure became stable within the predetermined temperature ⁇ 0.5 ° C. and the predetermined pressure ⁇ 0.5 kPa, respectively. After the reaction reaches a steady state, the gas on the outlet side of the reactor is collected and gas chromatographed (manufactured by Shimadzu Corporation, GC-8A) to isobutylene, isobutene, 1-butene, cis-2-butene, trans-2. -Buten was quantified.
  • reaction gas discharged from the outlet side of the reactor is trapped in ice-cooled acetonitrile, and unreacted isobutanol, diisobutyl ether, and isobutyraldehyde are quantified by gas chromatography (manufactured by Shimadzu Corporation, GC-2014). Was done.
  • a pressure gauge for measuring the reaction pressure was installed between the evaporator and the reactor inlet. Including this reference example, it was confirmed that the pressure loss from the evaporator to the reactor inlet was negligibly small in all the flow rate ranges under the conditions of Examples 1 to 19 and Comparative Examples 1 to 6.
  • Example 1 As a catalyst for dehydration, alumina composed of crushed alumina ( ⁇ , ⁇ , ⁇ -alumina phase crystal phase) formed into cylindrical pellets (diameter: 3.00 m), particle size: 800 to 1190 ⁇ m, BET specific surface area : 105 m 2 / g, Na 2 O content: less than 0.0500 mass%, SiO 2 content: 0.160 mass%, hereinafter referred to as "catalyst B") 0.232 g, inner diameter 1.0 cm, length A 40 cm vertical tubular reaction tube was filled, and the reaction temperature and reaction pressure were maintained at 340 ° C. and 250 kPa, respectively.
  • Catalyst B alumina composed of crushed alumina ( ⁇ , ⁇ , ⁇ -alumina phase crystal phase) formed into cylindrical pellets (diameter: 3.00 m), particle size: 800 to 1190 ⁇ m, BET specific surface area : 105 m 2 / g, Na 2 O content: less than 0.0500 mass%,
  • Examples 2 and 3 and Comparative Example 1 A product was obtained in the same manner as in Example 1 except that the reaction conditions were changed as shown in Table 2.
  • Table 2 and FIG. 2 show the measurement results of the conversion rate of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas.
  • Example 4 A fixed bed reactor was filled with 0.232 g of catalyst A and maintained at 340 ° C. and 400 kPa. Next, a raw material gas composed of isobutanol (concentration in raw material gas: 80.3% by volume) and nitrogen was placed in a fixed bed reactor filled with 0.232 g of catalyst A so that the linear velocity was 2.07 cm / s. It was fed and contacted with isobutanol and alumina to give the product. The raw material gas flow rate was 3.29 L / h and the WHSV was 66.3 h -1 . The measurement results of the conversion rate of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Table 3 and FIG.
  • Example 5 and 6 and Comparative Example 2 A product was obtained in the same manner as in Example 4 except that the reaction conditions were changed as shown in Table 3. The measurement results of the conversion rate of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Table 3 and FIG.
  • Example 7 A fixed bed reactor was filled with 0.132 g of catalyst A and maintained at 340 ° C. and 200 kPa. Next, a fixed bed reaction in which 0.132 g of catalyst A was filled with a raw material gas composed of isobutanol (concentration in the raw material gas: 79.4% by volume) and nitrogen so that the linear velocity was 4.57 cm / s. It was fed to a vessel and brought into contact with isobutanol and alumina to give the product. The raw material gas flow rate was 7.27 L / h and the WHSV was 127 h -1 . The measurement results of the conversion of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Tables 4 and 4.
  • Examples 8 and 9 and Comparative Example 3 A product was obtained in the same manner as in Example 7 except that the reaction conditions were changed as shown in Table 4. The measurement results of the conversion of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Tables 4 and 4.
  • Example 10 A fixed bed reactor was filled with 0.591 g of catalyst B and kept at 340 ° C. and 200 kPa. Next, a raw material gas composed of isobutanol (concentration in raw material gas: 80.1% by volume) and nitrogen was supplied to the fixed bed reactor so that the linear velocity was 4.53 cm / s, and isobutanol was supplied. And alumina were brought into contact with each other to obtain a product. The raw material gas flow rate was 7.21 L / h and the WHSV was 28.4 h -1 . The measurement results of the conversion of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Tables 5 and 5.
  • Examples 11 to 13 and Comparative Example 4 A product was obtained in the same manner as in Example 10 except that the reaction conditions were changed as shown in Table 5. The measurement results of the conversion of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Tables 5 and 5.
  • Example 14 A fixed bed reactor was filled with 0.903 g of catalyst B and maintained at 360 ° C. and 450 kPa. Next, a fixed bed reaction in which a raw material gas composed of isobutanol (concentration in the raw material gas: 79.9% by volume) and nitrogen was filled with 0.903 g of catalyst B so that the linear velocity was 1.57 cm / s. It was fed to a vessel and brought into contact with isobutanol and alumina to give the product. The raw material gas flow rate was 2.50 L / h and the WHSV was 14.0 h -1 . The measurement results of the conversion of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Tables 6 and 6.
  • Examples 15 to 19 A product was obtained in the same manner as in Example 14 except that the reaction conditions were changed as shown in Table 5. The measurement results of the conversion of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Tables 6 and 6.
  • Examples 20 to 21 A product was obtained in the same manner as in Example 3 except that the reaction conditions were changed as shown in Table 7. The measurement results of the conversion of isobutanol, the selectivity of C4 gas in the product, and the selectivity of isobutylene in C4 gas are shown in Tables 7 and 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

加圧下でイソブタノールの転化率の低下を抑制しつつ、高い選択率でイソブタノールからイソブチレンを製造するイソブチレンの製造方法を提供する。本発明のイソブチレンの製造方法は、イソブタノールを含む原料ガスを、触媒に接触させて、イソブタノールからイソブチレンを製造するイソブチレンの製造方法であって、絶対圧として120kPa以上の圧力下で、前記イソブタノールを含む原料ガスを1.20cm/s以上の線速度で触媒に接触させて、イソブタノールからイソブチレンを製造する。

Description

イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法
 本発明は、イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法に関する。
 本願は、2020年3月31日に日本出願された特願2020-064207号に基づき優先権を主張し、その内容をここに援用する。
 イソブチレンは、エチルtert-ブチルエーテル、パラキシレン、メタクリル酸メチル等に変換される重要な化学品原料の一つである。例えば、イソブチレン、又はイソブチレンを水和したtert-ブチルアルコールを気相接触酸化してメタクリル酸を得た後、メタノールとエステル化させることでメタクリル酸メチルを製造できる。
 イソブチレンの製造方法としては、例えば、加圧下でアルミナ等の触媒にイソブタノールを接触させ、イソブタノールを脱水させてイソブチレンを製造する方法が知られている(例えば、特許文献1)。
国際公開第2015/170686号
 工業的にイソブタノールの脱水によりイソブチレンを製造するためには、高い転化率でイソブタノールを反応させて、高い選択率でイソブチレンを製造することが望ましい。
 しかしながら、加圧下でイソブタノールの脱水を行うと、イソブチレンの選択率は向上する場合があるが、イソブタノールの転化率は低下する傾向があることが判明した。
 そこで、本発明は、加圧下でイソブタノールの転化率の低下を抑制しつつ、高い選択率でイソブタノールからイソブチレンを製造するイソブチレンの製造方法、並びに前記イソブチレンの製造方法を利用したメタクリル酸の製造方法及びメタクリル酸メチルの製造方法を提供することを目的とする。
 本発明は、以下の態様を有する。
[1]イソブタノールを含む原料ガスを、触媒に接触させて、イソブタノールからイソブチレンを製造するイソブチレンの製造方法であって、絶対圧として120kPa以上の圧力下で、前記イソブタノールを含む原料ガスを1.20cm/s以上の線速度で触媒に接触させて、イソブタノールからイソブチレンを製造する、イソブチレンの製造方法。
[2]前記イソブタノールを含む原料ガスに含まれるイソブタノールの濃度が、15体積%以上100体積%以下である[1]に記載のイソブチレンの製造方法。
[3]前記触媒の粒子径が、700μm以上10000μm以下である[1]又は[2]に記載のイソブチレンの製造方法。
[4]前記触媒が、アルミナを含む触媒である[1]~[3]のいずれか1つに記載のイソブチレンの製造方法。
[5][1]~[4]のいずれか1つに記載のイソブチレンの製造方法によってイソブチレンを製造し、得られたイソブチレンからメタクリル酸を製造する、メタクリル酸の製造方法。
[6][1]~[4]のいずれか1つに記載のイソブチレンの製造方法によってイソブチレンを製造し、前記イソブチレンからtert-ブチルアルコールを得た後、得られたtert-ブチルアルコールからメタクリル酸を製造する、メタクリル酸の製造方法。
[7][5]又は[6]に記載のメタクリル酸の製造方法によってメタクリル酸を製造し、得られたメタクリル酸とメタノールからメタクリル酸メチルを製造する、メタクリル酸メチルの製造方法。
 本発明によれば、加圧下でイソブタノールの転化率の低下を抑制しつつ、高い選択率でイソブタノールからイソブチレンを製造するイソブチレンの製造方法を提供できる。本発明によれば、本発明のイソブチレンの製造方法を用いたメタクリル酸の製造方法及びメタクリル酸メチルの製造方法を提供できる。
参考例のイソブタノールの転化率の測定結果を示したグラフである。 実施例1~3及び比較例1のイソブタノールの転化率、及びC4ガス中のイソブチレンの選択率の測定結果を示したグラフである。 実施例4~6及び比較例2のイソブタノールの転化率、及びC4ガス中のイソブチレンの選択率の測定結果を示したグラフである。 実施例7~9及び比較例3のイソブタノールの転化率、及びC4ガス中のイソブチレンの選択率の測定結果を示したグラフである。 実施例10~13及び比較例4のイソブタノールの転化率、及びC4ガス中のイソブチレンの選択率の測定結果を示したグラフである。 実施例14~19のイソブタノールの転化率、及びC4ガス中のイソブチレンの選択率の測定結果を示したグラフである。 実施例20、21のC4ガス中のイソブチレンの選択率の測定結果を示したグラフである。
[イソブチレンの製造方法]
 本発明のイソブチレンの製造方法では、イソブタノールを含む原料ガスを触媒に接触させることで、イソブタノールからイソブチレンを製造する。例えば、イソブタノールを含む原料ガスを、触媒を充填して触媒層を形成した反応器に供給することで、イソブタノールを含む原料ガスを触媒に接触させることができる。イソブタノールの脱水の形式としては、特に限定されず、例えば、固定床、流動床を採用できる。
 本発明では、触媒に対し、イソブタノールを含む原料ガスを線速度1.20cm/s以上で接触させ、絶対圧として120kPa以上の圧力下でイソブタノールを脱水させる。これにより、加圧下でイソブタノールの転化率の低下を抑制しつつ、高い選択率でイソブチレンを製造できる。
 本発明において、加圧下で転化率の低下を抑制しつつ、高い選択率でイソブチレンを製造できる要因は、以下のように考えられる。
 120kPa以上の加圧下でイソブタノールを脱水させると、イソブチレンの選択率は高くなるが、イソブタノールの転化率が低下する傾向がある。これは、加圧下で、イソブタノールを含む原料ガスを触媒に接触させる際、触媒表面の境膜の影響で、本発明で用いられる原料ガスが触媒に接触しにくくなるためだと考えられる。
 これに対し、原料ガスの線速度を1.20cm/s以上とすることで、この原料ガスを触媒に接触させる際、触媒表面の境膜の影響を受けにくくなり、イソブタノールの転化率が向上すると考えられる。
 触媒に接触させる原料ガスの線速度は、1.20cm/s以上であり、1.40cm/s以上が好ましく、1.60cm/s以上がより好ましく、1.80cm/s以上がさらに好ましく、2.00cm/s以上が殊更好ましく、2.20cm/s以上が特に好ましく、2.40cm/s以上が最も好ましい。原料ガスの線速度が前記下限値以上であれば、加圧下でのイソブタノールの転化率の低下を抑制でき、かつイソブチレンの選択率が向上する。
 一方、上述の理由により、原料ガスの線速度が前記下限値以上であれば転化率は向上する傾向があるために、線速度の上限は特に限定されない。例えば、原料ガスの線速度は5000cm/s以下とすることができる。
 イソブタノールの脱水における圧力は、絶対圧として、120kPa以上であり、150kPa以上が好ましく、170kPa以上がより好ましく、190kPa以上がさらに好ましく、210kPa以上が特に好ましい。230kPa以上が殊更好ましい。脱水における圧力が前記下限値以上であれば、イソブチレンの選択率が向上する。イソブタノールの脱水における圧力は、100000kPa以下が好ましく、50000kPa以下がより好ましく、10000kPa以下がさらに好ましく、5000kPa以下が殊更好ましく、2500kPa以下が特に好ましく、1000kPa以下が最も好ましい。
 前記の上限及び下限は任意に組み合わせることができる。例えば、イソブタノールの脱水における圧力は、120kPa以上100000kPa以下が好ましく、150kPa以上50000kPa以下がより好ましく、170kPa以上10000kPa以下がさらに好ましく、190kPa以上5000kPa以下がよりさらに好ましく、210kPa以上2500kPa以下が殊更好ましく、230kPa以上1000kPa以下が特に好ましい。
 イソブタノールの脱水における圧力が前記上限以下であれば、触媒に接触させる原料ガスの線速度1.20cm/s以上とするのに必要なイソブタノールの供給量を低減でき、プロセスの肥大を防ぐことができる。
 脱水における圧力とは、反応器の入口の圧力に対して、圧力損失の影響を無視できる位置に設置した圧力センサーで測定される値である。
 イソブタノールの脱水における反応温度は、390℃以下が好ましく、380℃以下がより好ましく、370℃以下がさらに好ましく、360℃以下が特に好ましく、350℃以下が最も好ましい。反応温度が前記範囲の上限値以下であれば、異性化反応が抑制されやすく、イソブチレンへの選択性が向上する。
 イソブタノールの脱水における反応温度は、240℃以上が好ましく、250℃以上がより好ましく、260℃以上がさらに好ましく、270℃以上が特に好ましく、280℃以上が最も好ましい。反応温度が前記範囲の下限値以上であれば、触媒の使用量や原料ガスの供給量を低減でき、コストや生産性の点から有利である。
 前記の上限及び下限は任意に組み合わせることができる。例えば、イソブタノールの脱水における反応温度は、240℃以上390℃以下が好ましく、250℃以上380℃以下がより好ましく、260℃以上370℃以下がさらに好ましく、270℃以上360℃以下が殊更好ましく、280℃以上350℃以下が特に好ましい。
 反応が定常状態になった後に確認できる反応器内の触媒層の温度のうち、最も低い温度を反応温度とする。したがって、触媒層に温度のばらつきがある場合は、測定点を増やしたり、触媒充填方向に連続的に温度を測定したりすることが好ましい。反応温度の制御方法は、特に限定されず、公知の方法を採用できる。
 出発原料として使用するイソブタノールとしては、特に限定されず、環境保護の点から、バイオマス由来のイソブタノールであってもよい。
 「バイオマス由来のイソブタノール」とは、バイオマスの発酵性糖を用い、その発酵プロセスを経て得られた有機化合物から精製されたイソブタノール、又は、バイオマスの触媒化学変換、熱化学変換のいずれか1つ以上含むプロセスによって得られたイソブタノールである。
 バイオマスは、資源作物に由来するものと、廃棄物に由来するものに大きく分けられる。資源作物に由来するバイオマスとしては、例えば、食用作物、木材、草花が挙げられ、それらの作物の未利用部分も使用できる。廃棄物に由来するバイオマスとしては、例えば、食品廃棄物、下水等の汚泥、家畜糞尿、廃紙が挙げられる。
 例えば、蒸発器で原料を蒸発させることで、原料ガスとして反応器に供給できる。蒸発器としては、特に限定されず、例えば、ジャケット型、自然循環式水平管型、自然循環式浸管型、自然循環式垂直短管型、垂直長管上昇膜型、水平管下降膜型、強制循環式水平管型、強制循環式垂直管型、コイル型が挙げられる。
 原料ガスにおいては、イソブタノールを希釈ガスで希釈することによってイソブタノール濃度を調整できる。原料ガスは、イソブタノールのみからなるガスであってもよい。
 希釈ガスとしては、イソブタノールの脱水に影響を及ぼさないものであればよく、例えば、窒素、ヘリウム、ネオン、クリプトン、キセノン、ラドン、アルゴン、メタン、エタン、プロパン、ブタン、イソブタン、一酸化炭素、二酸化炭素、一酸化窒素、二酸化窒素、亜酸化窒素、三酸化二窒素、四酸化二窒素、五酸化二窒素、水蒸気が挙げられる。イソブタノールの脱水に影響しない範囲であれば、酸素や水素を希釈ガスとして使用してもよい。原料ガスに含まれる希釈ガスは、1種でもよく、2種以上でもよい。原料ガス中には、水分が含まれていてもよい。
 原料ガス中のイソブタノール濃度は、原料ガスの総体積に対して、15.0体積%以上が好ましく、20体積%以上がより好ましく、30体積%以上がさらに好ましく、40体積%以上が殊更好ましく、50体積%以上特に好ましく、55体積%以上が最も好ましい。
 イソブタノール濃度が前記下限値以上であれば、異性化反応を抑制しやすく、イソブチレンの選択率が向上する。また、反応器を小型化しやすく設備費を低減でき、またイソブチレンの回収に要するエネルギーコストも低減できる。なお、上限は特になく、100体積%以下である。
 イソブタノールの脱水に使用する触媒としては、イソブタノールの脱水が可能である触媒であれば特に限定されず、例えば、脱水用触媒が挙げられ、なかでも酸触媒が好ましい。
 酸触媒としては、例えば、アルミナ、シリカアルミナ、ゼオライト、固体リン酸、チタニアが挙げられる。触媒としては、イソブチレンの選択率が高い点から、アルミナを含有することが好ましい。
 本発明においてアルミナ触媒とは、触媒総質量に対するアルミナの割合が90質量%以上の触媒を意味するものとする。触媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明で用いられるアルミナの結晶形態は特に限定されない。例えば、α-アルミナ、β-アルミナ、γ-アルミナ、σ-アルミナ、θ-アルミナ、δ-アルミナ、アルミナ水和物が挙げられる。特に活性及び選択性の点から、γ-アルミナを含む触媒が好ましい。これらの結晶形態のアルミナは、1種を単独で用いてもよく、2種以上を併用してもよい。2種以上を併用する場合は、異なる結晶形態のものを用いてもよく、混相の結晶状態をとっていてもよい。
 本発明の触媒に用いられるアルミナは、例えば、熱分解法、沈殿法、沈着法、混練法、又はこれら方法を併用する方法を含む公知の方法で容易に製造できる。アルミナの原料としては、例えば、硝酸塩、酢酸塩、アルコキシド、硫酸塩、塩化物、アルミン酸アルカリ、ミヨウバン等、加熱又は加水分解によってアルミナあるいはアルミナ水和物を生成する材料が挙げられる。加水分解に使用するアルカリとしては、例えば、苛性アルカリ、炭酸アルカリ、アンモニア水、炭酸アンモニウムが挙げられる。
 本発明の触媒に用いられるアルミナは、必要に応じて成形して使用してもよい。
 本発明で用いられるアルミナ触媒は、アルミナ以外の化合物を含んでいてもよい。イソブチレンの選択率が高い点から、触媒中のアルミナの含有量は、触媒の総質量に対して、95.0質量%以上が好ましく、97.0質量%以上がより好ましく、98.0質量%以上がさらに好ましく、99.0質量%以上が特に好ましく、99.5質量%以上が最も好ましい。
 アルミナ以外の化合物としては、例えば、SiO及びNaOが挙げられる。
 アルミナ触媒中のSiOの含有量は、触媒の総質量に対して、1.0質量%以下が好ましく、0.75質量%以下がより好ましく、0.50質量%以下がさらに好ましく、0.40質量%以下がよりさらに好ましく、0.30質量%以下が殊更好ましく、0.20質量%以下が特に好ましい。アルミナ中に、SiOは含まなくてもよい。
 アルミナ触媒中のNaOの含有量は、触媒の総質量に対して、0.20質量%以下が好ましく、0.15質量%以下がより好ましく、0.10質量%以下がさらに好ましく、0.075質量%以下がよりさらに好ましく、0.050質量%以下が殊更好ましく、0.025質量%以下が特に好ましい。アルミナ中に、NaOは含まなくてもよい。
 触媒中のアルミナ、SiO及びNaOの含有量は、ICP発光分光分析(ICP-AES)により測定される。例えば、Perkin Elmer社製のOptima 8300 ICP-OES Spectrometerによって測定できる。
 充分な活性が得られやすい点から、触媒のBET比表面積は、40.0m/g以上が好ましく、50.0m/g以上がより好ましく、60.0m/g以上がさらに好ましく、70.0m/g以上が特に好ましく、80.0m/g以上が最も好ましい。アルミナのBET比表面積について、上限は特に限定されないが、350m/g以下であることが好ましい。
 触媒のBET比表面積は、N吸脱着等温線から算出される値であり、例えば、トライスター3000(製品名、島津製作所社製)を用いて測定できる。
 触媒の粒子の大きさは、700μm以上10000μm以下が好ましく、800μm以上9500μm以下がさらに好ましく、1000μm以上9000μm以下が最も好ましい。
 触媒の粒子径は、篩などで整粒した場合は篩の目開きの大きさを粒子径と定義する。また、成形した触媒の場合は、例えば、円柱形ペレットの場合は直径を粒子径と定義する。粒子径が小さすぎる場合には、反応器に充填された触媒層での圧力損失が高くなり、反応ガスを流通させるための設備費、エネルギーコストが上昇する。また、粒子径が大きすぎる場合には、触媒有効係数が小さくなり、触媒質量あたりの活性の低下を招き、イソブチレンの選択性が低下する。
[メタクリル酸の製造方法]
 本発明のメタクリル酸の製造方法は、本発明のイソブチレンの製造方法によって製造したイソブチレンを用いてメタクリル酸を製造する方法である。以下の方法(A)と方法(B)とが挙げられる。方法(A)及び方法(B)によれば、イソブチレンから高い選択率でメタクリル酸を製造できる。
 (A)本発明のイソブチレンの製造方法によってイソブチレンを製造する工程(a1)と、イソブチレンの気相酸化によりメタクリル酸を製造する工程(a2)と、を含む。
 (B)本発明のイソブチレンの製造方法によりイソブチレンを製造する工程(b1)と、イソブチレンを水和してtert-ブチルアルコールを製造する工程(b2)と、イソブチレンを水和して製造したtert-ブチルアルコールの気相酸化によりメタクリル酸を製造する工程(b3)と、を含む。
 工程(b2)のイソブチレンの水和は、公知の方法で行える。イソブチレンの水和に用いる酸触媒としては、例えば、イオン交換樹脂、ヘテロポリ酸が挙げられる。高い収率でtert-ブチルアルコールを製造できる点から、酸触媒としては、強酸性陽イオン交換樹脂が好ましい。
 工程(a2)のイソブチレンの気相酸化、又は工程(b3)のtert-ブチルアルコールの気相酸化は、一段で行ってもよく、二段で行ってもよい。メタクリル酸の選択率が高い点から、二段の気相酸化が好ましい。
 気相酸化を二段で実施する場合、一段目の気相酸化(第一段酸化)において第一段酸化用の触媒を用いることが好ましい。用いる触媒は、公知の触媒でよい。少なくともモリブデン及びビスマスを含む触媒が好ましい。
 このような触媒としては、式(1)で表される組成を有する触媒が好ましい。
 Mo12Bia1Fea2a3a4a5a6a7 ・・・(1)
 ただし、式(1)中、Mo、Bi、Fe及びOはそれぞれモリブテン、ビスマス、鉄及び酸素を示す。Mは、コバルト及びニッケルからなる群から選ばれる少なくとも1種の元素を表す。Xは、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル及び亜鉛からなる群から選ばれる少なくとも1種の元素を表す。Yは、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群から選ばれる少なくとも1種の元素を表す。Zは、リチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選ばれる少なくとも1種の元素を表す。a1~a7は各元素の原子比率を表し、a1、a2、a3、a4、a5、a6、a7はMo12原子に対する各元素の原子比を示し、a1=0.01~3、a2=0.01~5、a3=1.0~12、a4=0~8.0、a5=0~5.0、a6=0.001~2.0であり、a7は各成分の原子価を満足するのに必要な酸素の原子比率である。
 第一段酸化は固定床で行うことができる。第一段酸化の触媒層の態様は、特に限定されず、第一段酸化用の触媒のみの無希釈層でもよく、さらに不活性担体を含んだ希釈層でもよい。第一段酸化の触媒層は、単一層でもよく、複数の層からなる混合層でもよい。
 第一段酸化の原料ガス中のイソブチレン又はtert-ブチルアルコールの濃度は、1.0体積%以上が好ましく、3.0体積%以上がより好ましい。第一段酸化の原料ガス中のイソブチレン又はtert-ブチルアルコールの濃度は、20.0体積%以下が好ましく、10.0体積%以下がより好ましい。
 前記の上限及び下限は任意に組み合わせることができる。例えば、第一段酸化の原料ガス中のイソブチレン又はtert-ブチルアルコールの濃度は、1.0体積%以上20.0体積%以下が好ましく、3.0体積%以上20.0体積%以下がより好ましく、3.0体積%以上10.0体積%以下がさらに好ましい。
 第一段酸化の分子状酸素源としては、空気を用いることが経済的であるが、必要に応じて純酸素で富化した空気を用いることもできる。反応ガス中のイソブチレン又はtert-ブチルアルコールと分子状酸素とのモル比(体積比)はイソブチレン又はtert-ブチルアルコール:分子状酸素=1:0.1~1:5の範囲が好ましく、1:0.5~1:3の範囲がより好ましい。
 反応ガスは、イソブチレン又はtert-ブチルアルコールと分子状酸素以外に、窒素、炭酸ガス等の不活性ガス、水蒸気等で希釈して用いることが経済的である。
 第一段酸化の反応温度は、200℃以上450℃以下が好ましく、250℃以上400℃以下がより好ましい。
 第一段酸化におけるイソブチレンと分子状酸素の接触時間は、0.5秒以上が好ましく、1.0秒以上がより好ましい。第一段酸化におけるイソブチレンと分子状酸素の接触時間は、10.0秒以下が好ましく、6.0秒以下がより好ましい。前記の上限及び下限は任意に組み合わせることができる。例えば、第一段酸化におけるイソブチレンと分子状酸素の接触時間は、0.5秒以上10.0秒以下が好ましく、0.5秒以上6.0秒以下がより好ましく、1.0秒以上6.0秒以下がさらに好ましい。
 第一段酸化により、メタクロレイン及びメタクリル酸が得られる。メタクロレインは二段目の気相酸化(第二段酸化)によってメタクリル酸に転化される。
 第二段酸化で用いる第二段酸化用の触媒としては、公知の触媒を用いることができる。用いる触媒としては、少なくともモリブデン及びリンを含有する触媒が好ましい。
 このような触媒としては式(2)で表される組成を有する触媒が好ましい。
 Pa8Moa9a10Cua11a12a13Ga14a15 ・・・(2)
 式(2)中、P、Mo、V、Cu及びOはそれぞれリン、モリブテン、バナジウム、銅及び酸素を示す。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を示す。Eはカリウム、ルビジウム、セシウム、タリウム、マグネシウム及びバリウムからなる群から選択される少なくとも1種の元素を示す。Gは鉄、亜鉛、クロム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群から選択される少なくとも1種の元素を示す。a8~a15は各元素の原子比率を表し、a9=12のとき、a8=0.5~3、a10=0.01~3、a11=0.01~2、a12=0~3、好ましくは0.01~3、a13=0.01~3、a14=0~4であり、a15は各元素の原子価を満足するのに必要な酸素の原子比率である。
 第二段酸化は固定床で行うことができる。第二段酸化の触媒層は、特に限定されず、第二段酸化用の触媒のみの無希釈層でもよく、不活性担体を含んだ希釈層でもよい。第二段酸化の触媒層は、単一層でもよく、複数の層からなる混合層でもよい。
 第二段酸化の反応ガス中のメタクロレインの濃度には制限はなく、任意の濃度に設定できるが、1.0体積%以上が好ましく、3.0体積%以上がより好ましい。また、第二段酸化の反応ガス中のメタクロレインの濃度は、20.0体積%以下が好ましく、10.0体積%以下がより好ましい。前記の上限及び下限は任意に組み合わせることができる。例えば、第二段酸化の反応ガス中のメタクロレインの濃度は、1.0体積%以上20.0体積%以下が好ましく、1.0体積%以上10.0体積%以下がより好ましく、3.0体積%以上10.0体積%以下がさらに好ましい。
 第二段酸化の分子状酸素源としては、空気を用いることが経済的であるが、必要に応じて純酸素で富化した空気を用いることもできる。
 第二段酸化の反応ガス中の分子状酸素の濃度は、メタクロレイン1.0molに対して、0.5mol以上が好ましく、1.0mol以上がより好ましい。また、第二段酸化の反応ガス中の分子状酸素濃度は、メタクロレイン1.0molに対して、4.0mol以下が好ましく、3.0mol以下がより好ましい。前記の上限及び下限は任意に組み合わせることができる。例えば、第二段酸化の分子状酸素の濃度は、メタクロレイン1.0molに対して、0.5mol以上4.0mol以下が好ましく、1.0mol以上4.0mol以下がより好ましく、1.0mol以上3.0mol以下がさらに好ましい。
 第二段酸化の反応ガスは、メタクロレインと分子状酸素以外に、水(水蒸気)を加えてもよい。
 第二段酸化の反応ガスは低級飽和アルデヒド等の不純物を少量含んでいてもよいが、その量はできるだけ少ないことが好ましい。また、第二段酸化の反応ガスは窒素、炭酸ガス等の不活性ガスを含んでいてもよい。
 第二段酸化の反応圧力は、大気圧から数百kPaGまでの範囲で設定されることができる。第二段酸化の反応温度は、230℃以上が好ましく、250℃以上がより好ましい。また、第二段酸化の反応温度は、450℃以下が好ましく、400℃以下がより好ましい。前記の上限及び下限は任意に組み合わせることができる。例えば、第二段酸化の反応温度は、230℃以上400℃以下が好ましく、250℃以上450℃以下がより好ましく、250℃以上400℃以下がさらに好ましい。
[メタクリル酸メチルの製造方法]
 本発明のメタクリル酸メチルの製造方法は、本発明のメタクリル酸を用いてメタクリル酸メチルを製造する方法である。
 本発明のメタクリル酸メチルの製造方法は、本発明のメタクリル酸を製造する工程と、メタクリル酸をメタノールとエステル化させることによりメタクリル酸メチルを製造する工程と、を含む。本発明の方法によれば、イソブチレンから高い選択率でメタクリル酸メチルを製造できる。
 例えば、本発明の製造方法によって製造されたメタクリル酸を、抽出、蒸留操作等によって回収し、酸触媒存在下、メタノールとエステル化させる。
 エステル化には、触媒を用いることが好ましい。用いる触媒としては、酸触媒であることが好ましく、例えば、硫酸やイオン交換樹脂を用いることができる。イオン交換樹脂としては、強酸性陽イオン交換樹脂が好ましい。強酸性陽イオン交換樹脂の具体例としては、例えば、ダイヤイオン(登録商標)、PK216、RCP12H(三菱化学社製)、レバチット(登録商標)、K2431(バイエル社製)、アンバーリスト(登録商標)15WET(ロームアンドハースジャパン社製)が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 エステル化における反応流体の流れ方向は、鉛直上向き、鉛直下向きのどちらでもよく、適宜選択できる。エステル化の酸触媒として用いるイオン交換樹脂の膨潤が大きい場合は、反応流体の流れ方向は鉛直上向きが好ましい。反応流体が不均一相を形成する場合は、反応流体の流れ方向は鉛直下向きが好ましい。
 固定床型反応器にイオン交換樹脂を充填してエステル化を行う場合、メタクリル酸及びメタノールを含む原料の通液量は、イオン交換樹脂量に対する質量比で、0.10倍以上が好ましく、0.20倍以上がより好ましい。また、原料の通液量は、イオン交換樹脂量に対する質量比で、10.0倍以下が好ましく、5.0倍以下がより好ましい。前記の上限及び下限は任意に組み合わせることができる。例えば、メタクリル酸及びメタノールを含む原料の通液量は、イオン交換樹脂量に対する質量比で、0.10倍以上10.0倍以下が好ましく、0.20倍以上10.0倍以下がより好ましく、0.20倍以上5.0倍以下がさらに好ましい。
 酸触媒として強酸性陽イオン交換樹脂を用いる場合、エステル化の反応温度は、40℃以上130℃以下が好ましい。
 反応温度が40℃以上であれば、反応速度が大きく、効率的にエステル化が実施できる。
 反応温度が130℃以下であれば、イオン交換樹脂の劣化速度が小さくなり、長時間連続的にエステル化できる。エステル化の反応温度は、化学平衡の観点から、適宜最適な温度に決定できる。
 原料組成は、化学平衡の観点から、メタクリル酸及びメタノールのいずれか一方の濃度を高くし、濃度の低い方の原料の転化率を高くすることによって、回収、精製工程のプロセスを簡略化できる。
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
 原料ガス及び生成物の分析はガスクロマトグラフィーを用いて行った。イソブタノールの転化率、及び、各生成物の選択率はそれぞれ以下のように定義される。
 イソブタノールの転化率(%)=(b/a)×100
 C4ガスの選択率(%)=(j/b)×100
 ジイソブチルエーテルの選択率(%)=(h/b)×2×100
 イソブチルアルデヒドの選択率(%)=(i/b)×100
 C4ガス中のイソブチレンの選択率(%)=(c/j)×100
 C4ガス中のイソブタンの選択率(%)=(d/j)×100
 C4ガス中の1-ブテンの選択率(%)=(e/j)×100
 C4ガス中のtrans-2-ブテンの選択率(%)=(f/j)×100
 C4ガス中のcis-2-ブテンの選択率(%)=(g/j)×100
    a:供給したイソブタノールのモル数
    b:反応したイソブタノールのモル数
    c:生成したイソブチレンのモル数
    d:生成したイソブタンのモル数
    e:生成した1-ブテンのモル数
    f:生成したtrans-2-ブテンのモル数
    g:生成したcis-2-ブテンのモル数
    h:生成したジイソブチルエーテルのモル数
    i:生成したイソブチルアルデヒドのモル数
    j:生成したC4ガス(イソブテン、イソブタン、1-ブテン、trans-2-ブテン、cis-2-ブテン)のモル数
 原料ガスの単位時間当たりの質量空間速度(WHSV)は、以下の式(3)のように定義される。
 WHSV(h-1)=W1/W2・・・(3)
 ただし、式(3)中、W1は、イソブタノールの単位時間当たりの供給量(g/h)である。W2は、使用した触媒量(g)である。
 触媒層に供給される原料ガス流量と線速度は、以下のように定義される。なお、下記の原料ガス流量(L/h)は、原料であるイソブタノールと希釈ガスからなる混合ガスの総流量である。
 原料ガス流量(L/h)=標準状態で測定される原料ガス流量(NL/h)×101.3(kPa)/反応圧力(kPa)×反応温度(K)/273(K)
 原料ガスの線速度(cm/s)=原料ガス流量(L/h)×1000/3600÷反応管の断面積(cm
 [参考例]
 内径0.75cm、長さ40cmの縦型管状反応管に脱水用触媒(円柱形ペレット状、直径:3.0mmに成形されたアルミナの破砕体、γ-アルミナ相を結晶相の主成分とするアルミナ、粒子径:800~1190μm、BET比表面積:243m/g、NaO含有量:0.0500質量%未満、SiO含有量:0.100質量%未満、以後「触媒A」と称す。)0.192gを充填し、触媒層を形成した。反応器については、触媒層温度が所定温度となるように、反応管用の電気炉の設定温度を調整した。また、反応圧力が所定圧力となるように背圧弁を用いて反応圧力を調整した。次に、イソブタノール(ナカライテスク社製、カールフィッシャー法によって測定された水の量:411ppm)をダブルプランジャーポンプで0.263ml/分、200℃で加熱された気化器に導入し、蒸発させた。希釈ガスとしての窒素ガスはマスフローメーターを用いて流量16ml(標準状態)/分として当該蒸発器内に供給し、蒸発したイソブタノールと共に反応器に供給した。触媒層に供給した原料ガス中のイソブタノール濃度は79.9体積%、反応中の触媒層の温度(反応温度)は340℃であった。
 触媒層温度と反応圧力が、それぞれ所定温度±0.5℃以内、所定圧力±0.5kPa以内の変動で安定してから5分経過後、反応評価を開始した。反応が定常状態に達した後、反応器出側のガスを採取し、ガスクロマトグラフィー(島津製作所社製、GC-8A)でイソブチレン、イソブタン、1-ブテン、cis-2-ブテン、trans-2-ブテンの定量を行った。また、反応器出側から排出される反応ガスを、氷冷したアセトニトリル中にトラップし、ガスクロマトグラフィー(島津製作所社製、GC-2014)で未反応のイソブタノール、ジイソブチルエーテル及びイソブチルアルデヒドの定量を行った。反応圧力を測定するための圧力計は、蒸発器と反応器入り口の間に設置した。なお、本参考例を含めて、実施例1~19、比較例1~6の条件下のあらゆる流量範囲において、蒸発器から反応器入口までの圧力損失は無視できる程度に小さいことを確認した。各反応圧力におけるイソブタノールの転化率、生成物中のC4ガス(イソブチレン、イソブタン、1-ブテン、cis-2-ブテン、trans-2-ブテン)の選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表1及び図1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図1に示すように、反応圧力が高いと、イソブチルアルコールの転化率は低下する傾向がある。
 [実施例1]
 脱水用触媒として、円柱形ペレット状(直径:3.00m)に成形されたアルミナの破砕体(γ、θ、α-アルミナ相の結晶相からなるアルミナ、粒子径:800~1190μm、BET比表面積:105m/g、NaO含有量:0.0500質量%未満、SiO含有量:0.160質量%、以後「触媒B」と称す。)0.232gを内径1.0cm、長さ40cmの縦型管状反応管に充填し、反応温度と反応圧力をそれぞれ340℃、250kPaに保った。次に、イソブタノール(原料ガス中の濃度:49.8体積%)と窒素からなる原料ガスを、線速度が1.57cm/sとなるように触媒Bを0.232g充填した固定床反応器に供給し、イソブタノールとアルミナとを接触させ、生成物を得た。原料ガス流量は2.50L/h、WHSVは19.5h-1であった。イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表2及び図2に示す。
 [実施例2、3及び比較例1]
 反応条件を表2に示すとおりに変更した以外は、実施例1と同様にして生成物を得た。
イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表2及び図2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2及び図2に示すように、同じ加圧条件下の場合、原料ガスの線速度が高いほど、イソブタノール転化率とイソブチレン選択率が高まる。原料ガスの線速度と反応圧力を適切に制御した実施例1~3では、比較例1に比べて、イソブタノールの転化率の低下を抑制しつつ高い選択率でイソブチレンを製造できる。
 [実施例4]
 触媒A0.232gを固定床反応器に充填し、340℃、400kPaに保った。次に、イソブタノール(原料ガス中の濃度:80.3体積%)と窒素からなる原料ガスを、線速度が2.07cm/sとなるように触媒A0.232gを充填した固定床反応器に供給し、イソブタノールとアルミナとを接触させ、生成物を得た。原料ガス流量は3.29L/h、WHSVは66.3h-1であった。イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表3及び図3に示す。
 [実施例5、6及び比較例2]
 反応条件を表3に示すとおりに変更した以外は、実施例4と同様にして生成物を得た。
 イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表3及び図3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3及び図3に示すように、同じ加圧条件下の場合、原料ガスの線速度が高いほど、イソブタノール転化率とイソブチレン選択率が高まる。原料ガスの線速度と反応圧力を適切に制御した実施例4~6では、比較例2に比べて、イソブタノールの転化率の低下を抑制しつつ高い選択率でイソブチレンを製造できる。
[実施例7]
 触媒A0.132gを固定床反応器に充填し、340℃、200kPaに保った。次に、イソブタノール(原料ガス中の濃度:79.4体積%)と窒素とからなる原料ガスを、線速度が4.57cm/sとなるように触媒Aを0.132g充填した固定床反応器に供給し、イソブタノールとアルミナとを接触させ、生成物を得た。原料ガス流量は7.27L/h、WHSVは127h-1であった。イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表4及び図4に示す。
[実施例8、9及び比較例3]
 反応条件を表4に示すとおりに変更した以外は、実施例7と同様にして生成物を得た。
 イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表4及び図4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4及び図4に示すように、同じ反応温度において、原料ガスの線速度と反応圧力を適切に制御した実施例7~9では、比較例3に比べて、イソブタノールの転化率の低下を抑制しつつ高い選択率でイソブチレンを製造できる。
[実施例10]
 触媒B0.591gを固定床反応器に充填し、340℃、200kPaに保った。次に、イソブタノール(原料ガス中の濃度:80.1体積%)と窒素とからなる原料ガスを、線速度が4.53cm/sとなるように前記固定床反応器に供給し、イソブタノールとアルミナとを接触させ、生成物を得た。原料ガス流量は7.21L/h、WHSVは28.4h-1であった。イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表5及び図5に示す。
[実施例11~13及び比較例4]
 反応条件を表5に示すとおりに変更した以外は、実施例10と同様にして生成物を得た。イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表5及び図5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5及び図5に示すように、原料ガスの線速度と反応圧力を適切に制御した実施例10~13では、比較例4に比べて、転化率の低下を抑制しつつ高い選択率でイソブチレンを製造できる。
[実施例14]
 触媒B0.903gを固定床反応器に充填し、360℃、450kPaに保った。次に、イソブタノール(原料ガス中の濃度:79.9体積%)と窒素とからなる原料ガスを、線速度が1.57cm/sとなるように触媒Bを0.903g充填した固定床反応器に供給し、イソブタノールとアルミナとを接触させ、生成物を得た。原料ガス流量は2.50L/h、WHSVは14.0h-1であった。イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表6及び図6に示す。
[実施例15~19]
 反応条件を表5に示すとおりに変更した以外は、実施例14と同様にして生成物を得た。イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表6及び図6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6及び図6に示すように、反応温度が高いほど転化率が高く、反応温度が低いほどイソブチレンの選択率が高くなる。
[実施例20~21]
 反応条件を表7に示すとおりに変更した以外は、実施例3と同様にして生成物を得た。イソブタノールの転化率、生成物中のC4ガスの選択率、及び、C4ガス中のイソブチレンの選択率の測定結果を表7及び図7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7及び図7に示すように、反応温度が高いほど転化率が高く、反応温度が低いほどイソブチレンの選択率が高くなる。

Claims (7)

  1.  イソブタノールを含む原料ガスを、触媒に接触させて、イソブタノールからイソブチレンを製造するイソブチレンの製造方法であって、
     絶対圧として120kPa以上の圧力下で、前記イソブタノールを含む原料ガスを1.20cm/s以上の線速度で触媒に接触させて、イソブタノールからイソブチレンを製造する、イソブチレンの製造方法。
  2.  前記イソブタノールを含む原料ガスに含まれるイソブタノールの濃度が、15体積%以上100体積%以下である、請求項1に記載のイソブチレンの製造方法。
  3.  前記触媒の粒子径が、700μm以上10000μm以下である、請求項1又は2に記載のイソブチレンの製造方法。
  4.  前記触媒が、アルミナを含む触媒である、請求項1から3のいずれか一項に記載のイソブチレンの製造方法。
  5.  請求項1から4のいずれか一項に記載のイソブチレンの製造方法によって製造されたイソブチレンからメタクリル酸を製造する、メタクリル酸の製造方法。
  6.  請求項1から4のいずれか一項に記載のイソブチレンの製造方法によって製造されたイソブチレンからtert-ブチルアルコールを得た後、得られたtert-ブチルアルコールからメタクリル酸を製造する、メタクリル酸の製造方法。
  7.  請求項5又は6に記載のメタクリル酸の製造方法によって製造されたメタクリル酸とメタノールとからメタクリル酸メチルを製造する、メタクリル酸メチルの製造方法。
     
PCT/JP2021/013218 2020-03-31 2021-03-29 イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法 WO2021200795A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227032097A KR20220143085A (ko) 2020-03-31 2021-03-29 아이소뷰틸렌의 제조 방법, 메타크릴산의 제조 방법 및 메타크릴산 메틸의 제조 방법
EP21778952.8A EP4129962A4 (en) 2020-03-31 2021-03-29 METHOD FOR PRODUCING ISOBUTYLENE, METHOD FOR PRODUCING METHACRYLIC ACID AND METHOD FOR PRODUCING METHYL METHACRYLATE
CN202180014928.3A CN115135624A (zh) 2020-03-31 2021-03-29 异丁烯的制造方法、甲基丙烯酸的制造方法和甲基丙烯酸甲酯的制造方法
BR112022017268A BR112022017268A2 (pt) 2020-03-31 2021-03-29 Método para produção de isobutileno, método para produção de ácido metacrílico e método para produ-ção de metil metacrilato
JP2022512192A JP7355226B2 (ja) 2020-03-31 2021-03-29 イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法
US17/932,441 US20230027797A1 (en) 2020-03-31 2022-09-15 Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-064207 2020-03-31
JP2020064207 2020-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/932,441 Continuation US20230027797A1 (en) 2020-03-31 2022-09-15 Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate

Publications (1)

Publication Number Publication Date
WO2021200795A1 true WO2021200795A1 (ja) 2021-10-07

Family

ID=77929453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013218 WO2021200795A1 (ja) 2020-03-31 2021-03-29 イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法

Country Status (7)

Country Link
US (1) US20230027797A1 (ja)
EP (1) EP4129962A4 (ja)
JP (1) JP7355226B2 (ja)
KR (1) KR20220143085A (ja)
CN (1) CN115135624A (ja)
BR (1) BR112022017268A2 (ja)
WO (1) WO2021200795A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016785A1 (en) * 2010-08-03 2012-02-09 Total Petrochemicals Research Feluy Combined process to make olefins from isobutanol
WO2015170686A1 (ja) 2014-05-07 2015-11-12 三菱レイヨン株式会社 イソブタノールからイソブチレンを製造する方法
JP2020064207A (ja) 2018-10-18 2020-04-23 セイコーエプソン株式会社 画像処理装置、プロジェクター、及び画像処理装置の制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI520933B (zh) 2011-01-13 2016-02-11 Asahi Kasei Chemicals Corp Production method of unsaturated nitrile
JP5793922B2 (ja) * 2011-04-06 2015-10-14 三菱レイヨン株式会社 不均一液相反応方法
US9346735B2 (en) * 2011-11-07 2016-05-24 Mitsubishi Rayon Co., Ltd. Method for producing t-butanol from isobutanol, method for producing methacrolein and methacrylic acid from isobutanol, and apparatus for producing them
JP2013121946A (ja) * 2011-11-07 2013-06-20 Mitsubishi Rayon Co Ltd イソブタノールからメタクロレイン及びメタクリル酸を製造する方法並びに製造装置
US9840453B2 (en) * 2014-07-02 2017-12-12 Mitsubishi Chemical Corporation Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate
WO2016171178A1 (ja) * 2015-04-22 2016-10-27 三菱レイヨン株式会社 イソブチレン製造用触媒およびイソブチレンの製造方法
CN107118069A (zh) * 2017-06-17 2017-09-01 安徽海德石油化工有限公司 一种利用异丁醇脱水制备异丁烯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016785A1 (en) * 2010-08-03 2012-02-09 Total Petrochemicals Research Feluy Combined process to make olefins from isobutanol
WO2015170686A1 (ja) 2014-05-07 2015-11-12 三菱レイヨン株式会社 イソブタノールからイソブチレンを製造する方法
JP2020064207A (ja) 2018-10-18 2020-04-23 セイコーエプソン株式会社 画像処理装置、プロジェクター、及び画像処理装置の制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARNBY, K ET AL.: "Characterization of Pt/y-A12O3 catalysts deactivated by hexamethyldisiloxane", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 54, 2004, pages 1 - 7, XP004564923 *
BANZARAKTSAEVA, S P ET AL.: "Ethanol-to-ethylene dehydration on acid-modified ring-shaped alumina catalyst in a tubular reactor", CHEMICAL ENGINEERING JOURNAL, vol. 374, 2019, pages 605 - 618, XP085749055, DOI: 10.1016/j.cej.2019.05.149 *
CHAPLITS, D N : "Dehydration of tertiary butyl alcohol in a reactor of anew design", KHIMICHESKAYA PROMYSHLENNOST, vol. 42, no. 10, 30 November 1965 (1965-11-30), RU , pages 734 - 736, XP009539891, ISSN: 0023-110X *
See also references of EP4129962A4

Also Published As

Publication number Publication date
EP4129962A4 (en) 2023-09-27
US20230027797A1 (en) 2023-01-26
CN115135624A (zh) 2022-09-30
JPWO2021200795A1 (ja) 2021-10-07
EP4129962A1 (en) 2023-02-08
KR20220143085A (ko) 2022-10-24
BR112022017268A2 (pt) 2022-10-18
JP7355226B2 (ja) 2023-10-03

Similar Documents

Publication Publication Date Title
CA2763317C (en) Production process of conjugated diene
EP2736871B1 (en) Improved process of dehydration reactions
JP6191696B2 (ja) イソブチレンの製造方法、メタクリル酸の製造方法、およびメタクリル酸メチルの製造方法
US20140024861A1 (en) Catalyst For Reducing Selectively Saturated Aldehyde And A Process For Preparing The Catalyst
JP6107139B2 (ja) イソブタノールからメタクロレイン及びメタクリル酸を製造する方法、並びにその製造装置
US20150274626A1 (en) Method for producing methacrolein and methacrylic acid
WO2021200795A1 (ja) イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法
US9834501B2 (en) Efficient synthesis of methacroelin and other alpha, beta—unsaturated aldehydes from methanol and an aldehyde
US2995528A (en) Oxidation processes
JP7343044B2 (ja) 触媒、イソブチレンの製造方法、メタクリル酸の製造方法及びメタクリル酸メチルの製造方法
CN107405601B (zh) 用于制造异丁烯的催化剂和异丁烯的制造方法
EP1320517B1 (en) Process for producing lower aliphatic carboxylic acid ester
Huchede et al. New process for producing butane-2, 3-dione by oxidative dehydrogenation of 3-hydroxybutanone
WO2023157870A1 (ja) メタクロレイン及び/又はメタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法
JP2013121946A (ja) イソブタノールからメタクロレイン及びメタクリル酸を製造する方法並びに製造装置
JP7441474B2 (ja) 触媒、イソブチルアルデヒドおよびメタクロレインの製造方法、メタクリル酸の製造方法、及びメタクリル酸エステルの製造方法
JP4620236B2 (ja) 低級脂肪族カルボン酸エステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512192

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017268

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227032097

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022017268

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220829

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021778952

Country of ref document: EP

Effective date: 20221031

WWE Wipo information: entry into national phase

Ref document number: 522440674

Country of ref document: SA