WO2021199400A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents

無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2021199400A1
WO2021199400A1 PCT/JP2020/015170 JP2020015170W WO2021199400A1 WO 2021199400 A1 WO2021199400 A1 WO 2021199400A1 JP 2020015170 W JP2020015170 W JP 2020015170W WO 2021199400 A1 WO2021199400 A1 WO 2021199400A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
steel sheet
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2020/015170
Other languages
English (en)
French (fr)
Inventor
屋鋪 裕義
義顕 名取
美穂 冨田
竹田 和年
松本 卓也
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112022016302A priority Critical patent/BR112022016302A2/pt
Priority to JP2022511460A priority patent/JP7469694B2/ja
Priority to EP20928444.7A priority patent/EP4130304A4/en
Priority to US17/913,550 priority patent/US20230104017A1/en
Priority to CN202080099081.9A priority patent/CN115398012A/zh
Priority to PCT/JP2020/015170 priority patent/WO2021199400A1/ja
Priority to KR1020227032799A priority patent/KR20220144400A/ko
Publication of WO2021199400A1 publication Critical patent/WO2021199400A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same.
  • a slit is provided in the outer periphery of the rotor to embed a magnet. Therefore, due to the centrifugal force during high-speed rotation of the motor, stress is concentrated on the narrow bridge portion such as between the outer circumference of the rotor and the slit. Therefore, the core material used for the rotor is required to have enough strength not to be deformed and broken by centrifugal force.
  • Patent Documents 1 to 3 attempts have been made to realize excellent magnetic properties and high strength.
  • Patent Documents 1 to 3 are insufficient in reducing iron loss and at high cost. Met.
  • the present invention has been made to solve such a problem, and an object of the present invention is to stably provide a non-oriented electrical steel sheet having high strength and excellent magnetic properties at low cost.
  • the gist of the present invention is the following non-oriented electrical steel sheet and its manufacturing method.
  • the chemical composition of the base material is mass%. C: 0.0050% or less, Si: 3.8-5.0%, Mn: more than 0.2% and less than 2.0%, P: 0.030% or less, S: 0.0030% or less, Al: 0.005 or more and less than 0.050%, N: 0.0005 to 0.0030%, Ti: less than 0.0050%, Nb: less than 0.0050%, Zr: less than 0.0050%, V: less than 0.0050%, Cu: less than 0.20%, Ni: less than 0.50%, Sn: 0 to 0.10%, Sb: 0 to 0.10%, Remaining: Fe and impurities, Satisfy the following equation (i)
  • the average crystal grain size of the base material is 10 to 80 ⁇ m.
  • the element symbol in the above formula is the content (mass%) of each element.
  • the tensile strength is 650 MPa or more.
  • the chemical composition is mass%.
  • Sn 0.005 to 0.10%
  • Sb 0.005 to 0.10%
  • the non-oriented electrical steel sheet according to any one of (1) to (3) above.
  • Step 1 The method for manufacturing a non-oriented electrical steel sheet according to any one of (1) to (4) above.
  • a steel ingot having the chemical composition according to any one of (1) to (3) above is hot-rolled, and then the following step 1 or step 2 is performed.
  • Step 2 Cold rolling and finish annealing are performed in order without hot-rolled sheet annealing.
  • Step 2 Hot-rolled sheet annealing is performed at a temperature of 950 ° C. or lower, and then cold rolling and finish annealing are performed in this order.
  • the finish annealing is performed with a soaking temperature of 750 to 1000 ° C. and a soaking time of 1 to 300 s. Manufacturing method of non-oriented electrical steel sheet.
  • non-oriented electrical steel sheets having high strength and excellent magnetic properties can be stably obtained at low cost.
  • Si, Mn and Al are elements that have the effect of increasing the electrical resistance of steel and reducing eddy current loss. In addition, these elements are elements that also contribute to increasing the strength of steel.
  • Si is the element that most efficiently contributes to the increase in electrical resistance
  • Al is the element that most efficiently contributes to the increase in strength.
  • Al also has the effect of efficiently increasing the electrical resistance.
  • Mn has a lower effect of increasing the electric resistance than Si and Al, but has an advantage that the workability is less likely to be deteriorated.
  • the crystal grain size is important to control the crystal grain size in order to increase the strength and improve the magnetic properties. From the viewpoint of increasing strength, it is desirable that the crystals in the steel are fine particles.
  • Iron loss mainly consists of hysteresis loss and eddy current loss.
  • hysteresis loss in order to reduce the hysteresis loss, it is preferable to make the crystal grains coarser, and in order to reduce the eddy current loss, it is preferable to make the crystal grains finer. That is, there is a trade-off relationship between the two.
  • the non-oriented electrical steel sheet according to this embodiment was made based on the above findings. Hereinafter, each requirement of the non-oriented electrical steel sheet according to the present embodiment will be described in detail.
  • the non-oriented electrical steel sheet according to the present invention is suitable for a rotor because it has particularly high strength, and is also suitable for a stator because it is excellent in magnetic characteristics. Further, the non-oriented electrical steel sheet according to the present invention preferably has an insulating film on the surface of the base material described below.
  • C is an element that causes iron loss deterioration. If the C content exceeds 0.0050%, iron loss deterioration occurs in the non-oriented electrical steel sheet, and good magnetic characteristics cannot be obtained. Therefore, the C content is set to 0.0050% or less.
  • the C content is preferably 0.0040% or less, more preferably 0.0035% or less. Since C contributes to increasing the strength of the steel sheet, when it is desired to obtain the effect, the C content is preferably 0.0005% or more, more preferably 0.0010% or more. ..
  • Si 3.8-5.0%
  • Si silicon
  • Si is an element that increases the electrical resistance of steel, reduces eddy current loss, and improves high-frequency iron loss.
  • Si is an element effective for increasing the strength of steel sheets because it has a large solid solution strengthening ability.
  • the Si content is set to 3.8 to 5.0%.
  • the Si content is preferably 3.9% or more, more preferably 4.0% or more.
  • the Si content is preferably 4.8% or less, more preferably 4.5% or less.
  • Mn Exceeding 0.2% and less than 2.0% Mn (manganese) is an element effective for increasing the electrical resistance of steel, reducing eddy current loss, and improving high-frequency iron loss. However, if the Mn content is excessive, the decrease in magnetic flux density becomes remarkable. Therefore, the Mn content is set to more than 0.2% and less than 2.0%.
  • the Mn content is preferably 0.3% or more, more preferably 0.4% or more, more preferably more than 0.5%, and even more preferably 0.6% or more. ..
  • the Mn content is preferably 1.8% or less, more preferably 1.7% or less, more preferably less than 1.5%, and preferably 1.4% or less. It is more preferably 1.2% or less, and more preferably 1.0% or less.
  • the electrical resistance of steel is ensured by appropriately controlling the contents of Si and Mn. Therefore, in addition to the contents of Si and Mn being within the above ranges, it is necessary to satisfy the following formula (i).
  • the lvalue of equation (i) is preferably 4.4 or more, and more preferably 4.5 or more.
  • the element symbol in the above formula is the content (mass%) of each element.
  • the purpose of formula (i) is as follows. As described above, in the present embodiment, by adjusting the contents of Si and Mn to an appropriate range, workability is ensured while achieving high strength and improvement of magnetic properties.
  • Si is an element that increases the electrical resistance of steel, reduces eddy current loss, and improves high-frequency iron loss.
  • Si is an element effective for increasing the strength of steel sheets because it has a large solid solution strengthening ability.
  • the Si content is set to 3.8 to 5.0%.
  • the Si content when the Si content is 4.3 to 5.0%, the formula (i) is satisfied regardless of the Mn content. Therefore, in this case, good magnetic properties can be obtained (assuming that the other requirements of the non-oriented electrical steel sheet according to the present embodiment are satisfied). Further, since the Si content satisfies the requirements of the present embodiment, the non-oriented electrical steel sheet has high strength. On the other hand, although Si is a disadvantageous element from the viewpoint of workability, the Si content is at least 5.0% or less, so that the workability is also good.
  • the Si content is 3.8% or more and less than 4.3%
  • the formula (i) is not satisfied only by the Si content. That is, there is a possibility that the desired magnetic characteristics cannot be obtained only with Si. Therefore, Mn is used to make up for the lack of magnetic properties. That is, the Mn content is increased within the range of more than 0.2% and less than 2.0% so that the formula (i) is satisfied. This enhances the magnetic properties of the non-oriented electrical steel sheet.
  • Si since Si is 3.8% or more, the strength of the non-oriented electrical steel sheet is also high.
  • workability since the Si content is less than 4.3%, the workability tends to be improved as compared with the case described above (that is, the Si content is 4.3% or more).
  • Mn does not easily affect the workability, even if the Mn content is increased so as to satisfy the formula (i), the workability is unlikely to decrease. Further, increasing the Mn content has the effect of increasing the strength, though not as much as Si.
  • the Si content and the Mn content are set to be within the above-mentioned numerical range and the formula (i) is satisfied, so that the strength of the non-oriented electrical steel sheet is increased. And workability can be ensured while achieving improvement in magnetic properties.
  • P 0.030% or less
  • P (phosphorus) is contained in steel as an impurity, and if the content is excessive, the ductility of the steel sheet is significantly lowered. Therefore, the P content is 0.030% or less.
  • the P content is preferably 0.025% or less, more preferably 0.020% or less.
  • S 0.0030% or less
  • S sulfur
  • the S content is preferably 0.0025% or less, more preferably 0.0020% or less. Since an extreme reduction in the S content may lead to an increase in manufacturing cost, the S content is preferably 0.0001% or more, more preferably 0.0003% or more, and 0. It is more preferably 0005% or more.
  • Al 0.005% or more and less than 0.050%
  • Al is an element effective for forming stable crystal grains by combining with N to form AlN. In order to exert this effect, it is necessary to contain 0.005% or more. On the other hand, if it contains 0.050% or more, the effect of refining the crystal grains decreases. Therefore, the Al content is set to 0.005% or more and less than 0.050%.
  • the Al content is preferably 0.008% or more, more preferably 0.010% or more, more preferably 0.015% or more, and even more preferably 0.020% or more. .. Further, the Al content is preferably 0.048% or less, and more preferably 0.045% or less.
  • Al content means the content of all Al contained in a base material.
  • N 0.0005 to 0.0030%
  • nitrogen is an element that combines with Al to form AlN and is effective for the miniaturization of stable crystal grains. On the other hand, if it is contained in a large amount, excess AlN is formed, which causes iron loss deterioration. Therefore, the N content is set to 0.0005 to 0.0030%.
  • the N content is preferably 0.0007% or more, and more preferably 0.0010% or more.
  • the N content is preferably 0.0027% or less, more preferably 0.0025% or less.
  • Ti Less than 0.0050% Ti (titanium) is an element that is inevitably mixed and can combine with carbon or nitrogen to form precipitates (carbides, nitrides). When carbides or nitrides are formed, these precipitates themselves deteriorate the magnetic properties. Furthermore, it inhibits the growth of crystal grains during finish annealing and deteriorates the magnetic properties. Therefore, the Ti content is set to less than 0.0050%.
  • the Ti content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less.
  • the Ti content is preferably 0.0005% or more because an extreme reduction in the Ti content may lead to an increase in manufacturing cost.
  • Nb Less than 0.0050% Nb (niobium) is an element that contributes to high strength by combining with carbon or nitrogen to form precipitates (carbides, nitrides), but these precipitates themselves are Deteriorates magnetic properties. Therefore, the Nb content is set to less than 0.0050%.
  • the Nb content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. The lower the Nb content, the more preferable, and it is preferable that the Nb content is below the measurement limit.
  • Zr Less than 0.0050% Zr (zirconium) is an element that contributes to high strength by combining with carbon or nitrogen to form precipitates (carbides, nitrides), but these precipitates themselves are Deteriorates magnetic properties. Therefore, the Zr content is set to less than 0.0050%.
  • the Zr content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. The lower the Zr content, the more preferable, and it is preferable that the Zr content is below the measurement limit.
  • V Less than 0.0050% V (vanadium) is an element that contributes to high strength by combining with carbon or nitrogen to form precipitates (carbides, nitrides), but these precipitates themselves are Deteriorates magnetic properties. Therefore, the V content is set to less than 0.0050%.
  • the V content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. The lower the V content, the more preferable, and it is preferable that the V content is below the measurement limit.
  • Cu less than 0.20%
  • Cu (copper) is an element that is inevitably mixed.
  • the intentional addition of Cu increases the manufacturing cost of the steel sheet. Therefore, in the present invention, it is not necessary to add positively, and the impurity level may be used.
  • the Cu content shall be less than 0.20%, which is the maximum value that can be unavoidably mixed in the manufacturing process.
  • the Cu content is preferably 0.15% or less, more preferably 0.10% or less.
  • the lower limit of the Cu content is not particularly limited, but an extreme reduction in the Cu content may lead to an increase in manufacturing cost. Therefore, the Cu content is preferably 0.001% or more, more preferably 0.003% or more, and further preferably 0.005% or more.
  • Ni less than 0.50%
  • Ni nickel
  • Ni nickel
  • Ni is an element that is inevitably mixed.
  • Ni is also an element that improves the strength of the steel sheet, it may be added intentionally.
  • Ni since Ni is expensive, its content should be less than 0.50% when it is intentionally added.
  • the Ni content is preferably 0.40% or less, more preferably 0.30% or less.
  • the lower limit of the Ni content is not particularly limited, but an extreme reduction in the Ni content may lead to an increase in manufacturing cost. Therefore, the Ni content is preferably 0.001% or more, more preferably 0.003% or more, and further preferably 0.005% or more.
  • Sn 0 to 0.10%
  • Sb 0 to 0.10%
  • Sn (tin) and Sb (antimony) are elements useful for ensuring low iron loss by segregating on the surface and suppressing oxidation and nitriding during annealing. It also has the effect of segregating at the grain boundaries to improve the texture and increase the magnetic flux density. Therefore, at least one of Sn and Sb may be contained if necessary. However, if the content of these elements is excessive, the toughness of the steel may decrease, making cold rolling difficult. Therefore, the contents of Sn and Sb are set to 0.10% or less, respectively. The contents of Sn and Sb are preferably 0.06% or less, respectively. When the above effect is desired, the content of at least one of Sn and Sb is preferably 0.005% or more, and more preferably 0.010% or more.
  • the balance is Fe and impurities.
  • impurity is a component mixed with raw materials such as ore and scrap, and various factors in the manufacturing process when steel is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
  • the content of Cr and Mo as impurity elements is not particularly specified.
  • the effect of the present invention is not particularly affected.
  • Ca and Mg are contained in the range of 0.002% or less, the effect of the present invention is not particularly affected, and even if the rare earth element (REM) is contained in the range of 0.004% or less, the present invention is not particularly affected. There is no particular effect on the effect of the invention.
  • REM rare earth element
  • O is also an impurity element, but even if it is contained in the range of 0.05% or less, the effect of the present invention is not affected. Since O may be mixed in the annealing step, even if it is contained in the range of 0.01% or less in the content of the slab stage (that is, the ladle value), the effect of the present invention is not particularly affected.
  • elements such as Pb, Bi, As, B, and Se may be included, but if the content of each is in the range of 0.0050% or less, the effect of the present invention is impaired. It's not a thing.
  • the chemical composition of the base material described above may be measured by a general analysis method.
  • the steel component may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • C and S may be measured by using the combustion-infrared absorption method
  • N may be measured by using the inert gas melting-heat conductivity method
  • O may be measured by using the inert gas melting-non-dispersion infrared absorption method.
  • Crystal grain size As described above, it is desirable that the crystals in the steel are fine particles from the viewpoint of increasing the strength. In addition, it is preferable to coarsen the crystal grains in order to reduce the hysteresis loss, and it is preferable to make the crystal grains finer in order to reduce the eddy current loss.
  • the average crystal grain size of the base metal is less than 10 ⁇ m, the hysteresis loss becomes remarkably deteriorated and it becomes difficult to improve the magnetic characteristics.
  • the average crystal grain size exceeds 80 ⁇ m, the strength of the steel decreases. Therefore, the average crystal grain size of the base material is 10 to 80 ⁇ m.
  • the average crystal grain size is preferably 12 ⁇ m or more, and more preferably 14 ⁇ m or more.
  • the average crystal grain size is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the average crystal grain size of the base material shall be determined according to JIS G 0551 (2013) "Steel-Crystal Grain Size Microscopic Test Method”.
  • Magnetic characteristics in the non-oriented electrical steel sheet according to the present invention excellent magnetic characteristics means that the iron loss W 10/400 is low and the magnetic flux density B 50 is high.
  • the above magnetic characteristics are measured in accordance with the Epstein method specified in JIS C 2550-1 (2011).
  • having high strength means that the tensile strength is 650 MPa or more.
  • the tensile strength is preferably 660 MPa or more.
  • the tensile strength is measured by performing a tensile test in accordance with JIS Z 2241 (2011).
  • non-oriented electrical steel sheet it is preferable that an insulation film is formed on the surface of the base metal. Since non-oriented electrical steel sheets are used after punching out a core blank, they are laminated and used. Therefore, by providing an insulating film on the surface of the base metal, the eddy current between the plates can be reduced and the eddy current loss is reduced as the core. It becomes possible to reduce.
  • the type of the insulating coating is not particularly limited, and it is possible to use a known insulating coating used as the insulating coating of the non-oriented electrical steel sheet.
  • Examples of such an insulating film include a composite insulating film mainly composed of an inorganic substance and further containing an organic substance.
  • the composite insulating coating is mainly composed of, for example, at least one of a chromic acid metal salt, a phosphoric acid metal salt, and an inorganic substance such as colloidal silica, a Zr compound, and a Ti compound, and fine organic resin particles are dispersed. It is an insulating film.
  • an insulating film using a metal phosphate, a Zr or Ti coupling agent, or these carbonates or ammonium salts as a starting material is used. It is preferably used.
  • the amount of the insulating coating adhered is not particularly limited , but is preferably about 200 to 1500 mg / m 2 per side, and more preferably 300 to 1200 mg / m 2 per side.
  • the amount of the insulating film adhered is measured after the fact, various known measuring methods can be used. For example, a method of measuring the mass difference before and after immersion in the sodium hydroxide aqueous solution, or a calibration curve. A fluorescent X-ray method using a linear method or the like may be appropriately used.
  • the manufacturing method of the non-oriented electrical steel sheet according to the present invention is not particularly limited.
  • a steel ingot having the above-mentioned chemical components is hot-rolled, and then the following steps are performed. It can be manufactured by performing step 1 or step 2.
  • Step 1) Cold rolling and finish annealing are performed in order without hot-rolled sheet annealing.
  • Step 2) Hot-rolled sheet annealing is performed at a temperature of 950 ° C. or lower, and then cold rolling and finish annealing are performed in this order.
  • the insulating film is formed on the surface of the base material, the insulating film is formed after the finish annealing.
  • each step will be described in detail.
  • ⁇ Hot rolling process> A steel ingot (slab) having the above chemical composition is heated, and the heated steel ingot is hot-rolled to obtain a hot-rolled plate.
  • the heating temperature of the ingot when subjected to hot rolling is not particularly specified, but is preferably 1050 to 1250 ° C., for example.
  • the plate thickness of the hot-rolled plate after hot rolling is not particularly specified, but it is preferably about 1.5 to 3.0 mm in consideration of the final plate thickness of the base metal, for example. ..
  • hot-rolled sheet annealing may be performed for the purpose of increasing the magnetic flux density of the steel sheet. That is, in step 1, the hot-rolled plate annealing step is omitted. In step 2, a hot-rolled plate annealing step is performed.
  • the annealing temperature is set to 950 ° C. or lower.
  • the hot-rolled steel sheet is annealed at 700 to 950 ° C. by soaking for 10 to 150 s. The soaking condition is more preferably 10 to 150 s at 800 to 930 ° C.
  • annealing by soaking heat at 600 to 850 ° C. for 30 minutes to 24 hours is preferable for the hot-rolled steel sheet. More preferably, the heat is equalized from 1 h to 20 h at 650 to 800 ° C. Although the magnetic characteristics are inferior to those in which the hot-rolled plate annealing step is performed, the above-mentioned hot-rolled plate annealing step may be omitted in order to reduce costs (step 1).
  • pickling After the hot-rolled plate annealing, pickling may be carried out.
  • the pickling removes the scale layer formed on the surface of the base metal.
  • the pickling conditions such as the concentration of the acid used for pickling, the concentration of the accelerator used for pickling, and the temperature of the pickling solution are not particularly limited, and known pickling conditions may be used. can.
  • the pickling step is preferably performed before the hot-rolled plate is annealed from the viewpoint of descalability. In this case, it is not necessary to perform pickling after annealing the hot-rolled plate.
  • the hot-rolled plate annealing is omitted, the hot-rolled plate may be pickled for the purpose of removing the scale layer from the hot-rolled plate.
  • Cold rolling is performed in step 1 after the hot rolling step, and in step 2 after the pickling (when hot rolling sheet annealing is carried out by box annealing, it may be after the hot rolling sheet annealing step). Is carried out.
  • cold rolling for example, a pickling plate from which the scale layer has been removed is rolled at a rolling reduction ratio such that the final plate thickness of the base metal is 0.10 to 0.35 mm.
  • finish annealing is performed.
  • a continuous annealing furnace for finish annealing.
  • the finish annealing step is an important step for controlling the average crystal grain size of the base metal.
  • the soaking temperature is 750 to 1000 ° C.
  • the soaking time is 1 to 300 s
  • the soaking temperature is more preferably 760 to 980 ° C, still more preferably 770 to 960 ° C.
  • the proportion of H 2 in the atmosphere is more preferably 15-90% by volume.
  • the dew point of the atmosphere is more preferably 20 ° C. or lower, and even more preferably 10 ° C. or lower.
  • a step of forming an insulating film may be carried out.
  • the step of forming the insulating coating is not particularly limited, and the treatment liquid may be applied and dried by a known method using the known insulating coating treatment liquid as described above.
  • the surface of the base material on which the insulating film is formed may be subjected to arbitrary pretreatment such as degreasing treatment with alkali or pickling treatment with hydrochloric acid, sulfuric acid, phosphoric acid, etc. before applying the treatment liquid.
  • the surface may be the surface as it is after finish annealing without performing these pretreatments.
  • the strength and magnetism of the non-oriented electrical steel sheet are increased. Workability can be ensured while achieving improvement in characteristics. Furthermore, since the average crystal grain size of the base metal is 10 to 80 ⁇ m, it is possible to enhance the magnetic characteristics while increasing the strength of the non-oriented electrical steel sheet also in this respect. As described above, in the present embodiment, expensive special elements such as Ni and Cu as in Patent Document 1, Ti and V as in Patent Document 2, and Ca as in Patent Document 3 are not added in a large amount. Workability can be ensured while achieving high strength and improvement of magnetic properties of non-oriented electrical steel sheets.
  • hot rolling was performed at a finishing temperature of 850 ° C. and a finishing plate thickness of 2.0 mm, and the slab was wound at 650 ° C. to obtain a hot-rolled steel sheet.
  • the obtained hot-rolled steel sheet was annealed at the annealing temperature shown in Table 2, and the scale on the surface was removed by pickling.
  • the soaking time in the hot-rolled plate annealing was set to 30 s.
  • the pickled sheet thus obtained (the pickled sheet from which the scale of the hot-rolled steel sheet was removed when the hot-rolled sheet annealing was omitted) was cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 0.25 mm.
  • the finishing annealing conditions (equalizing temperature (annealing temperature)) are obtained so that the average crystal grain size is as shown in Table 2 below.
  • the soaking time were changed and annealed. Specifically, when the average crystal grain size was controlled to be large, the soaking temperature was made higher and / or the soaking time was made longer. When the average crystal grain size was controlled to be small, the opposite was true.
  • Table 2 shows specific soaking temperature (annealing temperature) and soaking time. Then, an insulating film was applied to produce a non-oriented electrical steel sheet, which was used as a test material.
  • the above-mentioned insulating coating is coated with an insulating coating made of aluminum phosphate and an acrylic-styrene copolymer resin emulsion having a particle size of 0.2 ⁇ m so as to have a predetermined adhesion amount, and baked in the air at 350 ° C. Formed.
  • JIS No. 5 tensile test pieces were taken according to JIS Z 2241 (2011) so that the longitudinal direction coincided with the rolling direction of the steel sheet. Then, a tensile test was performed using the above test piece according to JIS Z 2241 (2011), and the tensile strength was measured. The tensile strength was set at 650 MPa or more as a passing level. The above results are also shown in Table 2.
  • test No. which is a comparative example.
  • the test No. which is a comparative example.
  • the test No. which is a comparative example.
  • the strength was inferior, or the toughness was significantly deteriorated, which made the production difficult.
  • the test No. In No. 1 since the Si content was lower than the specified range, the tensile strength was inferior.
  • test No. In No. 8 the Si content exceeded the specified range, and Test No. In No. 12, the P content exceeded the specified range, and Test No. In No. 18, since the annealing temperature of the hot-rolled plate exceeded the specified range, the toughness deteriorated and the toughness was broken during cold rolling, and the average crystal grain size, tensile strength and magnetic properties could not be measured. Furthermore, the test No. In Nos. 11 and 34, the Mn content exceeded the specified range, resulting in inferior magnetic flux density. Test No. In No. 32, the Mn content was below the specified range, resulting in inferior iron loss.
  • Test No. 19 the Al content was below the specified range, and Test No. In 21 and 33, since the Al content exceeded the specified range, it was difficult to adjust the average crystal grain size, resulting in inferior tensile strength. Test No. In 31, the iron loss was inferior because the equation (i) was not satisfied.
  • non-oriented electrical steel sheets having high strength and excellent magnetic properties can be stably obtained at low cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

この無方向性電磁鋼板は、母材の化学組成が、質量%で、C:0.0050%以下、Si:3.8~5.0%、Mn:0.2%を超えて2.0%未満、P:0.030%以下、S:0.0030%以下、Al:0.005%以上0.050%未満、N:0.0005~0.0030%、Ti:0.0050%未満、Nb:0.0050%未満、Zr:0.0050%未満、V:0.0050%未満、Cu:0.20%未満、Ni:0.50%未満、Sn:0~0.10%、Sb:0~0.10%、残部:Feおよび不純物であり、[Si+0.5×Mn≧4.3]を満足し、母材の平均結晶粒径が、10~80μmである無方向性電磁鋼板である。

Description

無方向性電磁鋼板およびその製造方法
 本発明は、無方向性電磁鋼板およびその製造方法に関する。
 近年、モータの駆動システムの発達により、駆動電源の周波数制御が可能となってきた。それに伴い、可変速運転または商用周波数以上での高速回転を行うモータに対する需要が増加している。高速回転を行うモータを構成するロータに作用する遠心力は、回転速度の2乗に比例して大きくなる。そのため、高速モータのロータとして用いられる鋼材には、益々の高強度化が要求されている。
 また、ハイブリッド自動車もしくは電気自動車の駆動モータ、またはエアコンのコンプレッサモータなどで採用が増加している埋め込み磁石型インバータ制御モータでは、ロータ外周部にスリットを設けて磁石を埋設している。このため、モータの高速回転時の遠心力により、ロータ外周とスリットとの間などの狭いブリッジ部には、応力が集中する。そこで、ロータに使用されるコア材料には、遠心力で変形破壊しないだけの強度が求められている。
 加えて、高速回転モータでは、高周波磁束により渦電流が発生し、モータ効率が低下すると共に、発熱が生じる。この発熱量が多くなると、ロータ内に埋め込まれた磁石が減磁されることから、高周波域での鉄損が低いことも求められる。
 鋼板の強度を向上させる方法としては、固溶強化、析出強化、結晶粒微細強化および複合組織強化などを活用する方法が知られている。しかし、これらの方法の多くでは、磁気特性が劣化したり、冷間圧延時の加工性が劣化したりするため、一般的には強度と磁気特性との高度の両立は極めて難しい。
 これらを背景に、例えば、特許文献1~3では、優れた磁気特性と高い強度とを実現するための試みがなされている。
日本国特開2004-300535号公報 日本国特開2007-186791号公報 日本国特開2012-140676号公報
 しかしながら、近年、電気自動車またはハイブリッド自動車のモータに求められる省エネルギー特性を実現するには、特許文献1~3で開示されているような技術では、低鉄損化が不十分であり、かつ高コストであった。
 本発明は、このような問題を解決するためになされたものであり、高い強度および優れた磁気特性を有する無方向性電磁鋼板を低コストで安定的に提供することを目的とする。
 本発明は、下記の無方向性電磁鋼板およびその製造方法を要旨とする。
 (1)母材の化学組成が、質量%で、
 C:0.0050%以下、
 Si:3.8~5.0%、
 Mn:0.2%を超えて2.0%未満、
 P:0.030%以下、
 S:0.0030%以下、
 Al:0.005以上0.050%未満、
 N:0.0005~0.0030%、
 Ti:0.0050%未満、
 Nb:0.0050%未満、
 Zr:0.0050%未満、
 V:0.0050%未満、
 Cu:0.20%未満、
 Ni:0.50%未満、
 Sn:0~0.10%、
 Sb:0~0.10%、
 残部:Feおよび不純物であり、
 下記(i)式を満足し、
 前記母材の平均結晶粒径が、10~80μmである、
 無方向性電磁鋼板。
 Si+0.5×Mn≧4.3   ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
 (2)引張強さが650MPa以上である、
 上記(1)に記載の無方向性電磁鋼板。
 (3)前記化学組成が、質量%で、
 Sn:0.005~0.10%、および、
 Sb:0.005~0.10%、
 から選択される1種または2種を含有する、
 上記(1)または(2)に記載の無方向性電磁鋼板。
 (4)前記母材の表面に絶縁被膜を有する、
 上記(1)から(3)までのいずれかに記載の無方向性電磁鋼板。
 (5)上記(1)から(4)までのいずれかに記載の無方向性電磁鋼板を製造する方法であって、
 上記(1)から(3)までのいずれかに記載の化学組成を有する鋼塊に対して熱間圧延を施し、次いで以下の工程1または工程2を行い、
(工程1)熱延板焼鈍を行わずに、冷間圧延および仕上焼鈍を順に行う。
(工程2)950℃以下の温度で熱延板焼鈍を行い、次いで前記冷間圧延および前記仕上焼鈍を順に行う。
 前記仕上焼鈍は、均熱温度を750~1000℃とし、均熱時間を1~300sとして行う、
 無方向性電磁鋼板の製造方法。
 本発明によれば、高い強度および優れた磁気特性を有する無方向性電磁鋼板を低コストで安定的に得ることができる。
 本発明者らが上記の課題を解決するために、鋭意検討を行った結果、以下の知見を得るに至った。
 Si、MnおよびAlは、鋼の電気抵抗を上昇させて渦電流損を低減させる効果を有する元素である。また、これらの元素は、鋼の高強度化にも寄与する元素である。
 上記の元素の中でも、Siは電気抵抗の上昇に最も効率的に寄与する元素であり、強度の上昇にも最も効率的に寄与する元素である。AlもSiと同様、電気抵抗を効率的に上昇させる効果を有する。しかしながら、AlはSiとともに大量に添加すると鋼の靱性を低下させ、加工性を劣化させるという問題がある。それに対して、Mnは、SiおよびAlに比べて電気抵抗を上昇させる効果は低いものの、加工性の劣化を生じさせにくい利点がある。
 これらのことから、本実施形態においては、SiおよびMnの含有量を適切な範囲に調整することで、高強度化および磁気特性の向上を達成しつつ、加工性を確保する。
 さらに、高強度化と磁気特性の向上のためには、結晶粒径の制御も重要である。高強度化の観点からは、鋼中の結晶は細粒であることが望ましい。
 また、電気自動車およびハイブリッド自動車用の駆動モータならびにエアコンのコンプレッサ用モータの鉄心材料として使用する無方向性電磁鋼板の磁気特性では、鉄損、特に高周波域での鉄損を改善する必要がある。鉄損は主にヒステリシス損と渦電流損とからなっている。ここで、ヒステリシス損を低減するためには結晶粒は粗大化させることが好ましく、渦電流損を低減するためには結晶粒は微細化させることが好ましい。すなわち、両者の間にはトレードオフの関係が存在する。
 そこで本発明者らが、さらに検討を重ねた結果、高強度化および高周波鉄損の低減を達成するための好適な粒径の範囲があり、AlおよびNの含有量を適切な範囲に調整することが必要であることを見出した。
 本実施形態に係る無方向性電磁鋼板は上記の知見に基づいてなされたものである。以下、本実施形態に係る無方向性電磁鋼板の各要件について詳しく説明する。
 1.全体構成
 本発明に係る無方向性電磁鋼板は、特に高い強度を有するため、ロータに好適であり、また磁気特性にも優れることから、ステータにも好適である。また、本発明に係る無方向性電磁鋼板は、以下に説明する母材の表面に絶縁被膜を備えていることが好ましい。
 2.母材の化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。また、本実施形態において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 C:0.0050%以下
 C(炭素)は、鉄損劣化を引き起こす元素である。C含有量が0.0050%を超えると、無方向性電磁鋼板において鉄損劣化が生じ、良好な磁気特性を得ることができない。したがって、C含有量は0.0050%以下とする。C含有量は0.0040%以下であるのが好ましく、0.0035%以下であるのがより好ましい。なお、Cは鋼板の高強度化に寄与することから、その効果を得たい場合には、C含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
 Si:3.8~5.0%
 Si(ケイ素)は、鋼の電気抵抗を上昇させて渦電流損を低減させ、高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、鋼板の高強度化にも有効な元素である。一方、Si含有量が過剰であると、加工性が著しく劣化し、冷間圧延を実施することが困難となる。したがって、Si含有量は3.8~5.0%とする。Si含有量は3.9%以上であるのが好ましく、4.0%以上であるのがより好ましい。また、Si含有量は4.8%以下であるのが好ましく、4.5%以下であるのがより好ましい。
 Mn:0.2%を超えて2.0%未満
 Mn(マンガン)は、鋼の電気抵抗を上昇させて渦電流損を低減し、高周波鉄損を改善するために有効な元素である。しかし、Mn含有量が過剰であると、磁束密度の低下が顕著となる。したがって、Mn含有量は0.2%を超えて2.0%未満とする。Mn含有量は0.3%以上であるのが好ましく、0.4%以上であるのがより好ましく、0.5%超であることがより好ましく、0.6%以上であることがより好ましい。また、Mn含有量は1.8%以下であるのが好ましく、1.7%以下であるのがより好ましく、1.5%未満であるのがより好ましく、1.4%以下であるのがより好ましく、1.2%以下であることがより好ましく、1.0%以下であることがより好ましい。
 本発明においては、SiおよびMnの含有量を適切に制御することによって、鋼の電気抵抗を確保する。そのため、SiおよびMnの含有量がそれぞれ上記の範囲内であることに加えて、下記の(i)式を満足する必要がある。(i)式左辺値は、4.4以上であるのが好ましく、4.5以上であるのがより好ましい。
 Si+0.5×Mn≧4.3   ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
 式(i)の趣旨は以下の通りである。
 上述したように、本実施形態においては、SiおよびMnの含有量を適切な範囲に調整することで、高強度化および磁気特性の向上を達成しつつ、加工性を確保する。まず、Siに着目すると、Siは鋼の電気抵抗を上昇させて渦電流損を低減させ、高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、鋼板の高強度化にも有効な元素である。一方、Si含有量が過剰であると、加工性が著しく劣化し、冷間圧延を実施することが困難となる。このような観点から、Si含有量は3.8~5.0%とされる。
 Si含有量の範囲と式(i)とを対比すると、Siの含有量が4.3~5.0%となる場合、Mn含有量に関わらず式(i)が満たされることになる。したがって、この場合、(本実施形態に係る無方向性電磁鋼板の他の要件が満たされることを前提として)良好な磁気特性が得られることになる。さらに、Si含有量が本実施形態の要件を満たすので、無方向性電磁鋼板が高強度となる。一方、Siは加工性という観点からは不利な元素であるものの、Si含有量が少なくとも5.0%以下であることから、加工性も良好となる。
 一方で、Si含有量が3.8%以上4.3%未満となる場合、Si含有量のみでは式(i)が満足されない。つまり、Siのみでは所望の磁気特性が得られない可能性がある。そこで、不足する磁気特性をMnで補うようにする。つまり、Mn含有量を0.2%超2.0%未満となる範囲内で高めて式(i)が満たされるようにする。これにより、無方向性電磁鋼板の磁気特性が高まる。一方、Siが3.8%以上となっているので、無方向性電磁鋼板の強度も高くなる。加工性に関しては、Si含有量が4.3%未満となるので、上述した場合(すなわち、Si含有量が4.3%以上となる)場合よりも加工性が向上する傾向にある。ここで、Mnは加工性に影響を与えにくいので、式(i)が満たされるようにMn含有量を高めたとしても、加工性が低下しにくい。また、Mn含有量を高めることは、Siほどではないが強度を高くする効果がある。
 このように、本実施形態では、Si含有量及びMn含有量が上述した数値範囲内の値となり、かつ式(i)が満たされるように設定されるので、無方向性電磁鋼板の高強度化および磁気特性の向上を達成しつつ、加工性を確保することができる。
 P:0.030%以下
 P(リン)は、不純物として鋼中に含まれ、その含有量が過剰であると、鋼板の延性が著しく低下する。したがって、P含有量は0.030%以下とする。P含有量は0.025%以下であるのが好ましく、0.020%以下であるのがより好ましい。
 S:0.0030%以下
 S(硫黄)は、MnSの微細析出物を形成することで鉄損を増加させ、鋼板の磁気特性を劣化させる元素である。したがって、S含有量は0.0030%以下とする。S含有量は0.0025%以下であるのが好ましく、0.0020%以下であるのがより好ましい。なお、S含有量の極度の低減は製造コストの増加を招くおそれがあるため、S含有量は0.0001%以上であるのが好ましく、0.0003%以上であるのがより好ましく、0.0005%以上であるのがさらに好ましい。
 Al:0.005%以上0.050%未満
 Al(アルミニウム)は、Nと結合してAlNを形成して安定した結晶粒の微細化に有効な元素である。この効果を発揮させるためには、0.005%以上含有する必要がある。一方、0.050%以上を含有すると結晶粒の微細化効果が減少する。したがって、Al含有量は0.005%以上0.050%未満とする。Al含有量は0.008%以上であるのが好ましく、0.010%以上であるのがより好ましく、0.015%以上であるのがより好ましく、0.020%以上であることがより好ましい。また、Al含有量0.048%以下であるのが好ましく、0.045%以下であるのがより好ましい。なお、本明細書において、Al含有量は、母材に含まれる全Alの含有量を意味する。
 N:0.0005~0.0030%
 N(窒素)は、Alと結合してAlNを形成し、安定した結晶粒の微細化に有効な元素である。一方、大量に含有すると過剰なAlNが形成されて鉄損劣化を招く。したがって、N含有量は0.0005~0.0030%とする。N含有量は0.0007%以上であるのが好ましく、0.0010%以上であるのがより好ましい。また、N含有量は0.0027%以下であるのが好ましく、0.0025%以下であるのがより好ましい。
 Ti:0.0050%未満
 Ti(チタン)は、不可避的に混入する元素であり、炭素または窒素と結合して析出物(炭化物、窒化物)を形成しうる。炭化物または窒化物が形成された場合には、これらの析出物そのものが磁気特性を劣化させる。さらには、仕上焼鈍中の結晶粒の成長を阻害して、磁気特性を劣化させる。したがって、Ti含有量は0.0050%未満とする。Ti含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。なお、Ti含有量の極度の低減は製造コストの増加を招くおそれがあるため、Ti含有量は0.0005%以上であるのが好ましい。
 Nb:0.0050%未満
 Nb(ニオブ)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが磁気特性を劣化させる。したがって、Nb含有量は0.0050%未満とする。Nb含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。Nb含有量は低ければ低いほど好ましく、測定限界以下であるのが好ましい。
 Zr:0.0050%未満
 Zr(ジルコニウム)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが磁気特性を劣化させる。したがって、Zr含有量は0.0050%未満とする。Zr含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。Zr含有量は低ければ低いほど好ましく、測定限界以下であるのが好ましい。
 V:0.0050%未満
 V(バナジウム)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが磁気特性を劣化させる。したがって、V含有量は0.0050%未満とする。V含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。V含有量は低ければ低いほど好ましく、測定限界以下であるのが好ましい。
 Cu:0.20%未満
 Cu(銅)は、不可避的に混入する元素である。意図的なCuの添加は、鋼板の製造コストを増加させる。したがって、本発明においては積極的に添加する必要はなく、不純物レベルでよい。Cu含有量は、製造工程において不可避的に混入しうる最大値である0.20%未満とする。Cu含有量は0.15%以下であるのが好ましく、0.10%以下であるのがより好ましい。なお、Cu含有量の下限値は、特に限定されるものではないが、Cu含有量の極度の低減は製造コストの増加を招くおそれがある。そのため、Cu含有量は0.001%以上であるのが好ましく、0.003%以上であるのがより好ましく、0.005%以上であるのがさらに好ましい。
 Ni:0.50%未満
 Ni(ニッケル)は、不可避的に混入する元素である。しかし、Niは、鋼板の強度を向上させる元素でもあるため、意図的に添加してもよい。ただし、Niは高価であるため、意図的に添加する場合は、その含有量を0.50%未満とする。Ni含有量は0.40%以下であるのが好ましく、0.30%以下であるのがより好ましい。なお、Niの含有量の下限値は、特に限定されるものではないが、Ni含有量の極度の低減は製造コストの増加を招くおそれがある。そのため、Ni含有量は0.001%以上であるのが好ましく、0.003%以上であるのがより好ましく、0.005%以上であるのがさらに好ましい。
 Sn:0~0.10%
 Sb:0~0.10%
 Sn(スズ)およびSb(アンチモン)は、表面に偏析し焼鈍中の酸化および窒化を抑制することで、低い鉄損を確保するのに有用な元素である。また、結晶粒界に偏析して集合組織を改善し、磁束密度を高める効果もある。そのため、必要に応じてSnおよびSbの少なくとも一方を含有させてもよい。しかしながら、これらの元素の含有量が過剰であると、鋼の靱性が低下して冷間圧延が困難となる可能性がある。したがって、SnおよびSbの含有量は、それぞれ0.10%以下とする。SnおよびSbの含有量は、それぞれ0.06%以下であるのが好ましい。なお、上記の効果を得たい場合には、SnおよびSbの少なくとも一方の含有量を、0.005%以上とするのが好ましく、0.010%以上とするのがより好ましい。
 本発明の無方向性電磁鋼板の母材の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 なお、不純物元素として、CrおよびMoの含有量に関しては、特に規定されるものではない。本実施形態に係る無方向性電磁鋼板では、これらの元素を0.5%以下で含有しても、本発明の効果に特に影響はない。また、CaおよびMgをそれぞれ0.002%以下の範囲で含有しても、本発明の効果に特に影響はなく、希土類元素(REM)を0.004%以下の範囲で含有しても、本発明の効果に特に影響はない。
 Oも不純物元素であるが、0.05%以下の範囲で含有しても、本発明の効果に影響はない。Oは、焼鈍工程において混入することもあるため、スラブ段階(すなわち、レードル値)の含有量においては、0.01%以下の範囲で含有しても、本発明の効果に特に影響はない。
 また、上記の元素の他に、Pb、Bi、As、B、Se、などの元素が含まれうるが、それぞれの含有量が0.0050%以下の範囲であれば、本発明の効果を損なうものではない。
 上述した母材の化学成分は、一般的な分析方法によって測定すればよい。例えば、鋼成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 3.結晶粒径
 上述のように、高強度化の観点からは、鋼中の結晶は細粒であることが望ましい。加えて、ヒステリシス損を低減するためには結晶粒は粗大化させることが好ましく、渦電流損を低減するためには結晶粒は微細化させることが好ましい。
 母材の平均結晶粒径が10μm未満では、ヒステリシス損が著しく悪化し磁気特性の改善が困難になる。一方、平均結晶粒径が80μmを超えると、鋼の強度が低下する。したがって、母材の平均結晶粒径は、10~80μmとする。平均結晶粒径は12μm以上であるのが好ましく、14μm以上であるのがより好ましい。また、平均結晶粒径は70μm以下であるのが好ましく、60μm以下であるのがより好ましい。
 なお、本発明において、母材の平均結晶粒径は、JIS G 0551(2013)「鋼-結晶粒度の顕微鏡試験方法」に従って求めるものとする。
 4.磁気特性
 本発明に係る無方向性電磁鋼板において、磁気特性に優れるとは、鉄損W10/400が低く、磁束密度B50が高いことを意味する。ここで、上記の磁気特性は、JIS C 2550-1(2011)に規定されたエプスタイン法に則して、測定することとする。
 5.機械的特性
 本発明に係る無方向性電磁鋼板において、高い強度を有するとは、引張強さが650MPa以上であることを意味するものとする。引張強さは660MPa以上であるのが好ましい。ここで、引張強さは、JIS Z 2241(2011)に準拠した引張試験を行うことで、測定することとする。
 6.絶縁被膜
 上述のように、本発明に係る無方向性電磁鋼板においては、母材の表面に絶縁被膜が形成されていることが好ましい。無方向性電磁鋼板は、コアブランクを打ち抜いたのち積層され使用されるため、母材の表面に絶縁被膜を設けることで、板間の渦電流を低減することができ、コアとして渦電流損を低減することが可能となる。
 絶縁被膜の種類については特に限定されず、無方向性電磁鋼板の絶縁被膜として用いられる公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、さらに有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩、または、コロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくともいずれかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩、ZrもしくはTiのカップリング剤、または、これらの炭酸塩もしくはアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 ここで、絶縁被膜の付着量は、特に限定するものではないが、例えば、片面あたり200~1500mg/m程度とすることが好ましく、片面あたり300~1200mg/mとすることがより好ましい。上記範囲の付着量となるように絶縁被膜を形成することで、優れた均一性を保持することが可能となる。なお、絶縁被膜の付着量を、事後的に測定する場合には、公知の各種測定法を利用することが可能であり、例えば、水酸化ナトリウム水溶液浸漬前後の質量差を測定する方法、または検量線法を用いた蛍光X線法等を適宜利用すればよい。
 7.製造方法
 本発明に係る無方向性電磁鋼板の製造方法については特に制限されるものではないが、例えば、上述した化学成分を有する鋼塊に対して、熱間圧延を施し、ついで、以下の工程1または工程2を行うことによって製造することが可能である。
(工程1)熱延板焼鈍を行わずに、冷間圧延および仕上焼鈍を順に行う。
(工程2)950℃以下の温度で熱延板焼鈍を行い、次いで冷間圧延および仕上焼鈍を順に行う。
 また、絶縁被膜を母材の表面に形成する場合には、上記仕上焼鈍の後に絶縁被膜の形成が行われる。以下、各工程について、詳細に説明する。
 <熱間圧延工程>
 上記の化学組成を有する鋼塊(スラブ)を加熱し、加熱された鋼塊に対して熱間圧延を行い、熱延板を得る。ここで、熱間圧延に供する際の鋼塊の加熱温度については、特に規定するものではないが、例えば、1050~1250℃とすることが好ましい。また、熱間圧延後の熱延板の板厚についても、特に規定するものではないが、母材の最終板厚を考慮して、例えば、1.5~3.0mm程度とすることが好ましい。
 <熱延板焼鈍工程>
 その後、鋼板の磁束密度を上昇させることを目的として、熱延板焼鈍を実施してもよい。つまり、工程1では熱延板焼鈍工程は省略される。工程2では熱延板焼鈍工程を行う。熱延板焼鈍工程を行う場合、950℃を超える高温の焼鈍を行うと冷間圧延時に破断が生じるおそれがある。したがって、焼鈍温度は950℃以下とする。連続焼鈍の場合には、熱延鋼板に対して、700~950℃で10~150sの均熱による焼鈍を行うことが好ましい。均熱条件は、800~930℃で10~150sとすることがより好ましい。
 また、箱焼鈍の場合には、熱延鋼板に対して600~850℃で30min~24hの均熱による焼鈍が好ましい。より好ましくは、650~800℃で1h~20hの均熱である。なお、熱延板焼鈍工程を実施した場合と比較して磁気特性は劣ることとなるが、コスト削減のために、上記の熱延板焼鈍工程を省略してもよい(工程1)。
 <酸洗工程>
 上記熱延板焼鈍の後には、酸洗が実施されてもよい。当該酸洗により、母材の表面に生成したスケール層が除去される。ここで、酸洗に用いられる酸の濃度、酸洗に用いる促進剤の濃度、酸洗液の温度等の酸洗条件は、特に限定されるものではなく、公知の酸洗条件とすることができる。なお、熱延板焼鈍が箱焼鈍である場合、脱スケール性の観点から、酸洗工程は、熱延板焼鈍前に実施することが好ましい。この場合、熱延板焼鈍後に酸洗を実施する必要はない。熱延板焼鈍を省略した場合、熱間圧延後の熱延板からスケール層を除去する目的で、熱延板に上記酸洗を行ってもよい。
 <冷間圧延工程>
 工程1では熱間圧延工程後、工程2では上記酸洗の後(熱延板焼鈍が箱焼鈍で実施される場合は、熱延板焼鈍工程の後になる場合もある。)に、冷間圧延が実施される。冷間圧延では、例えば母材の最終板厚が0.10~0.35mmとなるような圧下率で、スケール層の除去された酸洗板が圧延される。
 <仕上焼鈍工程>
 上記冷間圧延の後には、仕上焼鈍が実施される。本実施形態に係る無方向性電磁鋼板の製造方法では、仕上焼鈍には、連続焼鈍炉を使用することが好ましい。仕上焼鈍工程は、母材の平均結晶粒径を制御するために、重要な工程である。
 ここで、仕上焼鈍条件については、均熱温度を750~1000℃とし、均熱時間を1~300sとし、雰囲気をHの割合が10~100体積%であるHおよびNの混合雰囲気(すなわち、H+N=100体積%)とし、雰囲気の露点を30℃以下とすることが好ましい。
 均熱温度が750℃未満の場合には、未再結晶組織が増加し、鉄損が劣化して好ましくなく、均熱温度が1000℃を超える場合には、強度不足となり、鉄損も劣化するため、好ましくない。均熱温度は、より好ましくは760~980℃であり、さらに好ましくは770~960℃である。雰囲気中のHの割合は、より好ましくは15~90体積%である。雰囲気の露点は、より好ましくは20℃以下であり、さらに好ましくは10℃以下である。
 <絶縁被膜形成工程>
 上記仕上焼鈍の後には、絶縁被膜の形成工程が実施されてもよい。ここで、絶縁被膜の形成工程については、特に限定されるものではなく、上記のような公知の絶縁被膜処理液を用いて、公知の方法により処理液の塗布および乾燥を行えばよい。
 なお、絶縁被膜が形成される母材の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理、または塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよいし、これら前処理を施さずに仕上焼鈍後のままの表面であってもよい。
 以上述べた通り、本実施形態によれば、SiおよびMnの含有量を適切な範囲(すなわち式(i)に示される範囲)に調整することで、無方向性電磁鋼板の高強度化および磁気特性の向上を達成しつつ、加工性を確保することができる。さらには、母材の平均結晶粒径が10~80μmとなっているので、この点でも無方向性電磁鋼板の強度を高めつつ、磁気特性を高めることができる。このように、本実施形態では、特許文献1のようなNi及びCu、特許文献2のようなTi及びV、特許文献3のようなCa等の高価な特殊元素を多量に添加せずに、無方向性電磁鋼板の高強度化および磁気特性の向上を達成しつつ、加工性を確保することができる。さらに、本実施形態では、低コストのAlの適量添加により、冷間圧延時の加工性確保と、仕上げ焼鈍時の結晶粒径制御が容易となり、製品歩留まりが向上する。したがって、高い強度および優れた磁気特性を有する無方向性電磁鋼板を低コストで安定的に提供することができる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有するスラブを1150℃に加熱した後、仕上温度850℃、仕上板厚2.0mmにて熱間圧延を施し、650℃で巻取って熱延鋼板とした。一部の試験No.では、得られた熱延鋼板に対して、表2に示す焼鈍温度で熱延板焼鈍を施し、酸洗により表面のスケールを除去した。熱延板焼鈍での均熱時間は全て30sとした。こうして得られた酸洗板(熱延板焼鈍を省略した場合には熱延鋼板のスケールを除去した酸洗板)を、冷間圧延により板厚0.25mmの冷延鋼板とした。
 さらに、H:25%、N:75%、露点0℃の混合雰囲気にて、以下の表2に示すような平均結晶粒径となるように、仕上焼鈍条件(均熱温度(焼鈍温度)および均熱時間)を変えて焼鈍した。具体的には、平均結晶粒径が大きくなるように制御する場合には、均熱温度をより高く、および/または、均熱時間をより長くした。また、平均結晶粒径が小さくなるように制御する場合は、その逆とした。具体的な均熱温度(焼鈍温度)及び均熱時間を表2に示す。その後、絶縁被膜を塗布して、無方向性電磁鋼板を製造し試験材とした。
 また、上記の絶縁被膜は、リン酸アルミニウムおよび粒径0.2μmのアクリル-スチレン共重合体樹脂エマルジョンからなる絶縁被膜を所定付着量となるよう塗布し、大気中、350℃で焼付けることで形成した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた各試験材について、化学組成を上述した測定方法で確認したところ、スラブの化学組成とほぼ同様であることが確認できた。さらに、JIS G 0551(2013)「鋼-結晶粒度の顕微鏡試験方法」に従って、母材の平均結晶粒径を計測した。また、各試験材の圧延方向および幅方向からエプスタイン試験片を採取し、JIS C 2550-1(2011)に則したエプスタイン試験により、磁気特性(鉄損W10/400、磁束密度B50)を評価した。磁束密度B50は、1.60T以上を合格レベルとし、鉄損W10/400は、22.0W/kg以下を合格レベルとした。さらに、各試験材から、JIS Z 2241(2011)に従い、長手方向が鋼板の圧延方向と一致するようにJIS5号引張試験片を採取した。そして、上記試験片を用いてJIS Z 2241(2011)に従い引張試験を行い、引張強さを測定した。引張強さは650MPa以上を合格レベルとした。上記の結果を表2に併せて示す。
 鋼板の化学組成および仕上げ焼鈍後の平均結晶粒径が本発明の規定を満足する試験No.3、4、6、7、9、10、13~17、20、22~30、37では、鉄損および磁束密度に優れ、特に鉄損が低く、かつ、650MPa以上の高い引張強さを有していることが分かった。特に、各化学成分の含有量が好ましい範囲内の値となっている場合、これらの特性のいずれかがさらに良好になる傾向があった。
 それらに対して、比較例である試験No.1、2、5、8、11~12、18、19、21、31~36では、磁気特性および強度の少なくともいずれかが劣るか、靱性が著しく劣化し製造が困難となった。
 具体的には、試験No.1では、Si含有量が規定範囲より低いため、引張強さが劣る結果となった。また、化学組成が規定を満足する試験No.2~5を比較すると、No.2では、平均結晶粒径が規定より小さいために鉄損が劣っており、試験No.5、35、36では、平均結晶粒径が規定より大きいため引張強さが劣る結果となった。
 また、試験No.8では、Si含有量が規定範囲を超え、試験No.12では、P含有量が規定範囲を超え、試験No.18では熱延板焼鈍温度が規定範囲を超えたため、靱性が劣化して冷間圧延時に破断し、平均結晶粒径、引張強さおよび磁気特性の測定を実施できなかった。さらに、試験No.11、34では、Mn含有量が規定範囲を超えたため、磁束密度が劣る結果となった。試験No.32では、Mn含有量が規定範囲を下回ったため、鉄損が劣る結果となった。
 試験No.19では、Al含有量が規定範囲を下回り、試験No.21、33では、Al含有量が規定範囲を超えたため、平均結晶粒径の調整が困難で、引張強さが劣る結果となった。試験No.31では、(i)式を満足しないため、鉄損が劣る結果となった。
 以上のように、本発明によれば、高い強度および優れた磁気特性を有する無方向性電磁鋼板を低コストで安定的に得ることができる。

Claims (5)

  1.  母材の化学組成が、質量%で、
     C:0.0050%以下、
     Si:3.8~5.0%、
     Mn:0.2%を超えて2.0%未満、
     P:0.030%以下、
     S:0.0030%以下、
     Al:0.005%以上0.050%未満、
     N:0.0005~0.0030%、
     Ti:0.0050%未満、
     Nb:0.0050%未満、
     Zr:0.0050%未満、
     V:0.0050%未満、
     Cu:0.20%未満、
     Ni:0.50%未満、
     Sn:0~0.10%、
     Sb:0~0.10%、
     残部:Feおよび不純物であり、
     下記(i)式を満足し、
     前記母材の平均結晶粒径が、10~80μmである、
     無方向性電磁鋼板。
     Si+0.5×Mn≧4.3   ・・・(i)
     但し、上記式中の元素記号は、各元素の含有量(質量%)である。
  2.  引張強さが650MPa以上である、
     請求項1に記載の無方向性電磁鋼板。
  3.  前記化学組成が、質量%で、
     Sn:0.005~0.10%、および、
     Sb:0.005~0.10%、
     から選択される1種または2種を含有する、
     請求項1または請求項2に記載の無方向性電磁鋼板。
  4.  前記母材の表面に絶縁被膜を有する、
     請求項1から請求項3までのいずれかに記載の無方向性電磁鋼板。
  5.  請求項1から請求項4までのいずれかに記載の無方向性電磁鋼板を製造する方法であって、
     請求項1から請求項3までのいずれかに記載の化学組成を有する鋼塊に対して熱間圧延を施し、次いで以下の工程1または工程2を行い、
    (工程1)熱延板焼鈍を行わずに、冷間圧延および仕上焼鈍を順に行う。
    (工程2)950℃以下の温度で熱延板焼鈍を行い、次いで前記冷間圧延および前記仕上焼鈍を順に行う。
     前記仕上焼鈍は、均熱温度を750~1000℃とし、均熱時間を1~300sとして行う、
     無方向性電磁鋼板の製造方法。
PCT/JP2020/015170 2020-04-02 2020-04-02 無方向性電磁鋼板およびその製造方法 WO2021199400A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112022016302A BR112022016302A2 (pt) 2020-04-02 2020-04-02 Chapa de aço elétrico não orientada, e, método para fabricar chapa de aço elétrico não orientada
JP2022511460A JP7469694B2 (ja) 2020-04-02 2020-04-02 無方向性電磁鋼板およびその製造方法
EP20928444.7A EP4130304A4 (en) 2020-04-02 2020-04-02 NON-ORIENTED GRAIN ELECTROMAGNETIC STEEL SHEET AND METHOD FOR PRODUCTION THEREOF
US17/913,550 US20230104017A1 (en) 2020-04-02 2020-04-02 Non-oriented electrical steel sheet and method of manufacturing the same
CN202080099081.9A CN115398012A (zh) 2020-04-02 2020-04-02 无取向电磁钢板及其制造方法
PCT/JP2020/015170 WO2021199400A1 (ja) 2020-04-02 2020-04-02 無方向性電磁鋼板およびその製造方法
KR1020227032799A KR20220144400A (ko) 2020-04-02 2020-04-02 무방향성 전자 강판 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015170 WO2021199400A1 (ja) 2020-04-02 2020-04-02 無方向性電磁鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2021199400A1 true WO2021199400A1 (ja) 2021-10-07

Family

ID=77930181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015170 WO2021199400A1 (ja) 2020-04-02 2020-04-02 無方向性電磁鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20230104017A1 (ja)
EP (1) EP4130304A4 (ja)
JP (1) JP7469694B2 (ja)
KR (1) KR20220144400A (ja)
CN (1) CN115398012A (ja)
BR (1) BR112022016302A2 (ja)
WO (1) WO2021199400A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172941A (ja) * 1992-12-09 1994-06-21 Nkk Corp 部品加工性の優れた高珪素鋼板
JPH06248348A (ja) * 1993-02-26 1994-09-06 Nkk Corp 高珪素鋼板の磁界中熱処理方法
JP2004300535A (ja) 2003-03-31 2004-10-28 Jfe Steel Kk 磁気特性の優れた高強度無方向性電磁鋼板およびその製造方法
JP2007186791A (ja) 2005-12-15 2007-07-26 Jfe Steel Kk 高強度無方向性電磁鋼板およびその製造方法
JP2011246810A (ja) * 2010-04-30 2011-12-08 Jfe Steel Corp 無方向性電磁鋼板およびそれを用いたモータコア
JP2012140676A (ja) 2010-12-28 2012-07-26 Jfe Steel Corp 無方向性電磁鋼板およびその製造方法
WO2019017426A1 (ja) * 2017-07-19 2019-01-24 新日鐵住金株式会社 無方向性電磁鋼板
WO2020091039A1 (ja) * 2018-11-02 2020-05-07 日本製鉄株式会社 無方向性電磁鋼板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676613B2 (ja) * 1990-01-31 1994-09-28 住友金属工業株式会社 高マンガン溶鉄の脱りん方法
JP2001049403A (ja) * 1999-08-05 2001-02-20 Nippon Steel Corp 高周波特性の良好な無方向性電磁鋼板およびその製造方法
US6436199B1 (en) * 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP5076510B2 (ja) * 2007-01-17 2012-11-21 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法
CN101519711A (zh) * 2008-02-26 2009-09-02 宝山钢铁股份有限公司 一种铁水脱硅、脱锰、脱磷、脱硫的方法
JP2012036459A (ja) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP5824965B2 (ja) * 2011-08-23 2015-12-02 新日鐵住金株式会社 無方向性電磁鋼板の製造方法
JP5712863B2 (ja) * 2011-08-23 2015-05-07 新日鐵住金株式会社 無方向性電磁鋼板の製造方法
JP2013102705A (ja) * 2011-11-10 2013-05-30 Takigen Mfg Co Ltd 幼苗の自立支持具
JP5533958B2 (ja) * 2012-08-21 2014-06-25 Jfeスチール株式会社 打抜加工による鉄損劣化の小さい無方向性電磁鋼板
JP6638359B2 (ja) * 2015-12-08 2020-01-29 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
PL3495525T3 (pl) * 2016-08-05 2022-06-20 Nippon Steel Corporation Blacha cienka z niezorientowanej stali elektrotechnicznej, sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej i sposób wytwarzania rdzenia do silnika
JP6870687B2 (ja) * 2017-01-16 2021-05-12 日本製鉄株式会社 無方向性電磁鋼板
US11021771B2 (en) * 2017-01-16 2021-06-01 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
TWI658152B (zh) * 2017-03-07 2019-05-01 日商新日鐵住金股份有限公司 無方向性電磁鋼板及無方向性電磁鋼板之製造方法
JP6900889B2 (ja) * 2017-11-30 2021-07-07 日本製鉄株式会社 無方向性電磁鋼板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172941A (ja) * 1992-12-09 1994-06-21 Nkk Corp 部品加工性の優れた高珪素鋼板
JPH06248348A (ja) * 1993-02-26 1994-09-06 Nkk Corp 高珪素鋼板の磁界中熱処理方法
JP2004300535A (ja) 2003-03-31 2004-10-28 Jfe Steel Kk 磁気特性の優れた高強度無方向性電磁鋼板およびその製造方法
JP2007186791A (ja) 2005-12-15 2007-07-26 Jfe Steel Kk 高強度無方向性電磁鋼板およびその製造方法
JP2011246810A (ja) * 2010-04-30 2011-12-08 Jfe Steel Corp 無方向性電磁鋼板およびそれを用いたモータコア
JP2012140676A (ja) 2010-12-28 2012-07-26 Jfe Steel Corp 無方向性電磁鋼板およびその製造方法
WO2019017426A1 (ja) * 2017-07-19 2019-01-24 新日鐵住金株式会社 無方向性電磁鋼板
WO2020091039A1 (ja) * 2018-11-02 2020-05-07 日本製鉄株式会社 無方向性電磁鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130304A4

Also Published As

Publication number Publication date
BR112022016302A2 (pt) 2022-11-29
EP4130304A4 (en) 2023-05-17
CN115398012A (zh) 2022-11-25
KR20220144400A (ko) 2022-10-26
EP4130304A1 (en) 2023-02-08
US20230104017A1 (en) 2023-04-06
JPWO2021199400A1 (ja) 2021-10-07
JP7469694B2 (ja) 2024-04-17

Similar Documents

Publication Publication Date Title
JP6478004B1 (ja) 無方向性電磁鋼板
EP3399061B1 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP7143900B2 (ja) 無方向性電磁鋼板
JP7143901B2 (ja) 無方向性電磁鋼板
JP7469694B2 (ja) 無方向性電磁鋼板およびその製造方法
TWI767210B (zh) 無方向性電磁鋼板及其製造方法
JP7001210B1 (ja) 無方向性電磁鋼板およびその製造方法
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2022211004A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2022176933A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2023176866A1 (ja) 無方向性電磁鋼板およびその製造方法
WO2023176865A1 (ja) 無方向性電磁鋼板およびモータコアならびにそれらの製造方法
CN117545866A (zh) 无取向性电磁钢板及其制造方法
CN117545868A (zh) 无取向性电磁钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928444

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016302

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022511460

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227032799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020928444

Country of ref document: EP

Effective date: 20221102

ENP Entry into the national phase

Ref document number: 112022016302

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220816