WO2023176865A1 - 無方向性電磁鋼板およびモータコアならびにそれらの製造方法 - Google Patents

無方向性電磁鋼板およびモータコアならびにそれらの製造方法 Download PDF

Info

Publication number
WO2023176865A1
WO2023176865A1 PCT/JP2023/009982 JP2023009982W WO2023176865A1 WO 2023176865 A1 WO2023176865 A1 WO 2023176865A1 JP 2023009982 W JP2023009982 W JP 2023009982W WO 2023176865 A1 WO2023176865 A1 WO 2023176865A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
oriented electrical
electrical steel
steel sheet
Prior art date
Application number
PCT/JP2023/009982
Other languages
English (en)
French (fr)
Inventor
裕義 屋鋪
義顕 名取
和年 竹田
一郎 田中
弘樹 堀
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023176865A1 publication Critical patent/WO2023176865A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a non-oriented electrical steel sheet, a motor core, and a manufacturing method thereof.
  • the motor core of the various motors described above is composed of a stator, which is a stator, and a rotor, which is a rotor.
  • the characteristics required of the stator and rotor that make up the motor core are different from each other, and the stator is required to have excellent magnetic properties (low iron loss and high magnetic flux density), especially low iron loss and high saturation magnetic flux density.
  • rotors are required to have excellent mechanical properties (high strength).
  • non-oriented electrical steel sheets for the stator and non-oriented electrical steel sheets for the rotor.
  • preparing two types of non-oriented electrical steel sheets leads to a decrease in yield. Therefore, in order to achieve low iron loss while achieving the high strength required for rotors, non-oriented electrical steel sheets that have excellent strength and magnetic properties have been studied.
  • Patent Documents 1 to 4 attempts are made to realize excellent magnetic properties and high strength.
  • the present invention was made to solve these problems, and aims to stably provide a non-oriented electrical steel sheet having high strength and excellent magnetic properties.
  • the gist of the present invention is the following non-oriented electrical steel sheet, motor core, and manufacturing method thereof.
  • the chemical composition of the base material is in mass%, C: 0.0050% or less, Si: more than 3.70% and less than 4.60%, Mn: more than 0.20% and less than 0.50%, Al: 0.23-0.75%, P: 0.030% or less, S: 0.0018% or less, N: 0.0040% or less, Ti: less than 0.0050%, Nb: less than 0.0050%, Zr: less than 0.0050%, V: less than 0.0050%, Cu: less than 0.200%, Ni: less than 0.500%, Sn: 0.005-0.040%, Sb: 0 to 0.040%, The remainder: Fe and impurities, The following formula (i) is satisfied, The N content [N]s from the surface of the base material to a position 20 ⁇ m in the depth direction is 0.0060% or less, The average crystal grain size of the base material is 10 to 30 ⁇ m, Iron loss W 10/400 is 20.0W/kg or less, The saturation magnetic flux density is 1.945T or more
  • a method for manufacturing the non-oriented electrical steel sheet according to (1) or (2) above comprising: In mass%, C: 0.0050% or less, Si: more than 3.70% and less than 4.60%, Mn: more than 0.20% and less than 0.50%, Al: 0.23-0.75%, P: 0.030% or less, S: 0.0018% or less, N: 0.0040% or less, Ti: less than 0.0050%, Nb: less than 0.0050%, Zr: less than 0.0050%, V: less than 0.0050%, Cu: less than 0.200%, Ni: less than 0.500%, Sn: 0.005-0.040%, Sb: 0 to 0.040%, The remainder: Fe and impurities, For a steel ingot having a chemical composition that satisfies the following formula (i), Hot rolling process, pickling process, batch type hot rolled plate annealing process with soaking temperature of 650 to 780°C and soaking time of 8 to 36 hours, cold rolling to reduce the plate thickness to 0.10
  • a motor core in which a plurality of non-oriented electrical steel sheets are laminated The chemical composition of the base material of the non-oriented electrical steel sheet is in mass%, C: 0.0050% or less, Si: more than 3.70% and less than 4.60%, Mn: more than 0.20% and less than 0.50%, Al: 0.23-0.75%, P: 0.030% or less, S: 0.0018% or less, N: 0.0040% or less, Ti: less than 0.0050%, Nb: less than 0.0050%, Zr: less than 0.0050%, V: less than 0.0050%, Cu: less than 0.200%, Ni: less than 0.500%, Sn: 0.005-0.040%, Sb: 0 to 0.040%, The remainder: Fe and impurities, The following formula (i) is satisfied, The N content [N]s from the surface of the base material to a position 20 ⁇ m in the depth direction is 0.0070% or less, The average crystal grain size of the base material is 50 to 120 ⁇
  • Finish annealing process punching process, lamination process, soaking temperature is 700-830°C and soaking time is 1 second to 10 minutes, and soaking temperature is 750-900°C and soaking time is 10-180 minutes. Sequentially undergo the stress relief annealing process.
  • a method of manufacturing a motor core 4.2 ⁇ Si+Al+0.5 ⁇ Mn ⁇ 4.9...(i)
  • the element symbol in the above formula is the content (mass%) of each element.
  • a non-oriented electrical steel sheet having high strength and excellent magnetic properties can be obtained.
  • Si more than 3.70% and 4.60% of Si is contained, which has the highest solid solution strengthening ability and also has the highest contribution to increasing electrical resistance.
  • Al is contained in an amount of 0.23% or more.
  • the Al content is set to 0.75% or less.
  • Mn which has the lowest solid solution strengthening ability among the three elements but causes less deterioration of toughness and contributes to an increase in electrical resistance, is contained in an amount of more than 0.20%.
  • the hot-rolled sheet with scale is inserted into the annealing furnace, which creates scale that is difficult to remove during pickling after annealing. It is necessary to perform descaling.
  • twin deformation occurs on the steel plate surface due to shot blasting, and this twin deformation tends to cause problems such as plate breakage and edge cracking during cold rolling. be.
  • the hot rolled sheet is pickled before hot rolled sheet annealing, and then the hot rolled sheet is annealed in a batch furnace.
  • Scale on hot-rolled sheets can be easily removed by pickling, so shots are not required and twin deformation does not occur. Therefore, it is possible to ensure good toughness even with high alloy steel, and to suppress the occurrence of problems such as plate breakage and edge cracking during cold rolling.
  • the non-oriented electrical steel sheet according to one embodiment of the present invention has high strength and excellent magnetic properties, so it is suitable for both stators and rotors.
  • non-oriented electrical steel sheet when using a non-oriented electrical steel sheet as a stator core, reducing iron loss is important.
  • the non-oriented electromagnetic steel sheets are punched and laminated to produce a motor core, and then only the stator core is subjected to strain relief annealing.
  • a stator core that has been subjected to strain relief annealing has advanced grain growth and reduced iron loss, which can significantly improve motor efficiency.
  • a motor core according to an embodiment of the present invention is obtained by sequentially performing a punching process, a laminating process, and a stress relief annealing process on the non-oriented electrical steel sheet. That is, the motor core according to one embodiment of the present invention is formed by laminating a plurality of non-oriented electrical steel sheets.
  • the base material of the non-oriented electrical steel sheet that constitutes the motor core is simply referred to as "base material of motor core.”
  • the non-oriented electrical steel sheet and the motor core according to the present embodiment include an insulating coating on the surface of the base material, which will be described below.
  • C is an element that causes core loss deterioration of non-oriented electrical steel sheets. If the C content exceeds 0.0050%, the core loss of the non-oriented electrical steel sheet deteriorates, making it impossible to obtain good magnetic properties. Therefore, the C content is set to 0.0050% or less.
  • the C content is preferably 0.0040% or less, more preferably 0.0035% or less, and even more preferably 0.0030% or less. Note that C contributes to increasing the strength of non-oriented electrical steel sheets, so if you want to obtain this effect, the C content is preferably 0.0005% or more, and 0.0010% or more. is more preferable.
  • Si More than 3.70% and 4.60% or less Si (silicon) is an element that increases the electrical resistance of steel, reduces eddy current loss, and improves high frequency core loss of non-oriented electrical steel sheets. Further, since Si has a high solid solution strengthening ability, it is an effective element for increasing the strength of non-oriented electrical steel sheets. In order to obtain these effects, the Si content is set to exceed 3.70%.
  • the Si content is preferably 3.80% or more, more preferably 3.90% or more, and even more preferably 4.00% or more.
  • the Si content is set to 4.60% or less.
  • the Si content is preferably 4.50% or less, more preferably 4.40% or less.
  • Mn more than 0.20% and less than 0.50%
  • Mn manganese
  • MnS fine sulfides
  • the Mn content is set to exceed 0.20%.
  • the Mn content is preferably 0.25% or more, more preferably 0.30% or more.
  • the Mn content is set to 0.50% or less.
  • the Mn content is preferably 0.45% or less, more preferably 0.40% or less.
  • Al 0.23-0.75%
  • Al is an element that reduces eddy current loss by increasing the electrical resistance of steel and has the effect of improving high frequency core loss of non-oriented electrical steel sheets. Furthermore, Al also has the effect of improving iron loss by improving the texture.
  • Al is an element that contributes to increasing the strength of non-oriented electrical steel sheets through solid solution strengthening. Furthermore, the addition of an appropriate amount of Al suppresses the refinement of AlN that occurs when combined with N in the steel, improves grain growth during finish annealing and strain relief annealing, and reduces iron loss due to the fine AlN itself. It has the effect of suppressing
  • the Al content is set to 0.23% or more.
  • the Al content is preferably 0.25% or more, more preferably 0.27% or more.
  • the higher the Al content the more likely the nitridation of the surface layer portion of the steel sheet described above occurs. As a result, iron loss deteriorates.
  • the effects of the present invention are significantly exhibited when the Al content is high. That is, when the Al content is, for example, more than 0.45% or 0.47% or more, the effects of the present invention are more significantly exhibited.
  • the Al content is set to 0.75% or less.
  • the Al content is preferably 0.70% or less, more preferably 0.65% or less.
  • the electrical resistance of the steel is ensured by appropriately controlling the contents of Si, Al, and Mn. Furthermore, from the viewpoint of ensuring strength, it is necessary to appropriately control the contents of Si, Al, and Mn. On the other hand, an upper limit is also required from the viewpoint of ensuring saturation magnetic flux density and toughness. Therefore, in addition to the contents of Si, Al, and Mn being each within the above ranges, it is necessary to satisfy the following formula (i).
  • the value of the middle side of the following formula (i) is preferably 4.3 or more, more preferably 4.4 or more, preferably 4.8 or less, and 4.7 or less. is more preferable.
  • P 0.030% or less
  • P phosphorus
  • the P content is set to 0.030% or less.
  • the P content is preferably 0.025% or less, more preferably 0.020% or less.
  • the P content is preferably 0.003% or more, more preferably 0.005% or more.
  • S 0.0018% or less
  • S sulfur
  • the S content is preferably 0.0016% or less, more preferably 0.0014% or less. Note that an extreme reduction in the S content may cause an increase in manufacturing costs, so the S content is preferably 0.0001% or more, more preferably 0.0003% or more, and 0.0001% or more, more preferably 0.0003% or more. More preferably, it is 0.0005% or more.
  • N 0.0040% or less
  • N nitrogen
  • the N content is preferably 0.0030% or less, more preferably 0.0020% or less.
  • N content is 0.0005% or more.
  • Ti less than 0.0050%
  • Ti titanium
  • carbides, nitrides When carbides or nitrides are formed, these precipitates themselves deteriorate the magnetic properties of the non-oriented electrical steel sheet. Furthermore, it inhibits the growth of crystal grains during finish annealing and strain relief annealing, thereby degrading the magnetic properties of the non-oriented electrical steel sheet. Therefore, the Ti content should be less than 0.0050%.
  • the Ti content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. Note that, since an extreme reduction in Ti content may cause an increase in manufacturing costs, it is preferable that Ti content is 0.0005% or more.
  • Nb Less than 0.0050% Nb (niobium) is an element that contributes to high strength by combining with carbon or nitrogen to form precipitates (carbide, nitride), but these precipitates themselves Deteriorates the magnetic properties of non-oriented electrical steel sheets. Therefore, the Nb content is made less than 0.0050%.
  • the Nb content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. Note that, since an extreme reduction in the Nb content may cause an increase in manufacturing costs, the Nb content is preferably 0.0001% or more.
  • Zr less than 0.0050%
  • Zr zirconium
  • the Zr content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less. Note that, since an extreme reduction in Zr content may cause an increase in manufacturing costs, it is preferable that Zr content is 0.0001% or more.
  • V less than 0.0050%
  • V vanadium
  • the V content is preferably 0.0040% or less, more preferably 0.0030% or less, and even more preferably 0.0020% or less.
  • V content is 0.0001% or more.
  • Cu Less than 0.200% Cu (copper) is an element that is inevitably mixed into steel. Intentionally containing Cu increases the manufacturing cost of the non-oriented electrical steel sheet. Therefore, in this embodiment, Cu does not need to be actively included, and may be contained at an impurity level.
  • the Cu content is set to less than 0.200%, which is the maximum value that can be unavoidably mixed in the manufacturing process.
  • the Cu content is preferably 0.150% or less, more preferably 0.100% or less. Note that the lower limit of the Cu content is not particularly limited, but an extreme reduction in the Cu content may cause an increase in manufacturing costs. Therefore, the Cu content is preferably 0.001% or more, more preferably 0.003% or more, and even more preferably 0.005% or more.
  • Ni less than 0.500%
  • Ni nickel
  • Ni is an element that is inevitably mixed into steel.
  • Ni is also an element that improves the strength of the non-oriented electrical steel sheet, it may be intentionally included.
  • the Ni content is made less than 0.500%.
  • the Ni content is preferably 0.400% or less, more preferably 0.300% or less. Note that the lower limit of the Ni content is not particularly limited, but an extreme reduction in the Ni content may cause an increase in manufacturing costs. Therefore, the Ni content is preferably 0.001% or more, more preferably 0.003% or more, and even more preferably 0.005% or more. Further, when intentionally containing Ni, it is preferable that the Ni content is 0.200% or more.
  • Sn 0.005-0.040%
  • Sn (tin) is an element useful for ensuring low iron loss in non-oriented electrical steel sheets by segregating on the surface of the base material and suppressing oxidation and nitridation during annealing.
  • Sn has the effect of improving the texture by segregating at grain boundaries and increasing the magnetic flux density of the non-oriented electrical steel sheet.
  • the Sn content is set to 0.005% or more.
  • the Sn content is preferably 0.010% or more, more preferably 0.015% or more.
  • the Sn content is set to 0.040% or less.
  • the Sn content is preferably less than 0.040%, more preferably 0.035% or less, and even more preferably 0.030% or less.
  • Sb 0-0.040%
  • Sb antimony
  • Sb is an element useful for ensuring low core loss in non-oriented electrical steel sheets by segregating on the surface of the base material and suppressing oxidation and nitridation during annealing. Furthermore, Sb segregates at grain boundaries, improves the texture, and has the effect of increasing the magnetic flux density of the non-oriented electrical steel sheet. Therefore, Sb may be contained if necessary. However, if the Sb content is excessive, the toughness of the steel may decrease and cold rolling may become difficult. Therefore, the Sb content is set to 0.040% or less. The Sb content is preferably 0.030% or less. In addition, when it is desired to reliably obtain the above effects, the Sb content is preferably 0.005% or more, and more preferably 0.010% or more.
  • the remainder is Fe and impurities.
  • impurities are components that are mixed in during the industrial production of steel due to raw materials such as ore and scrap, and various factors in the manufacturing process, and are allowed within the range that does not adversely affect the present invention. means something that
  • the contents of Cr and Mo as impurity elements are not particularly defined.
  • these elements are contained within a range of 0.5% or less, there is no particular effect on the properties of the non-oriented electrical steel sheet and motor core according to this embodiment. do not have.
  • Ca and Mg are each contained within a range of 0.002% or less, there is no particular influence on the properties of the non-oriented electrical steel sheet and the motor core according to the present embodiment.
  • rare earth elements are contained in a range of 0.004% or less, there is no particular influence on the characteristics of the non-oriented electrical steel sheet and motor core according to the present embodiment.
  • REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids
  • the content of REM refers to the total content of these elements.
  • O is also an impurity element, even if it is contained in a range of 0.035% or less, it does not affect the characteristics of the non-oriented electrical steel sheet and motor core according to the present embodiment. Since O may be mixed into the steel during the annealing process, even if the content is in the range of 0.010% or less at the slab stage (i.e., ladle value), the non-directional steel according to this embodiment There is no particular effect on the properties of the electromagnetic steel sheet and motor core.
  • elements such as Pb, Bi, As, B, and Se may be included as impurity elements, but as long as the content of each is within a range of 0.0050% or less, this embodiment This does not impair the properties of the non-oriented electrical steel sheet and motor core.
  • the chemical composition of the base material of the non-oriented electrical steel sheet and motor core according to this embodiment can be determined using various known measurement methods. For example, it may be measured using an ICP emission spectrometry method, a gravimetric method, or a spark discharge emission spectrometry method. Further, C and S may be measured using a combustion-infrared absorption method, N may be measured using an inert gas combustion-thermal conductivity method, and O may be measured using an inert gas melting-non-dispersive infrared absorption method.
  • the N content [N]s from the surface of the base material to a position 20 ⁇ m in the depth direction is set to 0.0060. % or less. If [N]s is 0.0060% or less, it becomes possible to suppress iron loss deterioration. [N]s is preferably 0.0055% or less, more preferably 0.0050% or less.
  • the non-oriented electrical steel sheet is further subjected to strain relief annealing, so that nitriding progresses more.
  • [N]s is set to 0.0070% or less.
  • [N]s of the motor core is preferably 0.0065% or less, more preferably 0.0060% or less.
  • the average grain size of the base material is 10 to 30 ⁇ m.
  • the average grain size of the base material of the non-oriented electrical steel sheet is 10 ⁇ m or more, it becomes possible to minimize the deterioration of hysteresis loss and improve the magnetic properties.
  • the average grain size is set to 30 ⁇ m or less, the strength of the steel can be significantly improved.
  • the average crystal grain size is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more.
  • the average crystal grain size is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the average crystal grain size of the base material is 50 to 120 ⁇ m.
  • the average crystal grain size of the base material of the motor core is 50 ⁇ m or more, it is possible to suppress deterioration of hysteresis loss and improve magnetic properties.
  • the average crystal grain size is preferably 60 ⁇ m or more, more preferably 70 ⁇ m or more.
  • the average crystal grain size is preferably 110 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the average grain size of the base material of the non-oriented electrical steel sheet and the motor core shall be determined in accordance with JIS G 0551:2013 "Steel - Microscopic test method for grain size”.
  • magnetic properties mean that the iron loss W 10/400 is low and the saturation magnetic flux density Bs is high.
  • iron loss W 10/400 means the iron loss that occurs under the conditions that the maximum magnetic flux density is 1.0 T and the frequency is 400 Hz, and is calculated according to the Epstein method specified in JIS C 2550-1:2011. , shall be measured.
  • the iron loss W 10/400 is 20.0 W/kg or less.
  • the iron loss is further reduced by strain relief annealing, and the low iron loss W 10/400 means 13.5 W/kg or less for a plate thickness of 0.26 mm or more, and 13.5 W/kg or less for a plate thickness of 0.26 mm or more.
  • the plate thickness is 21 to 0.25 mm, it is 11.5 W/kg or less, and when the plate thickness is 0.20 mm or less, it is 10.0 W/kg or less.
  • the laminated iron core is separated into steel plates, and a small test piece for magnetic measurement of a single plate with a size that can be collected according to the size of the separated steel plates is fabricated by electric discharge machining. Then, the iron loss value is measured using a small veneer tester compatible with the above-mentioned small test piece. At this time, the measurement principle follows the single sheet magnetic property measurement method (Single Sheet Tester: SST) defined in JIS C 2556:2015.
  • the above-mentioned Epstein test piece and small test piece were taken from several types of non-oriented electrical steel sheets in advance, and the iron loss value was measured using the Epstein method and the single plate magnetic property measurement method. Derive a conversion formula from the relationship. Then, the iron loss value measured by the veneer tester is corrected using the above conversion formula so that it is equivalent to the iron loss value measured by the Epstein method.
  • the saturation magnetic flux density Bs is measured using a vibrating sample magnetometer (VSM).
  • VSM vibrating sample magnetometer
  • the saturation magnetic flux density Bs is 1.945T or more.
  • the saturation magnetic flux density Bs is 1.945T or more.
  • the non-oriented electrical steel sheet according to this embodiment has high strength, specifically, a tensile strength of 680 MPa or more.
  • the tensile strength is preferably 690 MPa or more, more preferably 700 MPa or more.
  • the tensile strength is measured by performing a tensile test in accordance with JIS Z 2241:2011.
  • the plate thickness is set to 0.10 mm or more from the viewpoint of manufacturing costs of cold rolling and finish annealing. shall be. On the other hand, from the viewpoint of reducing iron loss, the plate thickness is set to 0.30 mm or less. Therefore, the thickness of the non-oriented electrical steel sheet according to this embodiment and the non-oriented electrical steel sheet constituting the motor core according to this embodiment is 0.10 to 0.30 mm.
  • the effect of nitriding on the surface layer of a steel sheet becomes more pronounced as the sheet thickness becomes thinner. That is, if nitridation of the surface layer of the steel sheet cannot be suppressed, the thinner the sheet thickness is, the more significantly the iron loss deteriorates.
  • the present invention since nitridation of the surface layer portion of the steel plate is suppressed, deterioration of iron loss can be suppressed even when the plate thickness is thin. Therefore, when the plate thickness is, for example, less than 0.25 mm or 0.20 mm or less, the effects of the present invention are more significantly exhibited.
  • Non-oriented electrical steel sheets and motor core it is preferable to have an insulating coating on the surface of the base material.
  • Non-oriented electrical steel sheets are used after punching core blanks and then laminating them, so by providing an insulating coating on the surface of the base material, eddy currents between the sheets can be reduced, and eddy currents as a core can be reduced. It becomes possible to reduce losses.
  • the type of insulating coating is not particularly limited, and any known insulating coating used as an insulating coating for non-oriented electrical steel sheets can be used.
  • an insulating film for example, a composite insulating film mainly composed of an inorganic material and further containing an organic material can be mentioned.
  • the composite insulating coating is composed mainly of at least one of a metal chromate salt, a metal phosphate salt, or an inorganic substance such as colloidal silica, a Zr compound, or a Ti compound, with fine organic resin particles dispersed therein.
  • insulating coating that has a
  • metal phosphates, coupling agents of Zr or Ti, or carbonates or ammonium salts of these as starting materials are recommended.
  • the amount of the insulating film deposited is not particularly limited, but is preferably about 200 to 1500 mg/m 2 per side, more preferably 300 to 1200 mg/m 2 per side.
  • By forming the insulating film to have a coating amount within the above range it is possible to maintain excellent uniformity.
  • various known measurement methods such as a method of measuring the difference in mass before and after immersion in a sodium hydroxide aqueous solution, or a method of measuring the mass difference before and after immersion in a sodium hydroxide aqueous solution, A fluorescent X-ray method using a ray method or the like may be used as appropriate.
  • the non-oriented electrical steel sheet according to the present embodiment is manufactured by applying a hot rolling process, a pickling process, a batch type hot rolled sheet annealing process, and a cold rolling process to a steel ingot having the above-mentioned chemical composition under the following conditions. It can be manufactured by sequentially performing a rolling process and a final annealing process. Moreover, when forming an insulating film on the surface of a base material, an insulating film forming process is performed after the said final annealing process. Each step will be explained in detail below.
  • a steel ingot (slab) having the above chemical composition is heated, and the heated steel ingot is hot rolled to obtain a hot rolled sheet.
  • the heating temperature of the steel ingot when subjecting it to hot rolling is not particularly specified, but is preferably set to, for example, 1050 to 1250°C.
  • the thickness of the hot-rolled sheet after hot rolling is also not particularly specified, but it is preferably about 1.5 to 3.0 mm, taking into account the final thickness of the base material. .
  • the hot-rolled sheet is pickled to remove the scale layer formed on the surface of the base material.
  • the pickling conditions such as the concentration of the acid used in the pickling, the concentration of the accelerator used in the pickling, and the temperature of the pickling solution are not particularly limited, and may be any known pickling conditions. can.
  • Hot-rolled plate annealing is performed for the purpose of reducing iron loss of the steel plate.
  • Hot-rolled sheet annealing is performed using a batch annealing furnace, with a soaking temperature of 650 to 780°C and a soaking time of 8 to 36 hours. By setting the soaking time to 8 hours or more, the metal structure becomes sufficiently uniform, the coarsening of the precipitates progresses, and it becomes possible to obtain a sufficient iron loss improvement effect.
  • the soaking temperature exceeds 780° C. or the soaking time exceeds 36 hours, the crystal grain size becomes excessively coarse, the toughness decreases, and breakage occurs during cold rolling.
  • Cold rolling process The steel plate after the hot rolled plate annealing is subjected to cold rolling.
  • the base material is rolled at a reduction rate such that the final thickness of the base material is 0.10 to 0.30 mm.
  • finish annealing is performed.
  • a continuous annealing furnace for finish annealing.
  • Final annealing is performed at a soaking temperature of 700 to 830°C and a soaking time of 1 second to 10 minutes.
  • the soaking temperature is less than 700°C, the grain size will become fine and the unrecrystallized structure will increase, resulting in significant deterioration of iron loss, which is undesirable. If the soaking temperature exceeds 830°C, the strength will decrease. This is not desirable as it will be insufficient. Further, if the soaking time is less than 1 second, the dislocation density cannot be sufficiently reduced. On the other hand, if the soaking time exceeds 10 minutes, the manufacturing cost will increase.
  • an insulating film forming step is performed as necessary.
  • the method for forming the insulating film is not particularly limited, and the processing liquid may be applied and dried by a known method using a known insulating film-forming treatment liquid as shown below.
  • a known insulating film for example, a composite insulating film mainly composed of an inorganic material and further containing an organic material can be mentioned.
  • the composite insulating film is, for example, mainly composed of at least one of metal salts such as metal chromates and metal phosphates, or inorganic substances such as colloidal silica, Zr compounds, and Ti compounds, and is composed of fine organic resin particles. It is an insulating film in which is dispersed.
  • metal salts such as metal chromates and metal phosphates
  • inorganic substances such as colloidal silica, Zr compounds, and Ti compounds
  • the surface of the base material on which the insulating coating is to be formed may be subjected to any pretreatment such as degreasing with alkali or pickling with hydrochloric acid, sulfuric acid, phosphoric acid, etc. before applying the treatment liquid.
  • the treatment liquid may be applied to the surface of the base material after final annealing without performing these pretreatments.
  • the manufacturing method for the motor core according to the present embodiment is not particularly limited, the non-oriented electrical steel sheet obtained through the above-mentioned process may be subjected to a punching process under the conditions shown below, for example. It can be manufactured by sequentially carrying out a lamination process and a stress relief annealing process. Note that, as described above, when a non-oriented electrical steel sheet is used as a stator core where low core loss is important, it is preferable to perform strain relief annealing, which will be described later. Therefore, the motor core according to this embodiment is preferably a stator core. Each step will be explained in detail below.
  • the non-oriented electromagnetic steel sheet obtained as described above is subjected to a punching process to obtain a shape as a material for a rotor core or a stator core. Processing conditions are not particularly limited, and general methods can be adopted.
  • Strain relief annealing is performed on the laminated motor core.
  • a motor core that has been subjected to strain relief annealing undergoes recrystallization and grain growth, reducing iron loss, and thus can significantly improve motor efficiency.
  • strain relief annealing is performed at a soaking temperature of 750 to 900° C. and a soaking time of 10 to 180 minutes. If the N 2 ratio in the atmosphere is less than 70% by volume, this is not preferable because it increases the cost of strain relief annealing.
  • the proportion of N 2 in the atmosphere is more preferably 80% by volume or more, even more preferably 90 to 100% by volume, particularly preferably 97 to 100% by volume.
  • the atmospheric gas other than N 2 is not particularly limited, but generally a reducing mixed gas consisting of hydrogen, carbon dioxide, carbon monoxide, water vapor, methane, etc. can be used. In order to obtain these gases, a method is generally employed in which propane gas or natural gas is combusted.
  • the dew point of the atmosphere is preferably -50 to +10°C.
  • a slab having the chemical composition shown in Table 1 was heated to 1150°C, then hot rolled at a finishing temperature of 850°C and a finished plate thickness of 2.0 mm, and wound at 600°C to obtain a hot rolled steel plate.
  • the hot rolled sheets were annealed in a batch annealing furnace at the soaking temperature shown in Table 2 for a soaking time of 10 hours.
  • the thus obtained steel plate was cold-rolled into a cold-rolled steel plate having a thickness of 0.20 mm.
  • final annealing was performed at the soaking temperature shown in Table 2 for a soaking time of 20 seconds in a mixed atmosphere of H 2 : 15%, N 2 : 85%, dew point: -30°C.
  • an insulating coating consisting of aluminum phosphate and an acrylic-styrene copolymer resin emulsion with a particle size of 0.2 ⁇ m was applied and baked at 350° C. in the atmosphere.
  • the obtained non-oriented electrical steel sheet was subjected to strain relief annealing under soaking conditions of 800°C x 120 minutes in a nitrogen atmosphere with a dew point of -40°C (the proportion of nitrogen in the atmosphere is 99.9% by volume or more). was applied.
  • JIS No. 5 tensile test pieces were taken from each test material after finish annealing in accordance with JIS Z 2241:2011 so that the longitudinal direction coincided with the rolling direction of the steel plate. Then, a tensile test was conducted using the above test piece according to JIS Z 2241:2011, and the tensile strength was measured.
  • Test No. that satisfies the provisions of the present invention. 2, 3, 6, 7, 9, 11, 15-17, 20, 21, 26, 27, 29 and 30 have low iron loss after finish annealing, high saturation magnetic flux density, and high tensile strength of 680 MPa or more. It was found that the iron loss after strain relief annealing was also low.
  • test No. 1 which is a comparative example, 1, 4, 5, 8, 10, 12-14, 18, 19, 22-25, 28, 31 and 32, iron loss W 10/400 is inferior, saturation magnetic flux density is inferior, or toughness is significantly deteriorated. This made manufacturing difficult.
  • test no. In No. 1 since the Mn content was lower than the specified range, the amount of fine MnS precipitated increased, resulting in poor iron loss.
  • Test No. In No. 4 since the S content was higher than the specified range, the amount of MnS precipitated increased, resulting in poor iron loss.
  • Test No. In No. 5 since the Sn content was lower than the specified range, [N]s was high and the iron loss was poor.
  • Test No. In No. 8 since the Sn content was higher than the specified range, the toughness deteriorated and fractured during cold rolling, making it impossible to measure the tensile strength and magnetic properties.
  • Test No. 10 since the Mn content was higher than the specified range, [N]s was high and the iron loss was poor. Test No. In No. 12, the saturation magnetic flux density was poor because Si+Al+0.5 ⁇ Mn was higher than the specified range. Test No. In No. 13, since the Si content and Si+Al+0.5 ⁇ Mn were higher than the specified range, the toughness deteriorated and fractured during cold rolling, making it impossible to measure the tensile strength and magnetic properties.
  • Test No. 14 since the hot-rolled sheet annealing temperature was higher than the specified range, the toughness deteriorated and fractured during cold rolling, making it impossible to measure the tensile strength and magnetic properties.
  • Test No. 18 the hot rolled sheet annealing temperature was lower than the specified range, so the average grain size after finish annealing and strain relief annealing was smaller than the specified range, resulting in inferior iron loss after finish annealing and strain relief annealing. became.
  • Test No. In No. 19 the final annealing temperature was lower than the specified range, the average grain size after final annealing was smaller than the specified range, and the iron loss after final annealing was poor.
  • Test No. In No. 22 the final annealing temperature was higher than the specified range, resulting in poor tensile strength.
  • test No. 23 the Si content was lower than the specified range, resulting in poor tensile strength. Also, test no. In No. 24, since Si+Al+0.5 ⁇ Mn was lower than the specified range, the iron loss after finish annealing and strain relief annealing was inferior. Furthermore, test no. In No. 25, since the Al content was lower than the specified range, AlN was finely precipitated and the iron loss after finish annealing was inferior, and the average grain size after strain relief annealing was small, resulting in inferior iron loss after strain relief annealing. became. And test no. In No. 28, since the Al content was higher than the specified range, the toughness deteriorated and fractured during cold rolling, making it impossible to measure the tensile strength and magnetic properties.
  • test No. 31 the soaking temperature during hot-rolled sheet annealing was higher than the specified range, so the toughness deteriorated due to coarsening of the crystal grain size and fractured during cold rolling, making it impossible to measure the tensile strength and magnetic properties. Also, test no. In No. 32, since the Al content was lower than the specified range, the texture deteriorated and fine AlN precipitated, resulting in poor iron loss after finish annealing and poor iron loss after strain relief annealing.
  • a non-oriented electrical steel sheet having high strength and excellent magnetic properties can be obtained at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

母材の化学組成が、質量%で、C:0.0050%以下、Si:3.70%超4.60%以下、Mn:0.20%超0.50%以下、Al:0.23~0.75%、P:0.030%以下、S:0.0018%以下、N:0.0040%以下、Sn:0.005~0.040%、Sb:0~0.040%、残部:Feおよび不純物であり、[4.2≦Si+Al+0.5×Mn≦4.9]を満足し、母材の表面から深さ方向に20μmの位置までのN含有量[N]sが0.0060%以下であり、母材の平均結晶粒径が、10~30μmであり、鉄損W10/400が20.0W/kg以下であり、飽和磁束密度が1.945T以上であり、引張強さが680MPa以上であり、板厚が0.10~0.30mmである、無方向性電磁鋼板。

Description

無方向性電磁鋼板およびモータコアならびにそれらの製造方法
 本発明は、無方向性電磁鋼板およびモータコアならびにそれらの製造方法に関する。
 近年、地球環境問題が注目されており、省エネルギーへの取り組みに対する要求は、一段と高まってきている。なかでも電気機器の高効率化が強く要望されている。このため、モータまたは発電機等の鉄心材料として広く使用されている無方向性電磁鋼板においても、磁気特性の向上に対する要請がさらに強まっている。電気自動車およびハイブリッド自動車用の駆動モータならびにエアコンのコンプレッサ用モータにおいては、その傾向が顕著である。
 上記のような各種モータのモータコアは、固定子であるステータおよび回転子であるロータから構成される。モータコアを構成するステータおよびロータに求められる特性は、互いに相違するものであり、ステータには、優れた磁気特性(低鉄損および高磁束密度)、特に低鉄損と高飽和磁束密度とが求められるのに対し、ロータには、優れた機械特性(高強度)が求められる。
 ステータとロータとで求められる特性が異なることから、ステータ用の無方向性電磁鋼板とロータ用の無方向性電磁鋼板とを作り分けることで、所望の特性を実現することができる。しかしながら、2種類の無方向性電磁鋼板を準備することは、歩留まりの低下を招いてしまう。そこで、ロータに求められる高強度を実現しつつ、低鉄損を実現するために、強度に優れ、かつ、磁気特性にも優れた無方向性電磁鋼板が、従来から検討されてきた。
 例えば、特許文献1~4では、優れた磁気特性と高い強度とを実現するための試みがなされている。
国際公開第2019/017426号 国際公開第2020/091039号 国際公開第2020/091043号 特開2008-50686号公報
 しかしながら、高強度と低鉄損とを両立した無方向性電磁鋼板を実現するには、特許文献1~4で開示されているように、合金元素を多量に含有させる必要があり、靱性が低下して冷間圧延時の破断が生じやすいという問題があった。さらに、高合金化すると飽和磁束密度の低下が生じる場合がある。
 本発明は、このような問題を解決するためになされたものであり、高い強度および優れた磁気特性を有する無方向性電磁鋼板を安定して提供することを目的とする。
 本発明は、下記の無方向性電磁鋼板およびモータコアならびにそれらの製造方法を要旨とする。
 (1)母材の化学組成が、質量%で、
 C:0.0050%以下、
 Si:3.70%超4.60%以下、
 Mn:0.20%超0.50%以下、
 Al:0.23~0.75%、
 P:0.030%以下、
 S:0.0018%以下、
 N:0.0040%以下、
 Ti:0.0050%未満、
 Nb:0.0050%未満、
 Zr:0.0050%未満、
 V:0.0050%未満、
 Cu:0.200%未満、
 Ni:0.500%未満、
 Sn:0.005~0.040%、
 Sb:0~0.040%、
 残部:Feおよび不純物であり、
 下記(i)式を満足し、
 前記母材の表面から深さ方向に20μmの位置までのN含有量[N]sが0.0060%以下であり、
 前記母材の平均結晶粒径が、10~30μmであり、
 鉄損W10/400が20.0W/kg以下であり、
 飽和磁束密度が1.945T以上であり、
 引張強さが680MPa以上であり、
 板厚が0.10~0.30mmである、
 無方向性電磁鋼板。
 4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
 (2)前記母材の表面に絶縁被膜を有する、
 上記(1)に記載の無方向性電磁鋼板。
 (3)上記(1)または(2)に記載の無方向性電磁鋼板を製造する方法であって、
 質量%で、
 C:0.0050%以下、
 Si:3.70%超4.60%以下、
 Mn:0.20%超0.50%以下、
 Al:0.23~0.75%、
 P:0.030%以下、
 S:0.0018%以下、
 N:0.0040%以下、
 Ti:0.0050%未満、
 Nb:0.0050%未満、
 Zr:0.0050%未満、
 V:0.0050%未満、
 Cu:0.200%未満、
 Ni:0.500%未満、
 Sn:0.005~0.040%、
 Sb:0~0.040%、
 残部:Feおよび不純物であり、
 下記(i)式を満足する化学組成を有する鋼塊に対して、
 熱間圧延工程、酸洗工程、均熱温度が650~780℃で均熱時間が8~36時間のバッチ式熱延板焼鈍工程、板厚0.10~0.30mmに圧下する冷間圧延工程、および、均熱温度が700~830℃で均熱時間が1秒~10分の仕上焼鈍工程を順に施す、
 無方向性電磁鋼板の製造方法。
 4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
 (4)複数の無方向性電磁鋼板が積層されたモータコアであって、
 前記無方向性電磁鋼板の母材の化学組成が、質量%で、
 C:0.0050%以下、
 Si:3.70%超4.60%以下、
 Mn:0.20%超0.50%以下、
 Al:0.23~0.75%、
 P:0.030%以下、
 S:0.0018%以下、
 N:0.0040%以下、
 Ti:0.0050%未満、
 Nb:0.0050%未満、
 Zr:0.0050%未満、
 V:0.0050%未満、
 Cu:0.200%未満、
 Ni:0.500%未満、
 Sn:0.005~0.040%、
 Sb:0~0.040%、
 残部:Feおよび不純物であり、
 下記(i)式を満足し、
 前記母材の表面から深さ方向に20μmの位置までのN含有量[N]sが0.0070%以下であり、
 前記母材の平均結晶粒径が、50~120μmであり、
 飽和磁束密度が1.945T以上であり、
 前記無方向性電磁鋼板の板厚が0.10~0.30mmである、
 モータコア。
 4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
 (5)前記母材の表面に絶縁被膜を有する、
 上記(4)に記載のモータコア。
 (6)上記(4)または(5)に記載のモータコアを製造する方法であって、
 質量%で、
 C:0.0050%以下、
 Si:3.70%超4.60%以下、
 Mn:0.20%超0.50%以下、
 Al:0.23~0.75%、
 P:0.030%以下、
 S:0.0018%以下、
 N:0.0040%以下、
 Ti:0.0050%未満、
 Nb:0.0050%未満、
 Zr:0.0050%未満、
 V:0.0050%未満、
 Cu:0.200%未満、
 Ni:0.500%未満、
 Sn:0.005~0.040%、
 Sb:0~0.040%、
 残部:Feおよび不純物であり、
 下記(i)式を満足する化学組成を有する鋼塊に対して、
 熱間圧延工程、酸洗工程、均熱温度が650~780℃で均熱時間が8~36時間のバッチ式熱延板焼鈍工程、板厚0.10~0.30mmに圧下する冷間圧延工程、均熱温度が700~830℃で均熱時間が1秒~10分の仕上焼鈍工程、打ち抜き工程、積層工程、および、均熱温度が750~900℃で均熱時間が10~180分の歪取焼鈍工程を順に施す、
 モータコアの製造方法。
 4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
 本発明によれば、高い強度および優れた磁気特性を有する無方向性電磁鋼板を得ることができる。
 本発明者らが上記の課題を解決するために、鋭意検討を行った結果、以下の知見を得るに至った。
 冷間圧延時の靱性を確保しながら高強度・低鉄損かつ飽和磁束密度を高くするためには、主要な合金元素であるSi、MnおよびAlの含有量の最適化が必要である。
 具体的には、固溶強化能が最も高く、電気抵抗の増加への寄与も最も高いSiを3.70%超4.60%以下含有させる。加えて、良好な結晶粒成長性を得るために、Alを0.23%以上含有させる。一方、飽和磁束密度の劣化を抑制するために、Al含有量は0.75%以下とする。さらに、固溶強化能は3元素の中で最も低いが、靱性劣化が少なく電気抵抗の増加に寄与するMnを0.20%超含有させる。
 ここで、本発明者らが検討を重ねた結果、鋼板表層部が窒化すると鉄損が劣化することが分かった。そして、メカニズムは定かではないが、鋼板表層部の窒化にMnが影響を及ぼしていることを見出した。鋼板表層部の窒化による鉄損劣化を抑制するため、Mn含有量は0.50%以下とする。さらに、Snは鋼板表層部の窒化を抑制する効果を有することも分かった。そのため、Snを0.005~0.040%含有させる。
 一般的な連続式の熱延板焼鈍では、スケールの付いた熱延板を焼鈍炉に挿入するため、焼鈍後の酸洗時に除去し難いスケールが生成し、酸洗前にショットブラスト等のメカニカルデスケーリングを行う必要がある。しかし、前述のような高合金鋼では、ショットブラストにより鋼板表面で双晶変形が起こり、この双晶変形を起点にして冷間圧延時に板破断、耳割れ等のトラブルを引き起こし易くなるという問題がある。
 本発明では、熱延板焼鈍前に熱延板を酸洗し、その後、バッチ炉による熱延板焼鈍を行う。熱延板のスケールは酸洗で容易に除去できるので、ショットは不要となり双晶変形は生じない。したがって、高合金鋼でも良好な靱性を確保して、冷間圧延時における板破断、耳割れ等のトラブルの発生を抑制できる。
 本発明は上記の知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
 1.全体構成
 本発明の一実施形態に係る無方向性電磁鋼板は、高い強度を有し、かつ優れた磁気特性を有するため、ステータおよびロータの双方に好適である。
 なお、特に、無方向性電磁鋼板をステータコアとして用いる場合には、鉄損の低減が重視される。その場合は、上記無方向性電磁鋼板を打ち抜き加工し、積層してモータコアを製造したのち、ステータコアのみに歪取焼鈍を施すことが好ましい。歪取焼鈍を施したステータコアは、粒成長が進んで鉄損が低減するため、モータ効率を大幅に向上させることができる。
 本発明の一実施形態に係るモータコアは、上記無方向性電磁鋼板に対して、打ち抜き工程、積層工程、歪取焼鈍工程を順に施すことで得られる。すなわち、本発明の一実施形態に係るモータコアは、複数の無方向性電磁鋼板が積層されてなるものである。以下の説明において、モータコアを構成する無方向性電磁鋼板の母材を、単に「モータコアの母材」という。
 また、本実施形態に係る無方向性電磁鋼板およびモータコアは、以下に説明する母材の表面に絶縁被膜を備えていることが好ましい。
 2.母材の化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.0050%以下
 C(炭素)は、無方向性電磁鋼板の鉄損劣化を引き起こす元素である。C含有量が0.0050%を超えると、無方向性電磁鋼板の鉄損が劣化し、良好な磁気特性を得ることができない。したがって、C含有量は0.0050%以下とする。C含有量は0.0040%以下であるのが好ましく、0.0035%以下であるのがより好ましく、0.0030%以下であるのがさらに好ましい。なお、Cは無方向性電磁鋼板の高強度化に寄与することから、その効果を得たい場合には、C含有量は0.0005%以上であるのが好ましく、0.0010%以上であるのがより好ましい。
 Si:3.70%超4.60%以下
 Si(ケイ素)は、鋼の電気抵抗を上昇させて渦電流損を低減させ、無方向性電磁鋼板の高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、無方向性電磁鋼板の高強度化にも有効な元素である。これらの効果を得るために、Si含有量は3.70%超とする。Si含有量は3.80%以上であるのが好ましく、3.90%以上であるのがより好ましく、4.00%以上であるのがさらに好ましい。一方、Si含有量が過剰であると、加工性が著しく劣化し、冷間圧延を実施することが困難となる。したがって、Si含有量は4.60%以下とする。Si含有量は4.50%以下であるのが好ましく、4.40%以下であるのがより好ましい。
 Mn:0.20%超0.50%以下
 Mn(マンガン)は、鋼の電気抵抗を上昇させて渦電流損を低減し、無方向性電磁鋼板の高周波鉄損を改善するために有効な元素である。また、Mn含有量が低すぎる場合には、電気抵抗の上昇効果が小さいうえに、鋼中に微細な硫化物(MnS)が析出することで、鉄損が劣化する。そのため、Mn含有量は0.20%超とする。Mn含有量は0.25%以上であるのが好ましく、0.30%以上であるのがより好ましい。一方、Mn含有量が過剰であると、鋼板表層部の窒化が過剰となり、鉄損が劣化する。したがって、Mn含有量は0.50%以下とする。Mn含有量は0.45%以下であるのが好ましく、0.40%以下であるのがより好ましい。
 Al:0.23~0.75%
 Al(アルミニウム)は、鋼の電気抵抗を上昇させることで渦電流損を低減し、無方向性電磁鋼板の高周波鉄損を改善する効果を有する元素である。また、Alには、集合組織を改善することで鉄損を改善する効果もある。加えて、Alは、Siほどではないが、固溶強化により無方向性電磁鋼板の高強度化に寄与する元素である。さらに、適量のAl添加は鋼中のNと結合して生じるAlNの微細化を抑制し、仕上焼鈍中や歪取焼鈍中の結晶粒成長性を改善する効果と微細なAlNそのものによる鉄損劣化を抑制する効果を有している。
 これらの効果を得るために、Al含有量は0.23%以上とする。Al含有量は0.25%以上であるのが好ましく、0.27%以上であるのがより好ましい。なお、前述した鋼板表層部の窒化は、Al含有量が高いほど生じやすくなる。その結果、鉄損が劣化する。しかしながら、本発明においては、MnおよびSnの含有量を制御することで、Al含有量が高い場合であっても、鋼板表層部の窒化を抑制することができる。そのため、本発明における効果は、Al含有量が高い場合に顕著に発揮される。すなわち、Al含有量が、例えば、0.45%超または0.47%以上である場合に、本発明の効果がより顕著に発揮される。一方、Al含有量が過剰であると、靱性が劣化して冷間圧延時の破断の危険性が増加する。したがって、Al含有量は0.75%以下とする。Al含有量は0.70%以下であるのが好ましく、0.65%以下であるのがより好ましい。
 本実施形態においては、Si、AlおよびMnの含有量を適切に制御することによって、鋼の電気抵抗を確保する。また、強度の確保の観点からも、Si、AlおよびMnの含有量を適切に制御することが必要である。一方、飽和磁束密度および靱性確保の観点から上限も必要となる。そのため、Si、AlおよびMnの含有量がそれぞれ上記の範囲内であることに加えて、下記(i)式を満足する必要がある。下記(i)式の中辺の値は、4.3以上であるのが好ましく、4.4以上であるのがより好ましく、4.8以下であることが好ましく、4.7以下であることがより好ましい。
 4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
 但し、上記式中の元素記号は、各元素の含有量(質量%)である。
 P:0.030%以下
 P(リン)は、不純物として鋼中に含まれ、その含有量が過剰であると、無方向性電磁鋼板の靱性が著しく低下する。したがって、P含有量は0.030%以下とする。P含有量は0.025%以下であるのが好ましく、0.020%以下であるのがより好ましい。なお、P含有量の極度の低減は製造コストの増加を引き起こす場合があるため、P含有量は0.003%以上であるのが好ましく、0.005%以上であるのがより好ましい。
 S:0.0018%以下
 S(硫黄)は、MnSの微細析出物を形成することで鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。したがって、S含有量は0.0018%以下とする。S含有量は0.0016%以下であるのが好ましく、0.0014%以下であるのがより好ましい。なお、S含有量の極度の低減は製造コストの増加を引き起こす場合があるため、S含有量は0.0001%以上であるのが好ましく、0.0003%以上であるのがより好ましく、0.0005%以上であるのがさらに好ましい。
 N:0.0040%以下
 N(窒素)は、鋼中に不可避的に混入する元素であり、窒化物を形成して鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。したがって、N含有量は0.0040%以下とする。N含有量は0.0030%以下であるのが好ましく、0.0020%以下であるのがより好ましい。なお、N含有量の極度の低減は製造コストの増加を引き起こす場合があるため、N含有量は0.0005%以上であるのが好ましい。
 Ti:0.0050%未満
 Ti(チタン)は、鋼中に不可避的に混入する元素であり、炭素または窒素と結合して析出物(炭化物、窒化物)を形成し得る。炭化物または窒化物が形成された場合には、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。さらには、仕上焼鈍中および歪取焼鈍中の結晶粒の成長を阻害して、無方向性電磁鋼板の磁気特性を劣化させる。したがって、Ti含有量は0.0050%未満とする。Ti含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。なお、Ti含有量の極度の低減は製造コストの増加を引き起こす場合があるため、Ti含有量は0.0005%以上であるのが好ましい。
 Nb:0.0050%未満
 Nb(ニオブ)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、Nb含有量は0.0050%未満とする。Nb含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。なお、Nb含有量の極度の低減は製造コストの増加を引き起こす場合があるため、Nb含有量は0.0001%以上であるのが好ましい。
 Zr:0.0050%未満
 Zr(ジルコニウム)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、Zr含有量は0.0050%未満とする。Zr含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。なお、Zr含有量の極度の低減は製造コストの増加を引き起こす場合があるため、Zr含有量は0.0001%以上であるのが好ましい。
 V:0.0050%未満
 V(バナジウム)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、V含有量は0.0050%未満とする。V含有量は0.0040%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。なお、V含有量の極度の低減は製造コストの増加を引き起こす場合があるため、V含有量は0.0001%以上であるのが好ましい。
 Cu:0.200%未満
 Cu(銅)は、鋼中に不可避的に混入する元素である。意図的にCuを含有させると、無方向性電磁鋼板の製造コストが増加する。したがって、本実施形態においては、Cuは積極的に含有させる必要はなく、不純物レベルでよい。Cu含有量は、製造工程において不可避的に混入しうる最大値である0.200%未満とする。Cu含有量は0.150%以下であるのが好ましく、0.100%以下であるのがより好ましい。なお、Cu含有量の下限値は、特に限定されるものではないが、Cu含有量の極度の低減は製造コストの増加を引き起こす場合がある。そのため、Cu含有量は0.001%以上であるのが好ましく、0.003%以上であるのがより好ましく、0.005%以上であるのがさらに好ましい。
 Ni:0.500%未満
 Ni(ニッケル)は、鋼中に不可避的に混入する元素である。しかし、Niは、無方向性電磁鋼板の強度を向上させる元素でもあるため、意図的に含有させてもよい。ただし、Niは高価であるため、Ni含有量は0.500%未満とする。Ni含有量は0.400%以下であるのが好ましく、0.300%以下であるのがより好ましい。なお、Ni含有量の下限値は、特に限定されるものではないが、Ni含有量の極度の低減は製造コストの増加を引き起こす場合がある。そのため、Ni含有量は0.001%以上であるのが好ましく、0.003%以上であるのがより好ましく、0.005%以上であるのがさらに好ましい。また、意図的に含有させる場合、Ni含有量は0.200%以上とするのが好ましい。
 Sn:0.005~0.040%
 Sn(スズ)は、母材表面に偏析し焼鈍中の酸化および窒化を抑制することで、無方向性電磁鋼板において低い鉄損を確保するのに有用な元素である。また、Snは、結晶粒界に偏析して集合組織を改善し、無方向性電磁鋼板の磁束密度を高める効果も有する。これらの効果を得るために、Sn含有量は0.005%以上とする。Sn含有量は0.010%以上であるのが好ましく、0.015%以上であるのがより好ましい。一方、Sn含有量が過剰であると、鋼の靱性が低下して冷間圧延が困難となる。したがって、Sn含有量は0.040%以下とする。Sn含有量は0.040%未満であるのが好ましく、0.035%以下であるのがより好ましく、0.030%以下であるのがより好ましい。
 Sb:0~0.040%
 Sb(アンチモン)は、Sn同様、母材表面に偏析し焼鈍中の酸化および窒化を抑制することで、無方向性電磁鋼板において低い鉄損を確保するのに有用な元素である。また、Sbは、結晶粒界に偏析して集合組織を改善し、無方向性電磁鋼板の磁束密度を高める効果も有する。そのため、必要に応じてSbを含有させてもよい。しかしながら、Sb含有量が過剰であると、鋼の靱性が低下して冷間圧延が困難となる場合がある。したがって、Sb含有量は0.040%以下とする。Sb含有量は0.030%以下であるのが好ましい。なお、上記の効果を確実に得たい場合には、Sb含有量を0.005%以上とするのが好ましく、0.010%以上とするのがより好ましい。
 本発明の無方向性電磁鋼板の母材の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 なお、不純物元素として、CrおよびMoの含有量に関しては、特に規定されるものではない。本実施形態に係る無方向性電磁鋼板およびモータコアでは、これらの元素をそれぞれ0.5%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板およびモータコアの特性に特に影響はない。また、CaおよびMgをそれぞれ0.002%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板およびモータコアの特性に特に影響はない。希土類元素(REM)を0.004%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板およびモータコアの特性に特に影響はない。なお、本実施形態においてREMとは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量とは、これらの元素の合計の含有量を指す。
 Oも不純物元素であるが、0.035%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板およびモータコアの特性に影響はない。Oは、焼鈍工程において鋼中に混入することもあるため、スラブ段階(すなわち、レードル値)の含有量においては、0.010%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板およびモータコアの特性に特に影響はない。
 また、上記の元素の他に、不純物元素として、Pb、Bi、As、B、Seなどの元素が含まれうるが、それぞれの含有量が0.0050%以下の範囲であれば、本実施形態に係る無方向性電磁鋼板およびモータコアの特性を損なうものではない。
 本実施形態に係る無方向性電磁鋼板およびモータコアの母材の化学組成は、公知の各種測定法を利用することが可能である。例えば、ICP発光分析法、重量法またはスパーク放電発光分析法を用いて測定すればよい。また、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス燃焼-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 さらに、本実施形態の無方向性電磁鋼板においては、鋼板表層部における窒化を抑制する観点から、母材の表面から深さ方向に20μmの位置までのN含有量[N]sを0.0060%以下とする。[N]sが0.0060%以下であれば、鉄損劣化を抑制することが可能となる。[N]sは0.0055%以下であるのが好ましく、0.0050%以下であるのがより好ましい。
 一方、本実施形態のモータコアにおいては、上記無方向性電磁鋼板に対してさらに歪取焼鈍を施すため、窒化がより進行する。しかし、鉄損劣化を抑制するため、本実施形態のモータコアにおいては、[N]sを0.0070%以下とする。上記モータコアの[N]sは0.0065%以下であるのが好ましく、0.0060%以下であるのがより好ましい。
 なお、無方向性電磁鋼板およびモータコアの母材の表面から深さ方向に20μmの位置までのN含有量[N]sは、以下の手順により測定する。まず、加熱したアルカリ溶液により絶縁被膜を除去した無方向性電磁鋼板またはモータコアのN含有量[N]を測定する。次に、無方向性電磁鋼板またはモータコアの両表面を20μmずつ、化学研磨により除去し、除去後の試料のN含有量[N]を測定する。そして、測定した[N]、[N]と、無方向性電磁鋼板またはモータコアの板厚t(μm)とから、次式によって[N]sを求める。
 [N]s=(t×[N]-(t-40)×[N])/40
 3.結晶粒径
 本実施形態の無方向性電磁鋼板においては、母材の平均結晶粒径を10~30μmとする。無方向性電磁鋼板の母材の平均結晶粒径を10μm以上とすることで、ヒステリシス損の悪化を最小限に抑え、磁気特性を改善することが可能になる。一方、平均結晶粒径を30μm以下とすることで、鋼の強度の向上効果が顕著に得られる。磁気特性を重視する場合は、平均結晶粒径は15μm以上であるのが好ましく、20μm以上であるのがより好ましい。一方、強度を重視する場合は、平均結晶粒径は25μm以下であるのが好ましく、20μm以下であるのがより好ましい。
 また、本実施形態のモータコアにおいては、母材の平均結晶粒径を50~120μmとする。モータコアの母材の平均結晶粒径を50μm以上とすることで、ヒステリシス損の悪化を抑え、磁気特性を改善することが可能になる。一方、平均結晶粒径を120μm以下とすることで、渦電流損上昇による鉄損劣化を抑制できる。平均結晶粒径は60μm以上であるのが好ましく、70μm以上であるのがより好ましい。また、平均結晶粒径は110μm以下であるのが好ましく、100μm以下であるのがより好ましい。
 なお、本発明において、無方向性電磁鋼板およびモータコアの母材の平均結晶粒径は、JIS G 0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って求めるものとする。
 4.磁気特性
 本実施形態に係る無方向性電磁鋼板およびモータコアにおいて、磁気特性に優れるとは、鉄損W10/400が低く、飽和磁束密度Bsが高いことを意味する。
 ここで、鉄損W10/400は、最大磁束密度が1.0Tで周波数400Hzという条件下で発生する鉄損を意味し、JIS C 2550-1:2011に規定されたエプスタイン法に則して、測定することとする。
 本実施形態の無方向性電磁鋼板においては、鉄損W10/400が20.0W/kg以下である。一方、本実施形態のモータコアにおいては、歪取焼鈍によって鉄損がより低減され、鉄損W10/400が低いとは、板厚0.26mm以上では13.5W/kg以下、板厚0.21~0.25mmでは11.5W/kg以下、板厚0.20mm以下では10.0W/kg以下である。
 なお、モータコアからエプスタイン試験片のような大きな試験片を採取することはできない。モータコアの鉄損を評価する場合は、積層した鉄心を鋼板に分離し、分離した鋼板の大きさに合わせて採取可能な寸法の単板磁気測定用の小型試験片を放電加工で作製する。そして、上記小型試験片に対応した小型の単板試験器を用いて鉄損値の測定を行う。この際、測定原理は、JIS C 2556:2015に規定された単板磁気特性測定法(Single Sheet Tester:SST)に従うこととする。
 また、予め数種の無方向性電磁鋼板からそれぞれ、上記したエプスタイン試験片および小型試験片を採取し、エプスタイン法および単板磁気特性測定法によって、鉄損値の測定を行い、両測定値の関係から換算式を導出しておく。そして、単板試験器によって測定された鉄損値を、上記換算式を用いて、エプスタイン法で測定された鉄損値と同等となるように補正する。
 さらに、飽和磁束密度Bsは、振動試料型磁力計(Vibrating Sample Magnetometer:VSM)により測定する。本実施形態に係る無方向性電磁鋼板においては、飽和磁束密度Bsが1.945T以上である。本実施形態のモータコアにおいても、飽和磁束密度Bsが1.945T以上である。
 5.機械的特性
 本実施形態に係る無方向性電磁鋼板は、高い強度を有し、具体的には、引張強さが680MPa以上である。引張強さは690MPa以上であるのが好ましく、700MPa以上であるのがより好ましい。ここで、引張強さは、JIS Z 2241:2011に準拠した引張試験を行うことで、測定することとする。
 6.板厚
 本実施形態に係る無方向性電磁鋼板および本実施形態に係るモータコアを構成する無方向性電磁鋼板においては、冷間圧延と仕上焼鈍の製造コストの観点から、板厚を0.10mm以上とする。一方、鉄損低減の観点から、板厚を0.30mm以下とする。そのため、本実施形態に係る無方向性電磁鋼板および本実施形態に係るモータコアを構成する無方向性電磁鋼板の板厚は、0.10~0.30mmである。
 なお、鋼板表層部の窒化による影響は、板厚が薄いほど顕著となる。すなわち、鋼板表層部の窒化を抑制できていない場合、板厚が薄いほど、顕著に鉄損が劣化する。しかしながら、本発明においては、鋼板表層部の窒化を抑制するため、板厚が薄い場合であっても、鉄損の劣化を抑制することができる。そのため、板厚が、例えば、0.25mm未満または0.20mm以下である場合に、本発明の効果がより顕著に発揮される。
 7.絶縁被膜
 本実施形態に係る無方向性電磁鋼板およびモータコアにおいては、母材の表面に絶縁被膜を有することが好ましい。無方向性電磁鋼板は、コアブランクを打ち抜いた後に積層されてから使用されるため、母材の表面に絶縁被膜を設けることで、板間の渦電流を低減することができ、コアとして渦電流損を低減することが可能となる。
 絶縁被膜の種類については特に限定されず、無方向性電磁鋼板の絶縁被膜として用いられる公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、さらに有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩、または、コロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくともいずれかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩、ZrもしくはTiのカップリング剤、または、これらの炭酸塩もしくはアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 絶縁被膜の付着量は、特に限定するものではないが、例えば、片面あたり200~1500mg/m程度とすることが好ましく、片面あたり300~1200mg/mとすることがより好ましい。上記範囲内の付着量となるように絶縁被膜を形成することで、優れた均一性を保持することが可能となる。なお、絶縁被膜の付着量を、事後的に測定する場合には、公知の各種測定法を利用することが可能であり、例えば、水酸化ナトリウム水溶液浸漬前後の質量差を測定する方法、または検量線法を用いた蛍光X線法等を適宜利用すればよい。
 8.製造方法
 本実施形態に係る無方向性電磁鋼板は、上述した化学組成を有する鋼塊に対して、以下に示す条件で熱間圧延工程、酸洗工程、バッチ式熱延板焼鈍工程、冷間圧延工程および仕上焼鈍工程を順に実施することによって製造することが可能である。また、絶縁被膜を母材の表面に形成する場合には、上記仕上焼鈍工程の後に絶縁被膜形成工程が行われる。以下、各工程について、詳細に説明する。
 <熱間圧延工程>
 上記の化学組成を有する鋼塊(スラブ)を加熱し、加熱された鋼塊に対して熱間圧延を行い、熱延板を得る。ここで、熱間圧延に供する際の鋼塊の加熱温度については、特に規定するものではないが、例えば、1050~1250℃とすることが好ましい。また、熱間圧延後の熱延板の板厚についても、特に規定するものではないが、母材の最終板厚を考慮して、例えば、1.5~3.0mm程度とすることが好ましい。
 <酸洗工程>
 上記熱延板には、酸洗が実施され、母材の表面に生成したスケール層が除去される。ここで、酸洗に用いられる酸の濃度、酸洗に用いる促進剤の濃度、酸洗液の温度等の酸洗条件は、特に限定されるものではなく、公知の酸洗条件とすることができる。
 <バッチ式熱延板焼鈍工程>
 その後、鋼板の鉄損を低減させることを目的として、熱延板焼鈍を実施する。熱延板焼鈍はバッチ焼鈍炉を用いて行われ、均熱温度を650~780℃とし、均熱時間を8~36時間とする。均熱時間を8時間以上とすることによって、金属組織が十分に均一化され、析出物の粗大化も進み、鉄損の改善効果を十分に得ることが可能となる。一方、均熱温度が780℃を超えるか、または均熱時間が36時間を超えると、結晶粒径が過剰に粗大化して靭性が低下し、冷間圧延時に破断する。
 なお、バッチ焼鈍炉内は非酸化性雰囲気であり、Hの割合が1~100体積%であるHおよびNの混合雰囲気(すなわち、H+N=100体積%)とすることができる。Nを含む雰囲気であっても、MnおよびSnの含有量が適切であれば、母材表層部の窒化を抑制することが可能である。しかし、窒化をより確実に抑制する観点からは、H:100体積%の雰囲気とすることが好ましい。
 <冷間圧延工程>
 上記熱延板焼鈍後の鋼板には、冷間圧延が実施される。冷間圧延では、母材の最終板厚が0.10~0.30mmとなるような圧下率で圧延される。
 <仕上焼鈍工程>
 上記冷間圧延の後には、仕上焼鈍が実施される。本実施形態に係る無方向性電磁鋼板の製造方法では、仕上焼鈍には、連続焼鈍炉を使用することが好ましい。仕上焼鈍は、均熱温度が700~830℃で均熱時間が1秒~10分の条件で行われる。雰囲気をHの割合が1~100体積%であるHおよびNの混合雰囲気(すなわち、H+N=100体積%)とし、雰囲気の露点を-50~+10℃とすることが好ましい。
 均熱温度が700℃未満の場合には、結晶粒径が細かくなり、未再結晶組織も増加するため鉄損が著しく劣化して好ましくなく、均熱温度が830℃を超える場合には、強度不足となるため、好ましくない。また、均熱時間が1秒未満であると、十分に転位密度を低減することができない。一方、均熱時間が10分を超えると、製造コストの増加を引き起こす。
 <絶縁被膜形成工程>
 上記仕上焼鈍の後には、必要に応じて、絶縁被膜形成工程が実施される。ここで、絶縁被膜の形成方法は、特に限定されるものではなく、下記に示すような公知の絶縁被膜を形成する処理液を用いて、公知の方法により処理液の塗布および乾燥を行えばよい。公知の絶縁被膜として、例えば、無機物を主体とし、さらに有機物を含んだ複合絶縁被膜を挙げることができる。
 複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩等の金属塩、または、コロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくともいずれか一方を主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩、ZrもしくはTiのカップリング剤を出発物質として用いた絶縁被膜、または、リン酸金属塩、ZrもしくはTiのカップリング剤の炭酸塩もしくはアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 絶縁被膜が形成される母材の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理、または塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよい。これら前処理を施さずに仕上焼鈍後のまま、母材の表面に処理液を塗布してもよい。
 さらに、本実施形態に係るモータコアに関しても、製造方法は特に制限されるものではないが、上述した工程を経て得られた無方向性電磁鋼板に対して、例えば、以下に示す条件で打ち抜き工程、積層工程および歪取焼鈍工程を順に実施することによって製造することが可能である。なお、上述のように、無方向性電磁鋼板が、低鉄損が重視されるステータコアとして用いられる場合に、後述の歪取焼鈍を実施することが好ましい。したがって、本実施形態に係るモータコアは、ステータコアであることが好ましい。以下、各工程について、詳細に説明する。
 <打ち抜き工程>
 上記のようにして得られた無方向性電磁鋼板には、打ち抜き加工が施され、ロータコアまたはステータコアの素材としての形状となる。加工条件については特に制限されず、一般的な方法を採用することができる。
 <積層工程>
 打ち抜き加工が施された無方向性電磁鋼板は、複数枚が積層され、モータコアとなる。
 <歪取焼鈍工程>
 積層されたモータコアに対して、歪取焼鈍が施される。歪取焼鈍を施したモータコアは、再結晶と粒成長とが進んで鉄損が低減するため、モータ効率を大幅に向上させることができる。
 本実施形態に係るモータコアの製造方法では、歪取焼鈍は、均熱温度が750~900℃で均熱時間が10~180分の条件で行われる。雰囲気中のN割合が70体積%未満である場合には、歪取焼鈍のコストアップを招くので、好ましくない。雰囲気中のNの割合は、より好ましくは80体積%以上であり、さらに好ましくは90~100体積%であり、特に好ましくは97~100体積%である。N以外の雰囲気ガスは、特に規定するものではないが、一般的に、水素、二酸化炭素、一酸化炭素、水蒸気、メタンなどからなる還元性の混合ガスを用いることができる。これらのガスを得るために、プロパンガスまたは天然ガスを燃焼させて得る方法が一般的に採用される。雰囲気の露点は-50~+10℃とすることが好ましい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有するスラブを1150℃に加熱した後、仕上温度850℃、仕上板厚2.0mmにて熱間圧延を施し、600℃で巻き取って熱延鋼板とした。得られた熱延鋼板に対して、酸洗によりスケールを除去した後、バッチ焼鈍炉により表2に示す均熱温度で均熱時間が10時間の熱延板焼鈍を施した。こうして得られた鋼板を、冷間圧延により板厚0.20mmの冷延鋼板とした。さらに、H:15%、N:85%、露点:-30℃の混合雰囲気にて、表2に示す均熱温度で20秒の均熱時間の仕上焼鈍を施した。仕上げ焼鈍後の鋼板には、リン酸アルミニウムおよび粒径0.2μmのアクリル-スチレン共重合体樹脂エマルジョンからなる絶縁被膜を塗布し、大気中、350℃で焼き付けた。
 さらに、得られた無方向性電磁鋼板に対して、露点-40℃の窒素雰囲気(雰囲気中の窒素の割合が99.9体積%以上)で800℃×120分の均熱条件で歪取焼鈍を施した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた仕上焼鈍後および歪取焼鈍後の各試験材について、JIS G 0551:2013「鋼-結晶粒度の顕微鏡試験方法」に従って、母材の圧延方向に平行な断面において平均結晶粒径を計測した。また、仕上焼鈍後の各試験材の圧延方向および幅方向からエプスタイン試験片を採取し、JIS C 2550-1:2011に則したエプスタイン試験により、鉄損W10/400を評価した。なお、歪取焼鈍後の鉄損W10/400の評価は、仕上焼鈍後の各試験材から採取したエプスタイン試験片に対して、歪取焼鈍を施した後に測定した。飽和磁束密度は、振動試料型磁力計(Vibrating Sample Magnetometer:VSM)により測定した。
 続いて、仕上焼鈍後の各試験材から、JIS Z 2241:2011に従い、長手方向が鋼板の圧延方向と一致するようにJIS5号引張試験片を採取した。そして、上記試験片を用いてJIS Z 2241:2011に従い引張試験を行い、引張強さを測定した。
 さらに、仕上焼鈍後および歪取焼鈍後の各試験材の母材の表面から深さ方向に20μmの位置までのN含有量[N]sを、以下の手順により測定した。まず、加熱したアルカリ溶液により絶縁被膜を除去した試験材のN含有量[N]を測定した。次に、試験材の両表面を20μmずつ、化学研磨により除去し、除去後の試料のN含有量[N]を測定した。そして、測定した[N]、[N]と、試験材の板厚t(μm)とから、次式によって[N]sを求めた。
 [N]s=(t×[N]-(t-40)×[N])/40
 上記の結果を表2に併せて示す。
 本発明の規定を満足する試験No.2、3、6、7、9、11、15~17、20、21、26、27、29および30では、仕上焼鈍後の鉄損が低く、飽和磁束密度が高く、680MPa以上の高い引張強さを有しており、歪取焼鈍後の鉄損も低いことが分かった。
 それらに対して、比較例である試験No.1、4、5、8、10、12~14、18、19、22~25、28、31および32では、鉄損W10/400が劣るか、飽和磁束密度が劣るか、靱性が著しく劣化し製造が困難となった。
 具体的には、試験No.1では、Mn含有量が規定範囲より低いため、微細なMnSの析出量が多くなり鉄損が劣る結果となった。試験No.4では、S含有量が規定範囲より高いため、MnSの析出量が多くなり鉄損が劣る結果となった。試験No.5では、Sn含有量が規定範囲より低いため、[N]sが高くなり鉄損が劣る結果となった。試験No.8では、Sn含有量が規定範囲より高いため、靱性が劣化して冷間圧延時に破断し、引張強さおよび磁気特性の測定を実施できなかった。
 試験No.10では、Mn含有量が規定範囲より高いため、[N]sが高くなり鉄損が劣る結果となった。試験No.12では、Si+Al+0.5×Mnが規定範囲より高いため、飽和磁束密度が劣る結果となった。試験No.13では、Si含有量およびSi+Al+0.5×Mnが規定範囲より高いため、靱性が劣化して冷間圧延時に破断し、引張強さおよび磁気特性の測定を実施できなかった。
 試験No.14では、熱延板焼鈍温度が規定範囲より高いため、靱性が劣化して冷間圧延時に破断し、引張強さおよび磁気特性の測定を実施できなかった。試験No.18では、熱延板焼鈍温度が規定範囲より低いため、仕上焼鈍後および歪取焼鈍後の平均結晶粒径が規定範囲より小さくなり、仕上焼鈍後および歪取焼鈍後の鉄損が劣る結果となった。試験No.19では、仕上げ焼鈍温度が規定範囲より低くなり、仕上焼鈍後の平均結晶粒径が規定範囲より小さくなり、仕上焼鈍後の鉄損が劣る結果となった。試験No.22では、仕上焼鈍温度が規定範囲より高くなり、引張強さが劣る結果となった。
 試験No.23では、Si含有量が規定範囲より低いため、引張強さが劣る結果となった。また、試験No.24では、Si+Al+0.5×Mnが規定範囲より低いため、仕上焼鈍後および歪取焼鈍後の鉄損が劣る結果となった。さらに、試験No.25では、Al含有量が規定範囲より低いため、AlNが微細析出して仕上焼鈍後の鉄損が劣り、歪取焼鈍後の平均結晶粒径が小さく歪取焼鈍後の鉄損も劣る結果となった。そして、試験No.28では、Al含有量が規定範囲より高いため、靭性が劣化して冷間圧延時に破断し、引張強さおよび磁気特性の測定を実施できなかった。
 試験No.31では、熱延板焼鈍の均熱温度が規定範囲より高いため、結晶粒径の粗大化により靭性が劣化して冷間圧延時に破断し、引張強さおよび磁気特性の測定ができなかった。また、試験No.32では、Al含有量が規定範囲より低いため、集合組織が劣化するとともに微細なAlNが析出し、仕上焼鈍後の鉄損が劣り、歪取焼鈍後の鉄損も劣る結果となった。
 以上のように、本発明によれば、高い強度および優れた磁気特性を有する無方向性電磁鋼板を低コストで得ることができる。

Claims (6)

  1.  母材の化学組成が、質量%で、
     C:0.0050%以下、
     Si:3.70%超4.60%以下、
     Mn:0.20%超0.50%以下、
     Al:0.23~0.75%、
     P:0.030%以下、
     S:0.0018%以下、
     N:0.0040%以下、
     Ti:0.0050%未満、
     Nb:0.0050%未満、
     Zr:0.0050%未満、
     V:0.0050%未満、
     Cu:0.200%未満、
     Ni:0.500%未満、
     Sn:0.005~0.040%、
     Sb:0~0.040%、
     残部:Feおよび不純物であり、
     下記(i)式を満足し、
     前記母材の表面から深さ方向に20μmの位置までのN含有量[N]sが0.0060%以下であり、
     前記母材の平均結晶粒径が、10~30μmであり、
     鉄損W10/400が20.0W/kg以下であり、
     飽和磁束密度が1.945T以上であり、
     引張強さが680MPa以上であり、
     板厚が0.10~0.30mmである、
     無方向性電磁鋼板。
     4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
     但し、上記式中の元素記号は、各元素の含有量(質量%)である。
  2.  前記母材の表面に絶縁被膜を有する、
     請求項1に記載の無方向性電磁鋼板。
  3.  請求項1または請求項2に記載の無方向性電磁鋼板を製造する方法であって、
     質量%で、
     C:0.0050%以下、
     Si:3.70%超4.60%以下、
     Mn:0.20%超0.50%以下、
     Al:0.23~0.75%、
     P:0.030%以下、
     S:0.0018%以下、
     N:0.0040%以下、
     Ti:0.0050%未満、
     Nb:0.0050%未満、
     Zr:0.0050%未満、
     V:0.0050%未満、
     Cu:0.200%未満、
     Ni:0.500%未満、
     Sn:0.005~0.040%、
     Sb:0~0.040%、
     残部:Feおよび不純物であり、
     下記(i)式を満足する化学組成を有する鋼塊に対して、
     熱間圧延工程、酸洗工程、均熱温度が650~780℃で均熱時間が8~36時間のバッチ式熱延板焼鈍工程、板厚0.10~0.30mmに圧下する冷間圧延工程、および、均熱温度が700~830℃で均熱時間が1秒~10分の仕上焼鈍工程を順に施す、
     無方向性電磁鋼板の製造方法。
     4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
     但し、上記式中の元素記号は、各元素の含有量(質量%)である。
  4.  複数の無方向性電磁鋼板が積層されたモータコアであって、
     前記無方向性電磁鋼板の母材の化学組成が、質量%で、
     C:0.0050%以下、
     Si:3.70%超4.60%以下、
     Mn:0.20%超0.50%以下、
     Al:0.23~0.75%、
     P:0.030%以下、
     S:0.0018%以下、
     N:0.0040%以下、
     Ti:0.0050%未満、
     Nb:0.0050%未満、
     Zr:0.0050%未満、
     V:0.0050%未満、
     Cu:0.200%未満、
     Ni:0.500%未満、
     Sn:0.005~0.040%、
     Sb:0~0.040%、
     残部:Feおよび不純物であり、
     下記(i)式を満足し、
     前記母材の表面から深さ方向に20μmの位置までのN含有量[N]sが0.0070%以下であり、
     前記母材の平均結晶粒径が、50~120μmであり、
     飽和磁束密度が1.945T以上であり、
     前記無方向性電磁鋼板の板厚が0.10~0.30mmである、
     モータコア。
     4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
     但し、上記式中の元素記号は、各元素の含有量(質量%)である。
  5.  前記母材の表面に絶縁被膜を有する、
     請求項4に記載のモータコア。
  6.  請求項4または請求項5に記載のモータコアを製造する方法であって、
     質量%で、
     C:0.0050%以下、
     Si:3.70%超4.60%以下、
     Mn:0.20%超0.50%以下、
     Al:0.23~0.75%、
     P:0.030%以下、
     S:0.0018%以下、
     N:0.0040%以下、
     Ti:0.0050%未満、
     Nb:0.0050%未満、
     Zr:0.0050%未満、
     V:0.0050%未満、
     Cu:0.200%未満、
     Ni:0.500%未満、
     Sn:0.005~0.040%、
     Sb:0~0.040%、
     残部:Feおよび不純物であり、
     下記(i)式を満足する化学組成を有する鋼塊に対して、
     熱間圧延工程、酸洗工程、均熱温度が650~780℃で均熱時間が8~36時間のバッチ式熱延板焼鈍工程、板厚0.10~0.30mmに圧下する冷間圧延工程、均熱温度が700~830℃で均熱時間が1秒~10分の仕上焼鈍工程、打ち抜き工程、積層工程、および、均熱温度が750~900℃で均熱時間が10~180分の歪取焼鈍工程を順に施す、
     モータコアの製造方法。
     4.2≦Si+Al+0.5×Mn≦4.9 ・・・(i)
     但し、上記式中の元素記号は、各元素の含有量(質量%)である。
PCT/JP2023/009982 2022-03-15 2023-03-15 無方向性電磁鋼板およびモータコアならびにそれらの製造方法 WO2023176865A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022039816 2022-03-15
JP2022-039816 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176865A1 true WO2023176865A1 (ja) 2023-09-21

Family

ID=88023890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009982 WO2023176865A1 (ja) 2022-03-15 2023-03-15 無方向性電磁鋼板およびモータコアならびにそれらの製造方法

Country Status (2)

Country Link
TW (1) TW202342780A (ja)
WO (1) WO2023176865A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256751A (ja) * 1999-03-03 2000-09-19 Nkk Corp 鉄損の低い無方向性電磁鋼板の製造方法
JP2011246810A (ja) * 2010-04-30 2011-12-08 Jfe Steel Corp 無方向性電磁鋼板およびそれを用いたモータコア
WO2018025941A1 (ja) * 2016-08-05 2018-02-08 新日鐵住金株式会社 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
WO2020166718A1 (ja) * 2019-02-14 2020-08-20 日本製鉄株式会社 無方向性電磁鋼板
WO2020262063A1 (ja) * 2019-06-28 2020-12-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
KR20210079545A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR20210080726A (ko) * 2019-12-20 2021-07-01 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256751A (ja) * 1999-03-03 2000-09-19 Nkk Corp 鉄損の低い無方向性電磁鋼板の製造方法
JP2011246810A (ja) * 2010-04-30 2011-12-08 Jfe Steel Corp 無方向性電磁鋼板およびそれを用いたモータコア
WO2018025941A1 (ja) * 2016-08-05 2018-02-08 新日鐵住金株式会社 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
WO2020166718A1 (ja) * 2019-02-14 2020-08-20 日本製鉄株式会社 無方向性電磁鋼板
WO2020262063A1 (ja) * 2019-06-28 2020-12-30 Jfeスチール株式会社 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
KR20210079545A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR20210080726A (ko) * 2019-12-20 2021-07-01 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Also Published As

Publication number Publication date
TW202342780A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
US11279985B2 (en) Non-oriented electrical steel sheet
JP6690714B2 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
WO2020262063A1 (ja) 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア
WO2018131710A1 (ja) 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
JP6794704B2 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法
TWI718973B (zh) 無方向性電磁鋼板及其製造方法及電動機芯
JP7143900B2 (ja) 無方向性電磁鋼板
JP7143901B2 (ja) 無方向性電磁鋼板
WO2023176865A1 (ja) 無方向性電磁鋼板およびモータコアならびにそれらの製造方法
WO2023176866A1 (ja) 無方向性電磁鋼板およびその製造方法
JP7001210B1 (ja) 無方向性電磁鋼板およびその製造方法
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
JP4258163B2 (ja) 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板
JP7231116B2 (ja) 無方向性電磁鋼板およびその製造方法
TWI796955B (zh) 無方向性電磁鋼板及其製造方法
JP7469694B2 (ja) 無方向性電磁鋼板およびその製造方法
TW202138581A (zh) 無方向性電磁鋼板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770818

Country of ref document: EP

Kind code of ref document: A1