WO2021182775A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2021182775A1
WO2021182775A1 PCT/KR2021/002270 KR2021002270W WO2021182775A1 WO 2021182775 A1 WO2021182775 A1 WO 2021182775A1 KR 2021002270 W KR2021002270 W KR 2021002270W WO 2021182775 A1 WO2021182775 A1 WO 2021182775A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
integer
group
light emitting
formula
Prior art date
Application number
PCT/KR2021/002270
Other languages
English (en)
French (fr)
Inventor
서상덕
정민우
이정하
한수진
박슬찬
황성현
이동훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/624,921 priority Critical patent/US11588116B2/en
Priority to CN202180004452.5A priority patent/CN114097104B/zh
Priority to EP21766948.0A priority patent/EP3982434B1/en
Priority to JP2021576421A priority patent/JP7106812B1/ja
Publication of WO2021182775A1 publication Critical patent/WO2021182775A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic light emitting device.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, and for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage when a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons When it falls back to the ground state, it lights up.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting device.
  • the present invention provides the following organic light emitting device:
  • the light emitting layer includes a first compound represented by the following formula (1) and a second compound represented by the following formula (2),
  • A is represented by the following formula 1a or 1b,
  • a1, a2 and c2 are each independently an integer of 0 to 5
  • b1 and c1 are each independently an integer of 0 to 4,
  • b2 is an integer from 0 to 3;
  • Ar 1 and Ar 2 are each independently a C 6-60 aromatic ring or a C 2-60 heteroaromatic ring containing one or more heteroatoms among N, O and S;
  • Ar 1 and Ar 2 are unsubstituted or C 1-60 alkyl; C 6-60 aryl; and C 2-60 heteroaryl containing one or more heteroatoms among N, O and S, substituted with one or more substituents selected from the group consisting of;
  • d, e and f are each independently an integer from 0 to 10,
  • a1+b1+c1+d+e+f is greater than 1; or a2+b2+c2+d+e+f is greater than 1,
  • Ar′ 1 and Ar′ 2 are each independently, substituted or unsubstituted C 6-60 aryl; or C 2-60 heteroaryl containing one or more heteroatoms among substituted or unsubstituted N, O and S;
  • R′ 1 and R′ 2 are each independently hydrogen; heavy hydrogen; C 1-60 alkyl; C 6-60 aryl; or C 2-60 heteroaryl containing one or more heteroatoms among N, O and S;
  • r and s are each independently an integer of 0 to 7,
  • efficiency, driving voltage, and/or lifespan characteristics may be improved in the organic light emitting device by including two kinds of host compounds in the light emitting layer.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (3), hole blocking layer (8), electron transport layer (9) , an example of an organic light emitting device including an electron injection layer 10 and a cathode 4 is shown.
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O and S
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a group having the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a group of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but is not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the heteroaryl group is a heterocyclic group including at least one heteroatom among O, N, Si and S as a heteroatom, and the number of carbon atoms is not particularly limited, but is preferably from 2 to 60 carbon atoms.
  • the heteroaryl group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyr
  • aromatic ring refers to a condensed monocyclic or condensed polycyclic ring having aromaticity as a whole while containing only carbon as a ring-forming atom, as well as a condensed monocyclic or condensed polycyclic ring having a plurality of aromaticity such as a fluorene ring. It is understood that the monocyclic ring includes a condensed polycyclic ring formed by connecting adjacent substituents. In this case, the number of carbon atoms of the aromatic ring is 6 to 60, or 6 to 30, or 6 to 20, but is not limited thereto.
  • the aromatic ring may be a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a fluorene ring, and the like, but is not limited thereto.
  • heterocyclic ring is a ring-forming atom that contains one or more heteroatoms of O, N, and S other than carbon, and the whole molecule has aromaticity or does not have aromaticity. It refers to a condensed heterocyclic ring or a condensed heteropolycyclic ring that does not have. The number of carbon atoms of the hetero ring is 2 to 60, or 2 to 30, or 2 to 20, but is not limited thereto.
  • the hetero ring may be a benzofuran ring, a benzothiophene ring, a dibenzofuran ring, a dibenzothiophene ring, etc., but is not limited thereto.
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, the arylamine group, and the arylsilyl group is the same as the examples of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • heteroaryl among the heteroarylamine groups the description of the above-described heteroaryl may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group.
  • the description of the above-described aryl group may be applied except that arylene is a divalent group.
  • the description of heteroaryl described above may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocycle is not a monovalent group, and the description of the above-described heteroaryl may be applied, except that it is formed by combining two substituents.
  • deuterated or substituted with deuterium means that at least one available hydrogen in each formula is replaced with deuterium.
  • substituted with deuterium in the definition of each chemical formula or substituent means that at least one or more of the positions where hydrogen can be bonded in the molecule will be substituted with deuterium, and more specifically, at least 10% of the available hydrogen is It means that it is substituted by deuterium. In one example, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100% deuterated in each formula.
  • the light emitting layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2 above.
  • the organic light emitting device may include two kinds of compounds having a specific structure as a host material in the light emitting layer at the same time, thereby improving efficiency, driving voltage, and/or lifespan characteristics in the organic light emitting device.
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; LiF/Al or a multi-layered material such as LiO 2 /Al, but is not limited thereto.
  • the organic light emitting diode according to the present invention may include a hole injection layer between the anode and the hole transport layer to be described later, if necessary.
  • the hole injection layer is located on the anode and injects holes from the anode, and includes a hole injection material.
  • a hole injection material has the ability to transport holes, has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and prevents the movement of excitons generated in the light emitting layer to the electron injection layer or the electron injection material.
  • a compound having excellent thin film formation ability is preferable.
  • it is suitable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene.
  • organic materials anthraquinone, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the organic light emitting diode according to the present invention may include a hole transport layer between the anode and the light emitting layer.
  • the hole transport layer receives holes from the anode or the hole injection layer formed on the anode and transports holes to the light emitting layer, and includes a hole transport material.
  • a hole transport material a material capable of transporting holes from an anode or a hole injection layer to the light emitting layer is suitable, and a material having high hole mobility is suitable.
  • Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the organic light emitting device may include an electron blocking layer between the hole transport layer and the light emitting layer, if necessary.
  • the electron blocking layer is formed on the hole transport layer, preferably provided in contact with the light emitting layer, to control hole mobility, prevent excessive movement of electrons, and increase the hole-electron coupling probability by increasing the efficiency of the organic light emitting device layer that plays a role in improving
  • the electron-blocking layer includes an electron-blocking material, and an arylamine-based organic material may be used as an example of the electron-blocking material, but is not limited thereto.
  • the organic light emitting diode according to the present invention includes a light emitting layer between an anode and a cathode, and the light emitting layer includes the first compound and the second compound as a host material.
  • the first compound functions as an N-type host material having an electron transport ability superior to a hole transport ability
  • the second compound functions as a P-type host material having a hole transport ability superior to an electron transport ability, so that holes in the light emitting layer
  • the ratio of electrons to electrons can be properly maintained. Accordingly, excitons may emit light evenly throughout the light emitting layer, so that the light emitting efficiency and lifespan characteristics of the organic light emitting diode may be simultaneously improved.
  • the first compound is represented by Formula 1 above. Specifically, a compound having a structure in which a terphenylyl group and a triazinyl group are substituted on two N atoms of the indolocarbazole core, respectively, wherein the first compound contains at least one deuterium (D) .
  • the terphenylyl group of the first compound may serve to improve the amorphous properties of the molecule and at the same time increase the glass transition temperature of the molecule, thereby improving thermal stability.
  • the triazinyl group of the first compound has excellent electron transport ability, and when used in the light emitting layer like the second compound having excellent hole transport ability as described below, exciplex is easy in the light emitting layer can be made to be formed.
  • the first compound is in a radical anion state when forming the exciplex. At this time, due to deuterium (D) contained in the molecule of the first compound, the vibration energy of the radical anion state is lowered, so that it can have stable energy. and, accordingly, the formed exciplex may also be in a more stable state.
  • the first compound has improved thermal stability compared to i) a compound that does not contain deuterium (D) in the same structure and ii) a compound in which a terphenylyl group is not substituted for one of the N atoms of the indolocarbazole core.
  • D deuterium
  • a terphenylyl group is not substituted for one of the N atoms of the indolocarbazole core.
  • electrochemical stability it can contribute to the formation of a stable exciplex so that energy transfer to the dopant can be effectively performed. Accordingly, the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting diode including the first compound may be improved.
  • the first compound represented by Formula 1 may be represented by Formula 1A or Formula 1B, depending on structure A.
  • the first compound when A in Formula 1 is represented by Formula 1a, the first compound may be represented by Formula 1A:
  • Ar 1 , Ar 2 are a1, b1, c1, d, e and f are as defined in Formula 1 above,
  • a1+b1+c1+d+e+f is 1 or more.
  • a1, b1, c1, d, e and f denote the number of substitutions of deuterium (D), respectively, and a1 is 0, 1, 2, 3, 4, or 5, b1 and each c1 is independently 0, 1, 2, 3, or 4, and d, e and f are each independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 am.
  • Ar 1 and Ar 2 are each independently a benzene ring, a biphenyl ring, a terphenyl ring, a fluorene ring, a carbazole ring, or a dibenzothiophenyl ring,
  • Ar 1 and Ar 2 are unsubstituted or substituted with 1 or 2 substituents selected from the group consisting of C 1-10 alkyl and C 6-20 aryl,
  • a1+b1+c1+d+e+f may be 1 to 43.
  • Ar 1 and Ar 2 are each independently a benzene ring, a biphenyl ring, a terphenyl ring, a fluorene ring, a carbazole ring, or a dibenzothiophenyl ring,
  • Ar 1 and Ar 2 are unsubstituted or substituted with 1 or 2 substituents selected from the group consisting of methyl, ethyl, phenyl and naphthyl,
  • a1+b1+c1+d+e+f may be 1 to 43.
  • the first compound when A in Formula 1 is represented by Formula 1b, the first compound may be represented by Formula 1B:
  • Ar 1 , Ar 2 are a2, b2, c2, d, e and f are as defined in Formula 1 above,
  • a2+b2+c2+d+e+f is 1 or more.
  • a2, b2, c2, d, e, and f denote the number of substitutions of deuterium (D), respectively, and a2 and c2 are each independently 0, 1, 2, 3, 4, or 5, each b2 is independently 0, 1, 2, or 3, d, e and f are each independently 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • Ar 1 and Ar 2 are each independently a benzene ring, a biphenyl ring, a terphenyl ring, a fluorene ring, a carbazole ring, or a dibenzothiophenyl ring,
  • Ar 1 and Ar 2 are unsubstituted or substituted with 1 or 2 substituents selected from the group consisting of C 1-10 alkyl and C 6-20 aryl,
  • a2+b2+c2+d+e+f may be 1 to 43.
  • Ar 1 and Ar 2 are each independently a benzene ring, a biphenyl ring, a terphenyl ring, a fluorene ring, a carbazole ring, or a dibenzothiophenyl ring,
  • Ar 1 and Ar 2 are unsubstituted or substituted with 1 or 2 substituents selected from the group consisting of methyl, ethyl, phenyl and naphthyl,
  • a2+b2+c2+d+e+f may be 1 to 43.
  • At least one of Ar 1 and Ar 2 may be a benzene ring unsubstituted or substituted with 1 or 2 substituents selected from the group consisting of C 1-10 alkyl and C 6-20 aryl.
  • at least one of Ar 1 and Ar 2 is a benzene ring, it is preferable in terms of a manufacturing process of an organic light emitting device because it is possible to prevent an excessively high molecular weight resulting in an excessively high deposition temperature.
  • Ar 1 may be a benzene ring
  • Ar 2 -(D) f may be any one selected from the group consisting of:
  • f1 is an integer from 0 to 5, that is, 0, 1, 2, 3, 4, or 5;
  • f2 is an integer from 0 to 4, that is, 0, 1, 2, 3, or 4,
  • f3 is an integer from 0 to 5, that is, 0, 1, 2, 3, 4, or 5;
  • f4 is an integer from 0 to 7, that is, 0, 1, 2, 3, 4, 5, 6, or 7,
  • f5 is an integer from 0 to 7, that is, 0, 1, 2, 3, 4, 5, 6, or 7,
  • f6 is an integer from 0 to 5, that is, 0, 1, 2, 3, 4, or 5.
  • Chemical Formula 1A may be represented by the following Chemical Formula 1A′:
  • a1 is an integer from 0 to 5
  • b1 and c1 are each independently an integer of 0 to 4,
  • d is an integer from 0 to 10
  • e is an integer from 0 to 5
  • Ar 2 -(D) f is any one selected from the group consisting of
  • f1 is an integer from 0 to 5
  • f2 is an integer from 0 to 4,
  • f3 is an integer from 0 to 5;
  • f4 is an integer from 0 to 7
  • f5 is an integer from 0 to 7
  • f6 is an integer from 0 to 5
  • R 1 to R 6 are deuterium
  • a1+b1+c1+d+e+f1 is 1 to 33;
  • a1+b1+c1+d+e+f2+f3 is 1 to 37;
  • a1+b1+c1+d+e+f4 is 1 to 35;
  • a1+b1+c1+d+e+f5+f6 is 1 to 40.
  • formula 1B may be represented by the following formula 1B':
  • a2 and c2 are each independently an integer of 0 to 5
  • b2 is an integer from 0 to 3;
  • d is an integer from 0 to 10
  • e is an integer from 0 to 5
  • Ar 2 -(D) f is any one selected from the group consisting of
  • f1 is an integer from 0 to 5
  • f2 is an integer from 0 to 4,
  • f3 is an integer from 0 to 5;
  • f4 is an integer from 0 to 7
  • f5 is an integer from 0 to 7
  • f6 is an integer from 0 to 5
  • R 1 to R 6 are deuterium
  • a2+b2+c2+d+e+f1 is 1 to 33,
  • a2+b2+c2+d+e+f2+f3 is 1 to 37;
  • a2+b2+c2+d+e+f4 is 1 to 35;
  • a2+b2+c2+d+e+f5+f6 is 1 to 40.
  • A may be represented by any one of Formulas 1a-1 to 1a-9 and Formulas 1b-1 to 1b-6:
  • a1, b1, c1, a2, b2, c2, d, e and f are as defined in Formula 1 above.
  • the first compound when A is one of Formulas 1a-1 to 1a-9, the first compound may be represented by any one of Formulas 1A-1 to 1A-9:
  • Ar 1 , Ar 2 , a1, b1, c1, d, e and f are as defined in Formula 1 above,
  • a1+b1+c1+d+e+f is 1 to 43.
  • the first compound when A is one of 1b-1 to 1b-6, the first compound may be represented by any one of Formulas 1B-1 to 1B-6, respectively:
  • Ar 1 , Ar 2 , a2, b2, c2, d, e and f are as defined in Formula 1 above,
  • a2+b2+c2+d+e+f is 1-43.
  • a1, b1, c1 and d are as defined in Formula 1 above,
  • e and f1 are each independently an integer of 0 to 5
  • a1+b1+c1+d+e+f1 is 1 to 33;
  • a2, b2, c2 and d are as defined in Formula 1 above,
  • e and f1 are each independently an integer of 0 to 5
  • a2+b2+c2+d+e+f1 is 1 to 33,
  • a1, b1, c1 and d are as defined in Formula 1 above,
  • e is an integer from 0 to 5
  • f2 is an integer from 0 to 4,
  • f3 is an integer from 0 to 5;
  • a1+b1+c1+d+e+f2+f3 is 1 to 37;
  • a2, b2, c2 and d are as defined in Formula 1 above,
  • e is an integer from 0 to 5
  • f2 is an integer from 0 to 4,
  • f3 is an integer from 0 to 5;
  • a2+b2+c2+d+e+f2+f3 is 1 to 37;
  • H1-4-1 to H1-4-9 H1-5-1 to H1-5-9, H1-6-1 to H1-6-9, H1-7-1 to H1-7-9, H1-8-1 to H1-8-9, H1-9-1 to H1-9-9, H1-10-1 to H1-10-9, H1-11-1 to H1-11-9, H1- In 12-1 to H1-12-9, H1-13-1 to H1-13-9, H1-14-1 to H1-14-9 and H1-15-1 to H1-15-9,
  • a1, b1, c1 and d are as defined in Formula 1 above,
  • e is an integer from 0 to 5
  • f4 is an integer from 0 to 7
  • a1+b1+c1+d+e+f4 is 1 to 35;
  • H1-4-10 to H1-4-15 H1-5-10 to H1-5-15, H1-6-10 to H1-6-15, H1-7-10 to H1-7-15, H1-8-10 to H1-8-15, H1-9-10 to H1-9-15, H1-10-10 to H1-10-15, H1-11-10 to H1-11-15, H1- In 12-10 to H1-12-15, H1-13-10 to H1-13-15, H1-14-10 to H1-14-15 and H1-15-10 to H1-15-15,
  • a2, b2, c2 and d are as defined in Formula 1 above,
  • e is an integer from 0 to 5
  • f4 is an integer from 0 to 7
  • a2+b2+c2+d+e+f4 is 1 to 35;
  • a1, b1, c1 and d are as defined in Formula 1 above,
  • e is an integer from 0 to 5
  • f5 is an integer from 0 to 7
  • f6 is an integer from 0 to 5
  • a1+b1+c1+d+e+f5+f6 is 1 to 40;
  • a2, b2, c2 and d are as defined in Formula 1 above,
  • e is an integer from 0 to 5
  • f5 is an integer from 0 to 7
  • f6 is an integer from 0 to 5
  • a2+b2+c2+d+e+f5+f6 is 1 to 40.
  • the compound represented by Formula 1 may be prepared by, for example, a preparation method as shown in Scheme 1 below.
  • each X is independently halogen, preferably bromo, or chloro, and definitions of other substituents are the same as described above.
  • the compound represented by Formula 1 is prepared by combining starting materials SM1 and SM2 through an amine substitution reaction. These amine substitution reactions are preferably performed in the presence of a palladium catalyst and a base, respectively.
  • the reactive group for the amine substitution reaction may be appropriately changed, and the method for preparing the compound represented by Formula 1 may be more specific in Preparation Examples to be described later.
  • the second compound is represented by Formula 2 above.
  • the second compound has a biscarbazole-based structure, can efficiently transfer holes to the dopant material, and thus the recombination probability of holes and electrons in the light emitting layer with the first compound having excellent electron transport ability can be raised
  • a single bond connecting two carbazole structures is
  • It may be connected to any one of the carbon at the *1' position, the carbon at the *2' position, the carbon at the *3' position, and the carbon at the *4' position of the right carbazole structure.
  • the second compound is in the left carbazole structure and the right carbazole structure, (*1 carbon, *1' carbon), (*2 carbon, *2' position) of carbon), (* carbon at position 3, carbon at position 3'), or (carbon at position *4, carbon at position *4') may be connected and bonded.
  • the second compound is a structure in which (carbon at position *3 of the left carbazole structure, carbon at position *3' of the right carbazole structure) is bonded to, represented by the following formula 2' can:
  • Ar′ 1 , Ar′ 2 , R′ 1 , R′ 2 , r and s are as defined in Formula 2 above.
  • Ar' 1 and Ar' 2 are each independently C 6-20 aryl, or C 2-20 heteroaryl including one heteroatom among N, O and S;
  • Ar′ 1 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium and C 6-20 aryl.
  • Ar' 1 and Ar' 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, dibenzofuranyl, or dibenzothiophenyl;
  • Ar′ 1 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium and C 6-20 aryl.
  • At least one of Ar′ 1 and Ar′ 2 may be phenyl or biphenylyl.
  • R' 1 and R' 2 may each independently be hydrogen, deuterium, or C 6-20 aryl.
  • R′ 1 and R′ 2 may each independently be hydrogen, deuterium, or phenyl, but is not limited thereto.
  • r and s each representing the number of R′ 1 and R′ 2 , may each independently be 0, 1, 2, 3, 4, 5, 6, or 7.
  • r and s may each independently be 0, 1, or 7.
  • r+s may be 0 or 1.
  • the compound represented by Formula 2 may be prepared by, for example, a preparation method as shown in Scheme 2 below.
  • each X is independently halogen, preferably bromo, or chloro, and definitions of other substituents are the same as described above.
  • the compound represented by Formula 2 is prepared by combining starting materials SM3 and SM4 through an amine substitution reaction. These amine substitution reactions are preferably performed in the presence of a palladium catalyst and a base, respectively.
  • the reactive group for the amine substitution reaction may be appropriately changed, and the method for preparing the compound represented by Formula 2 may be more specific in Preparation Examples to be described later.
  • the first compound and the second compound which are the two kinds of host materials, may be included in a weight ratio of 10:90 to 90:10. More specifically, the first compound and the second compound in the light emitting layer may be included in a weight ratio of 10:90 to 50:50, or 20:80 to 50:50 by weight. In this case, the first compound and the second compound in the light emitting layer in terms of stable exciplex formation in the light emitting layer may be included in a weight ratio of 30: 70.
  • the emission layer may further include a dopant material in addition to the two types of host materials.
  • the dopant material include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the organic light emitting diode according to the present invention may include a hole blocking layer between the light emitting layer and an electron transport layer to be described later, if necessary.
  • the hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to control electron mobility and prevent excessive movement of holes to increase the hole-electron coupling probability, thereby improving the efficiency of the organic light emitting device layer that plays a role.
  • the hole blocking layer includes a hole blocking material, and examples of the hole blocking material include: azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but the present invention is not limited thereto.
  • the electron transport layer is formed between the light emitting layer and the cathode, and serves to receive electrons from the electron injection layer and transport the electrons to the light emitting layer.
  • the electron transport layer includes an electron transport material.
  • As the electron transport material a material capable of well injecting electrons from the cathode and transferring them to the light emitting layer is suitable.
  • the electron injection and transport material include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes; and triazine derivatives, but is not limited thereto. or fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metal complex compounds , or may be used together with a nitrogen-containing 5-membered ring derivative, etc., but is not limited thereto.
  • the organic light emitting diode according to the present invention may include an electron injection layer between the electron transport layer and the cathode, if necessary.
  • the electron injection layer is positioned between the electron transport layer and the cathode, and serves to inject electrons from the cathode.
  • the electron injection layer includes an electron injection material, and the electron injection material has the ability to transport electrons, has an excellent electron injection effect on the light emitting layer or the light emitting material, and a material having excellent thin film formation ability is suitable.
  • the electron injection material examples include ytterbium (Yb), LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, Triazole, imidazole, perylene tetracarboxylic acid, preorenylidene methane, anthrone, etc. derivatives thereof, metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but is not limited thereto.
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. Accordingly, the present invention is not limited thereto.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • the first compound and the second compound may be included in the light emitting layer.
  • the first compound and the second compound may be included in the light emitting layer.
  • the organic light emitting device according to the present invention may be manufactured by sequentially stacking the above-described components. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode. And, after forming each of the above-mentioned layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • PVD physical vapor deposition
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method for the host and the dopant.
  • the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light emitting device may be a top emission type, a back emission type, or a double-sided emission type depending on the material used.
  • compound 1-9-a (15.0 g, 31.0 mmol) and compound E (9.1 g, 34 mmol) were added to 300 ml of toluene, stirred and refluxed. Then, sodium tert-butoxide (4.5 g, 46.4 mmol) and bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 0.9 mmol) were added thereto. After reaction for 12 hours, the mixture was cooled to room temperature, and the organic layer was separated using chloroform and water, and then the organic layer was distilled.
  • Example 1 Fabrication of an organic light emitting device
  • a glass substrate coated with a thin film of ITO (Indium Tin Oxide) to a thickness of 1400 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • HT-A and 5 wt% of PD were thermally vacuum deposited to a thickness of 100 ⁇ to form a hole injection layer, and then only HT-A material was deposited to a thickness of 1150 ⁇ to form a hole transport layer was formed.
  • the following HT-B was thermally vacuum-deposited to a thickness of 450 ⁇ as an electron blocking layer thereon.
  • compound 1-1 prepared in Preparation Example 1-1 as a host material Compound 2-1 prepared in Preparation Example 2-1, and GD as a dopant material were mixed with a thickness of 350 ⁇ on the electron blocking layer at 92:8.
  • a light emitting layer was formed.
  • the weight ratio of the compound 1-1 as a host material to the compound 2-1 was 30:70.
  • ET-A was vacuum-deposited to a thickness of 50 ⁇ as a hole blocking layer.
  • ET-B and Liq below were thermally vacuum-deposited to a thickness of 300 ⁇ at a ratio of 1:1 as an electron transport layer, and then Yb was vacuum-deposited to a thickness of 10 ⁇ as an electron injection layer.
  • magnesium and silver were deposited in a ratio of 1:4 to a thickness of 150 ⁇ to form a cathode, thereby manufacturing an organic light emitting diode.
  • the deposition rate of organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of magnesium and silver was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was maintained at 2 x 10 -7 ⁇ 5 x 10 -6 torr
  • Organic light emitting devices of Examples 2 to 24 and Comparative Examples 1 to 14 were respectively manufactured in the same manner as in Example 1, except that the host material was changed as shown in Table 1 below. . In this case, when a mixture of two types of compounds is used as the host, the weight ratio between the host compounds is indicated in parentheses.
  • the organic light emitting diodes manufactured in Examples 1 to 24 and Comparative Examples 1 to 14 were heat-treated in an oven at 120° C. for 30 minutes, then taken out, and then voltage, efficiency, and lifespan (T95) were measured by applying a current.
  • the results are shown in Table 1 below. At this time, the voltage and efficiency were measured by applying a current density of 10 mA/cm 2 , and T95 is the time (hr) until the initial luminance decreases to 95% at a current density of 20 mA/cm 2 .
  • Example 1 Compound 1-1: Compound 2-1 (30:70) 4.11 71.4 132
  • Example 2 Compound 1-2: Compound 2-1 (30:70) 4.10 71.1 139
  • Example 3 Compound 1-3: Compound 2-1 (30:70) 4.11 71.2 143
  • Example 4 Compound 1-4: Compound 2-1 (30:70) 4.13 71.0 149
  • Example 5 Compound 1-5: Compound 2-1 (30:70) 4.12 71.3 143
  • Example 6 Compound 1-6: Compound 2-1 (30:70) 4.09 71.7 154
  • Example 7 Compound 1-7: Compound 2-1 (30:70) 4.21 72.4 148
  • Example 8 Compound 1-8: Compound 2-1 (30:70) 4.23 72.3 139
  • Example 9 Compound 1-9: Compound 2-1 (30:70) 4.24 72.1 138
  • Example 10 Compound 1-10: Compound 2-1 (30:70) 4.22 72.2 149
  • Example 11 Compound 1-10: Compound 2-1 (30:70) 4.24 72.1 138
  • the organic light emitting device of the embodiment in which the first compound represented by Formula 1 and the second compound represented by Formula 2 are simultaneously used as the host material of the light emitting layer is, Compared to the organic light emitting device of Comparative Example employing only one of the compounds or neither, it exhibited equal or superior luminous efficiency, lower driving voltage, and significantly improved lifespan characteristics.
  • the device employing the first compound is a compound in which one of the N atoms of the indolocarbazole core is not substituted with a terphenylyl group. It can be seen that, compared to devices employing GH-A and GH-B, it has improved characteristics in all of driving voltage, luminous efficiency, and lifespan characteristics. It seems that, in the case of a compound not including a terphenylyl group, device characteristics are deteriorated due to heat damage during heat treatment.
  • the driving voltage, luminous efficiency, and/or lifespan characteristics of the organic light emitting device could be improved.
  • the organic light emitting device employing the combination of the compounds of the present invention has significantly improved device characteristics compared to the comparative example device. can be seen to indicate
  • Substrate 2 Anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 양극, 음극 및 상기 음극과 양극사이에 구비된 발광층을 포함하고, 상기 발광층은 화학식 1로 표시되는 제 1화합물 및 화학식 2로 표시되는 제 2 화합물을 포함하는 유기 발광 소자를 제공한다.

Description

유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2020년 3월 11일자 한국 특허 출원 제10-2020-0030233호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 유기 발광 소자에 관한 것이다.
본 발명은 하기의 유기 발광 소자를 제공한다:
양극;
상기 양극과 대향하여 구비된 음극; 및
상기 양극과 음극 사이에 구비된 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 제1 화합물 및 하기 화학식 2로 표시되는 제2 화합물을 포함하고,
[화학식 1]
Figure PCTKR2021002270-appb-img-000001
상기 화학식 1에서,
A는 하기 화학식 1a 또는 1b로 표시되고,
[화학식 1a] [화학식 1b]
Figure PCTKR2021002270-appb-img-000002
상기 화학식 1a 및 1b에서,
a1, a2 및 c2는 각각 독립적으로, 0 내지 5의 정수이고,
b1 및 c1은 각각 독립적으로, 0 내지 4의 정수이고,
b2는 0 내지 3의 정수이고,
Ar 1 및 Ar 2는 각각 독립적으로, C 6-60 방향족 고리 또는 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로방향족 고리이고,
여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 C 1-60 알킬; C 6-60 아릴; 및 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환되고,
D는 중수소를 의미하고,
d, e 및 f는 각각 독립적으로, 0 내지 10의 정수이고,
단, a1+b1+c1+d+e+f가 1보다 크거나; 또는 a2+b2+c2+d+e+f가 1보다 크고,
[화학식 2]
Figure PCTKR2021002270-appb-img-000003
상기 화학식 2에서,
Ar' 1 및 Ar' 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
R' 1 및 R' 2는 각각 독립적으로, 수소; 중수소; C 1-60 알킬; C 6-60 아릴; 또는 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
r 및 s는 각각 독립적으로, 0 내지 7의 정수이고,
r 및 s가 각각 2 이상인 경우, 괄호 안의 치환기는 서로 동일하거나 상이하다.
상술한 유기 발광 소자는 발광층에 2종의 호스트 화합물을 포함하여, 유기 발광 소자에서 효율, 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자수송층(9), 전자주입층(10) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2021002270-appb-img-000004
, 또는
Figure PCTKR2021002270-appb-img-000005
는 다른 치환기에 연결되는 결합을 의미하고, D는 중수소를 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021002270-appb-img-000006
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021002270-appb-img-000007
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021002270-appb-img-000008
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸헥실, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이에 한정되는 것은 아니다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸, 아다만틸(adamant일) 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2021002270-appb-img-000009
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 이종 원소로 O, N, Si 및 S 중 1개 이상의 헤테로원자를 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에서 사용되는 용어 "방향족 고리"는 고리 형성 원자로서 탄소만을 포함하면서 분자 전체가 방향족성(aromaticity)을 갖는 축합단환 또는 축합다환 고리뿐 아니라, 플루오렌 고리와 같은 복수 개의 방향족성을 갖는 축합단환 고리가 인접한 치환기끼리 연결되어 형성된 축합다환 고리를 포함하는 것으로 이해된다. 이때, 상기 방향족 고리의 탄소수는 6 내지 60, 또는 6 내지 30, 또는 6 내지 20이나, 이에 한정되는 것은 아니다. 또한, 상기 방향족 고리로는 벤젠 고리, 나프탈렌 고리, 안트라센 고리, 페난쓰렌 고리, 파이렌 고리, 플루오렌 고리 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서 사용되는 용어 "헤테로 고리(heterocyclic ring)"는 고리 형성 원자로서 탄소 외 O, N, 및 S 중 1개 이상의 헤테로원자를 포함하면서 분자 전체가 방향족성을 갖거나 또는 방향족성을 갖지 않는 갖지 않는 헤테로축합단환 또는 헤테로축합다환 고리를 의미한다. 상기 헤테로 고리의 탄소수는 2 내지 60, 또는 2 내지 30, 또는 2 내지 20이나, 이에 한정되는 것은 아니다. 또한, 상기 헤테로 고리로는 벤조퓨란 고리, 벤조티오펜 고리, 디벤조퓨란 고리, 디벤조티오펜 고리 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민기 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
본 명세서 있어서, 용어 "중수소화된 또는 중수소로 치환된"의 의미는 각 화학식에서 적어도 하나의 이용가능한 수소가 중수소로 치환된 것을 의미한다. 구체적으로, 각 화학식 또는 치환기의 정의에서 중수소로 치환된다는 것은, 분자 내 수소가 결합될 수 있는 위치 중 적어도 하나 이상이 중수소로 치환될 것을 의미하고, 보다 구체적으로, 이용가능한 수소의 적어도 10%가 중수소에 의해 치환된 것을 의미한다. 일례로, 각 화학식에서 적어도 20%, 적어도 30%, 적어도 40%, 적어도 50%, 적어도 60%, 적어도 70%, 적어도 80%, 적어도 90%, 또는 100% 중수소화된다.
양극; 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비된 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 제1 화합물 및 상기 화학식 2로 표시되는 제2 화합물을 포함하는 발광 소자를 제공한다.
본 발명에 따른 유기 발광 소자는 발광층에 특정 구조를 갖는 2종의 화합물을 호스트 물질로 동시에 포함하여, 유기 발광 소자에서 효율, 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
이하 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는 필요에 따라 양극과 후술하는 정공수송층 사이에 정공주입층을 포함할 수 있다.
상기 정공주입층은 상기 양극 상에 위치하여, 양극으로부터 정공을 주입하는 층으로, 정공 주입 물질을 포함한다. 이러한 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 엑시톤의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 특히, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 적합하다.
상기 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
정공수송층
본 발명에 따른 유기 발광 소자는 양극과 발광층 사이에 정공수송층을 포함할 수 있다. 상기 정공수송층은 양극 또는 양극 상에 형성된 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질을 포함한다. 상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이에 한정되는 것은 아니다.
전자저지층
본 발명에 따른 유기 발광 소자는 필요에 따라 정공수송층과 발광층 사이에 전자저지층을 포함할 수 있다. 상기 전자저지층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자저지층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
발광층
본 발명에 따른 유기 발광 소자는 양극과 음극 사이에 발광층을 포함하고, 상기 발광층은 상기 제1 화합물 및 상기 제2 화합물을 호스트 물질로 포함한다. 구체적으로, 상기 제1 화합물은 전자 수송 능력이 정공 수송 능력보다 우수한 N형 호스트 물질로 기능하고, 상기 제2 화합물은 정공 수송 능력이 전자 수송 능력보다 우수한 P형 호스트 물질로 기능하여, 발광층 내 정공과 전자의 비율을 적절하게 유지시킬 수 있다. 이에 따라, 엑시톤(exciton)이 발광층 전체에서 고르게 발광하여 유기 발광 소자의 발광 효율과 수명 특성이 동시에 향상될 수 있다.
이하, 상기 제1 화합물 및 상기 제2 화합물을 순차적으로 설명한다.
(제1 화합물)
상기 제1 화합물은 상기 화학식 1로 표시된다. 구체적으로, 인돌로카바졸 코어의 2개의 N 원자에 각각 터페닐릴기 및 트리아지닐기가 치환된 구조를 갖는 화합물로, 상기 제1 화합물은 적어도 하나의 중수소(D)를 포함하는 것을 그 특징으로 한다.
상기 제1 화합물의 터페닐릴기는 분자의 비정질 특성을 향상시키고, 동시에 분자의 유리전이온도를 높여줌으로써 열적 안정성을 향상시키는 역할을 할 수 있다. 또한, 상기 제1 화합물의 트리아지닐기는 전자를 수송하는 능력이 우수하여, 후술하는 바와 같이 정공을 수송하는 능력이 우수한 제2 화합물과 같이 발광층에 사용되는 경우, 발광층 내에 엑시플렉스(exciplex)가 용이하게 형성되도록 할 수 있다. 더욱이, 상기 제1 화합물은 엑시플렉스 형성 시 라디칼 음이온 상태가 되는 데, 이때, 상기 제1 화합물의 분자 내 포함되어 있는 중수소(D)로 인하여, 라디칼 음이온 상태의 진동에너지가 낮아져 안정된 에너지를 가질 수 있고, 이에 따라, 형성된 엑시플렉스도 보다 안정한 상태가 될 수 있다.
따라서, 상기 제1 화합물은, i) 동일한 구조에 중수소(D)를 포함하지 않는 화합물 및 ii) 인돌로카바졸 코어의 N 원자 중 하나에 터페닐릴기가 치환되지 않는 화합물에 비하여, 향상된 열적 안정성 및 전기화학적 안정성을 가지면서, 안정적인 엑시플렉스(exciplex)의 형성에 기여하여 도펀트로의 에너지 전달이 효과적으로 이루어지게 할 수 있다. 이에 따라, 상기 제1 화합물을 포함하는 유기 발광 소자의 구동 전압, 발광 효율 및 수명 특성이 향상될 수 있다.
상기 화학식 1로 표시되는 제1 화합물은 A 구조에 따라 하기 화학식 1A 또는 하기 화학식 1B로 표시할 수 있다.
구체적으로, 상기 화학식 1에서 A가 상기 화학식 1a로 표시되는 경우에는 상기 제1 화합물은 하기 화학식 1A로 표시할 수 있다:
[화학식 1A]
Figure PCTKR2021002270-appb-img-000010
상기 화학식 1A에서,
Ar 1, Ar 2는 a1, b1, c1, d, e 및 f는 상기 화학식 1에서 정의한 바와 같고,
단, a1+b1+c1+d+e+f는 1 이상이다.
이때, 상기 화학식 1A에서, a1, b1, c1, d, e 및 f는 각각 중수소(D)의 치환 개수를 의미하는 것으로, a1은 0, 1, 2, 3, 4, 또는 5이고, b1 및 c1은 각각 독립적으로, 0, 1, 2, 3, 또는 4이고, d, e 및 f는 각각 독립적으로, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 또는 10이다.
보다 구체적으로, 상기 화학식 1A에서,
Ar 1 및 Ar 2는 각각 독립적으로, 벤젠 고리, 비페닐 고리, 터페닐 고리, 플루오렌 고리, 카바졸 고리, 또는 디벤조티오페닐 고리이고,
여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 또는 2개의 치환기로 치환되고,
a1+b1+c1+d+e+f는 1 내지 43일 수 있다.
예를 들어, 상기 화학식 1A에서,
Ar 1 및 Ar 2는 각각 독립적으로, 벤젠 고리, 비페닐 고리, 터페닐 고리, 플루오렌 고리, 카바졸 고리, 또는 디벤조티오페닐 고리이고,
여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 메틸, 에틸, 페닐 및 나프틸로 구성되는 군으로부터 선택되는 1개 또는 2개의 치환기로 치환되고,
a1+b1+c1+d+e+f는 1 내지 43일 수 있다.
또는, 상기 화학식 1에서 A가 상기 화학식 1b로 표시되는 경우에는 상기 제1 화합물은 하기 화학식 1B로 표시할 수 있다:
[화학식 1B]
Figure PCTKR2021002270-appb-img-000011
상기 화학식 1B에서,
Ar 1, Ar 2는 a2, b2, c2, d, e 및 f는 상기 화학식 1에서 정의한 바와 같고,
단, a2+b2+c2+d+e+f는 1 이상이다.
이때, 상기 화학식 1B에서, a2, b2, c2, d, e 및 f는 각각 중수소(D)의 치환 개수를 의미하는 것으로, a2 및 c2는 각각 독립적으로, 0, 1, 2, 3, 4, 또는 5이고, b2는 각각 독립적으로, 0, 1, 2, 또는 3이고, d, e 및 f는 각각 독립적으로, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 또는 10이다.
보다 구체적으로, 상기 화학식 1B에서,
Ar 1 및 Ar 2는 각각 독립적으로, 벤젠 고리, 비페닐 고리, 터페닐 고리, 플루오렌 고리, 카바졸 고리, 또는 디벤조티오페닐 고리이고,
여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 또는 2개의 치환기로 치환되고,
a2+b2+c2+d+e+f는 1 내지 43일 수 있다.
예를 들어, 상기 화학식 1B에서,
Ar 1 및 Ar 2는 각각 독립적으로, 벤젠 고리, 비페닐 고리, 터페닐 고리, 플루오렌 고리, 카바졸 고리, 또는 디벤조티오페닐 고리이고,
여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 메틸, 에틸, 페닐 및 나프틸로 구성되는 군으로부터 선택되는 1개 또는 2개의 치환기로 치환되고,
a2+b2+c2+d+e+f는 1 내지 43일 수 있다.
또는, 상기 Ar 1 및 Ar 2 중 적어도 하나는, 비치환되거나, 또는 C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 또는 2개의 치환기로 치환된 벤젠 고리일 수 있다. 이때, Ar 1 및 Ar 2 중 적어도 하나가 벤젠 고리인 것이 분자량이 과도하게 커져 증착 온도가 너무 높아지는 것을 방지할 수 있어, 유기 발광 소자의 제조 공정 측면에서 바람직하다.
구체적으로, 상기 Ar 1은 벤젠 고리이고, Ar 2-(D) f는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021002270-appb-img-000012
상기에서,
f1은 0 내지 5의 정수, 다시 말하여, 0, 1, 2, 3, 4, 또는 5이고,
f2는 0 내지 4의 정수, 다시 말하여, 0, 1, 2, 3, 또는 4이고,
f3는 0 내지 5의 정수, 다시 말하여, 0, 1, 2, 3, 4, 또는 5이고,
f4는 0 내지 7의 정수, 다시 말하여, 0, 1, 2, 3, 4, 5, 6, 또는 7이고,
f5는 0 내지 7의 정수, 다시 말하여, 0, 1, 2, 3, 4, 5, 6, 또는 7이고,
f6는 0 내지 5의 정수, 다시 말하여, 0, 1, 2, 3, 4, 또는 5이다.
이에 따라, 상기 화학식 1A는 하기 화학식 1A'로 표시될 수 있다:
[화학식 1A']
Figure PCTKR2021002270-appb-img-000013
상기 화학식 1A'에서,
a1은 0 내지 5의 정수이고,
b1 및 c1은 각각 독립적으로, 0 내지 4의 정수이고,
d는 0 내지 10의 정수이고,
e는 0 내지 5의 정수이고,
Ar 2-(D) f는 하기로 구성되는 군으로부터 선택되는 어느 하나이고,
Figure PCTKR2021002270-appb-img-000014
상기에서,
f1은 0 내지 5의 정수이고,
f2는 0 내지 4의 정수이고,
f3는 0 내지 5의 정수이고,
f4는 0 내지 7의 정수이고,
f5는 0 내지 7의 정수이고,
f6는 0 내지 5의 정수이고,
R 1 내지 R 6은 중수소이고,
단, a1+b1+c1+d+e+f1은 1 내지 33이고,
a1+b1+c1+d+e+f2+f3는 1 내지 37이고,
a1+b1+c1+d+e+f4는 1 내지 35이고,
a1+b1+c1+d+e+f5+f6은 1 내지 40이다.
또한, 상기 화학식 1B는 하기 화학식 1B'로 표시될 수 있다:
[화학식 1B']
Figure PCTKR2021002270-appb-img-000015
상기 화학식 1B'에서,
a2 및 c2는 각각 독립적으로, 0 내지 5의 정수이고,
b2는 0 내지 3의 정수이고,
d는 0 내지 10의 정수이고,
e는 0 내지 5의 정수이고,
Ar 2-(D) f는 하기로 구성되는 군으로부터 선택되는 어느 하나이고,
Figure PCTKR2021002270-appb-img-000016
상기에서,
f1은 0 내지 5의 정수이고,
f2는 0 내지 4의 정수이고,
f3는 0 내지 5의 정수이고,
f4는 0 내지 7의 정수이고,
f5는 0 내지 7의 정수이고,
f6는 0 내지 5의 정수이고,
R 1 내지 R 6은 중수소이고,
단, a2+b2+c2+d+e+f1은 1 내지 33이고,
a2+b2+c2+d+e+f2+f3는 1 내지 37이고,
a2+b2+c2+d+e+f4는 1 내지 35이고,
a2+b2+c2+d+e+f5+f6은 1 내지 40이다.
또한, 상기 화학식 1에서, A는 하기 화학식 1a-1 내지 1a-9 및 화학식 1b-1 내지 1b-6 중 어느 하나로 표시될 수 있다:
Figure PCTKR2021002270-appb-img-000017
Figure PCTKR2021002270-appb-img-000018
상기 화학식 1a-1 내지 1a-9 및 화학식 1b-1 내지 1b-6에서,
a1, b1, c1, a2, b2, c2, d, e 및 f는 상기 화학식 1에서, 정의한 바와 같다.
따라서, 상기 화학식 1에서, A가 상기 화학식 1a-1 내지 1a-9 중 하나인 경우, 상기 제1 화합물은 하기 화학식 1A-1 내지 1A-9 중 어느 하나로 표시될 수 있다:
Figure PCTKR2021002270-appb-img-000019
Figure PCTKR2021002270-appb-img-000020
상기 화학식 1A-1 내지 1A-9에서,
Ar 1, Ar 2, a1, b1, c1, d, e 및 f는 상기 화학식 1에서 정의한 바와 같고,
단, a1+b1+c1+d+e+f는 1 내지 43이다.
또는, 상기 화학식 1에서, A가 1b-1 내지 1b-6 중 하나인 경우, 상기 제1 화합물은 각각 하기 화학식 1B-1 내지 1B-6 중 어느 하나로 표시될 수 있다:
Figure PCTKR2021002270-appb-img-000021
상기 화학식 1B-1 내지 1B-9에서,
Ar 1, Ar 2, a2, b2, c2, d, e 및 f는 상기 화학식 1에서 정의한 바와 같고,
단, a2+b2+c2+d+e+f는 1 내지 43이다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2021002270-appb-img-000022
Figure PCTKR2021002270-appb-img-000023
상기 화학식 H1-1-1 내지 H1-1-9에서,
a1, b1, c1 및 d는 상기 화학식 1에서 정의한 바와 같고,
e 및 f1은 각각 독립적으로, 0 내지 5의 정수이고,
단, a1+b1+c1+d+e+f1은 1 내지 33이고,
Figure PCTKR2021002270-appb-img-000024
상기 화학식 H1-1-10 내지 H1-1-15에서,
a2, b2, c2 및 d는 상기 화학식 1에서 정의한 바와 같고,
e 및 f1은 각각 독립적으로, 0 내지 5의 정수이고,
단, a2+b2+c2+d+e+f1은 1 내지 33이고,
Figure PCTKR2021002270-appb-img-000025
Figure PCTKR2021002270-appb-img-000026
Figure PCTKR2021002270-appb-img-000027
Figure PCTKR2021002270-appb-img-000028
상기 화학식 H1-2-1 내지 H1-2-9 및 H1-3-1 내지 H1-3-9 에서,
a1, b1, c1 및 d는 상기 화학식 1에서 정의한 바와 같고,
e는 0 내지 5의 정수이고,
f2는 0 내지 4의 정수이고,
f3는 0 내지 5의 정수이고,
a1+b1+c1+d+e+f2+f3는 1 내지 37이고,
Figure PCTKR2021002270-appb-img-000029
Figure PCTKR2021002270-appb-img-000030
상기 화학식 H1-2-10 내지 H1-2-15 및 H1-3-10 내지 H1-3-15 에서,
a2, b2, c2 및 d는 상기 화학식 1에서 정의한 바와 같고,
e는 0 내지 5의 정수이고,
f2는 0 내지 4의 정수이고,
f3는 0 내지 5의 정수이고,
a2+b2+c2+d+e+f2+f3는 1 내지 37이고,
Figure PCTKR2021002270-appb-img-000031
Figure PCTKR2021002270-appb-img-000032
Figure PCTKR2021002270-appb-img-000033
Figure PCTKR2021002270-appb-img-000034
Figure PCTKR2021002270-appb-img-000035
Figure PCTKR2021002270-appb-img-000036
Figure PCTKR2021002270-appb-img-000037
Figure PCTKR2021002270-appb-img-000038
Figure PCTKR2021002270-appb-img-000039
Figure PCTKR2021002270-appb-img-000040
Figure PCTKR2021002270-appb-img-000041
Figure PCTKR2021002270-appb-img-000042
Figure PCTKR2021002270-appb-img-000043
Figure PCTKR2021002270-appb-img-000044
Figure PCTKR2021002270-appb-img-000045
Figure PCTKR2021002270-appb-img-000046
Figure PCTKR2021002270-appb-img-000047
Figure PCTKR2021002270-appb-img-000048
Figure PCTKR2021002270-appb-img-000049
Figure PCTKR2021002270-appb-img-000050
Figure PCTKR2021002270-appb-img-000051
Figure PCTKR2021002270-appb-img-000052
Figure PCTKR2021002270-appb-img-000053
Figure PCTKR2021002270-appb-img-000054
상기 화학식 H1-4-1 내지 H1-4-9, H1-5-1 내지 H1-5-9, H1-6-1 내지 H1-6-9, H1-7-1 내지 H1-7-9, H1-8-1 내지 H1-8-9, H1-9-1 내지 H1-9-9, H1-10-1 내지 H1-10-9, H1-11-1 내지 H1-11-9, H1-12-1 내지 H1-12-9, H1-13-1 내지 H1-13-9, H1-14-1 내지 H1-14-9 및 H1-15-1 내지 H1-15-9에서,
a1, b1, c1 및 d는 상기 화학식 1에서 정의한 바와 같고,
e는 0 내지 5의 정수이고,
f4는 0 내지 7의 정수이고,
a1+b1+c1+d+e+f4는 1 내지 35이고,
Figure PCTKR2021002270-appb-img-000055
Figure PCTKR2021002270-appb-img-000056
Figure PCTKR2021002270-appb-img-000057
Figure PCTKR2021002270-appb-img-000058
Figure PCTKR2021002270-appb-img-000059
Figure PCTKR2021002270-appb-img-000060
Figure PCTKR2021002270-appb-img-000061
Figure PCTKR2021002270-appb-img-000062
Figure PCTKR2021002270-appb-img-000063
Figure PCTKR2021002270-appb-img-000064
Figure PCTKR2021002270-appb-img-000065
Figure PCTKR2021002270-appb-img-000066
상기 화학식 H1-4-10 내지 H1-4-15, H1-5-10 내지 H1-5-15, H1-6-10 내지 H1-6-15, H1-7-10 내지 H1-7-15, H1-8-10 내지 H1-8-15, H1-9-10 내지 H1-9-15, H1-10-10 내지 H1-10-15, H1-11-10 내지 H1-11-15, H1-12-10 내지 H1-12-15, H1-13-10 내지 H1-13-15, H1-14-10 내지 H1-14-15 및 H1-15-10 내지 H1-15-15에서,
a2, b2, c2 및 d는 상기 화학식 1에서 정의한 바와 같고,
e는 0 내지 5의 정수이고,
f4는 0 내지 7의 정수이고,
a2+b2+c2+d+e+f4는 1 내지 35이고,
Figure PCTKR2021002270-appb-img-000067
Figure PCTKR2021002270-appb-img-000068
Figure PCTKR2021002270-appb-img-000069
Figure PCTKR2021002270-appb-img-000070
Figure PCTKR2021002270-appb-img-000071
Figure PCTKR2021002270-appb-img-000072
Figure PCTKR2021002270-appb-img-000073
Figure PCTKR2021002270-appb-img-000074
상기 화학식 H1-16-1 내지 H1-16-9, H1-17-1 내지 H1-17-9, H1-18-1 내지 H1-18-9 및 H1-19-1 내지 H1-19-9에서,
a1, b1, c1 및 d는 상기 화학식 1에서 정의한 바와 같고,
e는 0 내지 5의 정수이고,
f5는 0 내지 7의 정수이고,
f6는 0 내지 5의 정수이고,
a1+b1+c1+d+e+f5+f6은 1 내지 40이고,
Figure PCTKR2021002270-appb-img-000075
Figure PCTKR2021002270-appb-img-000076
Figure PCTKR2021002270-appb-img-000077
Figure PCTKR2021002270-appb-img-000078
상기 화학식 H1-16-10 내지 H1-16-15, H1-17-10 내지 H1-17-15, H1-18-10 내지 H1-18-15 및 H1-19-10 내지 H1-19-15에서,
a2, b2, c2 및 d는 상기 화학식 1에서 정의한 바와 같고,
e는 0 내지 5의 정수이고,
f5는 0 내지 7의 정수이고,
f6는 0 내지 5의 정수이고,
a2+b2+c2+d+e+f5+f6은 1 내지 40이다.
한편, 상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다.
[반응식 1]
Figure PCTKR2021002270-appb-img-000079
상기 반응식 1에서, X는 각각 독립적으로, 할로겐이고, 바람직하게는 브로모, 또는 클로로이고, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 아민 치환 반응을 통해 출발물질 SM1 및 SM2가 결합하여 제조된다. 이러한 아민 치환 반응은 각각 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하다. 또한, 상기 아민 치환 반응을 위한 반응기는 적절히 변경될 수 있고, 화학식 1로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
(제2 화합물)
상기 제2 화합물은 상기 화학식 2로 표시된다. 구체적으로, 상기 제2 화합물은 비스카바졸계 구조를 가져, 도펀트 물질로 정공을 효율적으로 전달할 수 있고, 이에 따라 전자 수송 능력이 우수한 상기 제1 화합물과 함께 발광층 내에서의 정공과 전자의 재결합 확률을 높일 수 있다.
상기 화학식 2에서, 2개의 카바졸 구조의 결합 위치를 표시하면 하기와 같다:
[화학식 2]
Figure PCTKR2021002270-appb-img-000080
상기 화학식 2에서,
각 치환기에 대한 설명은 상술한 바와 같고,
2개의 카바졸 구조를 연결하는 단일 결합은,
좌측 카바졸 구조의 *1번 위치의 탄소, 2번 위치의 탄소, *3번 위치의 탄소 및 *4번 위치의 탄소 중 어느 하나와,
우측 카바졸 구조의 *1'번 위치의 탄소, *2'번 위치의 탄소, *3'번 위치의 탄소 및 *4'번 위치의 탄소 중 어느 하나와 연결될 수 있다.
보다 구체적으로, 상기 제2 화합물은 좌측 카바졸 구조 및 우측 카바졸 구조에서, (*1번 위치의 탄소, *1'번 위치의 탄소), (*2번 위치의 탄소, *2'번 위치의 탄소), (*3번 위치의 탄소, *3'번 위치의 탄소), 또는 (*4번 위치의 탄소, *4'번 위치의 탄소)끼리 연결되어 결합될 수 있다.
일 구현예에 따르면, 상기 제2 화합물은 (좌측 카바졸 구조의 *3번 위치의 탄소, 우측 카바졸 구조의 *3'번 위치의 탄소)가 결합된 구조인, 하기 화학식 2'로 표시될 수 있다:
[화학식 2']
Figure PCTKR2021002270-appb-img-000081
상기 화학식 2'에서,
Ar' 1, Ar' 2, R' 1, R' 2, r 및 s는 상기 화학식 2에서 정의한 바와 같다.
또한, 상기 화학식 2에서, Ar' 1 및 Ar' 2는 각각 독립적으로, C 6-20 아릴, 또는 N, O 및 S 중 1개의 헤테로원자를 포함하는 C 2-20 헤테로아릴이고,
여기서, Ar' 1은 비치환되거나, 또는 중수소 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
예를 들어, Ar' 1 및 Ar' 2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
여기서, Ar' 1은 비치환되거나, 또는 중수소 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
이때, Ar' 1 및 Ar' 2 중 적어도 하나는 페닐 또는 비페닐릴일 수 있다.
또한, 상기 화학식 2에서, R' 1 및 R' 2는 각각 독립적으로, 수소, 중수소, 또는 C 6-20 아릴일 수 있다.
예를 들어, R' 1 및 R' 2는 각각 독립적으로, 수소, 중수소, 또는 페닐일 수 있으나, 이에 한정되는 것은 아니다.
또한, R' 1 및 R' 2의 개수를 각각 나타내는, r 및 s는 각각 독립적으로, 0, 1, 2, 3, 4, 5, 6, 또는 7일 수 있다.
보다 구체적으로, r 및 s는 각각 독립적으로, 0, 1, 또는 7일 수 있다.
예를 들어, r+s는 0 또는 1일 수 있다.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2021002270-appb-img-000082
Figure PCTKR2021002270-appb-img-000083
Figure PCTKR2021002270-appb-img-000084
Figure PCTKR2021002270-appb-img-000085
Figure PCTKR2021002270-appb-img-000086
Figure PCTKR2021002270-appb-img-000087
Figure PCTKR2021002270-appb-img-000088
Figure PCTKR2021002270-appb-img-000089
.
한편, 상기 화학식 2로 표시되는 화합물은 일례로 하기 반응식 2와 같은 제조 방법으로 제조할 수 있다.
[반응식 2]
Figure PCTKR2021002270-appb-img-000090
상기 반응식 1에서, X는 각각 독립적으로, 할로겐이고, 바람직하게는 브로모, 또는 클로로이고, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.
구체적으로, 상기 화학식 2로 표시되는 화합물은 아민 치환 반응을 통해 출발물질 SM3 및 SM4가 결합하여 제조된다. 이러한 아민 치환 반응은 각각 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하다. 또한, 상기 아민 치환 반응을 위한 반응기는 적절히 변경될 수 있고, 화학식 2로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 상기 발광층 내에, 상기 2종의 호스트 물질인 상기 제1 화합물과 상기 제2 화합물은 10:90 내지 90:10의 중량비로 포함될 수 있다. 보다 구체적으로, 상기 발광층 내에 상기 제1 화합물과 상기 제2 화합물은 10:90 내지 50:50의 중량비, 또는 20:80 내지 50:50의 중량비으로 포함될 수 있다. 이때, 발광층 내 안정된 엑시플렉스 형성 측면에서 상기 발광층 내에 상기 제1 화합물과 상기 제2 화합물은 30: 70의 중량비로 포함될 수 있다.
한편, 상기 발광층은 상기 2종의 호스트 물질 외에 도펀트 물질을 더 포함할 수 있다. 이러한 도펀트 물질로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
정공저지층
본 발명에 따른 유기 발광 소자는 필요에 따라 발광층과 후술하는 전자수송층 사이에 정공저지층을 포함할 수 있다. 상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류 유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
전자수송층
상기 전자수송층은 상기 발광층과 음극 사이에 형성되어 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 역할을 한다. 상기 전자수송층은 전자 수송 물질을 포함하고, 이러한 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
전자주입층
본 발명에 따른 유기 발광 소자는 필요에 따라 전자수송층과 음극 사이에 전자주입층을 포함할 수 있다.
상기 전자주입층은 상기 전자수송층과 음극 사이에 위치하여, 음극으로부터 전자를 주입하는 역할을 한다. 상기 전자주입층은 전자 주입 물질을 포함하고, 이러한 전자 주입 물질로는 전자를 수송하는 능력을 가지면서, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 박막형성능력이 우수한 물질이 적합하다.
상기 전자 주입 물질의 구체적인 예로는, 이터븀(Yb), LiF, NaCl, CsF, Li 2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에, 한정되는 것은 아니다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에, 한정되는 것은 아니다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1에 예시하였다. 도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 제1 화합물 및 상기 제2 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자수송층(9), 전자주입층(10) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 제1 화합물 및 상기 제2 화합물은 상기 발광층에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예: 화합물의 합성
제조예 1-1: 화합물 1-1의 합성
단계 1) 화합물 1-1-a의 합성
Figure PCTKR2021002270-appb-img-000091
질소 분위기에서 11,12-디하이드로인돌로[2,3-a]카바졸(15.0 g, 58.5 mmol)와 화합물 a(19.9 g, 64.4 mmol)를 톨루엔 300ml에 넣고 교반 및 환류하였다. 이후 소듐 tert-부톡사이드(8.4 g, 87.8 mmol), 비스(트리-tert-부틸포스핀)팔라듐(0)(0.9 g, 1.8 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1-a를 20.7g(수율 73%) 제조하였다.
MS[M+H] += 486
단계 2) 화합물 1-1의 합성
Figure PCTKR2021002270-appb-img-000092
질소 분위기에서 화합물 1-1-a(15.0g, 31.0 mmol)와 중간체 A(9.3g, 34.0 mmol)를 톨루엔 300 ml에 넣고 교반 및 환류하였다. 이후 소듐 tert-부톡사이드(4.5 g, 46.4 mmol), 비스(트리-tert-부틸포스핀)팔라듐(0) (0.5 g, 0.9 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제한 후, 승화정제를 통해 화합물 1-1을 9.1 g(수율 41%) 제조하였다.
MS[M+H] += 722
제조예 1-2: 화합물 1-2의 합성
Figure PCTKR2021002270-appb-img-000093
제조예 1-1에서, 화합물 a를 화합물 b로, 중간체 A를 중간체 B로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-2를 제조하였다.
MS[M+H] += 727
제조예 1-3: 화합물 1-3의 합성
Figure PCTKR2021002270-appb-img-000094
제조예 1-1에서, 화합물 a를 화합물 c로, 중간체 A를 중간체 C로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-3을 제조하였다.
MS[M+H] += 802
제조예 1-4: 화합물 1-4의 합성
Figure PCTKR2021002270-appb-img-000095
제조예 1-1에서, 화합물 a를 화합물 d로, 중간체 A를 중간체 D로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-4를 제조하였다.
MS[M+H] += 806
제조예 1-5: 화합물 1-5의 합성
Figure PCTKR2021002270-appb-img-000096
제조예 1-1에서, 화합물 a를 화합물 e로, 중간체 A를 중간체 E로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-5를 제조하였다.
MS[M+H] += 727
제조예 1-6: 화합물 1-6의 합성
Figure PCTKR2021002270-appb-img-000097
제조예 1-1에서, 화합물 a를 화합물 f로, 중간체 A를 중간체 B로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-6을 제조하였다.
MS[M+H] += 735
제조예 1-7: 화합물 1-7의 합성
Figure PCTKR2021002270-appb-img-000098
제조예 1-1에서, 화합물 a를 화합물 g로, 중간체 A를 중간체 F로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-7을를 제조하였다.
MS[M+H] += 818
제조예 1-8: 화합물 1-8의 합성
Figure PCTKR2021002270-appb-img-000099
제조예 1-1에서, 화합물 a를 화합물 h로, 중간체 A를 중간체 G로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-8을 제조하였다. (MS[M+H] += 817)
제조예 1-9: 화합물 1-9의 합성
Figure PCTKR2021002270-appb-img-000100
제조예 1-1에서, 화합물 a를 화합물 e로, 중간체 A를 중간체 H로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-9를 제조하였다.
MS[M+H] += 830
제조예 1-10: 화합물 1-10의 합성
Figure PCTKR2021002270-appb-img-000101
제조예 1-1에서, 화합물 a를 화합물 c로, 중간체 A를 중간체 I로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-10을 제조하였다.
MS[M+H] += 900
제조예 1-11: 화합물 1-11의 합성
Figure PCTKR2021002270-appb-img-000102
제조예 1-1에서, 화합물 a를 화합물 i로, 중간체 A를 중간체 J로 변경하여 사용한 것을 제외하고는 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-11을 제조하였다.
MS[M+H] += 843
제조예 1-12: 화합물 1-12의 합성
단계 1) 화합물 1-12-a의 합성
Figure PCTKR2021002270-appb-img-000103
질소 분위기에서 화합물 1-9-a(15.0 g, 31.0 mmol)와 화합물 E(9.1 g, 34 mmol)를 톨루엔 300 ml에 넣고 교반 및 환류하였다. 이후 소듐 tert-부톡사이드(4. 5g, 46.4 mmol), 비스(트리-tert-부틸포스핀)팔라듐(0) (0.5 g, 0.9 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-12-a를 14.0 g(수율 63%) 제조하였다.
MS[M+H] += 717
단계 2) 화합물 1-12의 합성
Figure PCTKR2021002270-appb-img-000104
쉐이커 튜브에 화합물 1-12-a(10.0 g, 14.0 mmol), PtO 2(1.0 g, 4.2 mmol), D 2O 70 ml를 넣은 후, 튜브를 밀봉하고 250℃, 600 psi에서 12시간 동안 가열하였다. 반응이 종료되면 클로로포름을 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO 4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제한 후, 승화정제를 통해 화합물 1-12를 3.8 g(수율 36%) 제조하였다.
MS[M+H] += 750
제조예 2-1: 화합물 2-1의 합성
단계 1) 화합물 2-1-a의 합성
Figure PCTKR2021002270-appb-img-000105
질소 분위기에서 3-브로모-9H-카바졸(15.0 g, 60.9 mmol)와 9-페닐-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸(24.8 g, 67.0 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이후 포타슘 카보네이트(33.7 g, 243.8 mmol)를 물 101 ml에 녹여 투입하고 충분히 교반한 후 테트라키스(트리페닐포스핀)팔라듐(0)(2.1 g, 1.8 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-1-a를 15.2 g(수율 61%) 제조하였다.
MS[M+H] += 410
단계 2) 화합물 2-1의 합성
Figure PCTKR2021002270-appb-img-000106
질소 분위기에서 화합물 2-1-a 15.0 g, 36.7 mmol)와 4-브로모-1,1'-비페닐(9.4 g, 40.4 mmol)을 톨루엔 300 ml에 넣고 교반 및 환류하였다. 이후 소듐 tert-부톡사이드(5.3 g, 55.1 mmol), 비스(트리-tert-부틸포스핀)팔라듐(0)(0.6 g, 1.1 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제한 후, 승화정제를 통해 화합물 2-1을 9.7 g(수율 47%) 제조하였다.
MS[M+H] += 562
제조예 2-2: 화합물 2-2의 합성
Figure PCTKR2021002270-appb-img-000107
제조예 2-1에서, 9-페닐-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸을 9-([1,1'-비페닐]-4-일)-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸로, 4-브로모-1,1'-비페닐을 2-브로모디벤조[b,d]퓨란으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-2를 제조하였다.
MS[M+H] += 652
제조예 2-3: 화합물 2-3의 합성
Figure PCTKR2021002270-appb-img-000108
제조예 2-1에서, 9-페닐-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸을 9-([1,1'-비페닐]-3-일)-3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)-9H-카바졸로, 4-브로모-1,1'-비페닐을 2-클로로-9,9-디메틸-9H-플루오렌으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-3을 제조하였다.
MS[M+H] += 678
실시예 1: 유기 발광 소자의 제조
ITO(Indium Tin Oxide)가 1400Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 95 중량%의 HT-A과 5 중량%의 PD를 100Å의 두께로 열 진공 증착하여 정공주입층을 형성하고, 이어서 HT-A 물질만 1150Å의 두께로 증착하여 정공수송층을 형성하였다. 그 위에 전자 저지층으로 하기 HT-B를 450Å 두께로 열 진공 증착하였다.
이어서, 상기 전자저지층 위에 350Å의 두께로 호스트 물질인 상기 제조예 1-1에서 제조한 화합물 1-1 및 상기 제조예 2-1에서 제조한 화합물 2-1과 도펀트 물질인 GD를 92 : 8의 중량비로 진공 증착하여, 발광층을 형성하였다. 이때, 호스트 물질인 상기 화합물 1-1과 상기 화합물 2-1의 중량비는 30:70이었다.
이어서, 정공저지층으로 하기 ET-A를 50Å의 두께로 진공 증착하였다. 이어서 전자수송층으로 하기 ET-B와 Liq를 1:1의 비율로 300Å의 두께로 열 진공 증착하고, 이어서 전자주입층으로 Yb를 10Å의 두께로 진공 증착하였다.
상기 전자주입층 위에 마그네슘과 은을 1:4의 비율로 150Å의 두께로 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다.
Figure PCTKR2021002270-appb-img-000109
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 마그네슘과 은의 증착 속도는 2Å/sec를 유지하였으며, 증착 시 진공도는 2 x 10 -7 ~ 5 x 10 -6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 2 내지 실시예 24 및 비교예 1 내지 비교예 14
호스트 물질을 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 실시예 2 내지 실시예 24 및 비교예 1 내지 비교예 14의 유기 발광 소자를 각각 제작하였다. 이때, 호스트로서 2종의 화합물의 혼합물을 사용한 경우, 괄호 안은 호스트 화합물간의 중량비 의미한다.
상기 실시예 및 비교예에서 사용된 화합물은 하기와 같다:
Figure PCTKR2021002270-appb-img-000110
Figure PCTKR2021002270-appb-img-000111
Figure PCTKR2021002270-appb-img-000112
실험예 1: 소자 특성 평가>
상기 실시예 1 내지 실시예 24 및 비교예 1 내지 비교예 14에서 제작된 유기 발광 소자를 120℃오븐에서 30분간 열처리한 후 꺼내어, 전류를 인가하여 전압, 효율, 수명(T95)을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, 전압 및 효율은 10mA/cm 2의 전류 밀도를 인가하여 측정되었으며, T95은 전류 밀도 20mA/cm 2에서 초기 휘도가 95%로 저하할 때까지의 시간(hr)을 의미한다.
호스트
물질
@ 10mA/cm 2 @ 20mA/cm 2
전압
(V)
효율
(cd/A)
수명
(T95, hr)
실시예 1 화합물 1-1:화합물 2-1
(30:70)
4.11 71.4 132
실시예 2 화합물 1-2:화합물 2-1(30:70) 4.10 71.1 139
실시예 3 화합물 1-3:화합물 2-1(30:70) 4.11 71.2 143
실시예 4 화합물 1-4:화합물 2-1(30:70) 4.13 71.0 149
실시예 5 화합물 1-5:화합물 2-1(30:70) 4.12 71.3 143
실시예 6 화합물 1-6:화합물 2-1(30:70) 4.09 71.7 154
실시예 7 화합물 1-7:화합물 2-1(30:70) 4.21 72.4 148
실시예 8 화합물 1-8:화합물 2-1(30:70) 4.23 72.3 139
실시예 9 화합물 1-9:화합물 2-1(30:70) 4.24 72.1 138
실시예 10 화합물 1-10:화합물 2-1(30:70) 4.22 72.2 149
실시예 11 화합물 1-11:화합물 2-1(30:70) 4.18 71.8 137
실시예 12 화합물 1-12:화합물 2-1(30:70) 4.12 71.3 160
실시예 13 화합물 1-1:화합물 2-2(30:70) 4.08 70.3 120
실시예 14 화합물 1-3:화합물 2-2(30:70) 4.08 70.1 131
실시예 15 화합물 1-5:화합물 2-2(30:70) 4.09 70.2 131
실시예 16 화합물 1-7:화합물 2-2(30:70) 4.18 71.3 136
실시예 17 화합물 1-9:화합물 2-2(30:70) 4.21 71.0 126
실시예 18 화합물 1-11:화합물 2-2(30:70) 4.15 70.7 125
실시예 19 화합물 1-2:화합물 2-3(30:70) 3.97 71.7 132
실시예 20 화합물 1-4:화합물 2-3(30:70) 4.00 71.6 142
실시예 21 화합물 1-6:화합물 2-3(30:70) 3.96 72.3 147
실시예 22 화합물 1-8:화합물 2-3(30:70) 4.10 72.9 132
실시예 23 화합물 1-10:화합물 2-3(30:70) 4.09 72.8 142
실시예 24 화합물 1-12:화합물 2-3(30:70) 3.99 71.9 153
비교예 1 화합물 1-1 5.70 58.5 72
비교예 2 화합물 1-4 5.74 57.9 84
비교예 3 화합물 1-7 5.90 59.6 86
비교예 4 화합물 1-10 5.93 59.1 85
비교예 5 GH-A 6.32 38.1 29
비교예 6 GH-B 6.32 38.2 38
비교예 7 GH-C 5.70 58.4 46
비교예 8 GH-A:화합물 2-1(30:70) 5.31 56.3 62
비교예 9 GH-B:화합물 2-1(30:70) 5.32 56.3 79
비교예 10 GH-C:화합물 2-1(30:70) 4.11 71.1 89
비교예 11 GH-B:화합물 2-2(30:70) 5.28 55.0 68
비교예 12 GH-B:화합물 2-3(30:70) 5.22 55.6 73
비교예 13 GH-C:화합물 2-2(30:70) 4.08 70.0 79
비교예 14 GH-C:화합물 2-3(30:70) 4.03 70.4 82
상기 표 1에 나타난 바와 같이, 발광층의 호스트 물질로 상기 화학식 1로 표시되는 제1 화합물 및 상기 화학식 2로 표시되는 제2 화합물을 동시에 사용한 실시예의 유기 발광 소자는, 상기 화학식 1 및 2로 표시되는 화합물 중 하나만을 채용하거나, 둘 다 채용하지 않는 비교예의 유기 발광 소자에 비하여, 동등 또는 우수한 발광 효율, 낮은 구동 전압 및 현저히 향상된 수명 특성을 나타내었다.
구체적으로, 비교예 8, 비교예 9, 비교예 11 및 비교예 12를 살펴보면, 상기 제1 화합물을 채용한 소자는, 인돌로카바졸 코어의 N 원자 중 하나에 터페닐릴기가 치환되지 않은 화합물 GH-A 및 GH-B를 채용한 소자에 비하여, 구동 전압, 발광 효율 및 수명 특성 모두에서 향상된 특성을 가짐을 알 수 있다. 이는, 터페닐릴기를 포함하지 않는 화합물의 경우 열처리 시 열에 의한 손상으로 인해 소자 특성이 저하된 것으로 보인다. 또한, 비교예 10, 비교예 13 및 비교예 14를 살펴보면, 상기 제1 화합물을 채용한 소자는, 터페닐릴 치환기를 갖더라도 중수소로 치환되지 않은 화합물 GH-C를 채용한 소자에 비하여, 현저히 긴 수명을 나타냄을 알 수 있다. 이는, 분자 내 중수소(D)가 포함되어 있지 않은 경우, 호스트 물질의 라디칼 음이온 상태가 불안정하여, 발광층 내 형성된 엑시플렉스가 불안정한 상태를 나타내기 때문인 것으로 보인다.
따라서, 유기 발광 소자의 호스트 물질로 상기 제1 화합물과 상기 제2 화합물을 동시에 채용하는 경우, 유기 발광 소자의 구동 전압, 발광 효율 및/또는 수명 특성이 향상시킬 수 있음을 확인할 수 있었다. 이는 일반적으로 유기 발광 소자의 발광 효율 및 수명 특성은 서로 트레이드-오프(Trade-off) 관계를 갖는 점을 고려할 때 본 발명의 화합물간의 조합을 채용한 유기 발광 소자는 비교예 소자 대비 현저히 향상된 소자 특성을 나타낸다고 볼 수 있다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자저지층 8: 정공저지층
9: 전자수송층 10: 전자주입층

Claims (12)

  1. 양극;
    상기 양극과 대향하여 구비된 음극; 및
    상기 양극과 음극 사이에 구비된 발광층을 포함하고,
    상기 발광층은 하기 화학식 1로 표시되는 제1 화합물 및 하기 화학식 2로 표시되는 제2 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2021002270-appb-img-000113
    상기 화학식 1에서,
    A는 하기 화학식 1a 또는 1b로 표시되고,
    [화학식 1a] [화학식 1b]
    Figure PCTKR2021002270-appb-img-000114
    상기 화학식 1a 및 1b에서,
    a1, a2 및 c2는 각각 독립적으로, 0 내지 5의 정수이고,
    b1 및 c1은 각각 독립적으로, 0 내지 4의 정수이고,
    b2는 0 내지 3의 정수이고,
    Ar 1 및 Ar 2는 각각 독립적으로, C 6-60 방향족 고리 또는 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로방향족 고리이고,
    여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 C 1-60 알킬; C 6-60 아릴; 및 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환되고,
    D는 중수소를 의미하고,
    d, e 및 f는 각각 독립적으로, 0 내지 10의 정수이고,
    단, a1+b1+c1+d+e+f가 1 이상이거나; 또는 a2+b2+c2+d+e+f가 1 이상이고,
    [화학식 2]
    Figure PCTKR2021002270-appb-img-000115
    상기 화학식 2에서,
    Ar' 1 및 Ar' 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    R' 1 및 R' 2는 각각 독립적으로, 수소; 중수소; C 1-60 알킬; C 6-60 아릴; 또는 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    r 및 s는 각각 독립적으로, 0 내지 7의 정수이다.
  2. 제1항에 있어서,
    상기 제1 화합물은 하기 화학식 1A 또는 1B로 표시되는,
    유기 발광 소자:
    [화학식 1A]
    Figure PCTKR2021002270-appb-img-000116
    상기 화학식 1A에서,
    Ar 1 및 Ar 2는 각각 독립적으로, 벤젠 고리, 비페닐 고리, 터페닐 고리, 플루오렌 고리, 카바졸 고리, 또는 디벤조티오페닐 고리이고,
    여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 또는 2개의 치환기로 치환되고,
    a1+b1+c1+d+e+f는 1 내지 43이고,
    a1, b1, c1, d, e 및 f는 제1항에서 정의한 바와 같고,
    [화학식 1B]
    Figure PCTKR2021002270-appb-img-000117
    상기 화학식 1B에서,
    Ar 1 및 Ar 2는 각각 독립적으로, 벤젠 고리, 비페닐 고리, 터페닐 고리, 플루오렌 고리, 카바졸 고리, 또는 디벤조티오페닐 고리이고,
    여기서, Ar 1 및 Ar 2는 비치환되거나, 또는 C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 또는 2개의 치환기로 치환되고,
    a2+b2+c2+d+e+f는 1 내지 43이고,
    a2, b2, c2, d, e 및 f는 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    Ar 1은 벤젠 고리이고, Ar 2-(D) f는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021002270-appb-img-000118
    상기에서,
    f1은 0 내지 5의 정수이고,
    f2는 0 내지 4의 정수이고,
    f3는 0 내지 5의 정수이고,
    f4는 0 내지 7의 정수이고,
    f5는 0 내지 7의 정수이고,
    f6는 0 내지 5의 정수이다.
  4. 제1항에 있어서,
    A는 하기 화학식 1a-1 내지 1a-9 및 화학식 1b-1 내지 1b-6 중 어느 하나로 표시되는,
    유기 발광 소자:
    Figure PCTKR2021002270-appb-img-000119
    Figure PCTKR2021002270-appb-img-000120
    상기 화학식 1a-1 내지 1a-9 및 화학식 1b-1 내지 1b-6에서,
    a1, b1, c1, a2, b2, c2, d, e 및 f는 제1항에서 정의한 바와 같다.
  5. 제1항에 있어서,
    상기 제1 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021002270-appb-img-000121
    Figure PCTKR2021002270-appb-img-000122
    상기 화학식 H1-1-1 내지 H1-1-9에서,
    a1, b1, c1 및 d는 제1항에서 정의한 바와 같고,
    e 및 f1은 각각 독립적으로, 0 내지 5의 정수이고,
    단, a1+b1+c1+d+e+f1은 1 내지 33이고,
    Figure PCTKR2021002270-appb-img-000123
    상기 화학식 H1-1-10 내지 H1-1-15에서,
    a2, b2, c2 및 d는 제1항에서 정의한 바와 같고,
    e 및 f1은 각각 독립적으로, 0 내지 5의 정수이고,
    단, a2+b2+c2+d+e+f1은 1 내지 33이고,
    Figure PCTKR2021002270-appb-img-000124
    Figure PCTKR2021002270-appb-img-000125
    Figure PCTKR2021002270-appb-img-000126
    Figure PCTKR2021002270-appb-img-000127
    상기 화학식 H1-2-1 내지 H1-2-9 및 H1-3-1 내지 H1-3-9 에서,
    a1, b1, c1 및 d는 제1항에서 정의한 바와 같고,
    e는 0 내지 5의 정수이고,
    f2는 0 내지 4의 정수이고,
    f3는 0 내지 5의 정수이고,
    a1+b1+c1+d+e+f2+f3는 1 내지 37이고,
    Figure PCTKR2021002270-appb-img-000128
    Figure PCTKR2021002270-appb-img-000129
    상기 화학식 H1-2-10 내지 H1-2-15 및 H1-3-10 내지 H1-3-15 에서,
    a2, b2, c2 및 d는 제1항에서 정의한 바와 같고,
    e는 0 내지 5의 정수이고,
    f2는 0 내지 4의 정수이고,
    f3는 0 내지 5의 정수이고,
    a2+b2+c2+d+e+f2+f3는 1 내지 37이고,
    Figure PCTKR2021002270-appb-img-000130
    Figure PCTKR2021002270-appb-img-000131
    Figure PCTKR2021002270-appb-img-000132
    Figure PCTKR2021002270-appb-img-000133
    Figure PCTKR2021002270-appb-img-000134
    Figure PCTKR2021002270-appb-img-000135
    Figure PCTKR2021002270-appb-img-000136
    Figure PCTKR2021002270-appb-img-000137
    Figure PCTKR2021002270-appb-img-000138
    Figure PCTKR2021002270-appb-img-000139
    Figure PCTKR2021002270-appb-img-000140
    Figure PCTKR2021002270-appb-img-000141
    Figure PCTKR2021002270-appb-img-000142
    Figure PCTKR2021002270-appb-img-000143
    Figure PCTKR2021002270-appb-img-000144
    Figure PCTKR2021002270-appb-img-000145
    Figure PCTKR2021002270-appb-img-000146
    Figure PCTKR2021002270-appb-img-000147
    Figure PCTKR2021002270-appb-img-000148
    Figure PCTKR2021002270-appb-img-000149
    Figure PCTKR2021002270-appb-img-000150
    Figure PCTKR2021002270-appb-img-000151
    Figure PCTKR2021002270-appb-img-000152
    Figure PCTKR2021002270-appb-img-000153
    상기 화학식 H1-4-1 내지 H1-4-9, H1-5-1 내지 H1-5-9, H1-6-1 내지 H1-6-9, H1-7-1 내지 H1-7-9, H1-8-1 내지 H1-8-9, H1-9-1 내지 H1-9-9, H1-10-1 내지 H1-10-9, H1-11-1 내지 H1-11-9, H1-12-1 내지 H1-12-9, H1-13-1 내지 H1-13-9, H1-14-1 내지 H1-14-9 및 H1-15-1 내지 H1-15-9에서,
    a1, b1, c1 및 d는 제1항에서 정의한 바와 같고,
    e는 0 내지 5의 정수이고,
    f4는 0 내지 7의 정수이고,
    a1+b1+c1+d+e+f4는 1 내지 35이고,
    Figure PCTKR2021002270-appb-img-000154
    Figure PCTKR2021002270-appb-img-000155
    Figure PCTKR2021002270-appb-img-000156
    Figure PCTKR2021002270-appb-img-000157
    Figure PCTKR2021002270-appb-img-000158
    Figure PCTKR2021002270-appb-img-000159
    Figure PCTKR2021002270-appb-img-000160
    Figure PCTKR2021002270-appb-img-000161
    Figure PCTKR2021002270-appb-img-000162
    Figure PCTKR2021002270-appb-img-000163
    Figure PCTKR2021002270-appb-img-000164
    Figure PCTKR2021002270-appb-img-000165
    상기 화학식 H1-4-10 내지 H1-4-15, H1-5-10 내지 H1-5-15, H1-6-10 내지 H1-6-15, H1-7-10 내지 H1-7-15, H1-8-10 내지 H1-8-15, H1-9-10 내지 H1-9-15, H1-10-10 내지 H1-10-15, H1-11-10 내지 H1-11-15, H1-12-10 내지 H1-12-15, H1-13-10 내지 H1-13-15, H1-14-10 내지 H1-14-15 및 H1-15-10 내지 H1-15-15에서,
    a2, b2, c2 및 d는 제1항에서 정의한 바와 같고,
    e는 0 내지 5의 정수이고,
    f4는 0 내지 7의 정수이고,
    a2+b2+c2+d+e+f4는 1 내지 35이고,
    Figure PCTKR2021002270-appb-img-000166
    Figure PCTKR2021002270-appb-img-000167
    Figure PCTKR2021002270-appb-img-000168
    Figure PCTKR2021002270-appb-img-000169
    Figure PCTKR2021002270-appb-img-000170
    Figure PCTKR2021002270-appb-img-000171
    Figure PCTKR2021002270-appb-img-000172
    Figure PCTKR2021002270-appb-img-000173
    상기 화학식 H1-16-1 내지 H1-16-9, H1-17-1 내지 H1-17-9, H1-18-1 내지 H1-18-9 및 H1-19-1 내지 H1-19-9에서,
    a1, b1, c1 및 d는 제1항에서 정의한 바와 같고,
    e는 0 내지 5의 정수이고,
    f5는 0 내지 7의 정수이고,
    f6는 0 내지 5의 정수이고,
    a1+b1+c1+d+e+f5+f6은 1 내지 40이고,
    Figure PCTKR2021002270-appb-img-000174
    Figure PCTKR2021002270-appb-img-000175
    Figure PCTKR2021002270-appb-img-000176
    Figure PCTKR2021002270-appb-img-000177
    상기 화학식 H1-16-10 내지 H1-16-15, H1-17-10 내지 H1-17-15, H1-18-10 내지 H1-18-15 및 H1-19-10 내지 H1-19-15에서,
    a2, b2, c2 및 d는 제1항에서 정의한 바와 같고,
    e는 0 내지 5의 정수이고,
    f5는 0 내지 7의 정수이고,
    f6는 0 내지 5의 정수이고,
    a2+b2+c2+d+e+f5+f6은 1 내지 40이다.
  6. 제1항에 있어서,
    상기 제2 화합물은 하기 화학식 2'로 표시되는,
    유기 발광 소자:
    [화학식 2']
    Figure PCTKR2021002270-appb-img-000178
    상기 화학식 2'에서,
    Ar' 1, Ar' 2, R' 1, R' 2, r 및 s는 제1항에서 정의한 바와 같다.
  7. 제1항에 있어서,
    Ar' 1 및 Ar' 2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
    여기서, Ar' 1은 비치환되거나, 또는 중수소 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환된,
    유기 발광 소자.
  8. 제1항에 있어서,
    Ar' 1 및 Ar' 2 중 적어도 하나는 페닐 또는 비페닐릴인,
    유기 발광 소자.
  9. 제1항에 있어서,
    R' 1 및 R' 2는 각각 독립적으로, 수소, 중수소, 또는 페닐인,
    유기 발광 소자.
  10. 제1항에 있어서,
    r+s는 0 또는 1인,
    유기 발광 소자.
  11. 제1항에 있어서,
    상기 제2 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021002270-appb-img-000179
    Figure PCTKR2021002270-appb-img-000180
    Figure PCTKR2021002270-appb-img-000181
    Figure PCTKR2021002270-appb-img-000182
    Figure PCTKR2021002270-appb-img-000183
    Figure PCTKR2021002270-appb-img-000184
    Figure PCTKR2021002270-appb-img-000185
    Figure PCTKR2021002270-appb-img-000186
    .
  12. 제1항에 있어서,
    상기 발광층 내 상기 제1 화합물 및 상기 제2 화합물은 10:90 내지 90:10의 중량비로 포함되는,
    유기 발광 소자.
PCT/KR2021/002270 2020-03-11 2021-02-23 유기 발광 소자 WO2021182775A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/624,921 US11588116B2 (en) 2020-03-11 2021-02-23 Organic light emitting device
CN202180004452.5A CN114097104B (zh) 2020-03-11 2021-02-23 有机发光器件
EP21766948.0A EP3982434B1 (en) 2020-03-11 2021-02-23 Organic light-emitting device
JP2021576421A JP7106812B1 (ja) 2020-03-11 2021-02-23 有機発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200030233A KR102193015B1 (ko) 2020-03-11 2020-03-11 유기 발광 소자
KR10-2020-0030233 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182775A1 true WO2021182775A1 (ko) 2021-09-16

Family

ID=74041784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002270 WO2021182775A1 (ko) 2020-03-11 2021-02-23 유기 발광 소자

Country Status (6)

Country Link
US (1) US11588116B2 (ko)
EP (1) EP3982434B1 (ko)
JP (1) JP7106812B1 (ko)
KR (1) KR102193015B1 (ko)
CN (1) CN114097104B (ko)
WO (1) WO2021182775A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023052905A1 (ja) * 2021-09-30 2023-04-06 株式会社半導体エネルギー研究所 有機化合物、発光デバイス、薄膜、発光装置、電子機器、および照明装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220095942A (ko) * 2020-12-30 2022-07-07 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR20220151981A (ko) * 2021-05-07 2022-11-15 주식회사 엘지화학 유기 발광 소자
JPWO2023008501A1 (ko) * 2021-07-30 2023-02-02
CN114075204B (zh) * 2021-07-30 2023-08-25 陕西莱特迈思光电材料有限公司 磷光主体材料及其组合物、有机电致发光器件和电子装置
CN114213418B (zh) * 2021-07-30 2022-09-13 北京莱特众成光电材料科技有限公司 含氮化合物及包含其的有机电致发光器件和电子装置
CN114335367B (zh) * 2021-08-26 2024-03-19 陕西莱特迈思光电材料有限公司 有机电致发光器件及电子装置
WO2024048537A1 (ja) * 2022-08-31 2024-03-07 日鉄ケミカル&マテリアル株式会社 有機電界発光素子

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
US20130140544A1 (en) 2009-10-29 2013-06-06 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
CN103204846A (zh) * 2012-01-12 2013-07-17 昱镭光电科技股份有限公司 咔唑衍生物及其有机电激发光装置及制造方法
KR20170084048A (ko) * 2014-11-06 2017-07-19 이 아이 듀폰 디 네모아 앤드 캄파니 중수소화 방향족 화합물 제조 방법
EP3246326A1 (en) 2015-01-13 2017-11-22 Guangzhou Chinaray Optoelectronic Materials Ltd. Compound, mixture comprising the same, composition and organic electronic device
WO2018173598A1 (ja) 2017-03-22 2018-09-27 新日鉄住金化学株式会社 有機電界発光素子
KR20180137772A (ko) * 2017-06-19 2018-12-28 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
US20190140193A1 (en) * 2017-11-07 2019-05-09 Universal Display Corporation Organic electroluminescent materials and devices
KR102054806B1 (ko) * 2019-08-02 2019-12-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20200002885A (ko) * 2017-04-27 2020-01-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479712B (zh) 2007-10-19 2015-04-01 Semiconductor Energy Lab 發光裝置
EP2200407B1 (en) * 2008-12-17 2017-11-22 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting element, light emitting device, and electronic device
US9450192B2 (en) * 2010-12-06 2016-09-20 E-Ray Optoelectronics Technology Carbazole derivative and organic electroluminescent devices utilizing the same and fabrication method thereof
KR20130018547A (ko) 2011-08-09 2013-02-25 세이코 엡슨 가부시키가이샤 티아디아졸계 화합물, 발광 소자, 발광 장치, 인증 장치, 전자 기기
KR102048555B1 (ko) 2013-04-17 2019-11-26 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
EP2821459B1 (en) 2013-07-01 2017-10-04 Cheil Industries Inc. Composition and organic optoelectric device and display device
KR102180085B1 (ko) 2013-09-12 2020-11-17 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자장치
KR101829745B1 (ko) 2014-01-24 2018-02-19 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
WO2015111848A1 (ko) 2014-01-24 2015-07-30 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR101773363B1 (ko) 2014-04-09 2017-08-31 제일모직 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR101818579B1 (ko) 2014-12-09 2018-01-15 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
US11322705B2 (en) 2015-04-17 2022-05-03 Samsung Display Co., Ltd. Organic light-emitting device
CN107592860B (zh) 2015-04-24 2020-11-03 三星Sdi株式会社 有机化合物、组合物及有机光电二极管
KR102591635B1 (ko) * 2015-10-27 2023-10-20 삼성디스플레이 주식회사 유기 발광 소자
KR20170073245A (ko) 2015-12-18 2017-06-28 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
KR101940169B1 (ko) 2016-02-04 2019-01-18 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
KR102018238B1 (ko) 2016-09-21 2019-09-04 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR101962756B1 (ko) 2016-09-29 2019-03-27 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR102118142B1 (ko) 2017-09-27 2020-06-02 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
US20130140544A1 (en) 2009-10-29 2013-06-06 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
CN103204846A (zh) * 2012-01-12 2013-07-17 昱镭光电科技股份有限公司 咔唑衍生物及其有机电激发光装置及制造方法
KR20170084048A (ko) * 2014-11-06 2017-07-19 이 아이 듀폰 디 네모아 앤드 캄파니 중수소화 방향족 화합물 제조 방법
EP3246326A1 (en) 2015-01-13 2017-11-22 Guangzhou Chinaray Optoelectronic Materials Ltd. Compound, mixture comprising the same, composition and organic electronic device
WO2018173598A1 (ja) 2017-03-22 2018-09-27 新日鉄住金化学株式会社 有機電界発光素子
KR20200002885A (ko) * 2017-04-27 2020-01-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
EP3618132A1 (en) 2017-04-27 2020-03-04 NIPPON STEEL Chemical & Material Co., Ltd. Organic electroluminescent element
KR20180137772A (ko) * 2017-06-19 2018-12-28 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
US20190140193A1 (en) * 2017-11-07 2019-05-09 Universal Display Corporation Organic electroluminescent materials and devices
KR102054806B1 (ko) * 2019-08-02 2019-12-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982434A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023052905A1 (ja) * 2021-09-30 2023-04-06 株式会社半導体エネルギー研究所 有機化合物、発光デバイス、薄膜、発光装置、電子機器、および照明装置

Also Published As

Publication number Publication date
CN114097104B (zh) 2022-11-22
US11588116B2 (en) 2023-02-21
JP7106812B1 (ja) 2022-07-27
CN114097104A (zh) 2022-02-25
EP3982434B1 (en) 2023-12-20
EP3982434A4 (en) 2022-10-05
EP3982434A1 (en) 2022-04-13
JP2022535147A (ja) 2022-08-04
KR102193015B1 (ko) 2020-12-18
US20220310936A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021182775A1 (ko) 유기 발광 소자
WO2021029616A1 (ko) 유기 발광 소자
WO2020141949A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021210911A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066623A1 (ko) 유기 발광 소자
WO2022031036A1 (ko) 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022086168A1 (ko) 유기 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020222569A1 (ko) 유기 발광 소자
WO2022250386A1 (ko) 유기 발광 소자
WO2022231389A1 (ko) 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022080715A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자
WO2022031033A1 (ko) 유기 발광 소자
WO2021210910A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2023096426A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023075409A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021206504A1 (ko) 유기 발광 소자
WO2022231390A1 (ko) 유기 발광 소자
WO2021206502A1 (ko) 유기 발광 소자
WO2023096454A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576421

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021766948

Country of ref document: EP

Effective date: 20220105

NENP Non-entry into the national phase

Ref country code: DE