WO2021029616A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2021029616A1
WO2021029616A1 PCT/KR2020/010441 KR2020010441W WO2021029616A1 WO 2021029616 A1 WO2021029616 A1 WO 2021029616A1 KR 2020010441 W KR2020010441 W KR 2020010441W WO 2021029616 A1 WO2021029616 A1 WO 2021029616A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
compound
unsubstituted
deuterium
group
Prior art date
Application number
PCT/KR2020/010441
Other languages
English (en)
French (fr)
Inventor
한수진
이동훈
장분재
서상덕
정민우
이정하
박슬찬
황성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200097980A external-priority patent/KR102447008B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080005495.0A priority Critical patent/CN112789747A/zh
Publication of WO2021029616A1 publication Critical patent/WO2021029616A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic light emitting device.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy using organic materials.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure made of different materials in order to increase the efficiency and stability of the organic light-emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. It glows when it falls back to the ground.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting device.
  • the present invention provides the following organic light emitting device:
  • a cathode provided to face the anode
  • the light-emitting layer includes a first compound represented by Formula 1 and a second compound represented by Formula 2:
  • X is O or S
  • X 1 to X 3 are each independently N or CH, provided that at least one of X 1 to X 3 is N,
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
  • R 1 to R 3 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 3-60 cycloalkyl; Substituted or unsubstituted C 2-60 alkenyl; Substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
  • a+b is an integer from 0 to 6
  • c is an integer from 0 to 8
  • A is a benzene ring fused with two adjacent pentagonal rings
  • Ar 3 and Ar 4 are each independently Substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
  • R 4 is hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 3-60 cycloalkyl; Substituted or unsubstituted C 2-60 alkenyl; Substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl containing one or more heteroatoms of N, O and S,
  • d is an integer from 0 to 10
  • the above-described organic light-emitting device includes two kinds of host compounds in the light-emitting layer, so that efficiency, driving voltage, and/or lifetime characteristics in the organic light-emitting device can be improved.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
  • FIG. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), a hole blocking layer (8), an electron transport and injection layer.
  • An example of an organic light-emitting device consisting of (8) and a cathode (4) is shown.
  • D means deuterium
  • Ph means a phenyl group
  • substituted or unsubstituted refers to deuterium; Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means a substituted or unsubstituted substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O and S atoms, or linked
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with an oxygen of the ester group with a straight chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, and a phenyl boron group, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis(diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • Etc When the fluorenyl group is substituted, Etc.
  • Etc it is not limited thereto.
  • the heteroaryl group is a heterocyclic group containing one or more heteroatoms of O, N, Si and S as heterogeneous elements, and the number of carbons is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heteroaryl groups include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Car
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, arylamine group, and arylsilyl group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • heteroaryl among heteroarylamines the above-described description of heteroaryl may be applied.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the above-described heteroaryl may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or the cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heteroaryl is not a monovalent group, and the description of the above-described heteroaryl may be applied except that the heterocycle is formed by bonding of two substituents.
  • anode Anode
  • a cathode provided to face the anode
  • an emission layer provided between the anode and the cathode, wherein the emission layer includes a first compound represented by Chemical Formula 1 and a second compound represented by Chemical Formula 2.
  • the organic light-emitting device may simultaneously include two types of compounds having a specific structure in the light-emitting layer as host materials, thereby improving efficiency, driving voltage, and/or lifetime characteristics in the organic light-emitting device.
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, etc., but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are a multi-layered material such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the organic light-emitting device may include a hole injection layer between an anode and a hole transport layer to be described later, if necessary.
  • the hole injection layer is a layer positioned on the anode and injects holes from the anode, and includes a hole injection material.
  • a hole injection material has the ability to transport holes, has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and prevents the movement of excitons generated in the light emitting layer to the electron injection layer or the electron injection material.
  • a compound having excellent thin film formation ability is preferable.
  • the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, perylene Organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
  • the organic light emitting device may include a hole transport layer between the anode and the emission layer.
  • the hole transport layer is a layer that receives holes from an anode or a hole injection layer formed on the anode and transports holes to the light emitting layer, and includes a hole transport material.
  • a hole transport material a material capable of transporting holes from an anode or a hole injection layer to the light emitting layer and having high mobility for holes is suitable.
  • Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the organic light-emitting device may include an electron blocking layer between the hole transport layer and the emission layer, if necessary.
  • the electron blocking layer is formed on the hole transport layer and is preferably provided in contact with the light emitting layer, thereby controlling hole mobility and preventing excessive movement of electrons to increase the probability of hole-electron coupling, thereby increasing the efficiency of the organic light emitting device. It refers to the layer that plays a role in improving the value.
  • the electron blocking layer includes an electron blocking material, and an arylamine-based organic material may be used as an example of the electron blocking material, but is not limited thereto.
  • the organic light-emitting device includes an emission layer between an anode and a cathode, and the emission layer includes the first compound and the second compound as a host material.
  • the first compound functions as an N-type host material having an electron transport ability superior to that of a hole transporting ability
  • the second compound functions as a P-type host material having a hole transport ability greater than an electron transporting ability. It is possible to properly maintain the ratio of the electron to the electron. Accordingly, excitons are evenly emitted from the entire emission layer, so that the luminous efficiency and lifespan characteristics of the organic light-emitting device can be simultaneously improved.
  • the first compound is represented by Chemical Formula 1.
  • the first compound is a compound in which a carbazolyl group and an N-containing 6 membered-heterocyclic group are simultaneously substituted on a dibenzofuran/dibenzothiophene core, and these compounds have an intramolecular charge compared to a compound not having all of these substituents. Since inter charge transfer is well performed, the stability of molecules is high, and holes and electrons can be effectively transported. In addition, this effect can be further maximized when the second compound, which will be described later, is used together as a host of the emission layer.
  • the first compound may contain at least one deuterium.
  • At least one of Ar 1 and Ar 2 is C 6-60 aryl substituted with deuterium; Or C 2-60 heteroaryl containing one or more heteroatoms of N, O and S substituted with deuterium; or
  • At least one of R 1 to R 3 is deuterium; C 6-60 aryl substituted with deuterium; Or C 2-60 heteroaryl including one or more heteroatoms among N, O and S substituted with deuterium, and a+b+c may be 1 or more, or an integer of 1 to 14.
  • C 6-60 aryl in which at least one of Ar 1 and Ar 2 is substituted with deuterium; Or C 2-60 heteroaryl including one or more heteroatoms of N, O and S substituted with deuterium, and at least one of R 1 to R 3 is deuterium; C 6-60 aryl substituted with deuterium; Or C 2-60 heteroaryl including one or more heteroatoms among N, O and S substituted with deuterium, and a+b+c may be 1 or more.
  • the first compound may be represented by the following formula 1':
  • R 21 to R 24 is And the rest are each independently referring to the definition of R 2 , and one of R 11 to R 14 is And, each of the rest independently refers to the definition of R 1 , or
  • R 21 to R 24 each independently refer to the definition of R 2
  • R 14 is And one of R 11 to R 13 is And each of the others independently refers to the definition of R 1 .
  • the first compound when represented by Formula 1', it may be more advantageous in terms of intramolecular charge transfer and molecular stability than a compound in which a carbazolyl group and an N-containing 6-membered heterocyclic group are substituted at other positions. .
  • the first compound may be represented by any one of the following Formulas 1A' to 1E':
  • X, X 1 to X 3 , Ar 1 , Ar 2 , R 1 to R 3 , a+b and c are as defined in Chemical Formula 1.
  • a and b are each an integer of 0 to 3
  • a is an integer of 0 to 2
  • b is an integer of 0 to 4.
  • the compound represented by Formula 1C' is the following Formula 1A (core 6 position), Formula 1B (core 7 position), and Formula 1C according to the substitution position of the N-containing 6-membered heterocyclic group. (Position 8 of the core), or Formula 1D (position 9 of the core) can be represented:
  • a and b are each an integer of 0 to 3
  • X is O.
  • all of X 1 to X 3 are N, or
  • X 1 and X 2 are N, and X 3 is CH, or
  • X 1 and X 3 are N, X 2 is CH, or
  • X 1 is N, X 2 and X 3 are CH, or
  • X 2 is N, and X 1 and X 3 may be CH.
  • Ar 1 and Ar 2 are each independently C 6-20 aryl, or C 2-20 heteroaryl comprising 1 or 2 heteroatoms of N, O and S,
  • Ar 1 and Ar 2 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl.
  • Ar 1 and Ar 2 are each independently phenyl, biphenylyl, naphthyl, phenanthryl, carbazolyl, dibenzofuranyl, dibenzothiophenyl, benzoxazolyl, or benzothiazolyl,
  • Ar 1 and Ar 2 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, C 1-10 alkyl and C 6-20 aryl.
  • Ar 1 and Ar 2 may be any one selected from the group consisting of, but is not limited thereto:
  • n is an integer from 0 to 7.
  • At least one of Ar 1 and Ar 2 is , or Can be
  • Ar 1 and Ar 2 may be the same as each other. Or Ar 1 and Ar 2 may be different.
  • R 1 to R 3 are each independently deuterium; C 6-20 aryl unsubstituted or substituted with deuterium; Or it may be unsubstituted or C 2-20 heteroaryl including one heteroatom of N, O and S substituted with deuterium.
  • R 1 and R 2 may each independently be hydrogen, deuterium, phenyl, phenyl substituted with 1 to 5 deuterium, carbazolyl, dibenzofuranyl, or dibenzothiophenyl.
  • R 3 is hydrogen; heavy hydrogen; Phenyl unsubstituted or substituted with deuterium; Carbazolyl unsubstituted or substituted with deuterium; Dibenzofuranyl unsubstituted or substituted with deuterium; Or it may be unsubstituted or dibenzothiophenyl substituted with deuterium.
  • substituent of Formula 1 May be any one of the substituents represented by the following formulas 3a to 3i:
  • p is an integer from 0 to 7
  • q is an integer from 0 to 8.
  • a+b which means the sum of the number of R 1 and R 2 , may be 0, 1, 2, 3, 4, 5, or 6, and c means the number of R 3 It can be 0, 1, 2, 3, 4, 5, 6, 7, or 8.
  • a+b may be 0, 1, 2, or 6, and c may be 0, 1, 2, or 8.
  • R 1 and R 2 are both deuterium, and when c is 8, R 3 may be deuterium.
  • the compound represented by Formula 1 may be prepared by a manufacturing method such as the following Scheme 1 as an example.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • X a and X' are each independently halogen, preferably X a is fluoro, X'is bromo or chloro, and the definitions for other substituents are as described above.
  • the compound represented by Formula 1 may be prepared through steps 1-1 and 1-2.
  • Step 1-1 is a step of preparing intermediate compound A3 through Suzuki-coupling reaction of starting materials A1 and A2. These Suzuki-coupling reactions are preferably carried out in the presence of a palladium catalyst and a base, respectively, and the reactor for the Suzuki-coupling reaction may be appropriately changed.
  • step 1-2 is a step of preparing a compound represented by Formula 1 in which a carbazole group is introduced into the intermediate compound A3 through an amine substitution reaction between the intermediate compound A3 and the compound A4, and such an amine substitution reaction is performed with a palladium catalyst. It is preferred to carry out in the presence of a base.
  • the reactor for the amine substitution reaction may also be appropriately changed as known in the art.
  • the method for preparing the compound represented by Formula 1 may be more specific in Preparation Examples to be described later.
  • the second compound is represented by Chemical Formula 2.
  • the second compound is a compound in which Ar 3 and Ar 4 substituents are substituted on each of two N atoms of the indolocarbazole core.
  • the electron transport property may be controlled by substituting Ar 3 and Ar 4 substituents around the indolocarbazole structure. Accordingly, when the second compound is used in the emission layer together with the first compound, the hole and electron transport characteristics can be variously adjusted, which is advantageous in balancing charge in the emission layer.
  • the second compound may be represented by any one of the following Formulas 2-1 to 2-5, depending on the position at which the benzene ring, which is the A ring, is fused with two adjacent pentagonal rings:
  • Each R 4 is independently deuterium; Substituted or unsubstituted C 6-20 aryl; Or a substituted or unsubstituted C 2-20 heteroaryl containing one or more heteroatoms of N, O and S,
  • e is an integer from 0 to 4,
  • f is an integer from 0 to 2
  • g is an integer from 0 to 4,
  • Ar 3 and Ar 4 are as defined in Chemical Formula 2.
  • Ar 3 and Ar 4 may be hole transporting substituents.
  • Ar 3 and Ar 4 are each independently C 6-60 aryl; Carbazolyl; Dibenzofuranyl; Or dibenzothiophenyl,
  • Ar 3 and Ar 4 are unsubstituted or deuterium, C 6-20 aryl, carbazolyl, phenylcarbazolyl, dibenzofuranyl and one or more substituents selected from the group consisting of dibenzothiophenyl Can be substituted.
  • Ar 3 and Ar 4 are each independently phenyl, biphenylyl, terphenylyl, quarterphenylyl, naphthyl, phenanthryl, triphenylenyl, carbazolyl, dibenzofuranyl, or dibenzothio Is phenyl,
  • Ar 3 and Ar 4 may be unsubstituted or substituted with one or more substituents selected from the group consisting of deuterium, phenyl, carbazolyl, phenylcarbazolyl, dibenzofuranyl and dibenzothiophenyl. .
  • Ar 3 and Ar 4 may each independently be any one selected from the group consisting of, but is not limited thereto:
  • R 4 is deuterium; C 6-20 aryl unsubstituted or substituted with deuterium; Or it may be unsubstituted or C 2-20 heteroaryl including one heteroatom of N, O and S substituted with deuterium.
  • R 4 is deuterium; C 6-20 aryl unsubstituted or substituted with deuterium; Carbazolyl unsubstituted or substituted with deuterium; Phenylcarbazolyl unsubstituted or substituted with deuterium; Dibenzofuranyl unsubstituted or substituted with deuterium; Or it may be unsubstituted or dibenzothiophenyl substituted with deuterium.
  • R 4 is deuterium; Phenyl unsubstituted or substituted with deuterium; Carbazolyl unsubstituted or substituted with deuterium; Phenylcarbazolyl unsubstituted or substituted with deuterium; Dibenzofuranyl unsubstituted or substituted with deuterium; Or it may be unsubstituted or dibenzothiophenyl substituted with deuterium.
  • R 4 may be deuterium, or any one selected from the group consisting of, but is not limited thereto:
  • d may be 0, 1, 2, or 10.
  • R 4 may be deuterium.
  • e may be 0, 1, or 4
  • f may be 0, 1, or 2
  • g may be 0, 1, or 4.
  • R 4 may be deuterium.
  • e+f+g is the same as d in Formulas 2-1 to 2-5, e+f+g may be 0, 1, 2, or 10.
  • the compound represented by Formula 2 may be prepared by a manufacturing method as shown in Scheme 2 below, for example.
  • the manufacturing method may be more specific in the manufacturing examples to be described later.
  • X is halogen, preferably bromo, or chloro, and the definition of other substituents is as described above.
  • the compound represented by Formula 2 is prepared by combining the starting materials B1 and B2 through an amine substitution reaction. Each of these amine substitution reactions is preferably carried out in the presence of a palladium catalyst and a base.
  • the reactor for the amine substitution reaction may be appropriately changed, and the method for preparing the compound represented by Formula 2 may be more specific in Preparation Examples to be described later.
  • the first compound and the second compound may be included in a weight ratio of 1:9 to 9:1 in the emission layer.
  • the weight ratio of the first compound and the second compound in the emission layer is 2:8 to 8:2, 3:7 to 7:3, 4:6 to 6:4 or 4:6 to 5:5 Can be
  • the emission layer may further include a dopant material in addition to the two kinds of host materials.
  • dopant substances include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • At least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting of an aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the dopant material may be included in the light emitting layer in an amount of 1 to 25% by weight based on the total weight of the host material (the sum of the weights of the compound represented by Formula 1 and the compound represented by Formula 2) and the dopant material. have.
  • the organic light emitting device may include a hole blocking layer between the light emitting layer and the electron transport layer to be described later, if necessary.
  • the hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to improve the efficiency of the organic light emitting device by increasing the probability of hole-electron coupling by controlling electron mobility and preventing excessive movement of holes. It means the layer that plays a role.
  • the hole-blocking layer includes a hole-blocking material, and examples of the hole-blocking material include: a subazine derivative including triazine; Triazole derivatives; Oxadiazole derivatives; Phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but is not limited thereto.
  • the electron transport layer is formed between the emission layer and the cathode to receive electrons from the electron injection layer and transport electrons to the emission layer.
  • the electron transport layer includes an electron transport material, and the electron transport material is a material capable of receiving electrons from the cathode and transferring them to the light emitting layer, and a material having high mobility for electrons is suitable.
  • Examples of specific electron injection and transport materials include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complex; Triazine derivatives and the like, but are not limited thereto. Or fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and their derivatives, metal complex compounds , Or a nitrogen-containing 5-membered cyclic derivative, but may be used together, but is not limited thereto.
  • the organic light-emitting device may include an electron injection layer between the electron transport layer and the cathode, if necessary.
  • the organic light-emitting device may include an electron transport and injection layer as necessary.
  • the electron transport and injection layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from an electrode and transporting received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer.
  • an electron injection and transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high mobility for electrons is suitable.
  • specific electron injection and transport materials include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complex; Triazine derivatives and the like, but are not limited thereto.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, and their derivatives, metal complex compounds , Or a nitrogen-containing 5-membered cyclic derivative, but may be used, but is not limited thereto.
  • the electron transport and injection layer may be formed as separate layers such as an electron injection layer and an electron transport layer.
  • the electron transport layer is formed on the emission layer or the hole blocking layer, and the electron injection and transport material described above may be used as the electron transport material included in the electron transport layer.
  • the electron injection layer is formed on the electron transport layer, and electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, benzoimidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and their derivatives, metal complex compounds and nitrogen-containing 5-membered ring derivatives, etc. I can.
  • the metal complex compound examples include lithium 8-hydroxyquinolinato, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited thereto.
  • FIG. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3, and a cathode 4.
  • the first compound and the second compound may be included in the emission layer.
  • FIG. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), a hole blocking layer (8), an electron transport and injection layer.
  • An example of an organic light-emitting device consisting of (8) and a cathode (4) is shown.
  • the first compound and the second compound may be included in the emission layer.
  • the organic light-emitting device according to the present invention may be manufactured by sequentially stacking the above-described configurations. At this time, using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate. And, after forming each of the above-described layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • PVD physical vapor deposition
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method of a host and a dopant.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • a glass substrate coated with a thin film of ITO (Indium Tin Oxide) to a thickness of 1,400 ⁇ was placed in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO Indium Tin Oxide
  • Fischer Co. product was used as a detergent
  • distilled water secondarily filtered with a filter made by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following HT-A compound and the following PD compound were thermally vacuum-deposited at a thickness of 100 ⁇ at a weight ratio of 95:5 to form a hole injection layer, and then only the following HT-A compound had a thickness of 1150 ⁇ .
  • the following HT-B compound was thermally vacuum deposited to a thickness of 450 ⁇ to form an electron blocking layer (electron inhibiting layer).
  • a light emitting layer was formed by vacuum depositing the compound 1-1 and compound 2-1 prepared previously as a host compound and the following GD compound as a dopant compound to a thickness of 400 ⁇ at a weight ratio of 85:15. At this time, the weight ratio of the compound 1-1 and the compound 2-1 was 1: 1.
  • the following ET-A compound was vacuum deposited to a thickness of 50 ⁇ to form a hole blocking layer.
  • the following ET-B compound and the following Liq compound were thermally vacuum deposited to a thickness of 250 ⁇ at a weight ratio of 2:1, and then LiF and magnesium were vacuum deposited to a thickness of 30 ⁇ at a weight ratio of 1:1.
  • an electron transport and injection layer was formed.
  • magnesium and silver were deposited to a thickness of 160 ⁇ in a weight ratio of 1:4 to form a cathode, thereby manufacturing an organic light emitting device.
  • the deposition rate of organic materials was maintained at 0.4 to 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride at the negative electrode was 0.3 ⁇ /sec
  • the deposition rate of silver and magnesium was 2 ⁇ /sec.
  • An organic light-emitting device was manufactured by maintaining ⁇ 10 -7 to 5 ⁇ 10 -6 torr.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of Compound 1 in Example 1.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 below was used instead of Compound 1 in Example 1.
  • Voltage, efficiency, and lifetime were measured by applying a current to the organic light-emitting devices manufactured in the above Examples and Comparative Examples, and the results are shown in Table 1 below. At this time, voltage and efficiency were measured by applying a current density of 10 mA/cm 2 . In addition, T95 in Table 1 below means the time measured until the initial luminance decreases to 95% at a current density of 20 mA/cm 2 .
  • Example 1 Compound 1-1, Compound 2-1 3.02 69.8 green 80
  • Example 2 Compound 1-2, Compound 2-3 3.01 70.0 green 86
  • Example 3 Compound 1-3, Compound 2-3 3.05 72.1 green 81
  • Example 4 Compound 1-4, Compound 2-8 3.01 70.0 green 85
  • Example 5 Compound 1-4, Compound 2-4 3.03 72.3 green 82
  • Example 5 Compound 1-5, Compound 2-5 3.08 70.7 green 80
  • Example 6 Compound 1-6, Compound 2-3 3.01 70.2 green 81
  • Example 7 Compound 1-7, Compound 2-6 3.03 71.2 green 86
  • Example 8 Compound 1-8, Compound 2-6 3.09 72.5 green 80
  • Example 9 Compound 1-9, Compound 2-4 3.03 69.5 green 87
  • Example 10 Compound 1-10, Compound 2-4 3.07 71.3 green 82
  • Example 11 Compound 1-10, Compound 2-4 3.07 71.3 green
  • the organic light emitting device of the embodiment using both the first compound and the second compound of the present invention as a host, the organic light emitting device of Comparative Examples 1 to 3 using only the first compound and the first compound And compared with the organic light emitting diodes of Comparative Examples 4 and 5 in which neither of the second compounds was used, it can be seen that it exhibits excellent characteristics in terms of efficiency and lifetime.
  • the organic light-emitting device of the above embodiment used two kinds of hosts, but the higher efficiency and higher efficiency than the organic light-emitting devices of Comparative Examples 6 and 7 employing a combination of other hosts instead of the combination of the first compound and the second compound It can be seen that it shows an excellent service life.
  • the organic light-emitting device employing the compound of the present invention has significantly improved device characteristics compared to the comparative example device. Means to represent.
  • substrate 2 anode

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 발광층에 2종의 호스트 화합물을 포함하여 구동전압 및/또는 수명특성을 향상시키는 유기발광소자를 제공한다.

Description

유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2019년 8월 9일자 한국 특허 출원 제10-2019-0097650호 및 2020년 8월 5일자 한국 특허 출원 제10-2020-0097980호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 유기 발광 소자에 관한 것이다.
본 발명은 하기의 유기 발광 소자를 제공한다:
양극;
상기 양극과 대향하여 구비된 음극; 및
상기 양극과 음극 사이에 구비된 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 제1 화합물 및 하기 화학식 2로 표시되는 제2 화합물을 포함한다:
[화학식 1]
Figure PCTKR2020010441-appb-img-000001
상기 화학식 1에서,
X는 O 또는 S이고,
X 1 내지 X 3는 각각 독립적으로 N 또는 CH이고, 단, X 1 내지 X 3 중 적어도 하나는 N이고,
Ar 1 및 Ar 2는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
R 1 내지 R 3는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
a+b는 0 내지 6의 정수이고,
c는 0 내지 8의 정수이고,
[화학식 2]
Figure PCTKR2020010441-appb-img-000002
상기 화학식 2에서,
A는 인접한 두 개의 오각 고리와 융합된 벤젠 고리이고,
Ar 3 및 Ar 4는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
R 4는 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
d는 0 내지 10의 정수이고,
a, b, c 및 d가 각각 2 이상인 경우, 괄호 안의 치환기는 서로 동일하거나 상이하다.
상술한 유기 발광 소자는 발광층에 2종의 호스트 화합물을 포함하여, 유기 발광 소자에서 효율, 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자 수송 및 주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2020010441-appb-img-000003
, 또는
Figure PCTKR2020010441-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미하고, D는 중수소를 의미하고, Ph는 페닐기를 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020010441-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020010441-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020010441-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이에 한정되는 것은 아니다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020010441-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 이종 원소로 O, N, Si 및 S 중 1개 이상의 헤테로원자를 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기, 아릴실릴기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴에 관한 설명이 적용될 수 있다.
양극; 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비된 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 제1 화합물 및 상기 화학식 2로 표시되는 제2 화합물을 포함하는 발광 소자를 제공한다.
본 발명에 따른 유기 발광 소자는 발광층에 특정 구조를 갖는 2종의 화합물을 호스트 물질로 동시에 포함하여, 유기 발광 소자에서 효율, 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
이하 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는 필요에 따라 양극과 후술하는 정공수송층 사이에 정공주입층을 포함할 수 있다.
상기 정공주입층은 상기 양극 상에 위치하여, 양극으로부터 정공을 주입하는 층으로, 정공 주입 물질을 포함한다. 이러한 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 엑시톤의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 특히, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 적합하다.
상기 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
정공수송층
본 발명에 따른 유기 발광 소자는 양극과 발광층 사이에 정공수송층을 포함할 수 있다. 상기 정공수송층은 양극 또는 양극 상에 형성된 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질을 포함한다. 상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이에 한정되는 것은 아니다.
전자저지층
본 발명에 따른 유기 발광 소자는 필요에 따라 정공수송층과 발광층 사이에 전자저지층을 포함할 수 있다. 상기 전자저지층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자저지층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
발광층
본 발명에 따른 유기 발광 소자는 양극과 음극 사이에 발광층을 포함하고, 상기 발광층은 상기 제1 화합물 및 상기 제2 화합물을 호스트 물질로 포함한다. 구체적으로, 상기 제1 화합물은 전자 수송 능력이 정공 수송 능력보다 우수한 N형 호스트 물질로 기능하고, 상기 제2 화합물은 정공 수송 능력이 전자 수송 능력보다 우수한 P형 호스트 물질로 기능하여, 발광층 내 정공과 전자의 비율을 적절하게 유지시킬 수 있다. 이에 따라, 엑시톤(exciton)이 발광층 전체에서 고르게 발광하여 유기 발광 소자의 발광 효율과 수명 특성이 동시에 향상될 수 있다.
이하, 상기 제1 화합물 및 상기 제2 화합물을 순차적으로 설명한다.
(제1 화합물)
상기 제1 화합물은 상기 화학식 1로 표시된다. 구체적으로 상기 제1 화합물은 디벤조퓨란/디벤조티오펜 코어에 카바졸일기 및 N 함유 6원-헤테로고리기가 동시에 치환된 화합물로, 이러한 화합물은 이러한 치환기를 모두 갖지 않는 화합물에 비하여 분자 내 전하이동(inter charge transfer)이 잘 이루어져 분자의 안정성이 높고, 정공 및 전자 수송이 효과적으로 이루어 질 수 있다. 또한, 이러한 효과는 후술하는 제2 화합물을 발광층의 호스트로 같이 사용되는 경우 더욱 극대화될 수 있다.
또한, 상기 제1 화합물은 적어도 하나의 중수소를 포함할 수 있다.
보다 구체적으로, 상기 화학식 1에서, Ar 1 및 Ar 2 중 적어도 하나가 중수소로 치환된 C 6-60 아릴; 또는 중수소로 치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이거나; 또는
R 1 내지 R 3 중 적어도 하나가 중수소; 중수소로 치환된 C 6-60 아릴; 또는 중수소로 치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고, a+b+c가 1 이상, 또는 1 내지 14의 정수일 수 있다.
또는, Ar 1 및 Ar 2 중 적어도 하나가 중수소로 치환된 C 6-60 아릴; 또는 중수소로 치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이면서, R 1 내지 R 3 중 적어도 하나가 중수소; 중수소로 치환된 C 6-60 아릴; 또는 중수소로 치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고, a+b+c가 1 이상일 수 있다.
이때, 상기 제1 화합물 하기 화학식 1'로 표시될 수 있다:
[화학식 1']
Figure PCTKR2020010441-appb-img-000009
상기 화학식 1'에서,
R 21 내지 R 24 중 하나가
Figure PCTKR2020010441-appb-img-000010
이고, 나머지는 각각 독립적으로 R 2의 정의를 참조하고, R 11 내지 R 14 중 하나가
Figure PCTKR2020010441-appb-img-000011
이고, 나머지는 각각 독립적으로 R 1의 정의를 참조하거나, 또는
R 21 내지 R 24은 각각 독립적으로 R 2의 정의를 참조하고, R 14
Figure PCTKR2020010441-appb-img-000012
이고, R 11 내지 R 13 중 하나가
Figure PCTKR2020010441-appb-img-000013
이고, 나머지는 각각 독립적으로 R 1의 정의를 참조한다.
또한, 상기 제1 화합물이 상기 화학식 1'로 표시되는 경우, 카바졸일기 및 N 함유 6원-헤테로고리기가 다른 위치에 치환된 화합물에 비하여 보다 분자 내 전하 이동 및 분자의 안정성 측면에서 유리할 수 있다.
보다 구체적으로는, 상기 제1 화합물은 하기 화학식 1A' 내지 1E' 중 어느 하나로 표시될 수 있다:
[화학식 1A']
Figure PCTKR2020010441-appb-img-000014
[화학식 1B']
Figure PCTKR2020010441-appb-img-000015
[화학식 1C']
Figure PCTKR2020010441-appb-img-000016
[화학식 1D']
Figure PCTKR2020010441-appb-img-000017
[화학식 1E']
Figure PCTKR2020010441-appb-img-000018
상기 화학식 1A' 내지 1E'에서,
X, X 1 내지 X 3, Ar 1, Ar 2, R 1 내지 R 3, a+b 및 c는 상기 화학식 1에서 정의한 바와 같다.
이때, 상기 화학식 1A' 내지 1D'에서, a 및 b는 각각 0 내지 3의 정수이고,
상기 화학식 1E'에서, a는 0 내지 2의 정수이고, b는 0 내지 4의 정수이다.
보다 구체적으로, 상기 화학식 1C'로 표시되는 화합물은, N 함유 6원-헤테로고리기의 치환 위치에 따라 하기 화학식 1A(코어의 6번 위치), 화학식 1B(코어의 7번 위치), 화학식 1C(코어의 8번 위치), 또는 화학식 1D(코어의 9번 위치)로 표시할 수 있다:
[화학식 1A]
Figure PCTKR2020010441-appb-img-000019
[화학식 1B]
Figure PCTKR2020010441-appb-img-000020
[화학식 1C]
Figure PCTKR2020010441-appb-img-000021
[화학식 1D]
Figure PCTKR2020010441-appb-img-000022
상기 화학식 1A 내지 1D에서,
a 및 b는 각각 0 내지 3의 정수이고,
나머지 치환기에 대한 설명은 상기 화학식 1에서 정의한 바와 같다.
바람직하게는, X는 O이다.
바람직하게는, X 1 내지 X 3는 모두 N이거나,
X 1 및 X 2는 N이고, X 3는 CH이거나,
X 1 및 X 3는 N이고, X 2는 CH이거나,
X 1은 N이고, X 2 및 X 3는 CH이거나, 또는
X 2은 N이고, X 1 및 X 3는 CH일 수 있다.
바람직하게는, Ar 1 및 Ar 2는 각각 독립적으로 C 6-20 아릴, 또는 N, O 및 S 중 1개 또는 2개의 헤테로원자를 포함하는 C 2-20 헤테로아릴이고,
여기서, 상기 Ar 1 및 Ar 2는 비치환되거나, 또는 중수소, C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
보다 바람직하게는, Ar 1 및 Ar 2는 각각 독립적으로 페닐, 비페닐릴, 나프틸, 페난트릴, 카바졸일, 디벤조퓨라닐, 디벤조티오페닐, 벤즈옥사졸일, 또는 벤조티아졸일이고,
여기서, 상기 Ar 1 및 Ar 2는 비치환되거나, 또는 중수소, C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
예를 들어, Ar 1 및 Ar 2는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2020010441-appb-img-000023
Figure PCTKR2020010441-appb-img-000024
상기에서,
m은 0 내지 7의 정수이다.
또한, Ar 1 및 Ar 2 중 적어도 하나는
Figure PCTKR2020010441-appb-img-000025
, 또는
Figure PCTKR2020010441-appb-img-000026
일 수 있다.
또한, Ar 1 및 Ar 2는 서로 동일할 수 있다. 또는 Ar 1 및 Ar 2는 상이할 수 있다.
바람직하게는, R 1 내지 R 3는 각각 독립적으로 중수소; 비치환되거나, 또는 중수소로 치환된 C 6-20 아릴; 또는 비치환되거나, 또는 중수소로 치환된 N, O 및 S 중 1개의 헤테로원자를 포함하는 C 2-20 헤테로아릴일 수 있다.
바람직하게는, R 1 및 R 2는 각각 독립적으로 수소, 중수소, 페닐, 1개 내지 5개의 중수소로 치환된 페닐, 카바졸일, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있다.
또한, R 3는 수소; 중수소; 비치환되거나, 또는 중수소로 치환된 페닐; 비치환되거나, 또는 중수소로 치환된 카바졸일; 비치환되거나, 또는 중수소로 치환된 디벤조퓨라닐; 또는 비치환되거나, 또는 중수소로 치환된 디벤조티오페닐일 수 있다.
또한, 상기 화학식 1의 치환기
Figure PCTKR2020010441-appb-img-000027
는 하기 화학식 3a 내지 3i로 표시되는 치환기 중 어느 하나일 수 있다:
Figure PCTKR2020010441-appb-img-000028
상기 화학식 3a 내지 3i에서,
p는 0 내지 7의 정수이고,
q는 0 내지 8의 정수이다.
또한, 상기 화학식 1에서, R 1 및 R 2의 개수의 합을 의미하는 a+b는 0, 1, 2, 3, 4, 5, 또는 6일 수 있고, R 3의 개수를 의미하는 c는 0, 1, 2, 3, 4, 5, 6, 7, 또는 8일 수 있다.
바람직하게는, a+b는 0, 1, 2, 또는 6이고, c는 0, 1, 2, 또는 8일 수 있다. 이때, a+b가 6인 경우 R 1 및 R 2는 모두 중수소이고, c가 8인 경우 R 3는 중수소일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2020010441-appb-img-000029
Figure PCTKR2020010441-appb-img-000030
Figure PCTKR2020010441-appb-img-000031
Figure PCTKR2020010441-appb-img-000032
Figure PCTKR2020010441-appb-img-000033
Figure PCTKR2020010441-appb-img-000034
Figure PCTKR2020010441-appb-img-000035
Figure PCTKR2020010441-appb-img-000036
Figure PCTKR2020010441-appb-img-000037
Figure PCTKR2020010441-appb-img-000038
Figure PCTKR2020010441-appb-img-000039
Figure PCTKR2020010441-appb-img-000040
Figure PCTKR2020010441-appb-img-000041
Figure PCTKR2020010441-appb-img-000042
Figure PCTKR2020010441-appb-img-000043
Figure PCTKR2020010441-appb-img-000044
Figure PCTKR2020010441-appb-img-000045
Figure PCTKR2020010441-appb-img-000046
Figure PCTKR2020010441-appb-img-000047
Figure PCTKR2020010441-appb-img-000048
Figure PCTKR2020010441-appb-img-000049
Figure PCTKR2020010441-appb-img-000050
Figure PCTKR2020010441-appb-img-000051
Figure PCTKR2020010441-appb-img-000052
Figure PCTKR2020010441-appb-img-000053
Figure PCTKR2020010441-appb-img-000054
Figure PCTKR2020010441-appb-img-000055
Figure PCTKR2020010441-appb-img-000056
Figure PCTKR2020010441-appb-img-000057
Figure PCTKR2020010441-appb-img-000058
Figure PCTKR2020010441-appb-img-000059
Figure PCTKR2020010441-appb-img-000060
Figure PCTKR2020010441-appb-img-000061
Figure PCTKR2020010441-appb-img-000062
Figure PCTKR2020010441-appb-img-000063
Figure PCTKR2020010441-appb-img-000064
Figure PCTKR2020010441-appb-img-000065
Figure PCTKR2020010441-appb-img-000066
Figure PCTKR2020010441-appb-img-000067
Figure PCTKR2020010441-appb-img-000068
Figure PCTKR2020010441-appb-img-000069
Figure PCTKR2020010441-appb-img-000070
Figure PCTKR2020010441-appb-img-000071
Figure PCTKR2020010441-appb-img-000072
Figure PCTKR2020010441-appb-img-000073
Figure PCTKR2020010441-appb-img-000074
Figure PCTKR2020010441-appb-img-000075
Figure PCTKR2020010441-appb-img-000076
Figure PCTKR2020010441-appb-img-000077
Figure PCTKR2020010441-appb-img-000078
Figure PCTKR2020010441-appb-img-000079
Figure PCTKR2020010441-appb-img-000080
Figure PCTKR2020010441-appb-img-000081
Figure PCTKR2020010441-appb-img-000082
Figure PCTKR2020010441-appb-img-000083
.
한편, 상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
[반응식 1]
Figure PCTKR2020010441-appb-img-000084
상기 반응식 3에서, X a 및 X'은 각각 독립적으로 할로겐이고, 바람직하게는 X a는 플루오로이고, X'은 브로모, 또는 클로로이며, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 단계 1-1 및 단계 1-2를 통하여 제조될 수 있다.
상기 단계 1-1은 출발물질 A1 및 A2의 Suzuki-coupling 반응을 통해 중간체 화합물 A3를 제조하는 단계이다. 이러한 Suzuki-coupling 반응은 각각 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하며, 상기 Suzuki-coupling 반응을 위한 반응기는 적절히 변경될 수 있다.
또한, 상기 단계 1-2는 중간체 화합물 A3와 화합물 A4와의 아민 치환 반응을 통하여 중간체 화합물 A3에 카바졸기가 도입된 상기 화학식 1로 표시되는 화합물을 제조하는 단계로, 이러한 아민 치환 반응은 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하다. 또한, 상기 아민 치환 반응을 위한 반응기 또한 당해 분야에서 알려진 대로 적절히 변경될 수 있다.
이러한 상기 화학식 1로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
(제2 화합물)
상기 제2 화합물은 상기 화학식 2로 표시된다. 구체적으로, 상기 제2 화합물은 인돌로카바졸 코어의 2개의 N 원자 각각에 Ar 3 및 Ar 4 치환기가 치환된 화합물이다. 특히, 상기 제2 화합물은 인돌로카바졸 구조가 정공 특성이 우수하므로, 이러한 인돌로카바졸 구조를 중심으로 Ar 3 및 Ar 4 치환기를 치환하여 전자 수송 특성을 조절할 수 있다. 이에 따라 상기 제2 화합물을 상기 제1 화합물과 함께 발광층에 사용하는 경우, 정공 및 전자 수송 특성을 다양하게 조절할 수 있어 발광층 내의 전하 균형을 맞추는데 유리하다.
상기 제2 화합물은, A 고리인 벤젠 고리가 인접한 두 개의 오각 고리와 융합되는 위치에 따라 하기 화학식 2-1 내지 2-5 중 어느 하나로 표시될 수 있다:
[화학식 2-1]
Figure PCTKR2020010441-appb-img-000085
[화학식 2-2]
Figure PCTKR2020010441-appb-img-000086
[화학식 2-3]
Figure PCTKR2020010441-appb-img-000087
[화학식 2-4]
Figure PCTKR2020010441-appb-img-000088
[화학식 2-5]
Figure PCTKR2020010441-appb-img-000089
상기 화학식 2-1 내지 2-5에서,
R 4는 각각 독립적으로 중수소; 치환 또는 비치환된 C 6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-20 헤테로아릴이고,
e는 0 내지 4의 정수이고,
f는 0 내지 2의 정수이고,
g는 0 내지 4의 정수이고,
Ar 3 및 Ar 4는 상기 화학식 2에서 정의한 바와 같다.
바람직하게는, Ar 3 및 Ar 4는 정공 수송성 치환기일 수 있다. 구체적으로, Ar 3 및 Ar 4는 각각 독립적으로 C 6-60 아릴; 카바졸일; 디벤조퓨라닐; 또는 디벤조티오페닐이고,
여기서, 상기 Ar 3 및 Ar 4는 비치환되거나, 또는 중수소, C 6-20 아릴, 카바졸일, 페닐카바졸일, 디벤조퓨라닐 및 디벤조티오페닐로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
보다 바람직하게는, Ar 3 및 Ar 4는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸, 페난트릴, 트리페닐레닐, 카바졸일, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
여기서, 상기 Ar 3 및 Ar 4는 비치환되거나, 또는 중수소, 페닐, 카바졸일, 페닐카바졸일, 디벤조퓨라닐 및 디벤조티오페닐로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
예를 들어, Ar 3 및 Ar 4는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2020010441-appb-img-000090
Figure PCTKR2020010441-appb-img-000091
.
또한, 바람직하게는, R 4는 중수소; 비치환되거나, 또는 중수소로 치환된 C 6-20 아릴; 또는 비치환되거나, 또는 중수소로 치환된 N, O 및 S 중 1개의 헤테로원자를 포함하는 C 2-20 헤테로아릴일 수 있다.
바람직하게는, R 4는 중수소; 비치환되거나, 또는 중수소로 치환된 C 6-20 아릴; 비치환되거나, 또는 중수소로 치환된 카바졸일; 비치환되거나, 또는 중수소로 치환된 페닐카바졸일; 비치환되거나, 또는 중수소로 치환된 디벤조퓨라닐; 또는 비치환되거나, 또는 중수소로 치환된 디벤조티오페닐일 수 있다.
보다 바람직하게는, R 4는 중수소; 비치환되거나, 또는 중수소로 치환된 페닐; 비치환되거나, 또는 중수소로 치환된 카바졸일; 비치환되거나, 또는 중수소로 치환된 페닐카바졸일; 비치환되거나, 또는 중수소로 치환된 디벤조퓨라닐; 또는 비치환되거나, 또는 중수소로 치환된 디벤조티오페닐일 수 있다.
예를 들어, R 4는 중수소, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2020010441-appb-img-000092
.
바람직하게는, d는 0, 1, 2, 또는 10일 수 있다. 이때, d가 10인 경우, R 4는 중수소일 수 있다.
구체적으로 예를 들어, 상기 화학식 2-1 내지 2-5에서, e는 0, 1, 또는 4이고, f는 0, 1, 또는 2이고, g는 0, 1, 또는 4일 수 있다. 이때, e가 4이고, f가 2이고, g가 4인 경우 R 4는 중수소일 수 있다.
또한, 상기 화학식 2-1 내지 2-5에서 e+f+g는 d와 동일하므로, e+f+g는 0, 1, 2, 또는 10일 수 있다.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2020010441-appb-img-000093
Figure PCTKR2020010441-appb-img-000094
Figure PCTKR2020010441-appb-img-000095
Figure PCTKR2020010441-appb-img-000096
Figure PCTKR2020010441-appb-img-000097
Figure PCTKR2020010441-appb-img-000098
Figure PCTKR2020010441-appb-img-000099
Figure PCTKR2020010441-appb-img-000100
Figure PCTKR2020010441-appb-img-000101
Figure PCTKR2020010441-appb-img-000102
Figure PCTKR2020010441-appb-img-000103
Figure PCTKR2020010441-appb-img-000104
Figure PCTKR2020010441-appb-img-000105
Figure PCTKR2020010441-appb-img-000106
Figure PCTKR2020010441-appb-img-000107
Figure PCTKR2020010441-appb-img-000108
.
한편, 상기 화학식 2로 표시되는 화합물은 일례로 하기 반응식 2와 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
[반응식 2]
Figure PCTKR2020010441-appb-img-000109
상기 반응식 2에서, X"는 할로겐이고, 바람직하게는 브로모, 또는 클로로이고, 다른 치환기에 대한 정의는 앞서 설명한 바와 같다.
구체적으로, 상기 화학식 2로 표시되는 화합물은 아민 치환 반응을 통해 출발물질 B1 및 B2가 결합하여 제조된다. 이러한 아민 치환 반응은 각각 팔라듐 촉매와 염기의 존재 하에 수행하는 것이 바람직하다. 또한, 상기 아민 치환 반응을 위한 반응기는 적절히 변경될 수 있고, 화학식 2로 표시되는 화합물의 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 상기 발광층 내에 상기 제1 화합물 및 상기 제2 화합물은 1:9 내지 9:1의 중량비로 포함될 수 있다. 상기 발광층 내에 상기 제1 화합물이 지나치게 적게 포함되는 경우 발광층 내 전자전달이 원활하지 않아 소자 전반적으로 정공과 전자의 균형이 맞지 않게 되어, 제작된 소자의 전압, 효율 및 수명에 문제가 있을 수 있고, 발광층 내에 상기 제2 화합물이 상기 제1 화합물 대비 지나치게 적게 포함되는 경우 수명이 낮아진다는 문제가 있을 수 있다. 예를 들어, 상기 발광층 내에 상기 제1 화합물 및 상기 제2 화합물의 중량비는 2:8 내지 8:2, 3:7 내지 7:3, 4:6 내지 6:4 또는 4:6 내지 5:5일 수 있다.
한편, 상기 발광층은 상기 2종의 호스트 물질 외에 도펀트 물질을 더 포함할 수 있다. 이러한 도펀트 물질로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되는 것은 아니다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되는 것은 아니다.
이때, 도펀트 물질은, 상기 발광층 내에 상기 호스트 물질(상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물의 중량의 합)과 상기 도펀트 물질의 총중량을 기준으로 1 내지 25 중량%로 포함될 수 있다.
정공저지층
본 발명에 따른 유기 발광 소자는 필요에 따라 발광층과 후술하는 전자수송층 사이에 정공저지층을 포함할 수 있다. 상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
전자수송층
상기 전자수송층은 상기 발광층과 음극 사이에 형성되어 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 역할을 한다. 상기 전자수송층은 전자 수송 물질을 포함하고, 이러한 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
전자 수송 및 주입층
본 발명에 따른 유기 발광 소자는 필요에 따라 전자수송층과 음극 사이에 전자주입층을 포함할 수 있다. 또는, 상기 유기 발광 소자는 필요에 따라 전자 수송 및 주입층을 포함할 수 있다.
상기 전자 수송 및 주입층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 전자 수송 및 주입층은 전자주입층 및 전자수송층과 같은 별개의 층으로도 형성될 수 있다. 이와 같은 경우, 전자 수송층은 상기 발광층 또는 상기 정공저지층 상에 형성되고, 상기 전자 수송층에 포함되는 전자 수송 물질로는 상술한 전자 주입 및 수송 물질이 사용될 수 있다. 또한, 전자 주입층은 상기 전자 수송층 상에 형성되고, 상기 전자 주입층에 포함되는 전자 주입 물질로는 LiF, NaCl, CsF, Li 2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 벤조이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 사용될 수 있다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1에 예시하였다. 도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 제1 화합물 및 상기 제2 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자 수송 및 주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 제1 화합물 및 상기 제2 화합물은 상기 발광층에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[합성예]
합성예 1: 화합물 1-1의 합성
Figure PCTKR2020010441-appb-img-000110
단계 1) 화합물 1-1-a의 합성
질소 분위기에서 2-브로모-5-클로로페놀(20 g, 96.4 mmol)와 (2,6-디플루오로페닐)보론산(15.2 g, 96.4 mmol)를 테트라하이드로 퓨란 400ml에 넣고 교반 및 환류하였다. 이 후 소듐카보네이트(30.7 g, 289.2mmol)를 물31 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(3.3 g, 2.9mmol)을 투입하였다. 3시간 반응 후 상온으로 식인 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름 20배 464 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트 재결정을 통해 흰색의 고체 화합물 1-1-a(16.5g, 71%, MS: [M+H]+ = 241.6)를 제조하였다.
단계 2) 화합물 1-1-b의 합성
1-1-a(15 g, 62.3 mmol)와 0(15.2 g, 62.3mmol)와 포타슘카보에니트(25.8 g, 187 mmol)를 투입하고 다이메틸포름아마이드 300ml에 넣고 교반 및 환류하였다. 3 시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 30 배 413 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 1-1-b(10.7g, 78%, MS: [M+H]+ = 221.6)를 제조하였다.
단계 3) 화합물 1-1-c의 합성
질소 분위기에서 1-1-b(20 g, 90.6 mmol)와 비스(피나콜라토)디보론(23 g, 90.6mmol)를 Diox 400ml에 넣고 교반 및 환류하였다. 이 후 제3인산칼륨(57.7 g, 271.9mmol)을 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(1.6 g, 2.7mmol) 및 트리시클로헥실포스핀 (1.5 g, 5.4mmol)을 투입하였다. 2 시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 10 배 283 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올 재결정을 통해 갈색의 고체 화합물 1-1-c(22.6g, 80%, MS: [M+H]+ = 313.2)를 제조하였다.
단계 4) 화합물 1-1-d의 합성
질소 분위기에서 1-c(20 g, 64.1 mmol)와 2-클로로-4-(디벤조[b,d]퓨란-1-일)-6-페닐-1,3,5-트리아진(22.9 g, 64.1 mmol)를 테트라하이드로 퓨란 400ml에 넣고 교반 및 환류하였다. 이 후 소듐카보네이트(20.4 g, 192.2 mmol)를 물20 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(2.2 g, 1.9 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식인 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시클로로포름 20배 647 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 노란색의 고체 화합물 1-1-d(22.3g, 69%, MS: [M+H]+ = 505.6)를 제조하였다.
단계 5) 화합물 1-1의 합성
질소 분위기에서 1-d(15 g, 29.7 mmol)와 9H-카바졸-1,2,3,4,5,6,7,8-d8(5.2 g, 29.7mmol)를 다이메틸포름아마이드 300ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보에니트(12.3 g, 89.2mmol)를 투입하고 가온 및 교반하였다. 3 시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 30 배 591 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 노란색의 고체 화합물 1(11.4g, 58%, MS: [M+H] + = 663.8)을 제조하였다.
합성예 2: 화합물 1-2의 합성
Figure PCTKR2020010441-appb-img-000111
합성예 1에서, 2-클로로-4-(디벤조[b,d]퓨란-1-일)-6-페닐-1,3,5-트리아진을 9-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-9H-카바졸로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-2(MS: [M+H] + = 662.3))를 제조하였다.
합성예 3: 화합물 1-3의 합성
Figure PCTKR2020010441-appb-img-000112
합성예 1에서, 2-브로모-5-클로로페놀, 2-클로로-4-(디벤조[b,d]퓨란-3-일)-1-페닐-1,3,5-트리아진 및 9H-카바졸-1,2,3,4,5,6,7,8-d8을 각각 2-브로모-6-클로로페놀, 2-클로로-4-페닐-6-(페닐-d5)-1,3,5-트리아진 및 4-페닐-9H-카바졸으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-3(MS[M+H] += 646.2)을 제조하였다.
합성예 4: 화합물 1-4의 합성
Figure PCTKR2020010441-appb-img-000113
합성예 1에서, (2,6-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진을 각각 (2,5-디플루오로페닐)보론산 및 2-클로로-4,6-디페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-4(MS[M+H] += 573.2)을 제조하였다.
합성예 5: 화합물 1-5의 합성
Figure PCTKR2020010441-appb-img-000114
합성예 1에서, 2-브로모-5-클로로페놀 및 (2,6-디플루오로페닐)보론산을 각각 2-브로모-3-클로로페놀 및 (2,5-디플루오로페닐)보론산으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-5(MS[M+H] += 663.2)을 제조하였다.
합성예 6: 화합물 1-6의 합성
Figure PCTKR2020010441-appb-img-000115
합성예 1에서, 2-브로모-5-클로로페놀, (2,6-디플루오로페닐)보론산, 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진 및 9H-카바졸-1,2,3,4,5,6,7,8-d8을 각각 2-브로모-3-클로로페놀, (2,4-디플루오로페닐)보론산, 2-클로로-4,6-디페닐-1,3,5-트리아진 및 4-(페닐-d5)-9H-카바졸로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-6(MS[M+H] += 646.2)을 제조하였다.
합성예 7: 화합물 1-7의 합성
Figure PCTKR2020010441-appb-img-000116
합성예 1에서, 2-브로모-5-클로로페놀, (2,6-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-1-일)-6-페닐-1,3,5-트리아진을 각각 2-브로모-3-클로로페놀, (2,4-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-4-일)-6-페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-7(MS[M+H] += 663.2)을 제조하였다.
합성예 8: 화합물 1-8의 합성
Figure PCTKR2020010441-appb-img-000117
합성예 1에서, 2-브로모-5-클로로페놀, (2,6-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진을 각각 2-브로모-3-클로로페놀, (2,4-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-1-일)-6-페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-8(MS[M+H] += 663.2)을 제조하였다.
합성예 9: 화합물 1-9의 합성
Figure PCTKR2020010441-appb-img-000118
합성예 1에서, 2-브로모-5-클로로페놀, (2,6-디플루오로페닐)보론산, 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진 및 9H-카바졸-1,2,3,4,5,6,7,8-d8을 각각 2-브로모-3-클로로-6-플루오로페놀, (2-플루오로)보론산, 2-클로로-4,6-디페닐-1,3,5-트리아진 및 4-(페닐-d5)-9H-카바졸으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-9(MS[M+H] += 646.2)을 제조하였다.
합성예 10: 화합물 1-10의 합성
Figure PCTKR2020010441-appb-img-000119
합성예 1에서, (2,6-디플루오로페닐)보론산, 2-클로로-4-(디벤조[b,d]퓨란-1-일)-6-페닐-1,3,5-트리아진 및 9H-카바졸-1,2,3,4,5,6,7,8-d8을 각각 (2,4-디플루오로페닐)보론산, 2-클로로-4-페닐-6-(페닐-d5)-1,3,5-트리아진 및 3-페닐-9H-카바졸으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-10(MS[M+H] += 646.2)을 제조하였다.
합성예 11: 화합물 1-11의 합성
Figure PCTKR2020010441-appb-img-000120
합성예 1에서, (2,6-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진을 각각 (2,3-디플루오로페닐)보론산 및 2-([1,1'-비페닐]-4-일)-4-클로로-6-페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-11(MS[M+H] += 648.2)을 제조하였다.
합성예 12: 화합물 1-12의 합성
Figure PCTKR2020010441-appb-img-000121
합성예 1에서, (2,6-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진을 각각 (2,3-디플루오로페닐)보론산 및 2-([1,1'-비페닐]-3-일)-4-클로로-6-페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-12(MS[M+H] += 648.2)을 제조하였다.
합성예 13: 화합물 1-13의 합성
Figure PCTKR2020010441-appb-img-000122
합성예 1에서, 2-브로모-5-클로로페놀, (2,6-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진을 각각 2-브로모-3-클로로페놀, (2,3-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]티오펜-4-일)-6-페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-13(MS[M+H] += 679.2)을 제조하였다.
합성예 14: 화합물 1-14의 합성
Figure PCTKR2020010441-appb-img-000123
합성예 1에서, 2-브로모-5-클로로페놀, (2,6-디플루오로페닐)보론산, 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진 및 9H-카바졸-1,2,3,4,5,6,7,8-d8을 각각 2-브로모-3-클로로페놀, (2,3-디플루오로페닐)보론산, 2-클로로-4-페닐-6-(페닐-d5)-1,3,5-트리아진 및 4-페닐-9H-카바졸으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-14(MS[M+H] += 646.2)를 제조하였다.
합성예 15: 화합물 1-15의 합성
Figure PCTKR2020010441-appb-img-000124
합성예 1에서, 2-브로모-5-클로로페놀, (2,6-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-3-일)-6-페닐-1,3,5-트리아진을 각각 2-브로모-3-클로로페놀, (2,3-디플루오로페닐)보론산 및 2-클로로-4-(디벤조[b,d]퓨란-1-일)-6-페닐-1,3,5-트리아진 및 9H-카바졸-1,2,3,4,5,6,7,8-d8으로 변경하여 사용한 것을 제외하고는, 화합물 1-1의 제조 방법과 동일한 제조 방법으로 화합물 1-15(MS[M+H] += 663.2)을 제조하였다.
합성예 16: 화합물 2-1의 합성
Figure PCTKR2020010441-appb-img-000125
단계 1) 화합물 2-1-a의 합성
질소 분위기에서 11,12-디하이드로인돌로[2,3-a]카바졸(30 g, 117 mmol)와 브로모벤젠(18.4 g, 117 mmol)를 톨루엔 600 ml에 넣고 교반 및 환류하였다. 이 후 나트륨 터셔리-부톡사이드(33.8 g, 351.1mmol)를 투입하고 충분히 교반한 후 비스(트리 터셔리-부틸포스핀)팔라듐(1.8 g, 3.5mmol) 을 투입하였다. 5시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 10 배 389 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 노랑의 고체 화합물 2-1-a(30 g, 77%, MS: [M+H]+ = 333.4)을 제조하였다.
단계 2) 화합물 2-1의 합성
질소 분위기에서 2-1-a(30 g, 90.2 mmol)와 4-클로로-1,1':3',1''-터페닐-2'',3'',4'',5'',6''-d5(23.2 g, 90.2mmol)를 톨루엔 600 ml에 넣고 교반 및 환류하였다. 이 후 나트륨 터셔리-부톡사이드 (26 g, 270.7mmol)를 투입하고 충분히 교반한 후 비스(트리 터셔리-부틸포스핀)팔라듐(1.4 g, 2.7mmol)을 투입하였다. 4시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 10 배 511 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트를 이용하여 실리카 컬럼을 통해 정제하여 흰색의 고체 화합물 2-1(39.3 g, 77%, MS: [M+H]+ = 566.7)을 제조하였다.
합성예 17: 화합물 2-2의 합성
Figure PCTKR2020010441-appb-img-000126
합성예 16에서, 11,12-디하이드로인돌로[2,3-a]카바졸, 브로모벤젠 및 4-클로로-1,1':3',1''-터페닐-2'',3'',4'',5'',6''-d5를 각각 5,7-디하이드로인돌로[2,3-b]카바졸, 4-클로로-1,1'-비페닐-2',3',4',5',6'-d5 및 3-클로로-1,1':4',1''-터페닐으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-2(MS[M+H] += 642.8)을 제조하였다.
합성예 18: 화합물 2-3의 합성
Figure PCTKR2020010441-appb-img-000127
합성예 16에서, 11,12-디하이드로인돌로[2,3-a]카바졸, 브로모벤젠 및 4-클로로-1,1':3',1''-터페닐-2'',3'',4'',5'',6''-d5를 각각 5,8-디하이드로인돌로[2,3-c]카바졸, 4-클로로-1,1'-비페닐 및 4-클로로-1,1':3',1''-터페닐으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-3(MS[M+H] += 637.3)을 제조하였다.
합성예 19: 화합물 2-4의 합성
Figure PCTKR2020010441-appb-img-000128
합성예 16에서, 11,12-디하이드로인돌로[2,3-a]카바졸, 브로모벤젠 및 4-클로로-1,1':3',1''-터페닐-2'',3'',4'',5'',6''-d5를 각각 5,8-디하이드로인돌로[2,3-c]카바졸-1,2,3,4,6,7,9,10,11,12-d10으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-4(MS[M+H] += 561.2)을 제조하였다.
합성예 20: 화합물 2-5의 합성
Figure PCTKR2020010441-appb-img-000129
합성예 16에서, 11,12-디하이드로인돌로[2,3-a]카바졸, 브로모벤젠 및 4-클로로-1,1':3',1''-터페닐-2'',3'',4'',5'',6''-d5를 각각 5,8-디하이드로인돌로[2,3-c]카바졸, 3-브로모디벤조[b,d]퓨란 및 4-클로로-1,1'-비페닐-2',3',4',5',6'-d5 으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-5(MS[M+H] += 580.2)을 제조하였다.
합성예 21: 화합물 2-6의 합성
Figure PCTKR2020010441-appb-img-000130
합성예 16에서, 11,12-디하이드로인돌로[2,3-a]카바졸, 브로모벤젠 및 4-클로로-1,1':3',1''-터페닐-2'',3'',4'',5'',6''-d5를 각각 5,11-디하이드로인돌로[3,2-b]카바졸 및 3-브로모-1,1'-비페닐으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-6(MS[M+H] += 561.2)을 제조하였다.
합성예 22: 화합물 2-7의 합성
Figure PCTKR2020010441-appb-img-000131
합성예 16에서, 11,12-디하이드로인돌로[2,3-a]카바졸, 브로모벤젠 및 4-클로로-1,1':3',1''-터페닐-2'',3'',4'',5'',6''-d5를 각각 5,12-디하이드로인돌로[3,2-a]카바졸 및 4-브로모-1,1'-비페닐으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-7(MS[M+H] += 561.2)을 제조하였다.
합성예 23: 화합물 2-8의 합성
Figure PCTKR2020010441-appb-img-000132
합성예 16에서, 11,12-디하이드로인돌로[2,3-a]카바졸, 브로모벤젠 및 4-클로로-1,1':3',1''-터페닐-2'',3'',4'',5'',6''-d5를 각각 5,7-디하이드로인돌로[2,3-b]카바졸 및 브로모벤젠으로 변경하여 사용한 것을 제외하고는, 화합물 2-1의 제조 방법과 동일한 제조 방법으로 화합물 2-7(MS[M+H] += 561.2)을 제조하였다.
[실시예]
실시예 1
ITO(Indium Tin Oxide)가 1,400 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에, 하기 HT-A 화합물과 하기 PD 화합물을 95:5의 중량비로 100 Å의 두께로 열 진공 증착하여 정공주입층을 형성하고, 이어서 하기 HT-A 화합물만 1150 Å의 두께로 증착하여 정공수송층을 형성하였다. 상기 정공수송층 위에, 하기 HT-B 화합물을 450 Å의 두께로 열 진공 증착하여 전자저지층(전자억제층)을 형성하였다.
상기 전자저지층 위에, 호스트 화합물로 앞서 제조한 화합물 1-1 및 화합물 2-1과 도펀트 화합물로 하기 GD 화합물을 85:15의 중량비로 400 Å의 두께로 진공 증착하여 발광층을 형성하였다. 이때, 상기 화합물 1-1 및 화합물 2-1의 중량비는 1: 1이었다.
상기 발광층 위에, 하기 ET-A 화합물을 50 Å의 두께로 진공 증착하여 정공저지층을 형성하였다. 상기 정공저지층 위에, 하기 ET-B 화합물과 하기 Liq 화합물을 2:1의 중량비로 250 Å의 두께로 열 진공 증착하고, 이어서 LiF와 마그네슘을 1:1의 중량비로 30 Å의 두께로 진공 증착하여 전자 수송 및 주입층을 형성하였다. 상기 전자 수송 및 주입층 위에, 마그네슘과 은을 1:4의 중량비로 160 Å의 두께로 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다.
Figure PCTKR2020010441-appb-img-000133
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 은과 마그네슘은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10 -7 ~ 5×10 -6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 2 내지 15
상기 실시예 1에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
이때, 실시예에서 사용된 화합물의 구조를 정리하면 하기와 같다.
Figure PCTKR2020010441-appb-img-000134
Figure PCTKR2020010441-appb-img-000135
Figure PCTKR2020010441-appb-img-000136
.
비교예 1 내지 7
상기 실시예 1에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
이때, 하기 표 1에서, 화합물 H-2 및 C1은 각각 하기와 같다.
Figure PCTKR2020010441-appb-img-000137
실험예
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하여 전압, 효율, 수명(T95)을 측정하고 그 결과를 하기 표 1에 나타내었다. 이때, 전압 및 효율은 10 mA/cm 2의 전류 밀도를 인가하여 측정하였다. 또한, 하기 표 1의 T95는 전류 밀도 20 mA/cm 2에서 초기 휘도가 95%로 저하할 때까지 측정한 시간을 의미한다.
구분 발광층 화합물 전압(V)(@10mA/cm 2) 효율(cd/A)(@10mA/cm 2) 발광색 T95(hr)(@20mA/cm 2)
실시예 1 화합물 1-1, 화합물 2-1 3.02 69.8 녹 색 80
실시예 2 화합물 1-2, 화합물 2-3 3.01 70.0 녹 색 86
실시예 3 화합물 1-3, 화합물 2-3 3.05 72.1 녹 색 81
실시예 4 화합물 1-4, 화합물 2-8 3.01 70.0 녹 색 85
실시예 5 화합물 1-4, 화합물 2-4 3.03 72.3 녹 색 82
실시예 5 화합물 1-5, 화합물 2-5 3.08 70.7 녹 색 80
실시예 6 화합물 1-6, 화합물 2-3 3.01 70.2 녹 색 81
실시예 7 화합물 1-7, 화합물 2-6 3.03 71.2 녹 색 86
실시예 8 화합물 1-8, 화합물 2-6 3.09 72.5 녹 색 80
실시예 9 화합물 1-9, 화합물 2-4 3.03 69.5 녹 색 87
실시예 10 화합물 1-10, 화합물 2-4 3.07 71.3 녹 색 82
실시예 11 화합물 1-11, 화합물 2-3 3.02 70.1 녹 색 83
실시예 12 화합물 1-12, 화합물 2-5 3.08 72.2 녹 색 90
실시예 13 화합물 1-13, 화합물 2-7 3.04 70.3 녹 색 82
실시예 14 화합물 1-14, 화합물 2-6 3.05 69.0 녹 색 86
실시예 15 화합물 1-15, 화합물 2-2 3.09 71.0 녹 색 83
비교예 1 화합물 1-2 3.17 65.8 녹 색 71
비교예 2 화합물 1-10 3.22 65.5 녹 색 78
비교예 3 화합물 1-12 3.19 62.0 녹 색 79
비교예 4 화합물 C1 3.25 65.5 녹 색 65
비교예 5 화합물 C1, 화합물 H-2 3.12 67.5 녹 색 72
비교예 6 화합물 C1, 화합물 2-8 3.20 68.2 녹 색 75
비교예 7 화합물 1-10, 화합물 H-2 3.25 61.8 녹 색 78
상기 표 1에 나타난 바와 같이, 본 발명의 제1 화합물 및 제2 화합물을 모두 호스트로 사용한 실시예의 유기 발광 소자는, 상기 제1 화합물만을 사용한 비교예 1 내지 3의 유기 발광 소자 및 상기 제1 화합물 및 상기 제2 화합물 모두를 사용하지 않은 비교예 4 및 5의 유기 발광 소자에 비하여 효율 및 수명 측면에서 우수한 특성을 나타냄을 알 수 있다.
또한, 상기 실시예의 유기 발광 소자는, 2종의 호스트를 사용하였으나, 상기 제1 화합물 및 제2 화합물의 조합 대신 다른 호스트의 조합을 채용한 비교예 6 및7의 유기 발광 소자에 비해서도 높은 효율 및 우수한 수명을 나타냄을 알 수 있다.
이는, 일반적으로 유기 발광 소자의 발광 효율 및 수명 특성은 서로 트레이드-오프(Trade-off) 관계를 갖는 점을 고려할 때 본 발명의 화합물을 채용한 유기 발광 소자는 비교예 소자 대비 현저히 향상된 소자 특성을 나타냄을 의미한다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자저지층 8: 정공저지층
9: 전자 수송 및 주입층

Claims (17)

  1. 양극;
    상기 양극과 대향하여 구비된 음극; 및
    상기 양극과 음극 사이에 구비된 발광층을 포함하고,
    상기 발광층은 하기 화학식 1로 표시되는 제1 화합물 및 하기 화학식 2로 표시되는 제2 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2020010441-appb-img-000138
    상기 화학식 1에서,
    X는 O 또는 S이고,
    X 1 내지 X 3는 각각 독립적으로 N 또는 CH이고, 단, X 1 내지 X 3 중 적어도 하나는 N이고,
    Ar 1 및 Ar 2는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    R 1 내지 R 3는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    a+b는 0 내지 6의 정수이고,
    c는 0 내지 8의 정수이고,
    [화학식 2]
    Figure PCTKR2020010441-appb-img-000139
    상기 화학식 2에서,
    A는 인접한 두 개의 오각 고리와 융합된 벤젠 고리이고,
    Ar 3 및 Ar 4는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    R 4는 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 3-60 사이클로알킬; 치환 또는 비치환된 C 2-60 알케닐; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    d는 0 내지 10의 정수이다.
  2. 제1항에 있어서,
    Ar 1 및 Ar 2 중 적어도 하나가 중수소로 치환된 C 6-60 아릴; 또는 중수소로 치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이거나; 또는
    R 1 내지 R 3 중 적어도 하나가 중수소; 중수소로 치환된 C 6-60 아릴; 또는 중수소로 치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고, a+b+c가 1 이상인,
    유기 발광 소자.
  3. 제1항에 있어서,
    상기 제1 화합물은 하기 화학식 1A' 내지 1E' 중 어느 하나로 표시되는,
    유기 발광 소자:
    [화학식 1A']
    Figure PCTKR2020010441-appb-img-000140
    [화학식 1B']
    Figure PCTKR2020010441-appb-img-000141
    [화학식 1C']
    Figure PCTKR2020010441-appb-img-000142
    [화학식 1D']
    Figure PCTKR2020010441-appb-img-000143
    [화학식 1E']
    Figure PCTKR2020010441-appb-img-000144
    상기 화학식 1A' 내지 1E'에서,
    X, X 1 내지 X 3, Ar 1, Ar 2, R 1 내지 R 3, a+b 및 c는 제1항에서 정의한 바와 같다.
  4. 제1항에 있어서,
    X는 O인,
    유기 발광 소자.
  5. 제1항에 있어서,
    X 1 내지 X 3는 모두 N이거나,
    X 1 및 X 2는 N이고, X 3는 CH이거나,
    X 1 및 X 3는 N이고, X 2는 CH이거나,
    X 1은 N이고, X 2 및 X 3는 CH이거나, 또는
    X 2는 N이고, X 1 및 X 3는 CH인,
    유기 발광 소자.
  6. 제1항에 있어서,
    Ar 1 및 Ar 2는 각각 독립적으로 페닐, 비페닐릴, 나프틸, 페난트릴, 카바졸일, 디벤조퓨라닐, 디벤조티오페닐, 벤즈옥사졸일, 또는 벤조티아졸일이고,
    여기서, 상기 Ar 1 및 Ar 2는 비치환되거나, 또는 중수소, C 1-10 알킬 및 C 6-20 아릴로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환되는,
    유기 발광 소자.
  7. 제1항에 있어서,
    Ar 1 및 Ar 2는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010441-appb-img-000145
    Figure PCTKR2020010441-appb-img-000146
    상기에서,
    m은 0 내지 7의 정수이다.
  8. 제1항에 있어서,
    R 1 및 R 2는 각각 독립적으로 수소, 중수소, 페닐, 1개 내지 5개의 중수소로 치환된 페닐, 카바졸일, 디벤조퓨라닐, 또는 디벤조티오페닐인,
    유기 발광 소자.
  9. 제1항에 있어서,
    R 3는 수소; 중수소; 비치환되거나, 또는 중수소로 치환된 페닐; 비치환되거나, 또는 중수소로 치환된 카바졸일; 비치환되거나, 또는 중수소로 치환된 디벤조퓨라닐; 또는 비치환되거나, 또는 중수소로 치환된 디벤조티오페닐인,
    유기 발광 소자.
  10. 제1항에 있어서,
    상기 치환기
    Figure PCTKR2020010441-appb-img-000147
    는 하기 화학식 3a 내지 3i로 표시되는 치환기 중 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010441-appb-img-000148
    상기 화학식 3a 내지 3i에서,
    p는 0 내지 7의 정수이고,
    q는 0 내지 8의 정수이다.
  11. 제1항에 있어서,
    a+b는 0, 1, 2, 또는 6이고,
    c는 0, 1, 2, 또는 8인,
    유기 발광 소자.
  12. 제1항에 있어서,
    상기 제1 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010441-appb-img-000149
    Figure PCTKR2020010441-appb-img-000150
    Figure PCTKR2020010441-appb-img-000151
    Figure PCTKR2020010441-appb-img-000152
    Figure PCTKR2020010441-appb-img-000153
    Figure PCTKR2020010441-appb-img-000154
    Figure PCTKR2020010441-appb-img-000155
    Figure PCTKR2020010441-appb-img-000156
    Figure PCTKR2020010441-appb-img-000157
    Figure PCTKR2020010441-appb-img-000158
    Figure PCTKR2020010441-appb-img-000159
    Figure PCTKR2020010441-appb-img-000160
    Figure PCTKR2020010441-appb-img-000161
    Figure PCTKR2020010441-appb-img-000162
    Figure PCTKR2020010441-appb-img-000163
    Figure PCTKR2020010441-appb-img-000164
    Figure PCTKR2020010441-appb-img-000165
    Figure PCTKR2020010441-appb-img-000166
    Figure PCTKR2020010441-appb-img-000167
    Figure PCTKR2020010441-appb-img-000168
    Figure PCTKR2020010441-appb-img-000169
    Figure PCTKR2020010441-appb-img-000170
    Figure PCTKR2020010441-appb-img-000171
    Figure PCTKR2020010441-appb-img-000172
    Figure PCTKR2020010441-appb-img-000173
    Figure PCTKR2020010441-appb-img-000174
    Figure PCTKR2020010441-appb-img-000175
    Figure PCTKR2020010441-appb-img-000176
    Figure PCTKR2020010441-appb-img-000177
    Figure PCTKR2020010441-appb-img-000178
    Figure PCTKR2020010441-appb-img-000179
    Figure PCTKR2020010441-appb-img-000180
    Figure PCTKR2020010441-appb-img-000181
    Figure PCTKR2020010441-appb-img-000182
    Figure PCTKR2020010441-appb-img-000183
    Figure PCTKR2020010441-appb-img-000184
    Figure PCTKR2020010441-appb-img-000185
    Figure PCTKR2020010441-appb-img-000186
    Figure PCTKR2020010441-appb-img-000187
    Figure PCTKR2020010441-appb-img-000188
    Figure PCTKR2020010441-appb-img-000189
    Figure PCTKR2020010441-appb-img-000190
    Figure PCTKR2020010441-appb-img-000191
    Figure PCTKR2020010441-appb-img-000192
    Figure PCTKR2020010441-appb-img-000193
    Figure PCTKR2020010441-appb-img-000194
    Figure PCTKR2020010441-appb-img-000195
    Figure PCTKR2020010441-appb-img-000196
    Figure PCTKR2020010441-appb-img-000197
    Figure PCTKR2020010441-appb-img-000198
    Figure PCTKR2020010441-appb-img-000199
    Figure PCTKR2020010441-appb-img-000200
    Figure PCTKR2020010441-appb-img-000201
    Figure PCTKR2020010441-appb-img-000202
    Figure PCTKR2020010441-appb-img-000203
    .
  13. 제1항에 있어서,
    상기 제2 화합물은 하기 화학식 2-1 내지 2-5 중 어느 하나로 표시되는,
    유기 발광 소자:
    [화학식 2-1]
    Figure PCTKR2020010441-appb-img-000204
    [화학식 2-2]
    Figure PCTKR2020010441-appb-img-000205
    [화학식 2-3]
    Figure PCTKR2020010441-appb-img-000206
    [화학식 2-4]
    Figure PCTKR2020010441-appb-img-000207
    [화학식 2-5]
    Figure PCTKR2020010441-appb-img-000208
    상기 화학식 2-1 내지 2-5에서,
    R 4는 각각 독립적으로 중수소; 치환 또는 비치환된 C 6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S 중 1개 이상의 헤테로원자를 포함하는 C 2-20 헤테로아릴이고,
    e는 0 내지 4의 정수이고,
    f는 0 내지 2의 정수이고,
    g는 0 내지 4의 정수이고,
    Ar 3 및 Ar 4는 제1항에서 정의한 바와 같다.
  14. 제1항에 있어서,
    Ar 3 및 Ar 4는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 나프틸, 페난트릴, 트리페닐레닐, 카바졸일, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
    여기서, 상기 Ar 3 및 Ar 4는 비치환되거나, 또는 중수소, 페닐, 카바졸일, 페닐카바졸일, 디벤조퓨라닐 및 디벤조티오페닐로 구성되는 군으로부터 선택되는 1개 이상의 치환기로 치환되는,
    유기 발광 소자.
  15. 제1항에 있어서,
    R 4는 중수소; 비치환되거나, 또는 중수소로 치환된 페닐; 비치환되거나, 또는 중수소로 치환된 카바졸일; 비치환되거나, 또는 중수소로 치환된 페닐카바졸일; 비치환되거나, 또는 중수소로 치환된 디벤조퓨라닐; 또는 비치환되거나, 또는 중수소로 치환된 디벤조티오페닐인,
    유기 발광 소자.
  16. 제1항에 있어서,
    d는 0, 1, 2, 또는 10인,
    유기 발광 소자.
  17. 제1항에 있어서,
    상기 제2 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2020010441-appb-img-000209
    Figure PCTKR2020010441-appb-img-000210
    Figure PCTKR2020010441-appb-img-000211
    Figure PCTKR2020010441-appb-img-000212
    Figure PCTKR2020010441-appb-img-000213
    Figure PCTKR2020010441-appb-img-000214
    Figure PCTKR2020010441-appb-img-000215
    Figure PCTKR2020010441-appb-img-000216
    Figure PCTKR2020010441-appb-img-000217
    Figure PCTKR2020010441-appb-img-000218
    Figure PCTKR2020010441-appb-img-000219
    Figure PCTKR2020010441-appb-img-000220
    Figure PCTKR2020010441-appb-img-000221
    Figure PCTKR2020010441-appb-img-000222
    Figure PCTKR2020010441-appb-img-000223
    Figure PCTKR2020010441-appb-img-000224
    .
PCT/KR2020/010441 2019-08-09 2020-08-06 유기 발광 소자 WO2021029616A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005495.0A CN112789747A (zh) 2019-08-09 2020-08-06 有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0097650 2019-08-09
KR20190097650 2019-08-09
KR10-2020-0097980 2020-08-05
KR1020200097980A KR102447008B1 (ko) 2019-08-09 2020-08-05 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2021029616A1 true WO2021029616A1 (ko) 2021-02-18

Family

ID=74569758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010441 WO2021029616A1 (ko) 2019-08-09 2020-08-06 유기 발광 소자

Country Status (1)

Country Link
WO (1) WO2021029616A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137565A1 (ko) * 2019-12-30 2021-07-08 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
EP4074706A1 (en) * 2021-04-16 2022-10-19 LG Display Co., Ltd. Deuterated heterocyclic compound, organic light emitting device including the same and composition for organic layer of organic light emitting device
EP4231804A3 (en) * 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
TWI820989B (zh) * 2021-12-30 2023-11-01 南韓商樂金顯示科技股份有限公司 有機化合物與包含其的有機發光裝置
GB2625904A (en) * 2022-12-22 2024-07-03 Lg Display Co Ltd Organic compound, organic light emitting diode and organic light emitting device having the compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150084558A (ko) * 2014-01-14 2015-07-22 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR20170130737A (ko) * 2016-05-19 2017-11-29 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US20180033975A1 (en) * 2015-03-13 2018-02-01 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
KR20180061077A (ko) * 2016-11-29 2018-06-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20190079341A (ko) * 2017-12-27 2019-07-05 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150084558A (ko) * 2014-01-14 2015-07-22 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
US20180033975A1 (en) * 2015-03-13 2018-02-01 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
KR20170130737A (ko) * 2016-05-19 2017-11-29 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20180061077A (ko) * 2016-11-29 2018-06-07 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20190079341A (ko) * 2017-12-27 2019-07-05 삼성에스디아이 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021137565A1 (ko) * 2019-12-30 2021-07-08 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
EP4074706A1 (en) * 2021-04-16 2022-10-19 LG Display Co., Ltd. Deuterated heterocyclic compound, organic light emitting device including the same and composition for organic layer of organic light emitting device
CN115215845A (zh) * 2021-04-16 2022-10-21 乐金显示有限公司 杂环化合物、包括该杂环化合物的有机发光装置和用于有机发光装置的有机层的组合物
TWI820989B (zh) * 2021-12-30 2023-11-01 南韓商樂金顯示科技股份有限公司 有機化合物與包含其的有機發光裝置
EP4231804A3 (en) * 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
GB2625904A (en) * 2022-12-22 2024-07-03 Lg Display Co Ltd Organic compound, organic light emitting diode and organic light emitting device having the compound

Similar Documents

Publication Publication Date Title
WO2021182775A1 (ko) 유기 발광 소자
WO2019139419A1 (ko) 유기 발광 소자
WO2022015084A1 (ko) 유기 발광 소자
WO2021029616A1 (ko) 유기 발광 소자
WO2019017741A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021096228A1 (ko) 유기 발광 소자
WO2020141949A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021020929A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021210911A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2011145876A2 (ko) 신규 하이브리드 유기 화합물 및 이를 이용한 유기 전계 발광소자
WO2018151479A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021066623A1 (ko) 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2022086168A1 (ko) 유기 발광 소자
WO2020067593A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020222569A1 (ko) 유기 발광 소자
WO2022231389A1 (ko) 유기 발광 소자
WO2022225349A1 (ko) 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자
WO2022080715A1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021210910A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020263000A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021029634A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851858

Country of ref document: EP

Kind code of ref document: A1