WO2021179432A1 - 石墨烯包覆的超细粉体及其制备方法 - Google Patents

石墨烯包覆的超细粉体及其制备方法 Download PDF

Info

Publication number
WO2021179432A1
WO2021179432A1 PCT/CN2020/089492 CN2020089492W WO2021179432A1 WO 2021179432 A1 WO2021179432 A1 WO 2021179432A1 CN 2020089492 W CN2020089492 W CN 2020089492W WO 2021179432 A1 WO2021179432 A1 WO 2021179432A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
coated
workpiece
graphite electrode
ultrafine powder
Prior art date
Application number
PCT/CN2020/089492
Other languages
English (en)
French (fr)
Inventor
徐辉
姚青
Original Assignee
深圳航科新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳航科新材料有限公司 filed Critical 深圳航科新材料有限公司
Publication of WO2021179432A1 publication Critical patent/WO2021179432A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Definitions

  • the invention relates to the technical field of ultrafine powders, in particular to graphene-coated ultrafine powders and a preparation method thereof.
  • Ultra-fine powder usually refers to particles with a particle size of micrometer or nanometer. Compared with bulk conventional materials, it has a larger specific surface area, higher surface activity and better surface energy, so it shows excellent light. , Heat, electricity, magnetism, catalysis and other properties. As a kind of functional material, ultrafine powder has been widely studied in recent years, and has been more and more widely used in various fields of national economic development.
  • Graphene has excellent optical, electrical, and mechanical properties, and has important application prospects in materials science, micro-nano processing, energy, biomedicine, and drug delivery.
  • the use of graphene-coated powder materials can synergistically improve the optical, electrical and mechanical properties of the powder materials, giving them multiple advantages.
  • the ultrafine powder is easy to agglomerate and the dispersion is uneven, which also severely restricts its application. How to avoid the failure of agglomeration of ultra-fine powder has become one of the problems faced by the development and application of ultra-fine powder.
  • Graphene also has a strong tendency to agglomerate. When graphene is used to coat powder materials, if the graphene distribution is not uniform, the coating effect will also be unsatisfactory.
  • Patent CN109290568A proposes a thin graphene-coated two-dimensional soft magnetic alloy powder material and its preparation method.
  • the graphene oxide, two-dimensional soft magnetic alloy powder, alcohol and catalyst are ball milled, and then high temperature reduction is performed.
  • the two-dimensional soft magnetic alloy powder material coated with a thin layer of graphene is obtained by processing.
  • the method uses graphene oxide to avoid graphene agglomeration.
  • the present invention provides a new method for preparing graphene-coated ultrafine powder.
  • graphene is directly coated on the ultrafine powder.
  • the graphene-coated ultra-fine powder prepared by the above method is used as the raw material, and when it is sintered into other products, the product The uniformity of the organization is high, and it can have high strength, hardness, conductivity and other properties.
  • a method for preparing graphene-coated ultrafine powder includes the following steps:
  • Graphite is used as an electrode, the coated material is used as a workpiece, the electrode and the workpiece are electrically connected to the two poles of the power supply respectively, and the graphene-coated ultrafine powder is prepared by an electric arc microexplosion powder production method;
  • the arc micro-explosion powder making method includes: dynamically adjusting the discharge gap between the graphite electrode and the workpiece in real time to generate arc plasma, and the arc plasma melts and peels off a part of the graphite electrode and the workpiece to obtain Powder material and graphene; at the same time, a fluid medium containing a surfactant is introduced into the discharge gap, and the arc plasma is caused to work by controlling the flow rate of the fluid medium and the relative speed of the graphite electrode and the workpiece
  • the morphology changes, a tiny explosion is produced, and the ultrafine powder material and ultrafine graphene are obtained; at the same time, through the combined action of the tiny explosion and the flow field, the ultrafine graphene is caused to coat the ultrafine powder material
  • the surface is obtained by graphene-coated ultra-fine powder material.
  • the graphite electrode is connected to the anode of the power source, and the workpiece is connected to the cathode of the power source.
  • the graphite electrode is connected to the cathode of the power source, and the workpiece is connected to the anode of the power source.
  • the graphite electrode is controlled to rotate at a speed of 100 r/min-60000 r/min.
  • the graphite electrode is provided with a hollow cavity, and the fluid medium containing the surfactant is partially or completely introduced from the hollow cavity of the graphite electrode.
  • the surfactant is selected from one or more of cationic surfactants, anionic surfactants and nonionic surfactants.
  • the surfactant is selected from the group consisting of dodecyl trimethyl ammonium chloride, dodecyl dimethyl benzyl ammonium chloride, and octadecyl dimethyl benzyl ammonium chloride , Dodecylbenzenesulfonic acid, sodium decadecyl sulfate, sodium dodecyl sulfate, Tween 20, Tween 60 or Tween 80.
  • the concentration of the surfactant is 0.01-20 times of the respective critical glue concentration.
  • the fluid medium is a water-based medium.
  • the discharge current of the power supply is 10A-1000A.
  • the workpiece is a conductive material.
  • the present invention also provides the graphene-coated ultrafine powder prepared by the above method.
  • the present invention has the following beneficial effects:
  • the invention adopts the electric arc microexplosion powder making technology to prepare graphene-coated ultrafine powder.
  • the specific method is: using arc plasma as a high-density energy heat source, acting on the surface of the graphite electrode and the workpiece, melting and peeling off a part of the graphite electrode and the workpiece, obtaining powder material and graphene, and forming a melt at the corresponding position. Pit, the melting zone.
  • a surfactant-added fluid medium is introduced into the discharge gap between the graphite electrode and the workpiece, and the flow rate of the fluid medium and the relative rotation speed of the graphite electrode and the workpiece are controlled to cause a change in the working form of the arc plasma.
  • the refined powder material and graphene The mixture is obtained to promote the graphene to be wrapped on the surface of the refined powder material, and after condensation, the graphene-coated ultrafine powder is formed. That is, in the process of forming graphene and fine particles of the powder material, the graphene is directly coated around the ultrafine powder to avoid the agglomeration of the ultrafine powder and enable the graphene to be dispersed on the surface of the ultrafine powder. Evenly.
  • the graphene-coated ultrafine powder prepared by the above method is used as a raw material, when it is sintered into other products, the structure of the product is higher, and it can have higher strength, hardness, conductivity and other properties.
  • Figure 1 is a schematic diagram of the preparation of graphene-coated ultra-fine powders using arc micro-explosion technology
  • Example 2 is a schematic diagram of the surface of graphene-coated ultrafine copper powder prepared in Example 1;
  • Example 3 is a schematic diagram of composition analysis of graphene-coated ultrafine copper powder prepared in Example 1;
  • Example 4 is a schematic diagram of the surface of graphene-coated ultrafine aluminum powder prepared in Example 2;
  • Example 5 is a schematic diagram of the surface of graphene-coated ultrafine copper powder prepared in Example 3.
  • FIG. 6 is a schematic diagram of the surface of the graphene-coated ultrafine copper powder prepared in Example 4.
  • FIG. 6 is a schematic diagram of the surface of the graphene-coated ultrafine copper powder prepared in Example 4.
  • the present invention provides a method for preparing graphene-coated ultrafine powder, which includes the following steps:
  • a method for preparing graphene-coated ultrafine powder includes the following steps:
  • Graphite is used as an electrode, the coated material is used as a workpiece, the electrode and the workpiece are electrically connected to the two poles of the power supply respectively, and the graphene-coated ultrafine powder is prepared by an electric arc microexplosion powder production method;
  • the arc micro-explosion powder making method includes: dynamically adjusting the discharge gap between the graphite electrode and the workpiece in real time to generate arc plasma, and the arc plasma melts and peels off a part of the graphite electrode and the workpiece to obtain Powder material and graphene; at the same time, a fluid medium containing a surfactant is introduced into the discharge gap, and the arc plasma is caused to work by controlling the flow rate of the fluid medium and the relative speed of the graphite electrode and the workpiece
  • the morphology changes, a tiny explosion is produced, and the ultrafine powder material and ultrafine graphene are obtained; at the same time, through the combined action of the tiny explosion and the flow field, the ultrafine graphene is caused to coat the ultrafine powder material
  • the surface is obtained by graphene-coated ultra-fine powder material.
  • the graphite electrode is connected to the anode of the power source, and the workpiece is connected to the cathode of the power source.
  • the power source drives the graphite electrode to rotate, which facilitates the subsequent coating of graphene on the ultrafine powder.
  • the graphite electrode is controlled to rotate at different speeds to prepare graphene coating layers of different thicknesses.
  • the graphite electrode is controlled to rotate at a speed of 100 r/min-60000 r/min.
  • the graphite electrode can be provided with or without a hollow cavity.
  • the fluid medium containing surfactant can flow along the outer surface of the graphite electrode to the workpiece, thereby introducing into In the discharge gap between the graphite electrode and the workpiece, or the fluid medium containing the surfactant can be introduced into the gap between the graphite electrode and the workpiece through other possible ways.
  • the graphite electrode is provided with a hollow cavity, and the fluid medium containing the surfactant is partially or completely introduced from the hollow cavity of the graphite electrode. That is, the fluid medium containing the surfactant can be introduced entirely from the hollow cavity of the graphite electrode, or part of it can be introduced from the hollow cavity of the graphite electrode, and the remaining part can be introduced from outside the hollow cavity of the graphite electrode.
  • the introduction of the hollow cavity includes flowing along the outer surface of the graphite electrode to the workpiece, thereby introducing into the discharge gap between the graphite electrode and the workpiece, and also including introducing into the gap between the graphite electrode and the workpiece by other means.
  • the surfactants in the fluid medium containing surfactants flowing from inside and outside the hollow cavity may be the same or different.
  • the graphite electrode provided with a hollow cavity is a graphite electrode provided with a single tube, a multi-tube or a hollow nest, and the fluid medium containing the surfactant is partially or completely introduced from the tube of the graphite electrode.
  • a graphite electrode provided with a single tube is taken as an example. It has the following structure: an electrode assembly, a channel tube is arranged between the electrode assemblies, and the channel tube is provided with an inlet and an outlet, containing a surface
  • the fluid medium of the active agent can enter from the inlet in the channel tube and flow out from the outlet in the channel tube.
  • the outlet of the channel tube faces the workpiece, so that the fluid medium containing the surfactant can flow to the workpiece, thereby introducing the graphite electrode and the workpiece In the discharge gap.
  • the fluid medium is a water-based medium.
  • the water-based medium is distilled water.
  • the concentration of the surfactant is 0.01-20 times the respective critical glue concentration.
  • critical colloidal concentration refers to the lowest concentration at which surfactant molecules associate to form micelles in a solvent.
  • the concentration of the surfactant is 0.5-2 times the respective critical glue concentration.
  • the concentration of the surfactant is the respective critical colloidal concentration.
  • the surfactant is selected from one or more of cationic surfactants, anionic surfactants and nonionic surfactants.
  • the cationic surfactants include but are not limited to dodecyl trimethyl ammonium chloride (DTAC), dodecyl dimethyl benzyl ammonium chloride (DDBAC), stearyl dimethyl ammonium chloride (DDBAC), Benzyl ammonium chloride (ODBAC).
  • DTAC dodecyl trimethyl ammonium chloride
  • DDBAC dodecyl dimethyl benzyl ammonium chloride
  • DDBAC stearyl dimethyl ammonium chloride
  • ODBAC Benzyl ammonium chloride
  • the anionic surfactants include, but are not limited to, dodecylbenzene sulfonic acid (SDBS), sodium dedecyl sulfate (SDES), and sodium dodecyl sulfate (SDS).
  • SDBS dodecylbenzene sulfonic acid
  • SDES sodium dedecyl sulfate
  • SDS sodium dodecyl sulfate
  • the non-ionic surfactant includes but is not limited to Tween 20, Tween 60, and Tween 80.
  • the surfactant is selected from dodecyl benzene sulfonic acid (SDBS), Tween 80 or dodecyl trimethyl ammonium chloride.
  • SDBS dodecyl benzene sulfonic acid
  • Tween 80 dodecyl trimethyl ammonium chloride.
  • the power supply is preferably a pulsed power supply with a pulse width of 2 ⁇ s to 200,000 ⁇ s, and a pulse interval of 2 ⁇ s to 200,000 ⁇ s.
  • the intermittent voltage of the power supply is 10V-160V.
  • the distance between the discharge end of the graphite electrode and the surface of the workpiece is dynamically adjusted in real time, that is, the discharge gap is adjusted to generate arc plasma, and the discharge gap may be 0.1 mm-100 mm. This distance enables the arc plasma to act on the graphite electrode and the workpiece, and can ensure that the fluid medium containing the surfactant has a large pressure when passing through.
  • the center temperature of the arc plasma is as high as 10000K, which can melt most conductive materials. Therefore, the workpiece can be most conductive materials or other non-conductive materials that can be melted. Part of the surface of the workpiece and the surface of the graphite electrode are melted and peeled off under the action of the arc plasma, forming two small melting pits with a radius of 0.5mm-2mm, that is, two melting zones, and obtaining the powder material and graphite located in the melting zone At this time, the graphite electrode rotates mechanically at high speed relative to the workpiece.
  • a fluid medium containing a surfactant is introduced between the graphite electrode and the workpiece.
  • the working state of the arc plasma can be changed, and a small explosion can be generated in the melting zone.
  • the powder material and graphene in the melting zone are further refined.
  • the refined powder material and graphene are mixed, which causes the graphene to be wrapped on the surface of the refined powder material, and after it is condensed in the fluid medium,
  • the graphene-coated ultra-fine powder is formed.
  • the principle of the above-mentioned arc micro-explosion technology to prepare the graphene-coated ultra-fine powder is shown in FIG. 1.
  • the initial flow rate when the fluid medium containing the surfactant is introduced from the hollow cavity of the graphite electrode is 0.5L/min-500L/min.
  • the above method does not make too many requirements on the shape of the workpiece, and the workpiece can be in a regular or irregular shape such as a rod shape and a block shape.
  • the graphene-coated ultrafine powder formed after condensation can be collected by a multi-stage powder collecting device.
  • the multi-stage powder collecting device is provided with a horn-shaped buffer part and a stepped collection platform that is not smoothly connected to the trumpet-shaped buffer, and each step corresponds to a collection platform.
  • the condensed graphene-coated ultra-fine powder flows out with the fluid medium and reaches the multi-stage powder collecting device.
  • the graphene-coated ultra-fine powder can be deposited on the steps, it is avoided that the fluid medium is directly flushed into the powder receiving box, causing the loss or splashing of fine spherical powder with the fluid medium, ensuring the integrity of powder collection, and achieving the purpose of improving the yield of fine powder.
  • the invention adopts the electric arc microexplosion powder making technology to prepare graphene-coated ultrafine powder.
  • the specific method is: using arc plasma as a high-density energy heat source, acting on the surface of the graphite electrode and the workpiece, melting and peeling off a part of the graphite electrode and the workpiece, obtaining powder material and graphene, and forming a melt at the corresponding position. Pit, the melting zone.
  • a surfactant-added fluid medium is introduced into the discharge gap between the graphite electrode and the workpiece, and the flow rate of the fluid medium and the relative rotation speed of the graphite electrode and the workpiece are controlled to cause a change in the working form of the arc plasma.
  • the refined powder material and graphene The mixture is obtained to promote the graphene to be wrapped on the surface of the refined powder material, and after condensation, the graphene-coated ultrafine powder is formed. That is, in the process of forming graphene and fine particles of the powder material, the graphene is directly coated around the ultrafine powder to avoid the agglomeration of the ultrafine powder and enable the graphene to be dispersed on the surface of the ultrafine powder. Evenly.
  • the coating material has good sphericity and can be coated with any conductive material, and there is no restriction on the shape and composition of the workpiece.
  • the technological process is simple, easy for industrialized mass production, low energy consumption, and basically no pollution.
  • the graphene-coated ultrafine powder prepared by the above method when it is sintered into other products, the structure of the product is higher, and the product can have higher strength, hardness, conductivity and other properties.
  • This embodiment provides a novel graphene-coated ultrafine powder and a preparation method thereof, including the following steps:
  • a block copper with a regular appearance is used as a workpiece material, and the size of the block copper is 100mm*100mm*20mm. After it is cleaned and decontaminated, it is connected to the cathode of the power supply. Connect the graphite electrode provided with a single tube to the anode of the power supply.
  • the single tube refers to a channel tube located between the graphite electrode assemblies, and the outlet of the channel tube faces the above-mentioned bulk copper.
  • the power supply parameters are set as follows: gap voltage is 45V-55V, discharge current is 500A, pulse width is 2000 ⁇ s, pulse interval is 200 ⁇ s, power is started, and the graphite electrode is controlled to rotate at a speed of 5000 r/min. At the same time, an aqueous solution containing the anionic surfactant SDBS is passed into the channel tube (at this time, the concentration of SDBS in the water is its critical colloidal concentration), and the flow rate is 50 L/min when passing.
  • the arc plasma melts a part of the graphite electrode and copper to obtain copper and graphene in the melting zone.
  • the arc plasma changes its working form, causing a small explosion in the melting zone to further refine the copper and graphene.
  • the refined copper and graphene are mixed, and the graphene is wrapped in the refined copper.
  • the graphene is wrapped in the refined copper.
  • it forms spherical graphene-coated ultrafine copper powder after condensation.
  • the left side of Figure 2 is graphene-coated ultrafine copper powder, and the right side is a partial enlarged view of the left side. It can be seen from Figure 2 that graphene (black) is coated on the surface of copper powder (gray).
  • composition analysis of the spherical graphene-coated ultrafine copper powder is shown in Figure 3 and Table 1.
  • the spherical graphene-coated ultrafine copper powder contains 64.88wt% of graphene, 34.93wt% of copper, and a small amount of aluminum.
  • This embodiment provides a novel graphene-coated ultrafine powder and a preparation method thereof, including the following steps:
  • a rod-shaped aluminum alloy with a regular appearance is used as a workpiece material, the rod-shaped aluminum alloy has a diameter of ⁇ 20 mm and a length of 100 mm. After it is cleaned and decontaminated, it is connected to the cathode of the power supply.
  • the graphite electrode provided with a single tube is connected to the anode of the power supply, the single tube refers to a channel tube located between the graphite electrode assemblies, and the outlet of the channel tube faces the aluminum alloy workpiece.
  • the power supply parameters are set as follows: gap voltage is 45V-55V, discharge current is 500A, pulse width is 2000 ⁇ s, pulse interval is 200 ⁇ s, power is started, and the graphite electrode is controlled to rotate at a speed of 5000 r/min. At the same time, an aqueous solution containing a non-ionic surfactant Tween 80 is passed into the channel tube (at this time, the concentration of Tween 80 in the water is its critical colloidal concentration), and the flow rate is 50 L/min when passing.
  • the arc plasma melts a part of the graphite electrode and the aluminum alloy workpiece to obtain aluminum alloy and graphene in the melting zone.
  • the working form of the arc plasma changes, causing a tiny explosion in the melting zone, and the aluminum alloy and the aluminum alloy are melted.
  • Graphene is further refined to obtain refined aluminum alloy and graphene.
  • the refined aluminum alloy and graphene are mixed to promote graphene Wrapped on the surface of the refined aluminum alloy, and condensed to form spherical graphene-coated ultra-fine aluminum alloy powder.
  • Figure 4 the left side of Figure 4 is graphene-coated ultrafine aluminum powder, and the right side is a partial enlarged view of the left side. It can be seen from Figure 4 that graphene (black) is coated on the surface of aluminum powder (gray).
  • This embodiment provides a novel graphene-coated ultrafine powder and a preparation method thereof.
  • the preparation method thereof is basically the same as the preparation method of Example 1, except that the surfactant in the fluid medium is different. It includes the following steps:
  • a block copper with a regular appearance is used as a workpiece material, and the size of the block copper is 100mm*100mm*20mm. After it is cleaned and decontaminated, it is connected to the cathode of the power supply. Connect the graphite electrode provided with a single tube to the anode of the power supply.
  • the single tube refers to the channel tube located between the graphite electrode assemblies, and the outlet of the channel tube faces the above-mentioned bulk copper.
  • the power supply parameters are set as follows: gap voltage is 45V-55V, discharge current is 500A, pulse width is 2000 ⁇ s, pulse interval is 200 ⁇ s, power is started, and the graphite electrode is controlled to rotate at a speed of 5000 r/min. At the same time, an aqueous solution containing DTAC is passed into the channel tube (at this time, the concentration of DTAC in the water is its critical glue concentration), and the flow rate is 50 L/min when passing.
  • the arc plasma melts a part of the graphite electrode and copper to obtain copper and graphene in the melting zone.
  • the arc plasma changes its working form, causing a small explosion in the melting zone to further refine the copper and graphene.
  • the refined copper and graphene are mixed, and the graphene is wrapped in the refined copper.
  • the graphene is wrapped in the refined copper.
  • it forms spherical graphene-coated ultrafine copper powder after condensation.
  • Figure 5 It can be seen from Figure 5 that the graphene (black) is coated on the surface of the copper powder (gray).
  • This embodiment provides a novel graphene-coated ultrafine powder and a preparation method thereof.
  • the preparation method is basically the same as the preparation method in Example 1, except that the rotation speed of the graphite electrode is different. It includes the following steps:
  • a block copper with a regular appearance is used as a workpiece material, and the size of the block copper is 100mm*100mm*20mm. After it is cleaned and decontaminated, it is connected to the cathode of the power supply. Connect the graphite electrode provided with a single tube to the anode of the power supply.
  • the single tube refers to a channel tube located between the graphite electrode assemblies, and the outlet of the channel tube faces the above-mentioned bulk copper.
  • the power supply parameters are set as follows: gap voltage is 45V-55V, discharge current is 500A, pulse width is 2000 ⁇ s, pulse interval is 200 ⁇ s, power is turned on, and the graphite electrode is controlled to rotate at a speed of 2000 r/min. At the same time, an aqueous solution containing an anionic surfactant SDBS is passed into the channel tube (at this time, the concentration of SDBS in the water is its critical colloidal concentration), and the flow rate is 50 L/min when passing.
  • the arc plasma melts a part of the graphite electrode and copper to obtain copper and graphene in the melting zone.
  • the arc plasma changes its working form, causing a small explosion in the melting zone to further refine the copper and graphene.
  • the refined copper and graphene are mixed, and the graphene is wrapped in the refined copper.
  • it forms spherical graphene-coated ultrafine copper powder after condensation.
  • Figure 6 It can be seen from FIG. 6 that graphene (black) is coated on the surface of copper powder (gray).
  • the powder prepared in Example 4 has a larger amount of graphene coating.

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本申请涉及一种石墨烯包覆的超细粉体及其制备方法。所述制备方法包括以下步骤:以石墨作为电极,被包覆材料作为工件,将所述电极和所述工件分别与电源的两极电连接,采用电弧微爆制粉方法制备所述石墨烯包覆的超细粉体。上述方法在形成石墨烯和超细粉体的细小微粒的过程中,直接将石墨烯包覆在超细粉体周围,避免超细粉体发生团聚,并能使石墨烯在超细粉体表面分散均匀。

Description

石墨烯包覆的超细粉体及其制备方法 技术领域
本发明涉及超细粉体的技术领域,特别是涉及石墨烯包覆的超细粉体及其制备方法。
背景技术
超细粉体通常是指粒径在微米级或纳米级的粒子,和大块常规材料相比,其具有更大比表面积、更高表面活性及更好的表面能,因而表现出优异的光、热、电、磁、催化等性能。超细粉体作为一种功能材料近些年得到人们的广泛研究,并在国民经济发展的各领域得到越来越广泛的应用。
石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景。利用石墨烯包覆粉体材料能够协同提高粉体材料的光学、电学和力学特性,使其兼具多种优势。
然而,超细粉体很容易团聚,分散不均匀,这也使其应用受到了严重的制约。如何避免超细粉体的团聚失效,已成为超细粉体发展应用所面临的难题之一。石墨烯也有很强的团聚倾向,利用石墨烯包覆粉体材料时,若石墨烯分布状态不均匀,也会造成包覆效果也不理想。
专利CN109290568A中提出了一种薄层石墨烯包覆的二维软磁合金粉体材料及其制备方法,通过将氧化石墨烯、二维软磁合金粉体、酒精及催化剂球磨,再进行高温还原处理得到薄层石墨烯包覆的二维软磁合金粉体材料。该方法采用氧化石墨烯避免了石墨烯产生团聚现象。
发明内容
基于此,本发明提供一种石墨烯包覆的超细粉体的制备的新方法,在形成石墨烯和超细粉体的细小微粒的过程中,直接将石墨烯包覆在超细粉体周围,避免超细粉体发生团聚,并能使石墨烯在超细粉体表面分散均匀,以上述方法制备的石墨烯包覆的超细粉体为原料,将其烧结为其他制品时,制品的组织均匀性较高,能够具有较高的强度、硬度、导电性等性能。
本发明解决上述技术问题的具体技术方案为:
一种石墨烯包覆的超细粉体的制备方法,包括以下步骤:
以石墨作为电极,被包覆材料作为工件,将所述电极和所述工件分别与电源的两极电连接,采用电弧微爆制粉方法制备所述石墨烯包覆的超细粉体;
所述电弧微爆制粉方法包括:通过实时动态调整所述石墨电极与所述工件的放电间隙,产生电弧等离子体,所述电弧等离子体熔融并剥落一部分所述石墨电极和所述工件,得粉体材料和石墨烯;同时,于所述放电间隙引入含有表面活性剂的流体介质,通过控制所述流体介质的流速,以及所述石墨电极和工件的相对转速,引起所述电弧等离子体工作形态改变,产生微小***,得超细粉体材料和超细石墨烯;同时,通过所述微小***和流场的共同作用,促使所述超细石墨烯包覆在所述超细粉体材料的表面,得石墨烯包覆的超细粉体材料。
在其中一个实施例中,所述石墨电极连接电源的阳极,所述工件连接电源的阴极。
在其中一个实施例中,所述石墨电极连接电源的阴极,所述工件连接电源的阳极。
在其中一个实施例中,将所述石墨电极与所述电源的阳极连接后,控制所述石墨电极以转速为100r/min-60000r/min的速度转动。
在其中一个实施例中,所述石墨电极设置有中空腔,所述含有表面活性剂的流体介质部分或全部从所述石墨电极的中空腔内引入。
在其中一个实施例中,所述表面活性剂选自阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂中的一种或几种。
在其中一个实施例中,所述表面活性剂选自十二烷基三甲基氯化铵、十二烷基二甲基苄基氯化铵、十八烷基二甲基苄基氯化铵、十二烷基苯磺酸、十烷基硫酸钠、十二烷基硫酸酯钠盐、吐温20、吐温60或吐温80。
在其中一个实施例中,所述表面活性剂的浓度为各自临界束胶浓度的0.01-20倍。
在其中一个实施例中,所述流体介质为水基介质。
在其中一个实施例中,所述电源的放电电流为10A-1000A。
在其中一个实施例中,所述工件为导电材料。
本发明还提供上述方法制得的石墨烯包覆的超细粉体。
与现有方案相比,本发明具有以下有益效果:
本发明采用电弧微爆制粉技术制备了石墨烯包覆的超细粉体。具体方法为:以电弧等离子体作为高密度的能量热源,作用于石墨电极和工件表面,熔融并剥落一部分所述石墨电极和所述工件,得到粉体材料和石墨烯,并在相应位置形成熔坑,即熔融区。同时,在石墨电极和工件的放电间隙引入添加了表面活性剂的流体介质,通过控制所述流体介质的流速,以及所述石墨电极和工件的相对转速,引起所述电弧等离子体工作形态的改变,在熔融区产生微小的***,将粉体材料和石墨烯进一步细化,在这个过程中,在微小***和含有表面活性剂的流场的机械作用下,细化的粉体材料和石墨烯得到混合,促使石墨烯包裹在细化的粉体材料表面,冷凝后形成石墨烯包覆的超细粉体。即,在形成石墨 烯和粉体材料的细小微粒的过程中,直接将石墨烯包覆在超细粉体周围,避免超细粉体发生团聚,并能使石墨烯在超细粉体表面分散均匀。以上述方法制备的石墨烯包覆的超细粉体为原料,将其烧结为其他制品时,制品的组织均匀性较高,能够具有较高的强度、硬度、导电性等性能。
附图说明
图1为采用电弧微爆技术制备石墨烯包裹的超细粉体的原理图;
图2为实施例1制备的石墨烯包覆的超细铜粉表面示意图;
图3为实施例1制备的石墨烯包覆的超细铜粉的成分分析示意图;
图4为实施例2制备的石墨烯包覆的超细铝粉表面示意图;
图5为实施例3制备的石墨烯包覆的超细铜粉表面示意图;
图6为实施例4制备的石墨烯包覆的超细铜粉表面示意图。
具体实施方式
以下结合具体实施例对本发明作进一步详细的说明。本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明公开内容理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供一种石墨烯包覆的超细粉体的制备方法,包括以下步骤:
一种石墨烯包覆的超细粉体的制备方法,包括以下步骤:
以石墨作为电极,被包覆材料作为工件,将所述电极和所述工件分别与电源的两极电连接,采用电弧微爆制粉方法制备所述石墨烯包覆的超细粉体;
所述电弧微爆制粉方法包括:通过实时动态调整所述石墨电极与所述工件的放电间隙,产生电弧等离子体,所述电弧等离子体熔融并剥落一部分所述石墨电极和所述工件,得粉体材料和石墨烯;同时,于所述放电间隙引入含有表面活性剂的流体介质,通过控制所述流体介质的流速,以及所述石墨电极和工件的相对转速,引起所述电弧等离子体工作形态改变,产生微小***,得超细粉体材料和超细石墨烯;同时,通过所述微小***和流场的共同作用,促使所述超细石墨烯包覆在所述超细粉体材料的表面,得石墨烯包覆的超细粉体材料。
优选地,将石墨电极连接到电源的阳极,将工件连接到电源的阴极,此时,电源驱动石墨电极旋转,有利于后续石墨烯在超细粉体上包覆。
可以理解地,还可以将石墨电极连接到电源的阴极,将工件连接到电源的阳极。
将所述石墨电极与所述电源的阳极连接后,控制所述石墨电极以不同的转速转动,可制备得到不同厚度的石墨烯包覆层。优选地,控制所述石墨电极以转速为100r/min-60000r/min的速度转动。
可以理解地,所述石墨电极可以设置或不设置中空腔,当石墨电极没有设置中空腔时,所述含有表面活性剂的流体介质可以顺着石墨电极的外表面,流向工件,以此引入到石墨电极和工件的放电间隙中,或者,所述含有表面活性剂的流体介质可以从通过其他可能途径引入到石墨电极和工件的间隙中。
优选地,所述石墨电极设置有中空腔,所述含有表面活性剂的流体介质部分或全部从所述石墨电极的中空腔内引入。即,含有表面活性剂的流体介质可以全部地从石墨电极的中空腔内引入,也可以一部分从石墨电极的中空腔内引 入,剩余部分从石墨电极的中空腔外引入,所述从石墨电极的中空腔外引入,包括,顺着石墨电极的外表面流向工件,以此引入到石墨电极和工件的放电间隙中,还包括通过其他途径引入到石墨电极和工件的间隙中。
可以理解地,在一些实施例中,从中空腔内和中空腔外流入的含有表面活性剂的流体介质中,表面活性剂可以是相同的,也可以是不同的。
更优选地,设置有中空腔的石墨电极为设置有单管、多管或中空嵌套的石墨电极,所述含有表面活性剂的流体介质部分或全部从所述石墨电极的管内引入。
在其中一个优选的实施例中,以设置有单管的石墨电极为例,其具有以下结构:电极组件,电极组件之间有一个通道管,通道管设置有一个进口,以及一个出口,含有表面活性剂的流体介质可以从通道管中的进口进入,从通道管中的出口流出,通道管的出口朝向工件,这样可以使含有表面活性剂的流体介质流向工件,以此引入到石墨电极和工件的放电间隙中。
在一个优选的实施例中,所述流体介质为水基介质。
在一个优选的实施例中,所述水基介质为蒸馏水。
优选地,含有表面活性剂的流体介质中,所述表面活性剂的浓度为各自临界束胶浓度的0.01-20倍。
应当理解地,所述临界束胶浓度是指表面活性剂分子在溶剂中缔合形成胶束的最低浓度。
更优选地,本发明中,含有表面活性剂的流体介质中,所述表面活性剂的浓度为各自临界束胶浓度的0.5-2倍。
更进一步优选地,本发明中,含有表面活性剂的流体介质中,所述表面活性剂的浓度为各自的临界束胶浓度。
优选地,所述表面活性剂选自阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂中的一种或几种。
更优选地,所述阳离子表面活性剂包括但不限于十二烷基三甲基氯化铵(DTAC)、十二烷基二甲基苄基氯化铵(DDBAC)、十八烷基二甲基苄基氯化铵(ODBAC)。
所述阴离子表面活性剂包括但不限于十二烷基苯磺酸(SDBS)、十烷基硫酸钠(SDES)、十二烷基硫酸酯钠盐(SDS)。
所述非离子表面活性剂包括但不限于吐温20(Tween20)、吐温60(Tween60)、吐温80(Tween80)。
在一些优选的实施例中,所述表面活性剂选自十二烷基苯磺酸(SDBS)、吐温80(Tween80)或十二烷基三甲基氯化铵。
所述电源优选为为脉冲电源,脉冲宽度为2μs-200000μs,脉冲间隔为2μs-200000μs。
所述电源的间歇电压为10V-160V。
此外,通过实时动态调整所述石墨电极的放电端与所述工件的表面的距离,即调整放电间隙,产生电弧等离子体,所述放电间隙可以为0.1mm-100mm。该距离可使电弧等离子体能够作用于石墨电极和工件,并能保证含有表面活性剂的流体介质通过时,具有很大的压力。
可以理解地,所述电弧等离子体的中心温度高达10000K,可熔化绝大多数的导电材料,因此,所述工件可以为大多数的导体材料,也可以是其他可被熔化的非导电材料。一部分工件表面和石墨电极表面在电弧等离子体的作用下熔融并剥落,形成两个半径范围在0.5mm-2mm的微小熔坑,即两个熔融区,并得到位于熔融区的粉体材料和石墨烯,此时,石墨电极相对于工件作高速旋转的 机械运动。
启动电源的同时,于所述石墨电极和工件之间引入含有表面活性剂的流体介质。通过控制石墨电极的转速、控制含有表面活性剂的流体介质的流速,能够改变电弧等离子体的工作状态,在熔融区产生微小***,熔融区的粉体材料和石墨烯进一步细化,在这个过程中,在微小***和含有表面活性剂的流场的机械作用下,细化的粉体材料和石墨烯得到混合,促使石墨烯包裹在细化的粉体材料表面,在流体介质中冷凝后,形成石墨烯包覆的超细粉体,上述电弧微爆技术制备石墨烯包裹的超细粉体的原理如图1所示。
优选地,含有表面活性剂的流体介质由石墨电极中空腔引入时的初始流速为0.5L/min-500L/min。
可以理解地,上述方法对工件的外形不做过多要求,工件可以是棒状、块状等规则或不规则的形态。
冷凝后形成的石墨烯包覆的超细粉体可采用多级收粉装置进行收集。所述多级收粉装置设置有呈喇叭状的缓冲部以及与所述喇叭状的缓冲不平滑连接的阶梯状收集平台,每一级阶梯,均对应为一个收集平台。冷凝后的石墨烯包覆的超细粉体随着流体介质流出,到达多级收粉装置中,然后,随着流体介质流经每一级阶梯,石墨烯包覆的超细粉体可以沉积在阶梯上,避免出现流体介质直接冲刷到收粉箱中造成微细球形粉末随着流体介质流失或飞溅现象,保证粉末收集的完整性,实现提高细粉收得率的目的。
本发明采用电弧微爆制粉技术制备了石墨烯包覆的超细粉体。具体方法为:以电弧等离子体作为高密度的能量热源,作用于石墨电极和工件表面,熔融并剥落一部分所述石墨电极和所述工件,得到粉体材料和石墨烯,并在相应位置形成熔坑,即熔融区。同时,在石墨电极和工件的放电间隙引入添加了表面活 性剂的流体介质,通过控制所述流体介质的流速,以及所述石墨电极和工件的相对转速,引起所述电弧等离子体工作形态的改变,在熔融区产生微小的***,将粉体材料和石墨烯进一步细化,在这个过程中,在微小***和含有表面活性剂的流场的机械作用下,细化的粉体材料和石墨烯得到混合,促使石墨烯包裹在细化的粉体材料表面,冷凝后形成石墨烯包覆的超细粉体。即,在形成石墨烯和粉体材料的细小微粒的过程中,直接将石墨烯包覆在超细粉体周围,避免超细粉体发生团聚,并能使石墨烯在超细粉体表面分散均匀。包覆材料球度好,可包覆可导电的任何材料,对工件的形状及成分无限制。工艺流程简单,易于工业化的大批量生产,耗能小,基本无污染。
以上述方法制备的石墨烯包覆的超细粉体为原料,将其烧结为其他制品时,制品的组织均匀性较高,能够具有较高的强度、硬度、导电性等性能。
以下结合具体实施例作进一步说明。
实施例1
本实施例提供一种新型石墨烯包覆的超细粉体及其制备方法,包括以下步骤:
以外形规则的块状铜作为工件材料,所述块状铜的尺寸为100mm*100mm*20mm,将其清洗去污后,连接电源的阴极。将设置有单管的石墨电极连接电源的阳极。所述单管即指位于石墨电极组件之间的通道管,所述通道管的出口朝向上述块状铜。
设置供电参数为:间隙电压为45V-55V,放电电流为500A,脉冲宽度2000μs,脉冲间隔200μs,启动电源,控制所述石墨电极以转速为5000r/min的速度转动。同时,所述通道管中通入含有阴离子表面活性剂SDBS的水溶液(此时,SDBS在水中的浓度为其临界束胶浓度),通入时,其流速为50L/min。
在上述工艺条件下,电弧等离子体熔融一部分石墨电极和铜,得到位于熔融区的铜和石墨烯,同时,电弧等离子体工作形态改变,在熔融区产生微小的***,将铜和石墨烯进一步细化,得到细化后的铜和石墨烯,在这个过程中,在微小***和含有SDBS的流场的机械作用下,细化的铜和石墨烯得到混合,促使石墨烯包裹在细化的铜表面,冷凝后形成球性的石墨烯包覆的超细铜粉。如图2所示,图2中左侧为石墨烯包覆的超细铜粉,右侧为左侧的局部放大图。从图2可以看出:石墨烯(黑色)包覆在铜粉(灰色)表面。
对上述球性的石墨烯包覆的超细铜粉进行成分分析,如图3和表1所示。
表1
Figure PCTCN2020089492-appb-000001
表2
元素 wt% wt%Sigma
C 64.88 0.26
Al 0.19 0.02
Cu 34.93 0.26
总量: 100.00  
由图3和表1、表2可知,上述球性的石墨烯包覆的超细铜粉中,含有64.88wt%的石墨烯,含有34.93wt%的铜,以及少量的铝。
实施例2
本实施例提供一种新型石墨烯包覆的超细粉体及其制备方法,包括以下步骤:
以外形规则的棒状铝合金作为工件材料,所述棒状铝合金直径为φ20mm,长度为100mm,将其清洗去污后,连接电源的阴极。将设置有单管的石墨电极连接电源的阳极,所述单管即指位于石墨电极组件之间的通道管,所述通道管的出口朝向所述铝合金工件。
设置供电参数为:间隙电压为45V-55V,放电电流为500A,脉冲宽度2000μs,脉冲间隔200μs,启动电源,控制所述石墨电极以转速为5000r/min的速度转动。同时,所述通道管中通入含有非离子表面活性剂Tween80的水溶液(此时,Tween80在水中的浓度为其临界束胶浓度),通入时,其流速为50L/min。
在上述工艺条件下,电弧等离子体熔融一部分石墨电极和铝合金工件,得到位于熔融区的铝合金和石墨烯,同时,电弧等离子体工作形态改变,在熔融区产生微小的***,将铝合金和石墨烯进一步细化,得到细化后的铝合金和石墨烯,在这个过程中,在微小***和含有Tween80的流场的机械作用下,细化的铝合金和石墨烯得到混合,促使石墨烯包裹在细化的铝合金表面,冷凝后形成球性的石墨烯包覆的超细铝合金粉。如图4所示,图4中左侧为石墨烯包覆的超细铝粉,右侧为左侧的局部放大图。从图4可以看出:石墨烯(黑色)包覆在铝粉(灰色)表面。
实施例3
本实施例提供一种新型石墨烯包覆的超细粉体及其制备方法,其制备方法与实施例1的制备方法基本相同,区别仅在于流体介质中的表面活性剂不同。具体包括以下步骤:
以外形规则的块状铜作为工件材料,所述块状铜的尺寸为100mm*100mm*20mm,将其清洗去污后,连接电源的阴极。将设置有单管的石墨电极连接电源的阳极。所述单管即指位于石墨电极组件之间的通道管,所述 通道管的出口朝向上述块状铜。
设置供电参数为:间隙电压为45V-55V,放电电流为500A,脉冲宽度2000μs,脉冲间隔200μs,启动电源,控制所述石墨电极以转速为5000r/min的速度转动。同时,所述通道管中通入含有DTAC的水溶液(此时,DTAC在水中的浓度为其临界束胶浓度),通入时,其流速为50L/min。
在上述工艺条件下,电弧等离子体熔融一部分石墨电极和铜,得到位于熔融区的铜和石墨烯,同时,电弧等离子体工作形态改变,在熔融区产生微小的***,将铜和石墨烯进一步细化,得到细化后的铜和石墨烯,在这个过程中,在微小***和含有DTAC的流场的机械作用下,细化的铜和石墨烯得到混合,促使石墨烯包裹在细化的铜表面,冷凝后形成球性的石墨烯包覆的超细铜粉。如图5所示。从图5可以看出:石墨烯(黑色)包覆在铜粉(灰色)表面。
实施例4
本实施例提供一种新型石墨烯包覆的超细粉体及其制备方法,其制备方法与实施例1的制备方法基本相同,区别仅在于石墨电极的转速不同。包括以下步骤:
以外形规则的块状铜作为工件材料,所述块状铜的尺寸为100mm*100mm*20mm,将其清洗去污后,连接电源的阴极。将设置有单管的石墨电极连接电源的阳极。所述单管即指位于石墨电极组件之间的通道管,所述通道管的出口朝向上述块状铜。
设置供电参数为:间隙电压为45V-55V,放电电流为500A,脉冲宽度2000μs,脉冲间隔200μs,启动电源,控制所述石墨电极以转速为2000r/min的速度转动。同时,所述通道管中通入含有阴离子表面活性剂SDBS的水溶液(此时,SDBS在水中的浓度为其临界束胶浓度),通入时,其流速为50L/min。
在上述工艺条件下,电弧等离子体熔融一部分石墨电极和铜,得到位于熔融区的铜和石墨烯,同时,电弧等离子体工作形态改变,在熔融区产生微小的***,将铜和石墨烯进一步细化,得到细化后的铜和石墨烯,在这个过程中,在微小***和含有SDBS的流场的机械作用下,细化的铜和石墨烯得到混合,促使石墨烯包裹在细化的铜表面,冷凝后形成球性的石墨烯包覆的超细铜粉。如图6所示。从图6可以看出:石墨烯(黑色)包覆在铜粉(灰色)表面,与图2(实施例1)对比,实施例4制得的粉末中,石墨烯包覆量较大。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种石墨烯包覆的超细粉体的制备方法,其特征在于,包括以下步骤:
    以石墨作为电极,被包覆材料作为工件,将所述电极和所述工件分别与电源的两极电连接,采用电弧微爆制粉方法制备所述石墨烯包覆的超细粉体;
    所述电弧微爆制粉方法包括:通过实时动态调整所述石墨电极与所述工件的放电间隙,产生电弧等离子体,所述电弧等离子体熔融并剥落一部分所述石墨电极和所述工件,得粉体材料和石墨烯;同时,于所述放电间隙引入含有表面活性剂的流体介质,通过控制所述流体介质的流速,以及所述石墨电极和工件的相对转速,引起所述电弧等离子体工作形态改变,产生微小***,得超细粉体材料和超细石墨烯;同时,通过所述微小***和流场的共同作用,促使所述超细石墨烯包覆在所述超细粉体材料的表面,得石墨烯包覆的超细粉体材料。
  2. 根据权利要求1所述的石墨烯包覆的超细粉体的制备方法,其特征在于,所述石墨电极连接电源的阳极,所述工件连接电源的阴极;或,
    所述石墨电极连接电源的阴极,所述工件连接电源的阳极。
  3. 根据权利要求2所述的石墨烯包覆的超细粉体的制备方法,其特征在于,将所述石墨电极与所述电源的阳极连接,控制所述石墨电极以转速为100r/min-60000r/min的速度转动。
  4. 根据权利要求3所述的石墨烯包覆的超细粉体的制备方法,其特征在于,所述石墨电极设置有中空腔,所述含有表面活性剂的流体介质部分或全部从所述石墨电极的中空腔内引入。
  5. 根据权利要求1所述的石墨烯包覆的超细粉体的制备方法,其特征在于,所述表面活性剂选自阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂中的一种或几种。
  6. 根据权利要求5所述的石墨烯包覆的超细粉体的制备方法,其特征在于, 所述表面活性剂选自十二烷基三甲基氯化铵、十二烷基二甲基苄基氯化铵、十八烷基二甲基苄基氯化铵、十二烷基苯磺酸、十烷基硫酸钠、十二烷基硫酸酯钠盐、吐温20、吐温60或吐温80。
  7. 根据权利要求1所述的石墨烯包覆的超细粉体的制备方法,其特征在于,所述表面活性剂的浓度为各自临界束胶浓度的0.01-20倍。
  8. 根据权利要求1所述的石墨烯包覆的超细粉体的制备方法,其特征在于,所述流体介质为水基介质。
  9. 根据权利要求1-8任一项所述的石墨烯包覆的超细粉体的制备方法,其特征在于,所述工件为导电材料。
  10. 一种权利要求1-9任一项所述的制备方法制得的石墨烯包覆的超细粉体。
PCT/CN2020/089492 2020-03-10 2020-05-09 石墨烯包覆的超细粉体及其制备方法 WO2021179432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010159768.9 2020-03-10
CN202010159768.9A CN111331146B (zh) 2020-03-10 2020-03-10 石墨烯包覆的超细粉体及其制备方法

Publications (1)

Publication Number Publication Date
WO2021179432A1 true WO2021179432A1 (zh) 2021-09-16

Family

ID=71176048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089492 WO2021179432A1 (zh) 2020-03-10 2020-05-09 石墨烯包覆的超细粉体及其制备方法

Country Status (2)

Country Link
CN (1) CN111331146B (zh)
WO (1) WO2021179432A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178836A (zh) * 2022-11-01 2023-05-30 广西科学院 一种聚丙烯专用的微波改性方解石粉及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115182023A (zh) * 2021-04-01 2022-10-14 浙江正泰电器股份有限公司 复配型分散剂及其制备方法、混合电镀液及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191683A (zh) * 2013-03-01 2013-07-10 北京理工大学 一种电***制备纳米粉体材料的装置
CN104831100A (zh) * 2015-05-04 2015-08-12 北京航空航天大学 一种放电等离子(sps)烧结制备石墨烯增强金属基复合材料的方法
US20150287491A1 (en) * 2014-04-08 2015-10-08 Research & Business Foundation Sungkyunkwan University Method of manufacturing graphene-coated composite powder
CN107309435A (zh) * 2017-06-15 2017-11-03 成都新柯力化工科技有限公司 一种电***喷雾制备石墨烯‑铝合金复合材料的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173704A (ja) * 1989-12-01 1991-07-29 Osaka Titanium Co Ltd スパッタリング用ターゲットの製造方法
CN1106325A (zh) * 1994-11-01 1995-08-09 武汉工业大学 直流电弧等离子体制备超细粉末装置
TWI255695B (en) * 2001-10-12 2006-06-01 Phild Co Ltd Method and device for producing ultrafine dispersion of noble metal
CN103657359B (zh) * 2013-12-12 2015-08-26 四川环隆科技有限公司 一种具有旋转电极的大气压辉光放电等离子反应器
CN103785846B (zh) * 2014-01-23 2016-01-20 西安欧中材料科技有限公司 一种钛合金各级球形粉末的制备方法
CN106670487B (zh) * 2016-12-19 2018-11-20 西安欧中材料科技有限公司 一种制备微细球形金属粉末的设备及方法
CN107775014B (zh) * 2017-09-06 2020-05-22 深圳先进技术研究院 一种大气压冷等离子体制备贵金属/石墨烯复合纳米材料的方法
CN108515172B (zh) * 2018-04-09 2021-04-30 西安交通大学 一种耐磨耐电弧侵蚀银基材料的制备方法
CN108580885B (zh) * 2018-04-09 2021-03-16 西安交通大学 一种核壳结构石墨烯包覆粉体的制备方法
CN108705096B (zh) * 2018-06-26 2020-05-08 西安欧中材料科技有限公司 一种细粒径球形18Ni300粉末的制备方法
CN109465463A (zh) * 2018-12-25 2019-03-15 西安赛隆金属材料有限责任公司 一种旋转电极制粉装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191683A (zh) * 2013-03-01 2013-07-10 北京理工大学 一种电***制备纳米粉体材料的装置
US20150287491A1 (en) * 2014-04-08 2015-10-08 Research & Business Foundation Sungkyunkwan University Method of manufacturing graphene-coated composite powder
CN104831100A (zh) * 2015-05-04 2015-08-12 北京航空航天大学 一种放电等离子(sps)烧结制备石墨烯增强金属基复合材料的方法
CN107309435A (zh) * 2017-06-15 2017-11-03 成都新柯力化工科技有限公司 一种电***喷雾制备石墨烯‑铝合金复合材料的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178836A (zh) * 2022-11-01 2023-05-30 广西科学院 一种聚丙烯专用的微波改性方解石粉及其制备方法
CN116178836B (zh) * 2022-11-01 2024-02-27 广西科学院 一种聚丙烯专用的微波改性方解石粉及其制备方法

Also Published As

Publication number Publication date
CN111331146A (zh) 2020-06-26
CN111331146B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021179432A1 (zh) 石墨烯包覆的超细粉体及其制备方法
CN110961646B (zh) 金属粉末及其制备方法
CN108031854B (zh) 一种用于3d打印的金属粉末界面的改性方法
Tang et al. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres
CN106756165B (zh) 一种高结构完整高分散石墨烯/金属复合材料的制备方法
WO2021179431A1 (zh) 多元合金粉末及其快速制备方法
CN107377993B (zh) 一种金属纳米线、分散液及其制备方法
CN102941350B (zh) 一种纳米铜粉的制备方法
CN110961644A (zh) 新型球形粉末及其制备方法
CN107847941A (zh) 用于剥离片状材料的包括微通道的设备
CN105345019B (zh) 3d打印用金属粉末高效电弧放电制备装置
WO2022267488A1 (zh) 一种强韧耐蚀az80镁合金的制备方法
CN108421984A (zh) 一种用于增材制造的不锈钢粉末及其制备方法
Huang et al. State of the art and prospects in sliver-and copper-matrix composite electrical contact materials
Guo et al. Preparation of spherical WC-Co powder by spray granulation combined with radio frequency induction plasma spheroidization
CN101787552B (zh) 一种药型罩用Cu-W-Ni铜基复合材料及其电铸方法、电铸液
CN103695850B (zh) 太阳能电池cigs靶材的制备方法
CN110052675B (zh) 一种电火花加工放电介质及制备方法及表面改性方法
CN114990383B (zh) 一种提高电极感应熔炼惰性气体雾化粉末细粉收得比例的钛合金及其雾化粉末制备方法
CN101327515A (zh) 一种无铅喷金料合金线材的粗线坯加工方法
CN103962567B (zh) 一种球形钼粉的制备方法及设备
CN107983963A (zh) 一种纯净纳米W-Cu复合粉末的低温制备方法
CN107057466A (zh) 一种用于纸塑基的喷墨打印用纳米银墨水
CN111482611A (zh) 一种用于3d打印的球形碳化钨-钴粉末的制备方法
JPS62199705A (ja) 微細粒状銅粉の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924942

Country of ref document: EP

Kind code of ref document: A1