WO2022022066A1 - 一种极地海洋工程用钢板及其制备方法 - Google Patents
一种极地海洋工程用钢板及其制备方法 Download PDFInfo
- Publication number
- WO2022022066A1 WO2022022066A1 PCT/CN2021/098735 CN2021098735W WO2022022066A1 WO 2022022066 A1 WO2022022066 A1 WO 2022022066A1 CN 2021098735 W CN2021098735 W CN 2021098735W WO 2022022066 A1 WO2022022066 A1 WO 2022022066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel plate
- steel
- rolling
- smelting
- marine engineering
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 166
- 239000010959 steel Substances 0.000 claims abstract description 166
- 238000001816 cooling Methods 0.000 claims abstract description 29
- 238000005266 casting Methods 0.000 claims abstract description 28
- 238000007670 refining Methods 0.000 claims abstract description 22
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 12
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 238000005096 rolling process Methods 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 43
- 230000008569 process Effects 0.000 claims description 32
- 238000003723 Smelting Methods 0.000 claims description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- 239000002893 slag Substances 0.000 claims description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 23
- 239000010949 copper Substances 0.000 claims description 15
- 239000011572 manganese Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000010936 titanium Substances 0.000 claims description 13
- 238000007664 blowing Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 239000011575 calcium Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910000519 Ferrosilicon Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 238000001953 recrystallisation Methods 0.000 claims description 6
- 229910000592 Ferroniobium Inorganic materials 0.000 claims description 5
- 229910000628 Ferrovanadium Inorganic materials 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 5
- ZFGFKQDDQUAJQP-UHFFFAOYSA-N iron niobium Chemical compound [Fe].[Fe].[Nb] ZFGFKQDDQUAJQP-UHFFFAOYSA-N 0.000 claims description 5
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 claims description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 238000006477 desulfuration reaction Methods 0.000 claims description 4
- 230000023556 desulfurization Effects 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 208000004434 Calcinosis Diseases 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- ULGYAEQHFNJYML-UHFFFAOYSA-N [AlH3].[Ca] Chemical compound [AlH3].[Ca] ULGYAEQHFNJYML-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 230000002308 calcification Effects 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 238000007872 degassing Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- 239000005997 Calcium carbide Substances 0.000 claims description 2
- 229910000616 Ferromanganese Inorganic materials 0.000 claims description 2
- 239000003513 alkali Substances 0.000 claims description 2
- -1 aluminum-manganese Chemical compound 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 238000010079 rubber tapping Methods 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 230000032683 aging Effects 0.000 abstract description 12
- 238000005260 corrosion Methods 0.000 abstract description 6
- 230000007797 corrosion Effects 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000003466 welding Methods 0.000 description 15
- 239000010955 niobium Substances 0.000 description 13
- 229910001566 austenite Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000010583 slow cooling Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000519995 Stachys sylvatica Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/35—Blowing from above and through the bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/36—Processes yielding slags of special composition
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0006—Adding metallic additives
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0056—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/06—Deoxidising, e.g. killing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0081—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
- C22C33/06—Making ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention belongs to the technical field of steel plate production for polar use, and in particular relates to a steel plate for polar marine engineering and a preparation method thereof.
- Chinese patent application CN 102851611 B discloses "Ultra-high strength and toughness steel plate for deep water resistant pressure casing and its manufacturing method".
- C, Si, Mn, P, S, Cr, Mo, Ni The contents of Cu, Ti, Als, V, N, and Ca are all required.
- the types and contents of alloying elements far exceed the contents of this application, which will inevitably increase their costs, and it is difficult to accurately control the components in the steelmaking process. .
- the steel plate production process is TMCP+QT, the production process is complex and the production cost is high.
- Chinese patent application CN 103060715 B discloses "a kind of ultra-high-strength and tough steel plate with low yield ratio and its manufacturing method". , Nb, Ti, Al, V, N, O, Ca, B elements are required, and the type and content of alloying elements far exceed the content of this application, which will inevitably lead to an increase in its cost, and its steelmaking process. Precise control of components is difficult; the production process of the steel plate is hot rolling + quenching + low temperature tempering, the process flow is complex and the production cost is high; the steel plate prepared by this patent has low elongation after fracture and insufficient low temperature impact toughness, which cannot meet the requirements of complex extremes. Service requirements in the environment.
- Chinese patent application CN 108728743 B discloses "Ocean engineering steel with good low temperature fracture toughness and its manufacturing method", the steel plate production process involved in this patent is hot rolling + twice quenching + low temperature tempering, the process flow is complicated, and the heat treatment cost is relatively high. It is not conducive to mass industrial production with high efficiency and low cost, and the low temperature aging impact toughness is insufficient.
- Chinese patent application CN 104674117 A discloses "a 420MPa grade marine engineering steel plate and its manufacturing method".
- the steel plate alloy components involved in the patent C, Si, Mn, P, S, Nb, Ti, Al, V.
- the content of Cu elements is required, and the addition of Cu in this patent will cause copper embrittlement, resulting in intergranular cracking during hot rolling.
- the content of other alloying elements in this application is not higher than that in this patent; although The steel plate involved in this patent has good strong plasticity, but the low-temperature impact toughness is lower than that of the present application, and the aging impact property is not mentioned.
- the purpose of the present invention is to provide a steel plate for polar marine engineering and a preparation method thereof.
- the steel has relatively low cost, good low temperature toughness, simple process and easy operation, and has excellent comprehensive properties such as high strength, low temperature resistance, easy welding and fatigue resistance, low temperature aging impact toughness, thickness direction performance uniformity and batch-to-batch performance. Good performance stability.
- the innovative composition ratio of the invention and the addition of Ni alloy elements can produce an effective strengthening effect, and at the same time improve the strong plasticity and low temperature toughness of the steel plate, can also reduce the copper embrittlement phenomenon, reduce the intergranular cracking in the hot rolling process, and improve the corrosion resistance of the steel plate. sex.
- the components of the steel plate are: C: 0.06-0.075%, Si: 0.20-0.28%, Mn: 1.48-1.58%, Nb: 0.020% ⁇ 0.035%, Ti: 0.013% ⁇ 0.018%, V: 0.030% ⁇ 0.045%, Ni: 0.08% ⁇ 0.12%, Als: 0.025% ⁇ 0.040%, P: ⁇ 0.013%, S: ⁇ 0.005 %, the rest is Fe and inevitable inclusions.
- the mass percentage content of V and Ni satisfies the following relationship: 0.211C+0.041Mn+0.738Nb+1.19Ti ⁇ V +Ni ⁇ 0.318C+0.065Mn+0.943Nb+1.867Ti.
- the mass percentage content of each component in the unavoidable impurities is: H ⁇ 0.0002%, O ⁇ 0.003%, As ⁇ 0.007% , Sb ⁇ 0.010%, Sn ⁇ 0.020%, Pb ⁇ 0.010%, Bi ⁇ 0.010% and Ca ⁇ 0.005%.
- Nb The addition of the element niobium is to promote the grain refinement of the rolled microstructure of the steel sheet, which can improve the strength and toughness at the same time.
- Niobium can effectively refine the microstructure by inhibiting the recrystallization of austenite during the controlled rolling process. , and the matrix is strengthened by precipitation, so that the Nb-containing steel can be rolled at a higher temperature to obtain a fine grain structure.
- the ferrite delta phase or other brittle phases will also be formed, which will reduce the toughness and deteriorate the hot workability.
- the segregation and precipitation of niobium atoms can hinder the coarsening of austenite grains during heating, and ensure a relatively fine heat-affected zone structure after welding, improving the performance of the welding heat-affected zone.
- the Nb content is less than 0.01%, the effect on the performance of the steel is small, and when it exceeds 0.05%, the weldability and toughness of the steel are reduced.
- the present invention controls the Nb content to 0.02% ⁇ 0.035%.
- Ti can form carbides, nitrides or carbonitrides with C and N elements, inhibiting the excessive growth of austenite grains during slab heating and manufacturing, and has a good grain refining effect, improving the low temperature of the steel plate. toughness. More importantly, the grain growth of the heat-affected zone is suppressed during the welding process, and the toughness of the heat-affected zone is improved. However, when the content exceeds 0.04%, it is easy to form large particles of TiN and lose the fine-grained effect. Considering the alloy cost and the performance of the steel plate, the present invention uses the TiN. The content is controlled at 0.01% to 0.02%.
- V It can play a role in solid solution strengthening in steel.
- V (C, N) is dispersed and precipitated, which hinders the movement of dislocations, makes austenite a large number of dislocations, and promotes Phase deformation nuclei, refine the final structure, improve the strength and toughness of the TMCP steel plate, reduce the overheating sensitivity, and improve the thermal stability.
- the addition of V is less than 0.020%, the precipitation of V(C, N) is too small, and the strength of the ultra-high strength steel plate cannot be effectively improved; the addition of V is higher than 0.080%, which damages the low-temperature toughness, elongation, welding performance and post-weld elimination of the steel plate.
- the present invention controls the V content to be 0.02% to 0.035%.
- Ni It has the effect of solid solution strengthening, which can promote the formation of stable austenite structure in alloy steel, inhibit recrystallization of austenite, and refine the grain size. Therefore, Ni has the function of improving the strength, elongation and low temperature toughness of steel plate at the same time; The addition of Ni can also reduce the copper embrittlement phenomenon of copper-containing steel, reduce the intergranular cracking in the hot rolling process, and improve the atmospheric corrosion resistance of the steel plate. Therefore, theoretically speaking, the higher the Ni content in the steel, the better within a certain range, but the excessively high Ni content will harden the welding heat-affected zone, which is detrimental to the weldability of the steel plate and the post-weld stress relief heat treatment (SR). However, a sufficient Ni content ensures that the steel sheet has sufficient hardenability, uniform properties in the thickness direction, and at the same time ensures the plastic toughness of the steel sheet. Therefore, the present invention controls the Ni content to 0.08%-0.17%.
- Als in the steel can fix the free N in the steel, improve the low temperature toughness of the steel plate and welded HAZ, and the dispersive precipitation of AlN will inhibit the growth of austenite grains and uniformly refine the austenite grain size during the heating process. , to improve impact toughness.
- Aluminum also has oxidation resistance and corrosion resistance, but too much Al content will lead to an increase in the number of inclusions in the steel, the size of the inclusions will become larger, the internal quality of the steel plate will decrease, and the hot workability, welding performance and cutting process of the steel will be affected. Therefore, the present invention controls the Als content to be 0.015% to 0.04%.
- N When the N element content is too high, coarse TiN and AlN will be formed and precipitated at the prior austenite grain boundaries, which will damage the impact toughness and plasticity of the steel plate and the welding heat-affected zone. At the same time, N atoms will also be enriched at the defects in the steel, forming pores and porosity, and further deteriorating the mechanical properties of the steel plate. Therefore, considering that N in the steel is unlikely to be removed, the N content in the present invention is controlled to be ⁇ 0.006%.
- the added amount of B in the present invention is less than or equal to 0.0005%.
- the element remains in the casting billet or diffuses into the surface layer, which is easy to oxidize the grain boundary to form a brittle oxide interlayer, isolate the austenite grains, and cause intergranular cracks in the subsequent deformation processing, thereby
- the strength and plasticity of the steel plate are significantly reduced, so the content of O is controlled as much as possible.
- the inclusions in the steel must be reduced, among which the alumina inclusions are the most harmful, so the O content in the steel is less than or equal to 0.003%.
- H The presence of hydrogen element will cause white spots, so the content of H is controlled to be ⁇ 0.0002%.
- Ca treatment on steel can further purify the molten steel, on the other hand, it can effectively control the shape of inclusions, denature the sulfides and oxides in the steel, and make them into non-deformable, stable and fine spherical shapes Sulfide, inhibit the hot brittleness of S, improve the low temperature toughness, elongation and Z-direction properties of the steel plate, and improve the anisotropy and weldability of the steel plate toughness.
- the size of Ca(O, S) will be too large, which will increase the cluster or bundle inclusions, and the brittleness will also increase, which can become the starting point of fracture cracks and reduce the low temperature toughness, elongation and steel plate. Weldability, at the same time, it also reduces the purity of steel and contaminates molten steel, so the content of Ca in steel is less than or equal to 0.005%.
- Controlling the carbon equivalent index is beneficial to ensure the strength and weldability of the steel plate, and the CEV of the present invention is controlled at ⁇ 0.39%.
- Controlling the cold crack susceptibility coefficient is beneficial to ensure the welding performance of the product, and the Pcm of the present invention is controlled at ⁇ 0.20%.
- a preparation method of a steel plate for polar marine engineering comprising:
- Smelting and casting step preliminary smelting molten iron and scrap steel to obtain preliminary molten steel, then refining and casting the preliminary molten steel to obtain a slab, and then slowly cooling the slab.
- Heating step heating the slowly cooled slab to obtain a hot slab
- Rolling step rolling the hot cast slab to obtain a steel plate
- Cooling step cooling the steel plate to obtain the steel plate for polar marine engineering.
- the primary smelting is performed under the condition of a top-bottom double blowing converter; preferably, before the primary smelting, KR is used.
- the pretreatment desulfurizes the molten iron, and the sulfur content in the molten iron after desulfurization is less than or equal to 0.015wt%.
- the scrap steel/(hot metal + scrap steel) ⁇ 8wt.% for example, 5 wt. %, 6 wt. %, 7 wt. %); preferably, nickel plates are added with the scrap steel.
- the refining is LF+RH refining;
- the top slag is yellow-white slag or white slag before leaving the station, and the retention time of yellow-white slag or white slag is not less than 10 minutes (for example, 11 minutes, 13 minutes, 15 minutes, etc.).
- the final slag alkali measurement is required to be controlled above 2.5 (such as 2.7, 2.9, 3.1, etc.) when feeding titanium wire at the end of refining.
- metal manganese, ferrosilicon, ferroniobium, and ferrovanadium alloys are used to fine-tune the composition.
- the degassing time is not less than 5 min; wherein, in the RH refining, calcium aluminum wire is fed for calcification treatment to improve the The shape of inclusions and the effective removal of inclusions; soft blowing is performed before leaving the station, and the soft blowing time shall not be less than 12 minutes.
- the whole process of protection casting is adopted, and the liquidus temperature is 1515-1525°C (for example, 1517°C, 1519°C). °C, 1521°C, 1523°C), the superheat degree is required not to be greater than 17°C, the light reduction technology is used at the solidification end of the segmented billet, the billet is put into the pit, and the stacking is slowly cooled for not less than 60 hours to fully reduce the temperature of the billet. Tissue stress and thermal stress from cooling process.
- the heating rate is greater than 10min/cm to ensure that the billet is burned evenly; the soaking time is not less than 40min; the casting billet is heated After (exiting the heating furnace), the hot casting slab is subjected to high-pressure water dephosphorization.
- the rolling in the rolling step, is two-stage controlled rolling of rough rolling and finishing rolling, and the rough rolling is rolling in the recrystallization zone.
- the finishing rolling is controlled to be rolling in the non-recrystallized zone;
- the finishing rolling temperature is controlled at 820-840°C (for example, 825°C, 830°C, 835°C).
- the cooling is air cooling.
- the cooling is ACC water cooling
- the inlet water temperature is 770-780° C. (for example, 772°C, 774°C, 776°C, 778°C)
- the water outlet temperature is 600-650°C (for example, 610°C, 620°C, 630°C, 640°C)
- the steel plate is straightened after the water cooling.
- the water outlet temperature of the present invention can make the performance of the steel sheet more homogenized.
- the present invention has the following positive effects:
- the present invention adopts the microalloy composition design of adding Nb, V, Ti, and Ni to give full play to the precipitation strengthening effect of Ni alloy elements and the structure control technology of the production process, and obtains a fine and uniform distribution of pearlite + ferrite mixed structure, Excellent strength, plasticity and low temperature toughness can be obtained with less alloy content, which not only further reduces the alloy cost and production cost, but also improves the welding performance and welding crack susceptibility of the steel plate, and correspondingly reduces the processing cost of the user.
- no Cu is added, which will eliminate or weaken the phenomenon of intergranular cracking during hot rolling caused by copper embrittlement.
- Ni alloy is added to improve strength and toughness through solid solution strengthening and grain refinement strengthening effects.
- the steel sheet obtained by the invention has excellent properties: the upper yield strength is above 420MPa; the tensile strength is above 540MPa; the elongation after fracture is above 21%; the transverse impact energy at -40°C is above 250J;- The impact energy of longitudinal aging at 40°C is above 250J.
- This steel grade is well adapted to the development of marine engineering in extremely cold regions, and has excellent comprehensive properties such as high strength, low temperature resistance, easy welding, corrosion resistance, etc. It has good performance stability and can serve steel plates in low temperature environment for a long time, which provides technical support for the development of steel plate products that can be widely used in marine engineering in extremely cold regions.
- the hot-rolled steel plate adopts the low-cost Mn element for solid solution strengthening, and provides a good raw material for casting billets by controlling the composition, purity and gas content in the steelmaking process. Then, a two-stage controlled rolling and controlled cooling process is carried out. In the rough rolling stage, the grains are refined by large reduction. In the finishing rolling stage, a large number of dislocations can be formed in the unrecrystallized area and the grain growth can be effectively prevented to improve the performance. Further strengthening and toughening through microalloying and microstructure control technology, the uniformity of the microstructure and properties in the thickness direction of the steel plate is controlled to ensure that the steel plate has high strength and good low temperature toughness.
- the low-cost 420MPa grade marine engineering steel plate produced by this method has excellent comprehensive properties such as high strength, low temperature resistance, easy welding, fatigue resistance, etc. under the simple composition system, low temperature aging impact toughness, thickness direction performance uniformity and batch performance Good stability control, long-term service in extremely cold environments, and can be widely used in various projects in extremely cold regions.
- the raw materials entering the furnace must meet the technical requirements of the converter process.
- the blast furnace molten iron is desulfurized by KR pretreatment, and the sulfur content of the molten iron into the furnace is ⁇ 0.015%. 2 tons. Nickel plates are added with scrap, and the amount of scrap added shall not exceed 8% of the total amount;
- One-time carbon pulling is adopted, and the slag is added 3 minutes before the end point.
- the slag is blocked and tapped to prevent a large amount of slag, and the discharge time is not less than 3 minutes; 3.5kg/t steel of aluminum-manganese iron is used for deoxidation.
- Ferrosilicon alloy add when the molten steel reaches three quarters;
- argon is blown at the bottom for stirring, and calcium carbide and aluminum particles are used for slag adjustment and deoxidation.
- the top slag must be yellow-white slag or white slag, and the retention time of yellow-white slag or white slag should not be less than 10 minutes.
- the degree of vacuum is 25-65Pa (for example, 35Pa, 40Pa, 45Pa, 50Pa, 55Pa, etc.);
- the composition can be obtained from C: 0.06 ⁇ 0.09%, Si: 0.20 ⁇ 0.35%, Mn: 1.48 ⁇ 1.63%, Nb: 0.020% ⁇ 0.035%, Ti: 0.010% ⁇ 0.020%, V: 0.020% ⁇ 0.035%, Ni: 0.08% ⁇ 0.17%, Al: 0.015% ⁇ 0.040%, and the rest is the target molten steel composed of Fe and inevitable inclusions.
- the present invention is not limited to this, and the molten steel meeting the above-mentioned composition range can also be obtained in other ways.
- the liquidus temperature is calculated as 1515°C according to the middle limit of the intermediate specification components, and the superheat degree is required not to exceed 17°C (for example, 14, 15, 16°C).
- the solidification end adopts the light reduction technology, and the billet is put into the pit and the stack is slowly cooled for not less than 60 hours, so as to fully reduce the structural stress and thermal stress of the billet during the cooling process.
- the drawing speed of 175mm slab thickness is controlled to be 1.25 ⁇ 1.35m/min, that of 200mm slab thickness is controlled to 1.3 ⁇ 1.4m/min, that of 250mm slab thickness is controlled to 1.1 ⁇ 1.3m/min, and that of 300mm slab is controlled to 1.1 ⁇ 1.3m/min.
- the thickness of the billet section is controlled to be 0.8-0.9m/min.
- the continuous casting billet is added to the heating furnace for heating, and the casting billet loading method is cold loading;
- the invention adopts the cold charging method to send the slab into the heating furnace, and the heating rate is required to be calculated as ⁇ 10 min/cm to ensure that the billet is burned evenly and thoroughly .
- the soaking time is not less than 40min, and the temperature difference at each point of the billet is not more than 15°C. After the billet leaves the heating furnace, high-pressure water is used to remove phosphorus.
- the rolling is two-stage controlled rolling of rough rolling and finishing rolling, and the rough rolling is rolling in the recrystallization zone; the starting temperature of rough rolling is preferably 1185-1200 °C, and the final rolling temperature of rough rolling is preferably 1160-1190 °C; If the grains are too large, the finishing rolling is controlled to be rolling in the non-recrystallized area, the finishing rolling temperature is controlled at 860-960 °C, and the finishing rolling temperature is controlled at 820-840 °C.
- the steel plate with a thickness of less than 14mm adopts an air-cooling process, and the steel plate with a thickness of more than 14mm is rolled and then subjected to ACC water cooling. After the steel plate with a thickness of 25mm or more is water-cooled, pit cooling or stacking slow cooling should be carried out as soon as possible, and the slow cooling time should not be less than 48 hours.
- each embodiment of the present invention is shown in Table 1; the smelting process parameters of each embodiment of the present invention are shown in Table 2; the rolling process parameters of each embodiment of the present invention are shown in Table 3; each embodiment of the present invention is shown in Table 3
- Table 1 The chemical composition of each embodiment of the present invention is shown in Table 1; the smelting process parameters of each embodiment of the present invention are shown in Table 2; the rolling process parameters of each embodiment of the present invention are shown in Table 3; each embodiment of the present invention is shown in Table 3
- Table 3 The mechanical properties were tested according to GB/T 228 and GB/T 2289, as shown in Table 4 and Table 5.
- V+Ni satisfies 0.211C+0.041Mn+0.738Nb+1.19Ti ⁇ V+Ni ⁇ 0.318C+0.065Mn+0.943Nb+1.867Ti
- aging conditions are: strain 5%, aging at 250° C. for 1 hour.
- the impact properties of the steel sheets after aging are shown in Table 5.
- the steel sheet for polar marine engineering of the present invention has excellent comprehensive properties such as high strength, low temperature resistance, easy welding, fatigue resistance, etc., and has good low-temperature aging impact toughness, property uniformity in the thickness direction, and batch-to-batch performance stability.
- the Z-direction properties ie, the area shrinkage rate when stretched in the thickness direction
- the high-strength and low-temperature-resistant marine engineering steel of the present invention is suitable for use in projects with extremely cold climate and high comprehensive performance requirements.
- the process parameters (such as temperature, time, etc.) of the present invention can implement the method by setting the upper and lower limits of the interval and the interval value, and the embodiments are not listed one by one here.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
厚度 | C | Si | Mn | P | S | Ni | Nb | V | Ti | Als | N | B | PCM | CEV |
15mm | 0.071 | 0.23 | 1.53 | 0.01 | 0.001 | 0.09 | 0.032 | 0.023 | 0.016 | 0.03 | 0.0042 | 0.0003 | 0.17 | 0.37 |
25mm | 0.065 | 0.24 | 1.5 | 0.01 | 0.003 | 0.09 | 0.021 | 0.021 | 0.017 | 0.038 | 0.0034 | 0.0002 | 0.15 | 0.33 |
40mm | 0.07 | 0.25 | 1.51 | 0.01 | 0.005 | 0.1 | 0.022 | 0.022 | 0.015 | 0.038 | 0.0037 | 0.0004 | 0.16 | 0.34 |
Claims (10)
- 一种极地海洋工程用钢板,其特征在于,按质量百分比计,所述钢板的组分为:C:0.06~0.09%,Si:0.20~0.35%,Mn:1.48~1.63%,Nb:0.020%~0.035%,Ti:0.010%~0.020%,V:0.020%~0.035%,Ni:0.08%~0.17%,Als:0.015%~0.040%,P:≤0.013%,S:≤0.005%,N:≤0.006%,B:≤0.005%,其余为Fe和不可避免的夹杂;且CEV≤0.39%,Pcm≤0.20%,其中:CEV=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15,Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B≤0.20%。
- 根据权利要求1所述的极地海洋工程用钢板,其特征在于,按质量百分比计,所述钢板的组分为:C:0.06~0.075%,Si:0.20~0.28%,Mn:1.48~1.58%,Nb:0.020%~0.035%,Ti:0.013%~0.018%,V:0.030%~0.045%,Ni:0.08%~0.12%,Als:0.025%~0.040%,P:≤0.013%,S:≤0.005%,其余为Fe和不可避免的夹杂;优选地,所述钢板的组分中,V和Ni的质量百分含量满足以下关系式:0.211C+0.041Mn+0.738Nb+1.19Ti≤V+Ni≤0.318C+0.065Mn+0.943Nb+1.867Ti。
- 根据权利要求1或2所述的极地海洋工程用钢板,其特征在于,基于钢板质量,所述不可避免的杂质中各组分的质量百分比含量为:H≤0.0002%、O≤0.003%、As≤0.007%、Sb≤0.010%、Sn≤0.020%、Pb≤0.010%、Bi≤0.010%和Ca≤0.005%。
- 一种权利要求1-3中任一项所述的极地海洋工程用钢板的制备方法,其特征在于,包括:冶炼浇铸步骤:对铁水和废钢进行初炼,得到初炼钢水,之后对所述初炼钢水进行精炼、浇铸,得到铸坯,之后将所述铸坯进行缓冷;加热步骤:将所述缓冷后的所述铸坯进行加热,得到热铸坯;轧制步骤:将所述热铸坯进行轧制,得到钢板;冷却步骤:将所述钢板进行冷却,得到所述极地海洋工程用钢板。
- 根据权利要求4所述的极地海洋工程用钢板的制备方法,其特征在于,在所述冶炼浇铸步骤中,在顶底复吹转炉条件下进行所述初炼;优选地,在所述初炼之前,采用KR预处理对所述铁水进行脱硫,脱硫后所述铁水中含硫量≤0.015wt%;优选地,所述废钢/(铁水+废钢)≤8wt.%;更优选地,镍板随所述废钢加入;优选地,在所述冶炼浇铸步骤的初炼中,采用双渣工艺进行所述初炼,第二次造渣冶炼的终渣碱度控制在R=3.0~4.0,优选地,采用一次拉碳,优选地,渣料于初炼终点前3-4min加完;出钢前期加入铝锰铁脱氧,初炼钢水出至四分之一时,加入金属锰、铌铁、钒铁、硅铁合金,钢水出至四分之三时加完。
- 根据权利要求4或5所述的极地海洋工程用钢板的制备方法,其特征在于,在所述冶炼浇铸步骤中,所述精炼为LF+RH精炼;优选地,在LF精炼过程中,全程底吹氩搅拌,采用铝粒、碳化钙进行脱氧,出站前顶渣为黄白渣或白渣,黄白渣或白渣保持时间不低于10分钟;优选地,在精炼末期喂钛线,终渣碱度量控制在2.5以上;优选地,在LF精炼过程中,采用金属锰、硅铁、铌铁、钒铁合金进行成分微调;优选地,在所述RH精炼中,脱气时间不小于5min;其中,在所述RH精炼中,喂入钙铝线进行钙化处理;出站前进行软吹,软吹时间不得低于12min。
- 根据权利要求4或5所述的极地海洋工程用钢板的制备方法,其特征在于,在所述浇铸中,采用全程保护浇铸,液相线温度为1515~1525℃,过热度要求不大于17℃,在扇形段铸坯凝固末端采用轻压下技术,铸坯入坑、堆垛缓冷不小于60小时。
- 根据权利要求4或5所述的极地海洋工程用钢板的制备方法,其特征在于,在所述加热步骤中,所述加热速率大于10min/cm,均热时间不少于40min;铸坯加热后,对所述热铸坯进行高压水除磷。
- 根据权利要求4或5所述的极地海洋工程用钢板的制备方法,其特征在于,在所述轧制步骤中,所述轧制为粗轧和精轧两阶段控制轧制,所述粗轧为再结晶区轧制,所述精轧为未再结晶区轧制;优选地,所述精轧开轧温度为860~960℃,所述精轧终轧温度为820~840℃。
- 根据权利要求4或5所述的极地海洋工程用钢板的制备方法,其特征在于,在所述冷却步骤中,所述钢板的厚度为6~14mm时,所述冷却为空冷;优选地,所述钢板的厚度为14~40mm时,所述冷却为ACC水冷,入水温度为770~780℃,出水温度为600~650℃,所述水冷后对钢板进行矫直。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237006364A KR20230076811A (ko) | 2020-08-17 | 2021-06-07 | 극지 해양 공정용 강판 및 이의 제조 방법 |
EP21849095.1A EP4198158A4 (en) | 2020-08-17 | 2021-06-07 | STEEL PLATE FOR POLAR MARINE STRUCTURE AND MANUFACTURING METHOD THEREFOR |
JP2022574230A JP7457843B2 (ja) | 2020-08-17 | 2021-06-07 | 極地海洋工事用鋼板及びその製造方法 |
US17/928,194 US20230098225A1 (en) | 2020-08-17 | 2021-06-07 | Steel board for polar marine engineering and preparation method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010826396.0 | 2020-08-17 | ||
CN202010826396.0A CN112048665B (zh) | 2020-08-17 | 2020-08-17 | 一种极地海洋工程用钢板及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022022066A1 true WO2022022066A1 (zh) | 2022-02-03 |
Family
ID=73600550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/098735 WO2022022066A1 (zh) | 2020-08-17 | 2021-06-07 | 一种极地海洋工程用钢板及其制备方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230098225A1 (zh) |
EP (1) | EP4198158A4 (zh) |
JP (1) | JP7457843B2 (zh) |
KR (1) | KR20230076811A (zh) |
CN (1) | CN112048665B (zh) |
WO (1) | WO2022022066A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114892102A (zh) * | 2022-05-28 | 2022-08-12 | 日钢营口中板有限公司 | 一种经济型大厚度管件用钢板及其制造方法 |
CN116445801A (zh) * | 2023-04-13 | 2023-07-18 | 攀钢集团攀枝花钢铁研究院有限公司 | 提高钢轨抗低温断裂和耐接触疲劳伤损性能的制造方法及钢轨 |
CN116445684A (zh) * | 2023-03-16 | 2023-07-18 | 华南理工大学 | 一种40~80mm高强耐候钢厚板及其生产方法 |
CN117144253A (zh) * | 2023-09-07 | 2023-12-01 | 中信金属股份有限公司 | 铌微合金化热轧带肋钢筋及其生产方法 |
CN117385278A (zh) * | 2023-10-10 | 2024-01-12 | 鞍钢股份有限公司 | 一种700MPa级海洋工程用高强耐蚀钢板及其生产方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113322364B (zh) * | 2021-05-20 | 2022-05-17 | 莱芜钢铁集团银山型钢有限公司 | 一种极地用钢的超高磷铁水低成本冶炼方法 |
CN114277314B (zh) * | 2021-12-02 | 2022-12-09 | 莱芜钢铁集团银山型钢有限公司 | 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法 |
CN114836607A (zh) * | 2022-04-25 | 2022-08-02 | 莱芜钢铁集团银山型钢有限公司 | 一种355MPa级别极地用海工钢板及其制备方法 |
CN114807761B (zh) * | 2022-04-28 | 2023-08-18 | 鞍钢股份有限公司 | 具有高延展性的eh36级海洋工程用钢及其制造方法 |
CN115181908A (zh) * | 2022-07-07 | 2022-10-14 | 莱芜钢铁集团银山型钢有限公司 | 一种极寒地区服役特厚规格460MPa级钢板及其制备方法 |
CN115418559B (zh) * | 2022-07-20 | 2023-11-07 | 山东钢铁股份有限公司 | 一种高强韧建筑用热轧h型钢及其制备方法 |
CN116875900B (zh) * | 2023-07-24 | 2024-06-18 | 鞍钢股份有限公司 | 船用抗海水腐蚀疲劳性能优异的800MPa级钢板及其制造方法 |
CN118064785B (zh) * | 2023-11-17 | 2024-11-08 | 河北普阳钢铁有限公司 | 一种355MPa级抗硫化氢腐蚀的钢板及其生产方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04154911A (ja) * | 1990-10-12 | 1992-05-27 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼板の製造方法 |
JP2002180132A (ja) * | 1993-12-29 | 2002-06-26 | Nkk Corp | 高張力鋼の製造方法 |
CN101358320A (zh) * | 2008-09-02 | 2009-02-04 | 首钢总公司 | 控轧控冷海洋平台用钢及其生产方法 |
CN102534383A (zh) * | 2012-03-01 | 2012-07-04 | 首钢总公司 | 高韧性海洋工程用钢板及其制造方法 |
CN102851611A (zh) | 2011-06-29 | 2013-01-02 | 宝山钢铁股份有限公司 | 耐深水压力壳体用超高强韧性钢板及其制造方法 |
CN103060715A (zh) | 2013-01-22 | 2013-04-24 | 宝山钢铁股份有限公司 | 一种具有低屈服比的超高强韧钢板及其制造方法 |
CN103436784A (zh) * | 2013-09-17 | 2013-12-11 | 济钢集团有限公司 | 一种海洋平台用钢板及其制造方法 |
CN104674117A (zh) | 2015-03-19 | 2015-06-03 | 山东钢铁股份有限公司 | 一种420MPa级海洋工程用钢板及其制造方法 |
CN105239003A (zh) * | 2015-11-20 | 2016-01-13 | 山东钢铁股份有限公司 | 一种厚规格海洋平台用钢板及其生产方法 |
CN105369132A (zh) * | 2015-11-10 | 2016-03-02 | 湖南华菱湘潭钢铁有限公司 | 大断面海洋平台用钢的生产方法 |
CN106834944A (zh) * | 2017-02-10 | 2017-06-13 | 山东钢铁股份有限公司 | 一种海洋工程用耐低温高韧性热轧角钢及其制造方法 |
CN108728743A (zh) | 2018-06-11 | 2018-11-02 | 鞍钢股份有限公司 | 低温断裂韧性良好的海洋工程用钢及其制造方法 |
CN110964978A (zh) * | 2019-12-04 | 2020-04-07 | 山东钢铁股份有限公司 | 一种工程机械用钢板及其制备方法 |
CN111455271A (zh) * | 2020-03-25 | 2020-07-28 | 南京钢铁股份有限公司 | 海洋结构用厚度s355g10+n钢板及其生产方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5217413B2 (ja) * | 2007-12-21 | 2013-06-19 | Jfeスチール株式会社 | 溶接熱影響部靭性に優れた高強度鋼板及びその製造方法 |
US8110292B2 (en) | 2008-04-07 | 2012-02-07 | Nippon Steel Corporation | High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same |
CN102199725B (zh) * | 2011-05-13 | 2016-03-16 | 莱芜钢铁集团有限公司 | 桥梁结构钢及其生产方法 |
WO2019058424A1 (ja) | 2017-09-19 | 2019-03-28 | 新日鐵住金株式会社 | 鋼管及び鋼板 |
CN108085604A (zh) * | 2017-11-29 | 2018-05-29 | 南京钢铁股份有限公司 | 海洋工程用低温韧性s355g10+m宽厚钢板及其生产方法 |
CN109097683B (zh) * | 2018-08-24 | 2020-08-18 | 南京钢铁股份有限公司 | 一种80mm厚低成本FH420海工钢板及其制造方法 |
CN109266958B (zh) * | 2018-09-19 | 2020-09-29 | 江阴兴澄特种钢铁有限公司 | 系列船舶与海洋工程用f级钢及其柔性化生产方法 |
CN112570449B (zh) | 2019-09-30 | 2022-12-20 | 宝钢湛江钢铁有限公司 | 一种高效的双机架双剪切线直通中厚板生产线及生产方法 |
CN113322409B (zh) | 2020-02-28 | 2022-06-28 | 宝山钢铁股份有限公司 | 一种高强韧矿用链条钢及其制造方法 |
-
2020
- 2020-08-17 CN CN202010826396.0A patent/CN112048665B/zh active Active
-
2021
- 2021-06-07 EP EP21849095.1A patent/EP4198158A4/en active Pending
- 2021-06-07 KR KR1020237006364A patent/KR20230076811A/ko active Pending
- 2021-06-07 WO PCT/CN2021/098735 patent/WO2022022066A1/zh active Application Filing
- 2021-06-07 US US17/928,194 patent/US20230098225A1/en active Pending
- 2021-06-07 JP JP2022574230A patent/JP7457843B2/ja active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04154911A (ja) * | 1990-10-12 | 1992-05-27 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼板の製造方法 |
JP2002180132A (ja) * | 1993-12-29 | 2002-06-26 | Nkk Corp | 高張力鋼の製造方法 |
CN101358320A (zh) * | 2008-09-02 | 2009-02-04 | 首钢总公司 | 控轧控冷海洋平台用钢及其生产方法 |
CN102851611A (zh) | 2011-06-29 | 2013-01-02 | 宝山钢铁股份有限公司 | 耐深水压力壳体用超高强韧性钢板及其制造方法 |
CN102534383A (zh) * | 2012-03-01 | 2012-07-04 | 首钢总公司 | 高韧性海洋工程用钢板及其制造方法 |
CN103060715A (zh) | 2013-01-22 | 2013-04-24 | 宝山钢铁股份有限公司 | 一种具有低屈服比的超高强韧钢板及其制造方法 |
CN103436784A (zh) * | 2013-09-17 | 2013-12-11 | 济钢集团有限公司 | 一种海洋平台用钢板及其制造方法 |
CN104674117A (zh) | 2015-03-19 | 2015-06-03 | 山东钢铁股份有限公司 | 一种420MPa级海洋工程用钢板及其制造方法 |
CN105369132A (zh) * | 2015-11-10 | 2016-03-02 | 湖南华菱湘潭钢铁有限公司 | 大断面海洋平台用钢的生产方法 |
CN105239003A (zh) * | 2015-11-20 | 2016-01-13 | 山东钢铁股份有限公司 | 一种厚规格海洋平台用钢板及其生产方法 |
CN106834944A (zh) * | 2017-02-10 | 2017-06-13 | 山东钢铁股份有限公司 | 一种海洋工程用耐低温高韧性热轧角钢及其制造方法 |
CN108728743A (zh) | 2018-06-11 | 2018-11-02 | 鞍钢股份有限公司 | 低温断裂韧性良好的海洋工程用钢及其制造方法 |
CN110964978A (zh) * | 2019-12-04 | 2020-04-07 | 山东钢铁股份有限公司 | 一种工程机械用钢板及其制备方法 |
CN111455271A (zh) * | 2020-03-25 | 2020-07-28 | 南京钢铁股份有限公司 | 海洋结构用厚度s355g10+n钢板及其生产方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4198158A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114892102A (zh) * | 2022-05-28 | 2022-08-12 | 日钢营口中板有限公司 | 一种经济型大厚度管件用钢板及其制造方法 |
CN114892102B (zh) * | 2022-05-28 | 2023-08-15 | 日钢营口中板有限公司 | 一种经济型大厚度管件用钢板及其制造方法 |
CN116445684A (zh) * | 2023-03-16 | 2023-07-18 | 华南理工大学 | 一种40~80mm高强耐候钢厚板及其生产方法 |
CN116445801A (zh) * | 2023-04-13 | 2023-07-18 | 攀钢集团攀枝花钢铁研究院有限公司 | 提高钢轨抗低温断裂和耐接触疲劳伤损性能的制造方法及钢轨 |
CN117144253A (zh) * | 2023-09-07 | 2023-12-01 | 中信金属股份有限公司 | 铌微合金化热轧带肋钢筋及其生产方法 |
CN117144253B (zh) * | 2023-09-07 | 2024-04-30 | 中信金属股份有限公司 | 铌微合金化热轧带肋钢筋及其生产方法 |
CN117385278A (zh) * | 2023-10-10 | 2024-01-12 | 鞍钢股份有限公司 | 一种700MPa级海洋工程用高强耐蚀钢板及其生产方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20230076811A (ko) | 2023-05-31 |
JP2023528422A (ja) | 2023-07-04 |
CN112048665A (zh) | 2020-12-08 |
US20230098225A1 (en) | 2023-03-30 |
JP7457843B2 (ja) | 2024-03-28 |
EP4198158A4 (en) | 2024-08-21 |
CN112048665B (zh) | 2022-03-22 |
EP4198158A1 (en) | 2023-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022022066A1 (zh) | 一种极地海洋工程用钢板及其制备方法 | |
CN102851591B (zh) | 一种高强高韧性船用低温钢及其制造方法 | |
CN105803330B (zh) | 一种正火船体用结构钢板及其制备方法 | |
CN113846260A (zh) | 一种工程机械用高强度钢板的生产方法 | |
CN114277314B (zh) | 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法 | |
CN113249641B (zh) | 一种100~120mm Q460D特厚高强钢及其制备方法 | |
WO2022022040A1 (zh) | 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法 | |
CN110306111A (zh) | 一种厚规格钢板及其制造方法 | |
CN102345066B (zh) | 一种用于压力容器的钢及其制备方法 | |
CN103789677B (zh) | 一种具有高耐腐蚀性的高强钢筋及其制备方法 | |
CN109385576A (zh) | 一种基于镁处理的低成本x65管线钢及其制造方法 | |
CN113604735B (zh) | 一种屈服强度420MPa级热轧耐低温H型钢及其制备方法 | |
CN112226673A (zh) | 一种抗拉强度650MPa级热轧钢板及其制造方法 | |
CN110029268B (zh) | 一种保心部低温韧性的低温压力容器用09MnNiDR钢板及制造方法 | |
CN113957359A (zh) | 高强度汽车车轮用钢及其制备方法 | |
CN104131238A (zh) | 高成型高耐候极薄规格热轧钢板及其csp生产工艺 | |
CN111321340A (zh) | 一种屈服强度450MPa级热轧钢板及其制造方法 | |
CN112680652A (zh) | 一种Cr-Mo低合金压力容器用钢板及其制备方法 | |
CN111979393A (zh) | 一种低温韧性优良的热轧高强钢板及其制备方法 | |
CN108486473B (zh) | 一种低屈强比抗硫化物应力腐蚀345MPa级低温压力容器用钢板及其制备方法 | |
CN113151740A (zh) | 低温韧性良好的vl4-4l船舶用钢板及其制造方法 | |
RU2816465C1 (ru) | Стальной лист для применения в морском строительстве в полярных регионах и способ его получения | |
CN116179952B (zh) | 一种厚规格含磷热轧耐候钢板及其制造方法 | |
CN115852245B (zh) | 一种冷轧贝氏体型耐候钢及其制备方法 | |
CN113174536B (zh) | 一种经济型低温韧性e级高强船用钢板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21849095 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022574230 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021849095 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021849095 Country of ref document: EP Effective date: 20230317 |