WO2021164191A1 - 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法 - Google Patents

一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法 Download PDF

Info

Publication number
WO2021164191A1
WO2021164191A1 PCT/CN2020/101986 CN2020101986W WO2021164191A1 WO 2021164191 A1 WO2021164191 A1 WO 2021164191A1 CN 2020101986 W CN2020101986 W CN 2020101986W WO 2021164191 A1 WO2021164191 A1 WO 2021164191A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc ferrite
magnetic permeability
manganese
weight
sanding
Prior art date
Application number
PCT/CN2020/101986
Other languages
English (en)
French (fr)
Inventor
吕东华
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to US17/793,418 priority Critical patent/US20230042168A1/en
Priority to EP20919900.9A priority patent/EP4049987A4/en
Publication of WO2021164191A1 publication Critical patent/WO2021164191A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Definitions

  • the invention relates to the technical field of manganese-zinc ferrite, in particular to a manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss and a preparation method thereof.
  • TDK's PC95 ferrite material has a wider low-loss temperature range, but it only has a lower loss in the temperature range of 25 ⁇ 100°C; similarly, Fei Magnetic Company produces Materials such as 3C97 only have low loss in the temperature range of 60 ⁇ 140°C; some products of other domestic manufacturers are also similar, such as Tiantong’s TPW33 and Anci’s JPP97 and other ferrite materials, but these ferrites
  • the bulk material can only have lower loss in the high temperature range, and cannot take into account the permeability of the low temperature or even sub-zero temperature range.
  • the present invention provides a manganese-zinc ferrite material with high magnetic permeability in the temperature range of about -20°C and low loss in the temperature range of 120-140°C, which can meet the requirements of electronic components in extremely harsh environments. Job requirements under.
  • the invention also discloses a preparation method of the above-mentioned manganese-zinc ferrite.
  • a manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss including the main material composed of the following raw materials:
  • the molar percentage of Fe 2 O 3 is 52.35 to 52.45 mol%
  • the molar percentage of MnO is 37.6 to 37.9 mol%
  • the molar percentage of ZnO is 9.65 to 10.05 mol%.
  • the weight percentage addition of CaCO 3 is 0.06 to 0.10 wt%
  • the weight percentage addition amount of ZrO 2 is 0.015 ⁇ 0.04wt%
  • the weight percentage addition amount of Co 2 O 3 is 0.3 ⁇ 0.45wt%
  • the weight percentage addition amount of SnO 2 is 0.1 ⁇ 0.2wt%.
  • the additives are added after the main materials are mixed and pre-fired to prepare a pre-fired material.
  • a method for preparing manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss includes the following steps:
  • the aqueous binder solution is a polyvinyl alcohol solution with a concentration of 7-8% by weight, and the addition amount of the aqueous binder solution is 8-12% by weight of the main material in the primary sand abrasive slurry.
  • the additive amount of the binder aqueous solution in the secondary sand abrasive slurry is 8-12 wt% of the weight of the calcined material.
  • step a) deionized water is used as the sanding medium in the primary sanding, the weight ratio of the ball water is 1: (5-7): (0.5-0.6), and the sanding time is 50-70 minutes .
  • step c) deionized water is used as the sanding medium in the secondary sanding, the weight ratio of the ball water is 1: (5-7): (0.4-0.5), and the sanding time is 120-160 minute.
  • the pre-sintering temperature is 900-920°C.
  • the pressure during compression molding is 7-9 MPa.
  • the sintering temperature is 1280 to 1320°C.
  • the present invention believes that the level of permeability at -20°C is not necessarily related to the level of Co 2 O 3 content.
  • the core factor affecting the level of permeability at -20°C is the magnetocrystalline anisotropy constant K1 of the material.
  • K1 magnetocrystalline anisotropy constant
  • a small K1 value has a high magnetic permeability, and a large K1 value has a low magnetic permeability; at the same time, appropriately increasing the Co 2 O 3 content is beneficial to reduce 120 °C -140 °C; the present invention provides a high Co 2 O 3 content improvement-
  • the method of reducing the magnetic permeability of 20°C and reducing the loss of 120°C--140°C at the same time is completely consistent with the traditional high Co 2 O 3 content which will reduce the permeability of -20°C and increase the loss of 120°C---140°C. different.
  • the core innovation of the present invention is that the present invention can provide a manganese-zinc ferrite material with a double valley point in a loss temperature curve and a preparation method thereof. Specifically, it is necessary to make full use of the valley point of the material, and when the valley point is determined, add an appropriately high amount of Co 2 O 3 to reduce the magnetocrystalline anisotropy constant at -20°C, 120°C and 140°C K1.
  • valley point which is different from the valley point in the prior art.
  • the valley point in the prior art refers to the lowest point of loss in the range of 25°C to 120°C. There is a so-called valley point technically, and the valley point of about -20°C should be increased.
  • the present invention has the following beneficial effects:
  • the present invention obtains a high magnetic permeability and low loss at about -20°C through the reasonable blending of the three components of Mn, Zn and Fe and the appropriate increase of the Co content in the additives.
  • it has low loss manganese-zinc ferrite material at 120 ⁇ 140°C; it has two loss valley points of about -20°C and about 100°C in the temperature range of -30 ⁇ 140°C, expanding the manganese-zinc ferrite The scope of application of the material.
  • Figure 1 is the loss Pcv curve of the manganese-zinc ferrite material prepared in Example 1 of the present invention in the temperature range of -30°C to 140°C.
  • a manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss including the main material composed of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.35 mol%, the molar percentage addition of MnO is 37.6 mol%, and the molar percentage addition of ZnO is 10.05 mol%;
  • additives composed of the following raw materials.
  • the weight percentage of CaCO 3 is 0.08wt%
  • the weight percentage of ZrO 2 is 0.02wt%
  • Co 2 O 3 The added weight percentage of SnO 2 is 0.4% by weight, and the weight percentage added of SnO 2 is 0.1% by weight.
  • a method for preparing manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss includes the following steps:
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7.5 wt%, The addition amount of the binder aqueous solution is 10wt% of the main material weight;
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7.5wt%, and the additive amount of the binder aqueous solution is 10wt% of the weight of the pre-fired material.
  • a manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss including the main material composed of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.45 mol%, the molar percentage addition of MnO is 37.9 mol%, and the molar percentage addition of ZnO is 9.65 mol%;
  • the weight percentage of CaCO 3 is 0.08wt%
  • the weight percentage of ZrO 2 is 0.02wt%
  • Co 2 O 3 The weight percentage addition amount of SnO 2 is 0.44wt%, and the weight percentage addition amount of SnO 2 is 0.1wt%.
  • a method for preparing manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss includes the following steps:
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7.5 wt%, The addition amount of the binder aqueous solution is 10wt% of the main material weight;
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7.5wt%, and the additive amount of the binder aqueous solution is 10wt% of the weight of the pre-fired material.
  • a manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss including the main material composed of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.45 mol%, the molar percentage addition of MnO is 37.8 mol%, and the molar percentage addition of ZnO is 9.75 mol%;
  • the weight percentage of CaCO 3 is 0.06wt%
  • the weight percentage of ZrO 2 is 0.015wt%
  • Co 2 O 3 The weight percentage addition amount of SnO 2 is 0.3wt%, and the weight percentage addition amount of SnO 2 is 0.15wt%.
  • a method for preparing manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss includes the following steps:
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7 wt%.
  • the addition amount of the binder aqueous solution is 12wt% of the main material weight;
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7wt%, and the additive amount of the binder aqueous solution is 12wt% of the weight of the pre-fired material.
  • a manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss including the main material composed of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.43 mol%, the molar percentage addition of MnO is 37.65 mol%, and the molar percentage addition of ZnO is 9.92 mol%;
  • the weight percentage of CaCO 3 is 0.07wt%
  • the weight percentage of ZrO 2 is 0.025wt%
  • Co 2 O 3 The weight percentage addition amount of SnO 2 is 0.45wt%, and the weight percentage addition amount of SnO 2 is 0.2wt%.
  • a method for preparing manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss includes the following steps:
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 8 wt%, which is viscous
  • the addition amount of the binder aqueous solution is 8wt% of the main material weight
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 8% by weight, and the additive amount of the binder aqueous solution is 8% by weight of the calcined material.
  • a manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss including the main material composed of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.40 mol%, the molar percentage addition of MnO is 37.90 mol%, and the molar percentage addition of ZnO is 9.70 mol%;
  • the weight percentage of CaCO 3 is 0.10wt%
  • the weight percentage of ZrO 2 is 0.04wt%
  • Co 2 O 3 The weight percentage addition amount of SnO 2 is 0.35wt%, and the weight percentage addition amount of SnO 2 is 0.13wt%.
  • a method for preparing manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss includes the following steps:
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7.5 wt%, The addition amount of the binder aqueous solution is 10wt% of the main material weight;
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7.5wt%, and the additive amount of the binder aqueous solution is 10wt% of the weight of the pre-fired material.
  • a manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss including the main material composed of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.38 mol%, the molar percentage addition of MnO is 37.85 mol%, and the molar percentage addition of ZnO is 9.77 mol%;
  • additives composed of the following raw materials.
  • the weight percentage of CaCO 3 is 0.09wt%
  • the weight percentage of ZrO 2 is 0.03wt%
  • Co 2 O 3 The added weight percentage of SnO 2 is 0.39% by weight, and the weight percentage added of SnO 2 is 0.18% by weight.
  • a method for preparing manganese-zinc ferrite with high negative temperature magnetic permeability and low high temperature loss includes the following steps:
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7.5 wt%, The addition amount of the binder aqueous solution is 10wt% of the main material weight;
  • the binder aqueous solution is a polyvinyl alcohol solution with a concentration of 7.5wt%, and the additive amount of the binder aqueous solution is 10wt% of the weight of the pre-fired material.
  • Manganese-zinc ferrite the main material consisting of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.75 mol%
  • the molar percentage addition of MnO is 37.2 mol%
  • the molar percentage addition of ZnO is 10.05 mol%.
  • Manganese-zinc ferrite the main material consisting of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.25 mol%
  • the molar percentage addition of MnO is 38.00 mol%
  • the molar percentage addition of ZnO is 9.75 mol%.
  • Manganese-zinc ferrite the main material consisting of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.44 mol%
  • the molar percentage addition of MnO is 37.96 mol%
  • the molar percentage addition of ZnO is 9.60 mol%.
  • Manganese-zinc ferrite the main material consisting of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.35 mol%
  • the molar percentage addition of MnO is 37.55 mol%
  • the molar percentage addition of ZnO is 10.10 mol%.
  • Manganese-zinc ferrite the main material consisting of the following raw materials:
  • the molar percentage addition amount of Fe 2 O 3 is 52.25 mol%
  • the molar percentage addition amount of MnO is 37.75 mol%
  • the molar percentage addition amount of ZnO is 10.00 mol%.
  • Manganese-zinc ferrite the main material consisting of the following raw materials:
  • the molar percentage addition of Fe 2 O 3 is 52.55 mol%
  • the molar percentage addition of MnO is 37.70 mol%
  • the molar percentage addition of ZnO is 9.75 mol%.
  • Manganese-zinc ferrite its main material and preparation method are the same as in Example 1.
  • the additives are as follows:
  • the weight percentage of CaCO 3 is 0.08wt%
  • the weight percentage of ZrO 2 is 0.02wt%
  • the weight percentage of Co 2 O 3 is 0.20wt%.
  • the weight percentage of SnO 2 is 0.1wt%.
  • Manganese-zinc ferrite its main material and preparation method are the same as in Example 1.
  • the additives are as follows:
  • the weight percentage of CaCO 3 is 0.08wt%
  • the weight percentage of ZrO 2 is 0.02wt%
  • the weight percentage of Co 2 O 3 is 0.50wt%.
  • the weight percentage of SnO 2 is 0.1wt%.
  • the testing items include permeability ⁇ i at -20°C, loss Pcv (100kHz 200mT) at 120°C and 140°C, as follows Table 1 shows.
  • Comparative Example 1 the Fe 2 O 3 content is too high, and the MnO content is too low, resulting in high high temperature loss, and the -20°C magnetic permeability is much lower than the samples in the examples;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法。该铁氧体由Fe2O3、MnO和ZnO组成,同时还添加了由CaCO3、ZrO2、Co2O3和SnO2组成的添加剂。通过Mn、Zn和Fe三种组分的合理调配及适当增加添加剂中Co含量获得了一种在-20℃左右既具有高磁导率还具有低损耗并且在120~140℃仍具有低损耗的锰锌铁氧体材料;其在-30~140℃温度范围内具有-20℃左右及100℃左右两个损耗谷点,拓展了锰锌铁氧体材料的应用范围。

Description

一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法 技术领域
本发明涉及锰锌铁氧体技术领域,尤其是涉及一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法。
背景技术
随着时代的发展和社会的进步,节能减排和提高效率越来越被人们重视。同样的,对于磁性材料应用领域,降低损耗也是一种研究热点。现有技术中,日本TDK公司的PC47、PC45等铁氧体材料宣称具有较低的损耗,但是其都只是单点的低损耗,就目前来说尚不能满足当下的节能减排和提高效率的要求。TDK公司的PC95铁氧体材料相较于PC47和PC45具有更宽的低损耗温度区间,但是其也仅仅只是在25~100℃温度范围内具有较低的损耗;同样的,飞磁公司生产的3C97等材料也仅在60~140℃温度范围内具有较低的损耗;国内其他厂家的一些产品也是类似情况,如天通公司的TPW33和安磁的JPP97等铁氧体材料,但这些铁氧体材料也仅仅只能在高温区间具有较低的损耗,而对于低温甚至零下温度区间的磁导率则无法兼顾。
发明内容
为解决上述问题,本发明提供了一种既在-20℃左右温度范围具有高磁导率同时在120~140℃温度范围具有低损耗的锰锌铁氧体材料,满足电子元件在极端恶劣环境下的工作要求。
本发明还公开了一种上述锰锌铁氧体的制备方法。
为实现上述目的,本发明采用的技术方案如下:
一种高负温磁导率和低高温损耗的锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.35~52.45mol%,MnO的摩尔百分添加量为37.6~37.9mol%,ZnO的摩尔百分添加量为9.65~10.05mol%。
作为优选,还包含以下原料组成的添加剂,添加剂中,以预烧料(主料经过预烧后得到的粉料)的总重量计,CaCO 3的重量百分添加量为0.06~0.10wt%,ZrO 2的重量百分添加量为0.015~0.04wt%,Co 2O 3为的重量百分添加量为0.3~0.45wt%,SnO 2的重量百分添加量为0.1~0.2wt%。
作为优选,添加剂在主料经混合预烧后制得预烧料后添加。
一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,包括以下步骤:
a)将主料中的各组分混合后进行一次砂磨,砂磨后制得砂磨料浆;
b)向砂磨料浆中加入粘结剂水溶液混匀并进行喷雾造粒,之后进行预烧处理,制得预烧料;
c)向预烧料中加入添加剂并进行二次砂磨,砂磨后制得二次砂磨料浆;
d)向二次砂磨料浆中加入粘结剂水溶液混匀并喷雾造粒,然后压制成型制得标环,标环经过烧结制得锰锌铁氧体。
作为优选,粘结剂水溶液为浓度7~8wt%的聚乙烯醇溶液,粘结剂水溶液的添加量一次砂磨料浆中的粘结剂水溶液添加量为主料重量的8~12wt%,所述二次砂磨料浆中的粘结剂水溶液添加量为预烧料重量的8~12wt%。
作为优选,步骤a)中,一次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:(5~7):(0.5~0.6),砂磨时间为50~70分钟。
作为优选,步骤c)中,二次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:(5~7):(0.4~0.5),砂磨时间为120~160分钟。
作为优选,步骤b)中,预烧温度为900~920℃。
作为优选,步骤d)中,压制成型时压力为7~9MPa。
作为优选,步骤d)中,烧结温度为1280~1320℃。
现有的技术认为Co 2O 3含量提高的会降低-20℃的磁导率,而且不利于降低120~140℃的损耗,因为Co 2O 3含量高,会使谷点往低温方向移动。
本发明认为-20℃磁导率的高低与Co 2O 3含量高低没有必然的联系,影响-20℃磁导率的高低的核心因素是材料的磁晶各向异性常数K1。K1值小的磁导率高,K1值大的磁导率低;同时适当提高Co 2O 3含量,有利于降低120℃--140℃;本发明提供一种高Co 2O 3含量提高-20℃磁导率同时降低120℃--140℃损耗的方法,这与传统的高Co 2O 3含量会降低-20℃磁导率,提高120℃---140℃损耗的认知是完全不同的。
本发明的核心创新点在于,本发明可以提供损耗温度曲线具有双谷点的锰锌铁氧材料及其制备方法。具体来说就是要充分运用好材料的谷点,在谷点确定的情况下,加入适当高的Co 2O 3的量,来降低-20℃、120℃和140℃的磁晶各向异性常数K1。这里要充分说明一下所谓的谷点,与现有技术上的谷点有所区别,现有技术的谷点是指25℃--120℃范围内的损耗最低点,本发明的谷点除了现有技术上的所谓的谷点,还要增加-20℃左右的谷点。
因此,本发明具有以下有益效果:本发明通过Mn、Zn和Fe三种组分的合理调配及适当增加添加剂中Co含量获得了一种在-20℃左右既具有高磁导率还具有低损耗并且在120~140℃仍具有低损耗的锰锌铁氧体材料;其在-30~140℃温度范围内具有-20℃左右及100℃左右两个损耗谷点,拓展了锰锌铁氧体材料的应用范围。
附图说明
图1为本发明实施例1中制得的锰锌铁氧体材料-30℃~140℃温度范围内的损耗Pcv曲线。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步的说明。
显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明中,若非特指,所有的设备和原料均可从市场上购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
实施例1
一种高负温磁导率和低高温损耗的锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.35mol%,MnO的摩尔百分添加量为37.6mol%,ZnO的摩尔百分添加量为10.05mol%;
还包含以下原料组成的添加剂,添加剂中,以预烧料的总重量计,CaCO 3的重量百分添加量为0.08wt%,ZrO 2的重量百分添加量为0.02wt%,Co 2O 3为的重量百分添加量为0.4wt%,SnO 2的重量百分添加量为0.1wt%。
一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,包括以下步骤:
a)将主料中的各组分混合后进行一次砂磨,一次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:6:0.55,砂磨时间为60分钟,砂磨后制得砂磨料浆;
b)向砂磨料浆中加入粘结剂水溶液混匀并进行喷雾造粒,之后在900℃进行预烧处理,制得预烧料;粘结剂水溶液为浓度7.5wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为主料重量的10wt%;
c)向预烧料中加入添加剂并进行二次砂磨,二次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:6:0.45,砂磨时间为120分钟,砂磨后制得二次砂磨料浆;
d)向二次砂磨料浆中加入粘结剂水溶液混匀并喷雾造粒,然后在成型压力为8MPa下压制成型制得标环,标环在1300℃温度下经过烧结制得锰锌铁氧体;粘结剂水溶液为浓度7.5wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为预烧料重量的10wt%。
实施例2
一种高负温磁导率和低高温损耗的锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.45mol%,MnO的摩尔百分添加量为37.9mol%,ZnO的摩尔百分添加量为9.65mol%;
还包含以下原料组成的添加剂,添加剂中,以预烧料的总重量计,CaCO 3的重量百分添加量为0.08wt%,ZrO 2的重量百分添加量为0.02wt%,Co 2O 3为的重量百分添加量为0.44wt%,SnO 2的重量百分添加量为0.1wt%。
一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,包括以下步骤:
a)将主料中的各组分混合后进行一次砂磨,一次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:6:0.55,砂磨时间为60分钟,砂磨后制得砂磨料浆;
b)向砂磨料浆中加入粘结剂水溶液混匀并进行喷雾造粒,之后在920℃进行预烧处理,制得预烧料;粘结剂水溶液为浓度7.5wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为主料重量的10wt%;
c)向预烧料中加入添加剂并进行二次砂磨,二次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:6:0.45,砂磨时间为140分钟,砂磨后制得二次砂磨料浆;
d)向二次砂磨料浆中加入粘结剂水溶液混匀并喷雾造粒,然后在成型压力为8MPa下压制成型制得标环,标环在1300℃温度下经过烧结制得锰锌铁氧体;粘结剂水溶液为浓度7.5wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为预烧料重量的10wt%。
实施例3
一种高负温磁导率和低高温损耗的锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.45mol%,MnO的摩尔百分添加量为37.8mol%,ZnO的摩尔百分添加量为9.75mol%;
还包含以下原料组成的添加剂,添加剂中,以预烧料的总重量计,CaCO 3的重量百分添加量为0.06wt%,ZrO 2的重量百分添加量为0.015wt%,Co 2O 3为的重量百分添加量为0.3wt%,SnO 2的重量百分添加量为0.15wt%。
一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,包括以下步骤:
a)将主料中的各组分混合后进行一次砂磨,一次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:5:0.5,砂磨时间为70分钟,砂磨后制得砂磨料浆;
b)向砂磨料浆中加入粘结剂水溶液混匀并进行喷雾造粒,之后在910℃进行预烧处理,制得预烧料;粘结剂水溶液为浓度7wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为主料重量的12wt%;
c)向预烧料中加入添加剂并进行二次砂磨,二次砂磨中采用去离子水作为砂磨介质,料球水 的重量比为1:5:0.4,砂磨时间为160分钟,砂磨后制得二次砂磨料浆;
d)向二次砂磨料浆中加入粘结剂水溶液混匀并喷雾造粒,然后在成型压力为7MPa下压制成型制得标环,标环在1280℃温度下经过烧结制得锰锌铁氧体;粘结剂水溶液为浓度7wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为预烧料重量的12wt%。
实施例4
一种高负温磁导率和低高温损耗的锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.43mol%,MnO的摩尔百分添加量为37.65mol%,ZnO的摩尔百分添加量为9.92mol%;
还包含以下原料组成的添加剂,添加剂中,以预烧料的总重量计,CaCO 3的重量百分添加量为0.07wt%,ZrO 2的重量百分添加量为0.025wt%,Co 2O 3为的重量百分添加量为0.45wt%,SnO 2的重量百分添加量为0.2wt%。
一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,包括以下步骤:
a)将主料中的各组分混合后进行一次砂磨,一次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:7:0.6,砂磨时间为50分钟,砂磨后制得砂磨料浆;
b)向砂磨料浆中加入粘结剂水溶液混匀并进行喷雾造粒,之后在920℃进行预烧处理,制得预烧料;粘结剂水溶液为浓度8wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为主料重量的8wt%;
c)向预烧料中加入添加剂并进行二次砂磨,二次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:7:0.5,砂磨时间为120分钟,砂磨后制得二次砂磨料浆;
d)向二次砂磨料浆中加入粘结剂水溶液混匀并喷雾造粒,然后在成型压力为9MPa下压制成型制得标环,标环在1310℃温度下经过烧结制得锰锌铁氧体;粘结剂水溶液为浓度8wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为预烧料重量的8wt%。
实施例5
一种高负温磁导率和低高温损耗的锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.40mol%,MnO的摩尔百分添加量为37.90mol%,ZnO的摩尔百分添加量为9.70mol%;
还包含以下原料组成的添加剂,添加剂中,以预烧料的总重量计,CaCO 3的重量百分添加量为0.10wt%,ZrO 2的重量百分添加量为0.04wt%,Co 2O 3为的重量百分添加量为0.35wt%,SnO 2的重量百分添加量为0.13wt%。
一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,包括以下步骤:
a)将主料中的各组分混合后进行一次砂磨,一次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:6:0.55,砂磨时间为60分钟,砂磨后制得砂磨料浆;
b)向砂磨料浆中加入粘结剂水溶液混匀并进行喷雾造粒,之后在910℃进行预烧处理,制得预烧料;粘结剂水溶液为浓度7.5wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为主料重量的10wt%;
c)向预烧料中加入添加剂并进行二次砂磨,二次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:6:0.45,砂磨时间为140分钟,砂磨后制得二次砂磨料浆;
d)向二次砂磨料浆中加入粘结剂水溶液混匀并喷雾造粒,然后在成型压力为8MPa下压制成型制得标环,标环在1300℃温度下经过烧结制得锰锌铁氧体;粘结剂水溶液为浓度7.5wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为预烧料重量的10wt%。
实施例6
一种高负温磁导率和低高温损耗的锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.38mol%,MnO的摩尔百分添加量为37.85mol%,ZnO的摩尔百分添加量为9.77mol%;
还包含以下原料组成的添加剂,添加剂中,以预烧料的总重量计,CaCO 3的重量百分添加量为0.09wt%,ZrO 2的重量百分添加量为0.03wt%,Co 2O 3为的重量百分添加量为0.39wt%,SnO 2的重量百分添加量为0.18wt%。
一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,包括以下步骤:
a)将主料中的各组分混合后进行一次砂磨,一次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:6:0.55,砂磨时间为60分钟,砂磨后制得砂磨料浆;
b)向砂磨料浆中加入粘结剂水溶液混匀并进行喷雾造粒,之后在900℃进行预烧处理,制得预烧料;粘结剂水溶液为浓度7.5wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为主料重量的10wt%;
c)向预烧料中加入添加剂并进行二次砂磨,二次砂磨中采用去离子水作为砂磨介质,料球水的重量比为1:6:0.45,砂磨时间为150分钟,砂磨后制得二次砂磨料浆;
d)向二次砂磨料浆中加入粘结剂水溶液混匀并喷雾造粒,然后在成型压力为8MPa下压制成型制得标环,标环在1300℃温度下经过烧结制得锰锌铁氧体;粘结剂水溶液为浓度7.5wt%的聚乙烯醇溶液,粘结剂水溶液的添加量为预烧料重量的10wt%。
对比例1
锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.75mol%,MnO的摩尔百分添加量为37.2mol%,ZnO的摩尔百分添加量为10.05mol%。
本对比例中,锰锌铁氧体的添加剂及制备方法同实施例1。
对比例2
锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.25mol%,MnO的摩尔百分添加量为38.00mol%,ZnO的摩尔百分添加量为9.75mol%。
本对比例中,锰锌铁氧体的添加剂及制备方法同实施例1。
对比例3
锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.44mol%,MnO的摩尔百分添加量为37.96mol%,ZnO的摩尔百分添加量为9.60mol%。
本对比例中,锰锌铁氧体的添加剂及制备方法同实施例1。
对比例4
锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.35mol%,MnO的摩尔百分添加量为37.55mol%,ZnO的摩尔百分添加量为10.10mol%。
本对比例中,锰锌铁氧体的添加剂及制备方法同实施例1。
对比例5
锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.25mol%,MnO的摩尔百分添加量为37.75mol%,ZnO的摩尔百分添加量为10.00mol%。
本对比例中,锰锌铁氧体的添加剂及制备方法同实施例1。
对比例6
锰锌铁氧体,包含以下原料组成的主料:
Fe 2O 3的摩尔百分添加量为52.55mol%,MnO的摩尔百分添加量为37.70mol%,ZnO的摩尔百分添加量为9.75mol%。
本对比例中,锰锌铁氧体的添加剂及制备方法同实施例1。
对比例7
锰锌铁氧体,其主料及制备方法同实施例1。
其添加剂如下:
以预烧料的总重量计,CaCO 3的重量百分添加量为0.08wt%,ZrO 2的重量百分添加量为0.02wt%,Co 2O 3为的重量百分添加量为0.20wt%,SnO 2的重量百分添加量为0.1wt%。
对比例8
锰锌铁氧体,其主料及制备方法同实施例1。
其添加剂如下:
以预烧料的总重量计,CaCO 3的重量百分添加量为0.08wt%,ZrO 2的重量百分添加量为0.02wt%,Co 2O 3为的重量百分添加量为0.50wt%,SnO 2的重量百分添加量为0.1wt%。
性能检测:
对上述各实施例及对比例中获得的锰锌铁氧体材料进行性能检测,其中检测项目包括-20℃下的磁导率μi,120℃及140℃下的损耗Pcv(100kHz 200mT),如下表1所示。
并根据实际条件绘制实施例1中制得锰锌铁氧体材料-30℃~140℃温度范围内的损耗Pcv曲线,如图1所示。
表1
Figure PCTCN2020101986-appb-000001
从表1可以得出,
1.对比例1中Fe 2O 3含量过高,并且MnO的含量偏低,导致其高温损耗偏高,-20℃磁导率远低于实施例中的样品;
2.对比例2中Fe 2O 3含量偏低,并且MnO的含量过高,导致其高温损耗偏高,-20℃磁导率远低于实施例中的样品,但略高于对比例1中样品;
3.对比例3中MnO含量过高,并且ZnO的含量偏低,导致其高温损耗偏高,-20℃磁导率远低于实施例中的样品;
4.对比例4中MnO含量偏低,并且ZnO的含量过高,导致其高温损耗偏高,-20℃磁导率远低于实施例中的样品,且低于对比例3中样品;
5.对比例5中Fe 2O 3的含量偏低,其高温损耗远高于实施例中制得的样品,同时-20℃磁导率也较低;
6.对比例6中Fe 2O 3的含量过高,其高温损耗远高于实施例中制得的样品,同时-20℃磁导率也较低,甚至低于对比例5中制得的样品;
7.对比例7中Co 2O 3含量偏低,导致高温损耗偏高,-20℃磁导率低;
8.对比例8中Co 2O 3含量过高,导致高温损耗偏高,-20℃磁导率严重降低,甚至低于对比例7中制得的样品。
应当理解的是,对于本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种高负温磁导率和低高温损耗的锰锌铁氧体,其特征在于包含以下原料组成的主料:Fe 2O 3的摩尔百分添加量为52.35~52.45mol%,MnO的摩尔百分添加量为37.6~37.97mol%,ZnO的摩尔百分添加量为9.65~10.05mol%。
  2. 根据权利要求1所述的一种高负温磁导率和低高温损耗的锰锌铁氧体,其特征在于还包含以下原料组成的添加剂:
    所述添加剂中,以主料的总重量计,CaCO 3的重量百分添加量为0.06~0.10wt%,ZrO 2的重量百分添加量为0.015~0.04wt%,Co 2O 3为的重量百分添加量为0.3~0.45wt%,SnO 2的重量百分添加量为0.1~0.2wt%。
  3. 根据权利要求1所述的一种高负温磁导率和低高温损耗的锰锌铁氧体,其特征在于:
    所述添加剂在主料经混合烧结制得预烧料后添加。
  4. 一种根据权利要求1~4任一所述的高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,其特征在于包括以下步骤:
    a)将主料中的各组分混合后进行一次球磨,球磨后干燥制得球磨粉;
    b)向球磨粉中加入粘结剂水溶液混匀并进行喷雾造粒,之后进行预烧处理,制得预烧料;
    c)向预烧料中加入添加剂并进行二次球磨,球磨后干燥制得二次球磨粉;
    d)向二次球磨粉中加入粘结剂水溶液混匀并喷雾造粒,然后压制成型制得坯体,坯体经过烧结制得锰锌铁氧体。
  5. 根据权利要求4所述的一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,其特征在于:
    所述粘结剂水溶液为浓度7~8wt%的聚乙烯醇溶液,所述粘结剂水溶液的添加量为球磨粉或二次球磨粉重量的8~12wt%。
  6. 根据权利要求4所述的一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,其特征在于:
    所述步骤a)中,一次球磨中采用水作为球磨介质,料球水的重量比为1:(5~7):(0.5~0.6),球磨时间为50~70分钟。
  7. 根据权利要求4所述的一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,其特征在于:
    所述步骤c)中,二次球磨中采用水作为球磨介质,料球水的重量比为1:(5~7):(0.4~0.5),球磨时间为50~120分钟。
  8. 根据权利要求4所述的一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,其特征在于:
    所述步骤b)中,预烧温度为900~920℃。
  9. 根据权利要求4所述的一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,其特征在于:
    所述步骤d)中,压制成型时压力为6~10MPa。
  10. 根据权利要求4所述的一种高负温磁导率和低高温损耗的锰锌铁氧体的制备方法,其特征在于:
    所述步骤d)中,烧结温度为1280~1320℃。
PCT/CN2020/101986 2020-02-19 2020-07-15 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法 WO2021164191A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/793,418 US20230042168A1 (en) 2020-02-19 2020-07-15 Manganese-zinc Ferrite with High Magnetic Permeability at Negative Temperature and Low Loss at High Temperature and Method for Preparing Same
EP20919900.9A EP4049987A4 (en) 2020-02-19 2020-07-15 ZINC MANGANESE FERRITE HAVING HIGH MAGNETIC PERMEABILITY AT NEGATIVE TEMPERATURE AND LOW LOSS AT HIGH TEMPERATURE AND PREPARATION METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010101797.XA CN111362685B (zh) 2020-02-19 2020-02-19 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法
CN202010101797.X 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021164191A1 true WO2021164191A1 (zh) 2021-08-26

Family

ID=71204296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101986 WO2021164191A1 (zh) 2020-02-19 2020-07-15 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法

Country Status (4)

Country Link
US (1) US20230042168A1 (zh)
EP (1) EP4049987A4 (zh)
CN (1) CN111362685B (zh)
WO (1) WO2021164191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085077A (zh) * 2021-12-27 2022-02-25 天通凯立科技有限公司 一种微调亚铁离子的高频低损耗锰锌铁氧体及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362685B (zh) * 2020-02-19 2021-08-20 横店集团东磁股份有限公司 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法
CN112851328B (zh) * 2021-03-30 2022-06-24 横店集团东磁股份有限公司 一种锰锌铁氧体、其制备方法及用途
CN113956028B (zh) * 2021-11-25 2023-03-17 横店集团东磁股份有限公司 一种高温低损耗MnZn功率铁氧体及其制备方法
CN116813320A (zh) * 2023-06-08 2023-09-29 浙江工业大学 一种用于MHz频率的MnZn铁氧体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996727A (zh) * 2009-08-27 2011-03-30 上海康顺磁性元件厂有限公司 高饱和磁感应强度的软磁锰锌铁氧体材料及其制备方法
CN102693802A (zh) * 2012-02-15 2012-09-26 横店集团东磁股份有限公司 一种宽温MnZn功率铁氧体材料及其制备方法
CN103588472A (zh) * 2013-07-02 2014-02-19 横店集团东磁股份有限公司 一种宽温MnZn功率铁氧体材料及其制备方法
CN103708818A (zh) * 2013-12-12 2014-04-09 桐乡市耀润电子有限公司 二峰-20℃的高居里点高磁导率锰锌铁氧体材料及其制备方法
CN107459344A (zh) * 2017-07-10 2017-12-12 横店集团东磁股份有限公司 一种宽温低损耗且高Bs的MnZn铁氧体材料及其制造方法
CN108821760A (zh) * 2018-06-05 2018-11-16 横店集团东磁股份有限公司 一种降低负温损耗的MnZn功率铁氧体材料及其制备方法
JP2019199379A (ja) * 2018-05-17 2019-11-21 株式会社トーキン 耐熱性高透磁率MnZnフェライト
CN111362685A (zh) * 2020-02-19 2020-07-03 横店集团东磁股份有限公司 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302279A (en) * 1980-07-02 1981-11-24 Fuji Electrochemical Co., Ltd. Process for producing ferrite single crystal for high frequency
JP5089963B2 (ja) * 2006-11-17 2012-12-05 Jfeフェライト株式会社 MnZnNiフェライトの製造方法
CN101183582A (zh) * 2006-12-29 2008-05-21 横店集团东磁股份有限公司 高饱和磁通密度低损耗NiMnZn功率铁氧体及其制备方法
CN101486567B (zh) * 2008-01-14 2012-08-22 王永安 一种高频高温低损耗MnNiZn铁氧体材料的制备方法
JP2010083692A (ja) * 2008-09-30 2010-04-15 Tdk Corp NiMnZn系フェライト
CN101928146A (zh) * 2009-06-25 2010-12-29 江门市冠虹照明科技有限公司 一种无极灯专用低损耗铁氧体材料的制备方法
CN102693803B (zh) * 2012-02-23 2017-02-15 横店集团东磁股份有限公司 一种宽温低损耗MnZn功率铁氧体及其制备方法
CN104591711B (zh) * 2014-12-19 2017-03-29 江门安磁电子有限公司 用于‑40~160℃的低损耗锰锌铁氧体材料及其制造方法
JP6472674B2 (ja) * 2015-02-03 2019-02-20 Fdk株式会社 NiMnZn系フェライト
CN104692788A (zh) * 2015-03-23 2015-06-10 江苏新旭磁电科技有限公司 一种高频低磁滞锰锌软磁铁氧体材料及其制备方法
CN107200574B (zh) * 2017-05-12 2021-01-01 天长市中德电子有限公司 一种低损耗软磁铁氧体材料
CN107417269A (zh) * 2017-06-26 2017-12-01 重庆正峰电子有限公司 二峰温度小于‑20℃的宽温高磁导率锰锌铁氧体的制备方法
CN109354489B (zh) * 2018-11-12 2021-02-26 横店集团东磁股份有限公司 一种高频低损耗铁氧体材料及其制备方法
CN109851346B (zh) * 2018-12-29 2022-06-17 乳源东阳光磁性材料有限公司 一种高频锰锌软磁铁氧体材料及其制备方法和应用
CN110128124B (zh) * 2019-05-13 2021-12-07 海宁联丰磁业股份有限公司 一种宽温超低损耗软磁铁氧体材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996727A (zh) * 2009-08-27 2011-03-30 上海康顺磁性元件厂有限公司 高饱和磁感应强度的软磁锰锌铁氧体材料及其制备方法
CN102693802A (zh) * 2012-02-15 2012-09-26 横店集团东磁股份有限公司 一种宽温MnZn功率铁氧体材料及其制备方法
CN103588472A (zh) * 2013-07-02 2014-02-19 横店集团东磁股份有限公司 一种宽温MnZn功率铁氧体材料及其制备方法
CN103708818A (zh) * 2013-12-12 2014-04-09 桐乡市耀润电子有限公司 二峰-20℃的高居里点高磁导率锰锌铁氧体材料及其制备方法
CN107459344A (zh) * 2017-07-10 2017-12-12 横店集团东磁股份有限公司 一种宽温低损耗且高Bs的MnZn铁氧体材料及其制造方法
JP2019199379A (ja) * 2018-05-17 2019-11-21 株式会社トーキン 耐熱性高透磁率MnZnフェライト
CN108821760A (zh) * 2018-06-05 2018-11-16 横店集团东磁股份有限公司 一种降低负温损耗的MnZn功率铁氧体材料及其制备方法
CN111362685A (zh) * 2020-02-19 2020-07-03 横店集团东磁股份有限公司 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4049987A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085077A (zh) * 2021-12-27 2022-02-25 天通凯立科技有限公司 一种微调亚铁离子的高频低损耗锰锌铁氧体及其制备方法

Also Published As

Publication number Publication date
CN111362685A (zh) 2020-07-03
EP4049987A1 (en) 2022-08-31
CN111362685B (zh) 2021-08-20
US20230042168A1 (en) 2023-02-09
EP4049987A4 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
WO2021164191A1 (zh) 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法
CN1700370B (zh) 铁氧体材料
CN102693802B (zh) 一种宽温MnZn功率铁氧体材料及其制备方法
CN110078488B (zh) 一种高Bs宽温低损耗软磁铁氧体材料及其制备方法
CN112707723B (zh) 一种宽温超低功耗锰锌铁氧体材料及其制备方法
JP2018517288A (ja) 軟磁性MnZn系電力フェライト
CN111470857B (zh) 一种高频锰锌铁氧体材料及其制备方法
CN113277840A (zh) 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
CN113956028B (zh) 一种高温低损耗MnZn功率铁氧体及其制备方法
CN101834047A (zh) 一种铁氧体材料及其制作的叠层片式电子元件
CN115073158B (zh) 一种锰锌铁氧体材料及其制备方法与应用
CN104310983A (zh) 一种低损耗锰锌铁氧体的制造方法
CN103588472A (zh) 一种宽温MnZn功率铁氧体材料及其制备方法
CN108774056B (zh) 一种NiZn铁氧体磁片及其制备方法和用途
CN101863656A (zh) 一种节能照明用锰锌软磁铁氧体材料及所得磁芯的制备方法
CN111039666A (zh) 一种超高饱和磁通密度锰锌铁氧体材料及其制备方法
WO2024109951A1 (zh) 一种低频段应用的宽温材料及其制备方法
CN104557007A (zh) 一种宽温低损耗功率锰锌铁氧体及其制备方法
WO2024103757A1 (zh) 一种功率铁氧体材料及其制备方法与应用
CN105384435A (zh) 一种4元配方超高Bs锰锌铁氧体材料及制备方法
WO2022205537A1 (zh) 一种锰锌铁氧体、其制备方法及用途
JP2010120808A (ja) MnZnフェライト、及びその製造方法
WO2021098243A1 (zh) 一种移动谷点提高MnZn功率铁氧体材料Bs的方法
CN110436911A (zh) 一种软磁材料及其制备方法和在汽车电子***中的应用
CN114477988B (zh) 一种易成型、高强度铁氧体材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020919900

Country of ref document: EP

Effective date: 20220526

NENP Non-entry into the national phase

Ref country code: DE