WO2021161727A1 - コントローラ、制御方法、およびプログラム - Google Patents

コントローラ、制御方法、およびプログラム Download PDF

Info

Publication number
WO2021161727A1
WO2021161727A1 PCT/JP2021/001548 JP2021001548W WO2021161727A1 WO 2021161727 A1 WO2021161727 A1 WO 2021161727A1 JP 2021001548 W JP2021001548 W JP 2021001548W WO 2021161727 A1 WO2021161727 A1 WO 2021161727A1
Authority
WO
WIPO (PCT)
Prior art keywords
occupant
posture
moving body
controller
pressure sensor
Prior art date
Application number
PCT/JP2021/001548
Other languages
English (en)
French (fr)
Inventor
和希 高澤
誠幸 佐々木
Original Assignee
ピクシーダストテクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピクシーダストテクノロジーズ株式会社 filed Critical ピクシーダストテクノロジーズ株式会社
Publication of WO2021161727A1 publication Critical patent/WO2021161727A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/62Accessories for chairs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/12Rests specially adapted therefor, e.g. for the head or the feet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/90Details or parts not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This disclosure relates to controllers and mobiles.
  • Patent Document 1 describes an autonomous moving body that decelerates or decelerates as if an obstacle exists when the distance detected by the sensor unit exceeds a threshold value.
  • Electric wheelchairs or other personal mobility can be accelerated, steered and braked at least one (ie, self-driving) without human intervention. If configured, the occupant may lose his or her posture during automatic driving. If the running condition of the moving object does not change even though the occupant loses his / her posture, there is a risk of causing an accident such as the occupant falling.
  • the purpose of this disclosure is to enhance the safety of mobile objects that can be driven automatically.
  • the controller controls a moving body including a moving mechanism and one or more pressure sensors.
  • the controller includes means for determining the posture of the occupant of the moving body based on the measurement results of one or more pressure sensors, and means for controlling the moving mechanism based on the determination result of the posture of the occupant. Is.
  • each direction is defined as follows.
  • ⁇ F direction front of moving body 1
  • B direction rear of moving body 1
  • R direction right side of moving body 1 when facing forward (F direction)
  • L direction facing forward (F direction)
  • U direction upward direction of moving body 1
  • D direction downward direction of moving body 1
  • FIG. 1 is a block diagram showing a configuration of a moving body of the present embodiment.
  • FIG. 2 is a perspective view of the appearance of the moving body of the present embodiment.
  • FIG. 3 is a diagram showing an arrangement of pressure sensors provided in the moving body of the present embodiment.
  • FIG. 4 is a diagram showing the arrangement of pressure sensors on the seat and the left and right footrests.
  • FIG. 5 is a diagram showing the arrangement of the pressure sensor on the back surface.
  • the moving body 1 can be operated automatically.
  • Autonomous driving means that at least one of steering, acceleration, and braking of the moving body 1 is controlled by a computer without human (for example, occupant) operation.
  • the moving body 1 includes a controller 10, a pressure sensor 21, a LIDAR 22, and a moving mechanism 31.
  • the mobile body 1 can be, for example, an electric wheelchair or other personal mobility.
  • the electric wheelchair as the moving body 1 includes a controller 10, a keypad 23, a front wheel 31FL, a front wheel 31FR, a rear wheel 31RL, a rear wheel 31RR, a seat 32, and a back 33.
  • the footrest 34FL, the footrest 34FR, the pole 35, and the sensor accommodating portion 36 are provided.
  • the controller 10 is arranged rearward (R direction) with respect to the back portion 33 in the front-rear direction.
  • the controller 10 is configured to enable automatic operation of the moving body 1 by controlling the moving body 1.
  • the controller 10 can operate in a plurality of operation modes including a manual operation mode and an automatic operation mode.
  • the controller 10 controls the moving mechanism 31 based on the measurement result of the distance by at least one of the pressure sensor 21 and the LIDAR 22, so that the controller 10 does not operate by a human being (for example, an occupant or an assistant).
  • It is configured to perform at least one of steering, acceleration and braking of the moving body 1.
  • the controller 10 can drive the moving body 1 along a route to a destination set based on a user instruction while avoiding contact with an obstacle.
  • the controller 10 includes a storage device 11, a processor 12, an input / output interface 13, and a communication interface 14.
  • the storage device 11 is configured to store programs and data.
  • the storage device 11 is, for example, a combination of a ROM (Read Only Memory), a RAM (Random Access Memory), and a storage (for example, a flash memory or a hard disk).
  • the program includes, for example, the following program.
  • -OS Operating System
  • program-Program of an application that executes information processing for example, an automatic driving application of mobile 1
  • the data includes, for example, the following data.
  • -Database referenced in information processing-Data obtained by executing information processing that is, the execution result of information processing
  • the processor 12 is configured to realize the function of the controller 10 by activating the program stored in the storage device 11.
  • the processor 12 is an example of a computer.
  • the input / output interface 13 is configured to acquire a signal (for example, a user's instruction) from an input device connected to the controller 10 and output the signal to an output device connected to the controller 10.
  • the input device is, for example, a pressure sensor 21, a LIDAR (Light Detection and Ranging) 22, a keypad 23, a keyboard, a pointing device, a touch panel, or a combination thereof.
  • the output device is, for example, a mobile mechanism 31, a display, a speaker, a lamp, or a combination thereof.
  • the communication interface 14 is configured to control communication between the controller 10 and an external device (for example, a server (not shown)).
  • an external device for example, a server (not shown)
  • the moving body 1 can include one or more pressure sensors 21.
  • the moving body 1 includes a pressure sensor 21S, a pressure sensor 21B, a pressure sensor 21FR, and a pressure sensor 21FL.
  • the pressure sensor 21S is arranged on the seat portion 32.
  • the pressure sensor 21S measures the pressure received by the seat 32 from the upper side (U direction) to the lower side (D direction).
  • the pressure sensor 21S measures the pressure applied to the seat 32 by the occupant's buttocks. Based on the output of the pressure sensor 21S, it is possible to determine whether or not the occupant is seated.
  • a sensor array (for example, 4 ⁇ 4 sensor arrays) composed of a plurality of pressure sensors 21S may be arranged on the seat portion 32. Based on the distribution of the outputs of the plurality of pressure sensors 21S, it is possible to estimate the position of the center of gravity of the occupant (the position on the plane (for example, the seat surface) orthogonal to the UD axis).
  • the pressure sensor 21B is arranged on the back 33.
  • the pressure sensor 21B measures the pressure received by the back portion 33 from the front (F direction) to the rear (R direction).
  • the pressure sensor 21B measures the pressure from the occupant's back. Based on the output of the pressure sensor 21B, it is possible to determine whether or not the back of the occupant is in contact with the back 33 (that is, whether the occupant is sitting deeply).
  • a sensor array (for example, 1 ⁇ 4 sensor array) composed of a plurality of pressure sensors 21B may be arranged on the back 33. It is possible to estimate the position of the center of gravity of the occupant (position on the SL-SR axis) based on the distribution of the outputs of the plurality of pressure sensors 21B.
  • the pressure sensor 21FR is arranged on the footrest 34FR.
  • the pressure sensor 21FR measures the pressure received by the footrest 34FR from the upper side (U direction) to the lower side (D direction).
  • the pressure sensor FR measures the pressure exerted by the occupant's right foot on the footrest 34FR. Based on the output of the pressure sensor 21FR, it is possible to determine whether or not the occupant has his right foot resting on the footrest 34FR.
  • the pressure sensor 21FL is arranged on the footrest 34FL.
  • the pressure sensor 21FL measures the pressure received by the footrest 34FL from the upper side (U direction) to the lower side (D direction).
  • the pressure sensor FL measures the pressure exerted by the occupant's right foot on the footrest 34FL. Based on the output of the pressure sensor 21FL, it is possible for the occupant to determine whether or not the left foot is resting on the footrest 34FL.
  • the number and arrangement of pressure sensors included in the moving body 1 are not limited to the above. For example, a single pressure sensor may be installed on the seat portion 32 and the back portion 33, or a plurality of pressure sensors may be installed on the footrest 34FL and the footrest 34FR, respectively.
  • the pressure sensor may not be installed in at least one of the seat portion 32, the back portion 33, the footrest 34FL and the footrest 34FR, or the pressure sensor may be arranged at another position such as an armrest. Further, these pressure sensors may be provided so as to be detachable from the moving body 1.
  • the LIDAR 22 is housed in the sensor housing unit 36.
  • the sensor accommodating portion 36 is attached to the upper end of the pole 35.
  • the pole 35 is arranged upward (U direction) with respect to the back portion 33. Specifically, the pole 35 extends substantially vertically from the upper end of the back portion 33. That is, the LIDAR 22 is arranged upward (in the U direction) with respect to the pole 35 and is supported by the pole 35.
  • the LIDAR 22 is arranged so that it is less than 90 degrees.
  • the reference plane is, for example, a plane that passes through the center of the wheel 31 (for example, the rear wheel 31RL and the rear wheel 31RR).
  • the LIDAR 22 is from the left front (SL direction and F direction) to the front (F direction) to the right front (SR direction) of the moving body 1 in the direction from the upper side (U direction) to the lower side (D direction) of the pole 35.
  • the LIDAR 22 is attached at a position higher than the head of an occupant seated on the moving body 1 and is configured to detect the presence of an obstacle in front of the moving body 1 (F direction). That is, the laser irradiation direction of the LIDAR 22 is directed from the left front (SL direction and F direction) to the front (F direction) to the right front (SR direction and F direction) of the moving body 1, and is a horizontal plane passing through the mounting position of the LIDAR 22. It is necessary to turn downward (D direction).
  • the LIDAR 22 is attached so as to be inclined downward (in the D direction) from the horizontal plane (in other words, to be inclined with respect to the traveling surface of the moving body 1).
  • the tilt angle of the LIDAR 22 may be fixed, electrically (for example, an actuator) or manually variable.
  • the LIDAR 22 irradiates a laser that emits light in a pulsed manner according to a control signal from the controller 10, and detects the light that is scattered by an obstacle and returned by a photodetector.
  • the distance from the LIDAR 22 to the obstacle can be measured based on the time difference between the irradiation of the laser and the return of the scattered light and the propagation speed of the laser.
  • the LIDAR 22 will be described as using the two-dimensional LIDAR, which is relatively inexpensive with respect to the three-dimensional LIDAR, but is not limited thereto.
  • the keypad 23 is arranged upward (U direction) with respect to the armrest of the moving body 1.
  • the keypad 23 may be fixed to either the left or right armrest, or may be configured to be attached to either the left or right armrest depending on the physical function of the occupant (for example, the dominant arm, the presence or absence of a movement disorder). ..
  • the keypad 23 is an example of an input device for an occupant or a caregiver to input an instruction to the controller 10.
  • the keypad 23 may accept, for example, at least one of the following instructions: ⁇ Setting a destination ⁇ Selecting a route ⁇ Starting automatic driving ⁇ Ending automatic driving ⁇ Switching between automatic driving mode and manual driving mode ⁇ Decelerating / stopping / starting / calling a caregiver
  • the moving mechanism 31 moves the moving body 1 according to the control signal from the controller 10.
  • the configuration of the moving mechanism 31 depends on the moving method required for the moving body 1, but as an example, the moving mechanism 31 has a brake in addition to the front wheel 31FL, the front wheel 31FR, the rear wheel 31RL, and the rear wheel 31RR shown in FIG. It may include motors, transmissions, and axles.
  • the front wheel 31FL is arranged downward (D direction) with respect to the seat portion 32 and leftward (SL direction) with reference to the front wheel 31FR.
  • the front wheel 31FL is configured to be rotatable.
  • the front wheel 31FR is arranged downward (D direction) with respect to the seat portion 32 and to the right (SR direction) with reference to the front wheel 31FL.
  • the front wheel 31FR is configured to be rotatable.
  • the rear wheel 31RL is arranged downward (D direction) with respect to the seat portion 32 and leftward (SL direction) with reference to the rear wheel 31RR.
  • the rear wheel 31RL is configured to be rotatable.
  • the rear wheel 31RR is arranged downward (in the D direction) with respect to the seat portion 32 and in the right direction (SR direction) with respect to the rear wheel 31RL.
  • the rear wheel 31RR is configured to be rotatable.
  • the seat portion 32 is arranged downward (D direction) and forward (F direction) with respect to the back portion 33.
  • the seat portion 32 is configured to be able to support the buttocks of the occupant.
  • the back portion 33 is arranged above (U direction) and rearward (R direction) with respect to the seat portion 32.
  • the back 33 can support the back of the occupant.
  • the footrest 34FL is arranged downward (D direction) with respect to the seat portion 32 and leftward (SL direction) with reference to the footrest 34FR.
  • the footrest 34FL can support the occupant's left foot.
  • the footrest 34FR is arranged downward (in the D direction) with respect to the seat portion 32 and in the right direction (SR direction) with respect to the footrest 34FL.
  • the footrest 34FR can support the occupant's right foot.
  • the pole 35 is arranged upward (U direction) with respect to the back surface of the back portion 33. Specifically, the pole 35 has the height of the upper end of the pole 35 along an axis different from the center line (vertical line) in the width direction (that is, the left-right direction (SL-SR axis direction)) of the back portion 33. (Height from the horizontal plane when the front wheel 31FL, front wheel 31FR, rear wheel 31RL, and rear wheel 31RR are in contact with the horizontal plane (ground height)) is at a position higher than the upper end of the back 33 (“reference height”). It will be extended so that it becomes.
  • the reference height can be set higher than, for example, the height of the head of the occupant seated on the moving body 1.
  • the pole 35 is configured so that the sensor accommodating portion 36 can be attached to the upper end of the pole 35.
  • the sensor accommodating portion 36 is arranged upward (U direction) with respect to the pole 35. Specifically, the sensor accommodating portion 36 is attached to the upper end of the pole 35.
  • the sensor accommodating portion 36 is configured to accommodate the LIDAR 22.
  • the sensor accommodating unit 36 may accommodate at least one of the lamp and the speaker in addition to the LIDAR 22.
  • the controller 10 determines the posture of the occupant based on the pressure measurement result by the pressure sensor 21. Then, the controller 10 controls the moving mechanism 31 based on the determination result of the posture of the occupant to ensure the safety of the occupant during the automatic operation of the moving body 1.
  • FIG. 6 is a diagram showing a first example of the posture of the occupant.
  • FIG. 7 is a diagram showing a second example of the posture of the occupant.
  • FIG. 8 is a diagram showing a third example of the posture of the occupant.
  • FIG. 10 is a transition diagram of the traveling state of the moving body of the present embodiment.
  • the first example of the posture of the occupant is a state in which the occupant US is seated on the seat portion 32 so that the position of the center of gravity of the occupant US is within a predetermined region while the back is in contact with the back portion 33.
  • the posture is such that both feet are placed on the footrest 34FL and the footrest 34FR (also referred to as "normal").
  • the predetermined region is a region excluding the front (F direction) end, the left (SL direction) end, and the right (SR direction) end of the seat surface of the seat 32.
  • the second example of the occupant's posture is a posture in which the occupant US sits excessively shallowly with his back away from the back 33 (also referred to as "forward leaning").
  • forward leaning a posture in which the occupant US sits excessively shallowly with his back away from the back 33.
  • the position of the center of gravity of the occupant US is in the region including the front end (F direction) of the seat surface of the seat portion 32.
  • a third example of the occupant's posture is a posture in which the occupant US stands on the footrest 34FL and the footrest 34FR (also referred to as “standing”). When the occupant US is in the upright position, the occupant US is not seated on the seat 32.
  • the fourth example of the occupant's posture is a posture in which the back leans against the back 33 and sits excessively shallowly (also referred to as "sacral sitting").
  • the position of the center of gravity of the occupant US is in the region including the front end (F direction) of the seat surface of the seat portion 32.
  • the fifth example of the occupant's posture is a posture in which the occupant's body is biased to either the left direction (SL direction) or the right direction (SR direction) (also called “left-right bias").
  • SL direction left direction
  • SR direction right direction
  • the position of the center of gravity of the occupant US includes the region including the left (SL direction) end of the seat surface of the seat 32 or the right end (SR direction). In the area.
  • the controller 10 decelerates the moving body 1 when it is determined that the posture of the occupant US is not normal. As a result, the moving body 1 slows down or stops, so that an accident such as a fall of the occupant US due to the collapse of the posture of the occupant US can be prevented, or even if such an accident occurs, the occupant US receives it. The impact can be softened.
  • the controller 10 determines the posture of the occupant US as one of category 0, category 1, and category 2 in ascending order of risk.
  • the controller 10 performs different deceleration control depending on whether the posture of the occupant US corresponds to category 1 and the posture of the occupant US corresponds to category 2.
  • the controller 10 When the posture of the occupant US corresponds to category 0, the controller 10 normally causes the moving body 1 to travel. When the posture of the occupant US falls under category 1, the controller 10 causes the moving body 1 to drive slowly. When the posture of the occupant US falls under category 2, the controller 10 stops the moving body 1.
  • the controller 10 determines that the posture of the occupant US falls under category 2 during normal traveling of the moving body 1 or slowing down of the moving body 1, the controller 10 decelerates until the moving body 1 stops. Let me. When the controller 10 determines that the posture of the occupant US falls under category 1 during normal traveling of the moving body 1, the controller 10 decelerates the moving body 1 to a predetermined slow speed.
  • the controller 10 maintains the speed of the moving body 1 when it is determined that the posture of the occupant US falls under category 0 during the normal traveling of the moving body 1.
  • the controller 10 determines that the posture of the occupant US falls under category 1 when the moving body 1 is slowing down, the controller 10 maintains the speed of the moving body 1.
  • the controller 10 determines that the posture of the occupant US falls under category 2 when the moving body 1 is stopped, the controller 10 keeps the moving body 1 stopped.
  • the controller 10 determines that the posture of the occupant US corresponds to the posture of category 0 when the moving body 1 is slowing down, the controller 10 accelerates the moving body 1 to a predetermined normal traveling speed.
  • the controller 10 determines that the posture of the occupant US corresponds to the posture of category 0 when the moving body 1 is stopped, the controller 10 starts the moving body 1 and accelerates it to a predetermined normal traveling speed.
  • the controller 10 determines that the posture of the occupant US corresponds to the posture of category 1 when the moving body 1 is stopped, the controller 10 starts the moving body 1 and accelerates it to a predetermined slow-moving speed.
  • FIG. 11 is a diagram showing a data structure of the posture database of the present embodiment.
  • the posture database includes a "posture ID” field, a "posture name” field, a “category” field, a “buttocks” field, a “back” field, and a “foot” field. .. Each field is associated with each other.
  • the posture ID is stored in the "posture ID” field.
  • the posture ID identifies the posture type.
  • Posture name data is stored in the "posture name” field.
  • the posture name data indicates the name of the posture type.
  • Category data is stored in the "Category" field.
  • the categorical data indicates the category to which the posture type belongs.
  • the first pressure condition is stored in the "buttocks" field.
  • the first pressure condition is a condition relating to the measurement result of the pressure sensor 21S.
  • the second pressure condition is stored in the "back" field.
  • the second pressure condition is a condition relating to the measurement result of the pressure sensor 21B.
  • the third pressure condition is stored in the "foot" field.
  • the third pressure condition is a condition relating to the measurement results of the pressure sensor 21FL and the pressure sensor 21FR.
  • FIG. 12 is a flowchart illustrating the mobile control process according to the present embodiment.
  • FIG. 13 is a diagram showing the region R1.
  • FIG. 14 is a diagram showing the region R2.
  • FIG. 15 is a diagram showing the region R5.
  • the controller 10 executes the start of automatic operation (S100). Specifically, the processor 12 receives a destination setting and an automatic operation start instruction from an occupant or an assistant via the input / output interface 13 or the communication interface 14. The processor 12 refers to the current location data and the map data stored in the storage device 11 and determines the route to the destination. After that, the processor 12 repeats controlling at least one of acceleration, steering, and braking along the determined route.
  • the controller 10 executes the posture determination (S110). Specifically, the processor 12 acquires the measurement result of at least one of the pressure sensor 21S, the pressure sensor 21B, the pressure sensor 21FL, and the pressure sensor 21FR. Based on the acquired measurement result, the processor 12 determines the posture of the occupant US as one of the posture types registered in the posture database (FIG. 11).
  • the processor 12 when the processor 12 satisfies the three conditions of "the position of the center of gravity of the occupant is within the region R1", "Pb> Th1b", and "(Pfl> Th1f) AND (Pfr> Th1f)".
  • the posture of the occupant US is determined to be normal (category 0).
  • the region R1 is a region of the seating surface of the seat portion 32, for example, on the B direction side of the reference line BL1F, on the R direction side of the reference line BL1L, and on the L direction side of the reference line BL1R.
  • Pb represents a measurement result (for example, a representative value) of the pressure sensor 21B.
  • Th1b represents a threshold value for determining whether or not the back of the occupant US is in contact with the back portion 33.
  • Pfl represents the measurement result of the pressure sensor 21FL.
  • Pfr represents the measurement result of the pressure sensor 21FR.
  • Th1f represents a threshold value for determining whether or not both feet of the occupant US are on the footrest 34FL and the footrest 34FR.
  • the processor 12 tilts the posture of the occupant US forward (category 1) when the two conditions of "the position of the center of gravity of the occupant is outside the region R2" and "Pb ⁇ Th2b" are satisfied. judge.
  • the region R2 is a region of the seat surface of the seat portion 32 on the B direction side of, for example, the reference line BL2.
  • Th2b represents a threshold value for determining whether or not the back of the occupant US is in contact with the back portion 33. Th2b may be the same as the above-mentioned threshold value Th1b.
  • the processor 12 when the processor 12 satisfies the three conditions of “Ps ⁇ Th3”, “Pb ⁇ Th3b”, and “(Pfl> Th3f) OR (Pfr> Th3f)”, the occupant US
  • the posture is determined to be standing (category 2).
  • Ps represents a measurement result (for example, a representative value) of the pressure sensor 21S.
  • Th3s represents a threshold value for determining whether or not the buttocks of the occupant US are in contact with the seat 32.
  • Th3b represents a threshold value for determining whether or not the back of the occupant US is in contact with the back portion 33. Th3b may be the same as the above-mentioned threshold value Th1b.
  • Th3f represents a threshold value for determining whether or not both feet of the occupant US are on the footrest 34FL and the footrest 34FR. Th3f may be the same as the above-mentioned threshold value TH1f. When the user's posture is upright, at least one of the left and right feet is heavier than when the user is seated, so that at least one of Pfl and Pfr is normal when the user's posture is normal. It is thought that it will be larger than that. Therefore, Th3f may be set larger than the threshold value TH1f.
  • Th4f represents a threshold value for determining whether or not both feet of the occupant US are on the footrest 34FL and the footrest 34FR. Th4f may be the same as the above-mentioned threshold value TH1f.
  • the processor 12 determines that the posture of the occupant US is left-right bias (category 1) when the condition of "the position of the center of gravity of the occupant is outside the region R5" is satisfied.
  • the region R5 is a region of the seating surface of the seat portion 32, for example, on the R direction side of the reference line BL5L and on the L direction side of the reference line BL5R.
  • the processor 12 sets the posture of the occupant US to sit on the sacrum (category 1). judge.
  • the region R2 is, for example, a region of the seat surface of the seat portion 32 on the B direction side with respect to a certain reference line.
  • the area R6 may be the same as the above-mentioned area R2.
  • Th6b represents a threshold value for determining whether or not the back of the occupant US is in contact with the back portion 33.
  • Th6b may be the same as the above-mentioned threshold value Th1b.
  • the threshold value Th6b may be set larger than the threshold value Th1b.
  • step S111 the controller 10 executes the normal travel control (S111). Specifically, the processor 12 controls the moving mechanism 31 so that when the moving body 1 is stopped, the moving body 1 starts and accelerates to a predetermined normal traveling speed. When the speed of the moving body 1 is non-zero and is smaller than the normal running speed, the processor 12 controls the moving mechanism 31 so as to accelerate the moving body 1 to the normal running speed. When the speed of the moving body 1 is close to the normal traveling speed, the processor 12 controls the moving mechanism 31 so that the moving body 1 maintains the speed.
  • the processor 12 controls the moving mechanism 31 so that when the moving body 1 is stopped, the moving body 1 starts and accelerates to a predetermined normal traveling speed.
  • the processor 12 controls the moving mechanism 31 so as to accelerate the moving body 1 to the normal running speed.
  • the processor 12 controls the moving mechanism 31 so that the moving body 1 maintains the speed.
  • step S110 corresponds to category 1
  • the controller 10 executes the slow-moving control (S112). Specifically, the processor 12 controls the moving mechanism 31 so that when the moving body 1 is stopped, the moving body 1 starts and accelerates to a predetermined slow running speed. When the speed of the moving body 1 is close to the slow speed, the processor 12 controls the moving mechanism 31 so that the moving body 1 maintains the speed. When the speed of the moving body 1 exceeds the slowing speed, the processor 12 controls the moving mechanism 31 so that the moving body 1 decelerates to the slowing speed.
  • step S113 the controller 10 executes stop control (S113). Specifically, when the moving body 1 is stopped, the processor 12 keeps the moving body 1 stopped. When the moving body 1 is traveling, the processor 12 controls the moving mechanism 31 so as to decelerate until the moving body 1 stops.
  • the controller 10 executes the obstacle avoidance process (S120). Specifically, the processor 12 controls the moving mechanism 31 based on the distance measurement result by the LIDAR 22.
  • the processor 12 may execute at least one of the following first to fourth examples of obstacle avoidance processing.
  • the processor 12 maintains the speed of the moving body 1 when the distance to the obstacle is equal to or greater than the threshold value.
  • This threshold value may be fixed or variable depending on at least one of the measured direction of the distance, the traveling direction of the moving body 1, and the speed of the moving body 1.
  • the processor 12 slows down or stops the moving body 1 when the distance to the obstacle is less than the threshold value.
  • the processor 12 changes the traveling direction of the moving body 1 when the distance to the obstacle is less than the threshold value.
  • the changed traveling direction may be determined by the processor 12 or by an external device (for example, a server (not shown)).
  • the changed direction of travel can be determined based on the direction of the obstacle corresponding to the measurement result below the threshold value, that is, the direction of the obstacle with which the contact is possible.
  • the processor 12 accelerates the moving body 1 when the distance to the obstacle in the direction opposite to the traveling direction of the moving body 1 is less than the threshold value. For example, when an obstacle approaches from the rear side when viewed from the traveling direction of the moving body 1, there is a possibility that contact can be avoided by accelerating the moving body 1 or the impact at the time of contact can be mitigated.
  • the controller 10 executes the end determination (S130) of the automatic operation.
  • the processor 12 can determine that the automatic operation is terminated when at least one of the following conditions is satisfied.
  • -Mobile 1 has arrived at the destination-The occupant, caregiver, or other administrator has instructed the end of automatic driving-The occupant, caregiver, or other administrator has switched to manual operation mode Was instructed ⁇ It was determined that it was difficult to continue automatic driving based on factors such as failure, battery condition, road surface condition, etc.
  • step S130 When it is determined in step S130 that the automatic operation is not terminated, the controller 10 executes the posture determination (S110) again.
  • the controller included in the moving body of the present embodiment determines the posture of the occupant based on the measurement results of one or more pressure sensors provided in the moving body.
  • the movement mechanism is controlled based on the posture determination result.
  • the controller decelerates the moving body when it is determined that the posture of the occupant corresponds to a predetermined type. Therefore, according to this controller, it is possible to appropriately control the traveling state of the moving body when the occupant loses his / her posture. That is, according to this controller, it is possible to enhance the safety of the moving body capable of automatically driving.
  • the method of determining the posture of the occupant by the controller 10 and the content of the control of the moving body 1 according to the determination result are not limited to the above examples.
  • the controller 10 all of the left and right pressure sensors provided on the seat portion 32 of the moving body 1, the left and right pressure sensors provided on the back portion 33, and the pressure sensors provided on the footrest 34FL and the footrest FR are equal to or higher than the threshold value.
  • the controller 10 controls the moving body 1 so as to normally travel based on the instruction by the keypad 23 when it is determined that the posture of the occupant is normal, and moves when it is determined that the posture of the occupant is abnormal.
  • the body 1 may be controlled to stop or decelerate the running, or may be controlled not to start the running.
  • the controller 10 may determine that there is no occupant (the user is not on board) and restrict the movement of the moving body 1.
  • FIG. 16 is a flowchart illustrating a moving body control process according to a modified example.
  • the controller 10 has the same as the present embodiment (FIG. 12), that is, start of automatic operation (S100), determination of posture (S110), normal driving control (S111), slow-moving control (S112), Then, the stop control (S113) is executed.
  • the controller 10 executes an alarm output (S112a).
  • the processor 12 may output, for example, at least one of the following alarms.
  • the content of the alarm may differ depending on the posture type of the occupant determined in step S110.
  • -Signal for outputting at least one of text, voice, and image prompting the occupant to return to the normal posture to the output device (for example, display, speaker, etc.) provided in the moving body 1.
  • an external device for example, a caregiver's terminal (not shown) or an output device provided by the moving body 1.
  • the text that encourages the occupant to return to the normal posture may be "sit deeply in a chair”, “put your feet on the footrest”, “do not lean to the left or right”, etc.
  • step S113 the controller 10 executes an alarm output (S113a).
  • the processor 12 may output the alarm described for step S113a.
  • step S111 or step S112a the controller 10 executes the obstacle avoidance process (S120) (FIG. 12).
  • step S113 or step S120 the controller 10 executes the end determination (S130) (FIG. 12) of the automatic operation.
  • step S130 the controller 10 re-executes the posture determination (S110).
  • the controller included in the moving body of the present embodiment determines the posture of the occupant based on the measurement results of one or more pressure sensors provided on the moving body, and gives an alarm based on the posture determination result. Is output. For example, when it is determined that the posture of the occupant corresponds to a predetermined type, the controller urges the occupant to return to the normal posture or calls a caregiver. That is, according to this controller, the collapse of the posture of the occupant can be corrected at an early stage, so that the safety of the moving body capable of automatic driving can be improved.
  • the storage device 11 may be connected to the controller 10 via the network NW.
  • the posture judgment conditions are defined for each occupant's part (buttocks, back, and feet).
  • the pressure sensor may be omitted for a part of the explained part, or the pressure sensor may be added for the part not explained (for example, the arm).
  • the description of the embodiment can be read as assuming that the conditions for the part are not defined.
  • the posture judgment conditions are defined for each occupant's part (buttocks, back, and feet).
  • a typical pressure distribution for each posture type may be created in advance based on the measurement results of a plurality of pressure sensors when the occupant takes various postures. Then, the posture of the occupant may be determined by matching the typical pressure distribution for each posture type with the measurement result acquired from the pressure sensor.
  • the moving body is decelerated when it is determined that the posture of the occupant corresponds to a predetermined type, but how the moving body is decelerated, that is, it is given to the moving body 1.
  • the negative acceleration may be variable depending on at least one of the occupant's weight and physique. For example, the heavier the weight of the occupant, the smaller the absolute value of acceleration may be. The larger the occupant's physique (for example, the higher the position of the center of gravity), the smaller the absolute value of acceleration may be.
  • the weight and physique of the occupant may be estimated based on the measurement result of the pressure sensor, or may be obtained by other methods.
  • the threshold values for example, Th1b, Th1f, Th2b, etc. in FIG. 11
  • the controller 10 may change the threshold values of these pressure sensors depending on the situation. For example, by setting the threshold value of the pressure sensor to be higher when the occupant's weight is heavier than when the occupant's weight is light, the controller 10 can be used by occupants of various weights to ride on the moving body 1. However, the attitude of the occupant can be judged appropriately.
  • the controller 10 may acquire information indicating the attributes of the occupant from an external device by communication, and set the threshold value of the pressure sensor based on the acquired information. Further, the controller 10 sets the threshold value of the pressure sensor based on the value output by each pressure sensor when the occupant is riding on the moving body 1 in a normal posture (before the moving body 1 starts or during normal running). You may. Further, for example, when the posture of the occupant is normal, the pressure applied to the back of the moving body 1 becomes larger when the moving body 1 is traveling uphill than when the moving body 1 is traveling downhill, and the footrest is used. The pressure is reduced. Therefore, the controller 10 may change the threshold value of the pressure sensor according to the slope of the road on which the moving body 1 is traveling.
  • the controller 10 can appropriately determine the posture of the occupant even when the road on which the moving body 1 travels includes a slope.
  • the controller 10 may determine the slope of the road on which the moving body 1 is traveling based on the measurement result (distance from the LIDAR 22 to the ground) by the LIDAR 22, or the map information acquired from the external device and the moving body 1. The judgment may be made based on the result of self-position estimation of.
  • the controller 10 may decelerate the moving body 1 when the determination result of the posture of the occupant corresponds to the category 1 or the category 2.
  • How the moving body 1 is decelerated that is, the negative acceleration given to the moving body 1 may be variable according to the posture type. For example, when the posture of the occupant US is leaning forward or standing upright, if the moving body 1 is suddenly decelerated, there is a risk that the occupant US may fall due to inertia. Therefore, when the posture of the occupant US is determined to be forward leaning or standing, the processor 12 makes the moving body 1 slower than when the posture of the occupant US is determined to be at least one of other abnormal types. It may be decelerated to (that is, the absolute value of acceleration may be reduced).
  • the posture types are classified into three categories, but the posture types may be classified into two categories or four or more categories.
  • the moving body is decelerated when it is determined that the posture of the occupant corresponds to a predetermined type, but in such a case, even if the upper limit speed of the moving body is limited to be small. good.
  • the moving body is decelerated when it is determined that the posture of the occupant corresponds to the predetermined type, but the posture of the occupant corresponds to the predetermined type while the moving body is stopped. Then, when it is determined, the start of the moving body may be prohibited.
  • how to control the movement mechanism is determined based on the combination of the distance to the obstacle and the determination result of the posture.
  • the control of the moving mechanism based on the distance to the obstacle and the control of the moving mechanism based on the posture determination result may be performed independently.
  • an alarm is output after the slow-moving control and the stop control.
  • an alarm may be output before the driving and stop control, or an alarm may be output in parallel with the driving and stop control.
  • the controller appropriately controls the running state of the moving body when the occupant loses his / her posture. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • Appendix 2 The controller according to Appendix 1, wherein the means for controlling the moving mechanism decelerates the moving body when it is determined that the posture of the occupant corresponds to a predetermined type (S112, S113).
  • the controller decelerates the moving body when the occupant loses his / her posture. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • Appendix 3 The controller according to Appendix 1 or Appendix 2, wherein the pressure sensor of one or more includes a pressure sensor (21FL, 21FR) arranged on a footrest (34FL, 34FR) capable of supporting the occupant's foot.
  • the controller appropriately controls the running state of the moving body when it detects that the occupant has lost its posture based on the output of the pressure sensor arranged on the footrest. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the means for determining the posture of the occupant is to determine whether or not the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest based on the measurement result of the pressure sensor arranged on the footrest.
  • the means for controlling the movement mechanism decelerates the moving body when it is determined that the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest (S112, S113).
  • the controller according to Appendix 3.
  • the controller decelerates the moving body when the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • Appendix 5 The controller according to Appendix 4, wherein the means for controlling the movement mechanism decelerates the moving body until the moving body is stopped when it is determined that the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest (S113). ..
  • the controller stops the moving body when the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the means for determining the posture of the occupant is to determine whether or not the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest based on the measurement result of the pressure sensor arranged on the footrest.
  • the controller further includes means (S112a, S113a) for outputting an alarm when it is determined that the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest.
  • the controller according to any one of Supplementary note 3 to Supplementary note 5.
  • the controller urges the occupant to return to the normal posture or calls a caregiver when the occupant's posture corresponds to the type in which the occupant's foot is falling off the footrest. Therefore, since the posture collapse of the occupant can be corrected at an early stage, the safety of the moving body capable of automatic operation can be improved.
  • One or more pressure sensors include a pressure sensor (21B) located on the back (33) capable of supporting the back of the occupant.
  • the controller according to any one of Supplementary note 1 to Supplementary note 6.
  • the controller appropriately controls the running state of the moving body when it detects that the occupant has lost its posture based on the output of the pressure sensor arranged on the back. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to the type in which the back of the occupant does not touch the back based on the measurement result of the pressure sensor arranged on the back.
  • the means for controlling the movement mechanism decelerates the moving body when it is determined that the posture of the occupant corresponds to the type in which the back of the occupant does not touch the back (S112, S113).
  • the controller according to Appendix 7.
  • the controller decelerates the moving body when the posture of the occupant corresponds to the type in which the back of the occupant does not touch the back. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to the type in which the back of the occupant does not touch the back based on the measurement result of the pressure sensor arranged on the back.
  • the controller further includes means (S112a, S113a) for outputting an alarm when it is determined that the posture of the occupant corresponds to the type in which the back of the occupant does not touch the back.
  • the controller according to Appendix 7 or Appendix 8.
  • the controller urges the occupant to return to the normal posture or calls a caregiver when the occupant's posture corresponds to the type in which the occupant's back does not touch the back. Therefore, since the posture collapse of the occupant can be corrected at an early stage, the safety of the moving body capable of automatic operation can be improved.
  • One or more pressure sensors include a pressure sensor (21B) located on the back (33) capable of supporting the back of the occupant.
  • the means for determining the posture of the occupant is to determine whether or not the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest based on the measurement result of the pressure sensor arranged on the footrest.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to the type in which the back of the occupant does not touch the back based on the measurement result of the pressure sensor arranged on the back.
  • the means for controlling the movement mechanism decelerates until the moving body is stopped (S113).
  • the means for controlling the movement mechanism is when it is determined that the posture of the occupant does not correspond to the type in which the occupant's feet are falling off from the footrest, and the occupant's back does not correspond to the type in which the back is not in contact with the back. , Decelerate the moving body to a predetermined slow speed (S112), The controller according to any one of Supplementary note 3 to Supplementary note 6.
  • the controller only slows down the moving body when the occupant's posture corresponds to the type in which the occupant's back does not touch the back, and the occupant's posture causes the occupant's feet to fall off the footrest. Stop the moving body if it corresponds to the type you are doing. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the controller appropriately controls the running state of the moving body when it detects that the occupant has lost its posture based on the output of the pressure sensor arranged on the seat. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range based on the measurement result of the pressure sensor arranged on the seat.
  • the means for controlling the moving mechanism decelerates the moving body when it is determined that the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range (S112, S113).
  • the controller according to Appendix 11.
  • the controller decelerates the moving body when the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range based on the measurement result of the pressure sensor arranged on the seat.
  • the controller further includes means (S112a, S113a) for outputting an alarm when it is determined that the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range.
  • the controller according to Appendix 11 or Appendix 12.
  • the controller urges the occupant to return to the normal posture or calls a caregiver when the occupant's posture corresponds to a type in which the position of the occupant's center of gravity is outside the predetermined range.
  • One or more pressure sensors include a pressure sensor (21S) located on a seat (32) capable of supporting the occupant's buttocks.
  • the means for determining the posture of the occupant is to determine whether or not the posture of the occupant corresponds to the type in which the occupant's foot is falling off from the footrest based on the measurement result of the pressure sensor arranged on the footrest.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range based on the measurement result of the pressure sensor arranged on the seat.
  • the means for controlling the movement mechanism decelerates until the moving body is stopped (S113).
  • the means for controlling the movement mechanism is determined that the posture of the occupant does not correspond to the type in which the occupant's foot is falling off the footrest, and the position of the center of gravity of the occupant corresponds to the type outside the predetermined range. In that case, the moving body is decelerated to a predetermined slow speed (S112).
  • the controller according to any one of Supplementary note 3 to Supplementary note 6.
  • the controller only slows down the moving body when the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range, and the posture of the occupant is the foot of the occupant. Stop the moving body if it falls under the type of falling off from the footrest. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to the type in which the buttocks of the occupant do not touch the seat based on the measurement result of the pressure sensor arranged on the seat.
  • the means for controlling the moving mechanism decelerates the moving body when it is determined that the posture of the occupant corresponds to the type in which the buttocks of the occupant do not touch the seat (S112, S113).
  • the controller according to any one of Supplementary note 11 to Supplementary note 14.
  • the controller decelerates the moving body when the posture of the occupant corresponds to the type in which the buttocks of the occupant do not touch the seat. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to the type in which the buttocks of the occupant do not touch the seat based on the measurement result of the pressure sensor arranged on the seat.
  • the controller further includes means (S112a, S113a) for outputting an alarm when it is determined that the posture of the occupant corresponds to the type in which the buttocks of the occupant do not touch the seat.
  • the controller according to any one of Supplementary note 11 to Supplementary note 15.
  • the controller urges the occupant to return to the normal posture or calls a caregiver when the occupant's posture corresponds to the type in which the occupant's buttocks do not touch the seat.
  • the controller urges the occupant to return to the normal posture or calls a caregiver when the occupant's posture corresponds to the type in which the occupant's buttocks do not touch the seat.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range based on the measurement result of the pressure sensor arranged on the seat.
  • the means for determining the posture of the occupant determines whether or not the posture of the occupant corresponds to the type in which the buttocks of the occupant do not touch the seat based on the measurement result of the pressure sensor arranged on the seat.
  • the means for controlling the movement mechanism is to decelerate the moving body until it stops when it is determined that the posture of the occupant corresponds to the type in which the buttocks of the occupant do not touch the seat.
  • the means for controlling the movement mechanism is such that the posture of the occupant does not correspond to the type in which the posture of the occupant does not contact the seat with the buttocks of the occupant, and the posture of the occupant is in a range in which the position of the center of gravity of the occupant is predetermined.
  • the moving body is decelerated to a predetermined slowing speed.
  • the controller only slows down the moving body when the posture of the occupant corresponds to a type in which the position of the center of gravity of the occupant is outside the predetermined range, and the posture of the occupant is the buttocks of the occupant.
  • the moving body is stopped when it corresponds to the type that is not in contact with the seat. That is, the safety of the moving body capable of automatic operation can be enhanced.
  • Appendix 18 It ’s a mobile body, A moving mechanism that moves a moving body and 1 or more pressure sensors and A moving body including a controller that determines the posture of the occupant of the moving body based on the measurement results of one or more pressure sensors and controls the moving mechanism based on the determination result of the posture of the occupant.
  • the moving body appropriately controls its own running state when the occupant loses his / her posture. That is, the safety of the moving body capable of automatic operation can be enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

移動機構と1以上の圧力センサとを備えた移動体を制御するコントローラである。コントローラは、1以上の圧力センサの測定結果に基づいて移動体の乗員の姿勢を判定する手段と、乗員の姿勢の判定結果に基づいて、移動機構を制御する手段とを備える。

Description

コントローラ、制御方法、およびプログラム
 本開示は、コントローラおよび移動体に関する。
 近年、測距センサを用いて段差などの路面上の障害物を検出し、自律的に移動を行う様々な自律型移動体が知られている。例えば特許文献1には、センサユニットにより検出された距離が閾値を超えている場合、障害物が存在するとして減速等を行う自律型移動体が記載されている。
特開2015-103227号公報
 電動車椅子または他のパーソナルモビリティ(以降、単に「移動体」と称する)を、人間の操作によらずに、加速、操舵および制動の少なくとも1つを行うことができるように(すなわち、自動運転可能に)構成した場合に、自動運転中に乗員が姿勢を崩すことがあり得る。乗員が姿勢を崩したにも関わらず移動体の走行状態が変わらなければ、乗員の転落などの事故を招く危険性がある。
 本開示の目的は、自動運転可能な移動体の安全性を高めることである。
 本開示の一態様に係るコントローラは、移動機構と1以上の圧力センサとを備えた移動体を制御する。コントローラは、1以上の圧力センサの測定結果に基づいて移動体の乗員の姿勢を判定する手段と、乗員の姿勢の判定結果に基づいて、移動機構を制御する手段とを備える。
である。
 本開示によれば、自動運転可能な移動体の安全性を高めることができる。
本実施形態の移動体の構成を示すブロック図である。 本実施形態の移動体の外観の斜視図である。 本実施形態の移動体に備えられる圧力センサの配置を示す図である。 座部、および左右のフットレストにおける圧力センサの配置を示す図である。 背部における圧力センサの配置を示す図である。 乗員の姿勢の第1の例を示す図である。 乗員の姿勢の第2の例を示す図である。 乗員の姿勢の第3の例を示す図である。 乗員の姿勢の第4の例を示す図である。 本実施形態の移動体の走行状態の遷移図である。 本実施形態の姿勢データベースのデータ構造を示す図である。 本実施形態に係る移動体制御処理を例示するフローチャートである。 領域R1を示す図である。 領域R2を示す図である。 領域R5を示す図である。 変形例に係る移動体制御処理を例示するフローチャートである。
 以下、本発明の一実施形態について、図面に基づいて詳細に説明する。なお、実施形態を説明するための図面において、同一の構成要素には原則として同一の符号を付し、その繰り返しの説明は省略する。
 本実施形態において、各方向について、以下のとおり定義される。
 ・F方向:移動体1の前方
 ・B方向:移動体1の後方
 ・R方向:前方(F方向)を向いたときの移動体1の右側方
 ・L方向:前方(F方向)を向いたときの移動体1の左側方
 ・U方向:移動体1の上方向
 ・D方向:移動体1の下方向
(1)移動体の構成
 移動体の構成について説明する。図1は、本実施形態の移動体の構成を示すブロック図である。図2は、本実施形態の移動体の外観の斜視図である。図3は、本実施形態の移動体に備えられる圧力センサの配置を示す図である。図4は、座部、および左右のフットレストにおける圧力センサの配置を示す図である。図5は、背部における圧力センサの配置を示す図である。
 移動体1は、自動運転可能である。自動運転可能であるとは、移動体1の操舵、加速、及び、制動の少なくとも1つを人間(例えば、乗員)の操作によらずに、コンピュータによって制御されることを意味する。
 図1に示すように、移動体1は、コントローラ10と、圧力センサ21と、LIDAR22と、移動機構31とを備える。
 移動体1は、例えば、電動車椅子または他のパーソナルモビリティであり得る。
 図2に示すように、移動体1としての電動車椅子は、コントローラ10と、キーパッド23と、前輪31FLと、前輪31FRと、後輪31RLと、後輪31RRと、座部32と、背部33と、フットレスト34FLと、フットレスト34FRと、ポール35と、センサ収容部36とを備える。
 コントローラ10は、前後方向について背部33を基準として後方(R方向)に配置されている。コントローラ10は、移動体1を制御することで、当該移動体1の自動運転を可能とするように構成される。
 具体的には、コントローラ10は、手動運転モードおよび自動運転モードを含む複数の運転モードで動作可能である。
 コントローラ10は、自動運転モードにおいて、圧力センサ21およびLIDAR22の少なくとも1つによる距離の測定結果に基づいて移動機構31を制御することで、人間(例えば、乗員、介助者)の操作によらずに、移動体1の操舵、加速および制動の少なくとも1つを行うように構成される。例えば、コントローラ10は、ユーザ指示に基づいて設定された目的地までの経路に沿って、障害物との接触を回避しながら移動体1を運転し得る。
 図1に示すように、コントローラ10は、記憶装置11と、プロセッサ12と、入出力インタフェース13と、通信インタフェース14とを備える。
 記憶装置11は、プログラム及びデータを記憶するように構成される。記憶装置11は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、及び、ストレージ(例えば、フラッシュメモリ又はハードディスク)の組合せである。
 プログラムは、例えば、以下のプログラムを含む。
・OS(Operating System)のプログラム
・情報処理を実行するアプリケーション(例えば、移動体1の自動運転アプリケーション)のプログラム
 データは、例えば、以下のデータを含む。
・情報処理において参照されるデータベース
・情報処理を実行することによって得られるデータ(つまり、情報処理の実行結果)
 プロセッサ12は、記憶装置11に記憶されたプログラムを起動することによって、コントローラ10の機能を実現するように構成される。プロセッサ12は、コンピュータの一例である。
 入出力インタフェース13は、コントローラ10に接続される入力デバイスから信号(例えば、ユーザの指示)を取得し、かつ、コントローラ10に接続される出力デバイスに信号を出力するように構成される。
 入力デバイスは、例えば、圧力センサ21、LIDAR(Light Detection and Ranging)22、キーパッド23、キーボード、ポインティングデバイス、タッチパネル、又は、それらの組合せである。
 出力デバイスは、例えば、移動機構31、ディスプレイ、スピーカ、ランプ又はそれらの組合せである。
 通信インタフェース14は、コントローラ10と外部装置(例えば、図示されないサーバ)との間の通信を制御するように構成される。
 移動体1は、1つ以上の圧力センサ21を備えることができる。以降の説明において、移動体1は、図3乃至図5に示すように、圧力センサ21Sと、圧力センサ21Bと、圧力センサ21FRと、圧力センサ21FLとを備えることとする。
 圧力センサ21Sは、座部32に配置される。圧力センサ21Sは、上方(U方向)から下方(D方向)に向かって座部32が受ける圧力を測定する。座部32に乗員が着座している場合、圧力センサ21Sは、乗員の臀部が座部32に与える圧力を測定する。圧力センサ21Sの出力に基づいて、乗員の着座の有無を判定することが可能となる。
 図4に示すように、複数の圧力センサ21Sからなるセンサアレイ(例えば、4×4個のセンサアレイ)が座部32に配置されてもよい。複数の圧力センサ21Sの出力の分布に基づいて、乗員の重心の位置(U-D軸に直交する平面(例えば座面)上の位置)を推定することが可能となる。
 圧力センサ21Bは、背部33に配置される。圧力センサ21Bは、前方(F方向)から後方(R方向)に向かって背部33が受ける圧力を測定する。乗員が背中を背部33に接するように着座している(すなわち、乗員が深く腰掛けている)場合、圧力センサ21Bは、乗員の背中からの圧力を測定する。圧力センサ21Bの出力に基づいて、乗員の背中が背部33に接している(すなわち、乗員が深く腰掛けているか)か否かを判定することが可能となる。
 図5に示すように、複数の圧力センサ21Bからなるセンサアレイ(例えば、1×4個のセンサアレイ)が背部33に配置されてもよい。複数の圧力センサ21Bの出力の分布に基づいて、乗員の重心位置(SL-SR軸上の位置)を推定することが可能となる。
 圧力センサ21FRは、フットレスト34FRに配置される。圧力センサ21FRは、上方(U方向)から下方(D方向)に向かってフットレスト34FRが受ける圧力を測定する。乗員が右足をフットレスト34FRに載せている場合、圧力センサFRは乗員の右足がフットレスト34FRに与える圧力を測定する。圧力センサ21FRの出力に基づいて、乗員が右足をフットレスト34FRに載せているか否かを判定することが可能となる。
 圧力センサ21FLは、フットレスト34FLに配置される。圧力センサ21FLは、上方(U方向)から下方(D方向)に向かってフットレスト34FLが受ける圧力を測定する。乗員が右足をフットレスト34FLに載せている場合、圧力センサFLは乗員の右足がフットレスト34FLに与える圧力を測定する。圧力センサ21FLの出力に基づいて、乗員が左足をフットレスト34FLに載せているか否かを判定することが可能となる。
 なお、移動体1が備える圧力センサの数や配置は上記に限定されない。例えば、座部32や背部33に単一の圧力センサが設置されていてもよいし、フットレスト34FLやフットレスト34FRにそれぞれ複数の圧力センサが設置されていてもよい。また、座部32、背部33、フットレスト34FL及びフットレスト34FRの少なくとも何れかに圧力センサが設置されていなくてもよいし、例えば肘掛けなどの他の位置に圧力センサが配置されていてもよい。また、これらの圧力センサは移動体1に対して脱着可能に設けられていてもよい。
 LIDAR22は、センサ収容部36に収容される。センサ収容部36は、ポール35の上端に取り付けられる。ポール35は、背部33を基準に上方(U方向)に配置される。具体的には、ポール35は、背部33の上端から略鉛直に延設される。すなわち、LIDAR22は、ポール35を基準に上方(U方向)に配置され、ポール35によって支持される。
 移動体1の進行方向(つまり、前後方向)に沿った平面(以下「基準平面」という)に対して、LIDAR22の照射方向に沿った仮想線が成す角(以下「照射角」という)θが90度未満になるように、LIDAR22は配置される。
 基準平面は、例えば、車輪31(例えば、後輪31RL及び後輪31RR)の中心を通る平面である。
 例えば、LIDAR22は、ポール35の上方(U方向)から下方(D方向)を向く方向に、当該移動体1の左前方(SL方向かつF方向)~前方(F方向)~右前方(SR方向かつF方向)の範囲にある障害物を対象として測距を行うように構成される。一例として、LIDAR22は、移動体1に着座する乗員の頭部よりも高い位置に取り付けられ、移動体1の前方(F方向)に障害物が存在するか検知するように構成される。すなわち、LIDAR22のレーザの照射方向を、移動体1の左前方(SL方向かつF方向)~前方(F方向)~右前方(SR方向かつF方向)を向き、かつLIDAR22の取り付け位置を通る水平面よりも下方(D方向)に向ける必要がある。故に、LIDAR22は、かかる水平面よりも下方(D方向)に傾斜して(換言すれば、移動体1の走行面に対して傾斜して)取り付けられている。LIDAR22の傾斜角度は、固定でもよいし、電動(例えばアクチュエータ)または手動により可変としてもよい。
 LIDAR22は、コントローラ10からの制御信号に従って、パルス状に発光するレーザを照射し、このレーザが障害物によって散乱されて戻ってきた光を光検出器にて検出する。レーザが照射されてから散乱光が戻ってくるまでの時間差と、レーザの伝播速度とに基づいて、LIDAR22から障害物までの距離を測定することができる。LIDAR22は、3次元LIDARに対して比較的安価な2次元LIDARを使用するものとして説明するが、これに限られない。
 キーパッド23は、移動体1の肘掛けを基準に上方(U方向)に配置される。キーパッド23は、左右どちらかの肘掛けに固定されてもよいし、乗員の身体的機能(例えば、利き腕、運動障害の有無)に応じて左右どちらの肘掛けにも取り付け可能に構成されてもよい。
 キーパッド23は、乗員または介助者がコントローラ10に対する指示を入力するための入力デバイスの一例である。キーパッド23は、例えば以下の指示の少なくとも1つを受理し得る。
・目的地の設定
・ルートの選択
・自動運転の開始
・自動運転の終了
・自動運転モード及び手動運転モードの切り替え
・減速
・停止
・発進
・介助者の呼び出し
 移動機構31は、コントローラ10からの制御信号に従って、移動体1を移動させる。移動機構31の構成は移動体1に求められる移動方式に依存するが、一例として移動機構31は、図2に示す前輪31FL、前輪31FR、後輪31RL、および後輪31RRに加えて、ブレーキ、モーター、トランスミッション、および車軸を含み得る。
 前輪31FLは、座部32を基準に下方(D方向)、かつ前輪31FRを基準に左方向(SL方向)に配置される。前輪31FLは、回転可能に構成される。
 前輪31FRは、座部32を基準に下方(D方向)、かつ前輪31FLを基準に右方向(SR方向)に配置される。前輪31FRは、回転可能に構成される。
 後輪31RLは、座部32を基準に下方(D方向)、かつ後輪31RRを基準に左方向(SL方向)に配置される。後輪31RLは、回転可能に構成される。
 後輪31RRは、座部32を基準に下方(D方向)、かつ後輪31RLを基準に右方向(SR方向)に配置される。後輪31RRは、回転可能に構成される。
 座部32は、背部33を基準に下方(D方向)かつ前方(F方向)に配置される。座部32は、乗員の臀部を支持可能に構成される。
 背部33は、座部32を基準に上方(U方向)かつ後方(R方向)に配置される。背部33は、乗員の背中を支持可能である。
 フットレスト34FLは、座部32を基準に下方(D方向)、かつフットレスト34FRを基準に左方向(SL方向)に配置される。フットレスト34FLは、乗員の左足を支持可能である。
 フットレスト34FRは、座部32を基準に下方(D方向)、かつフットレスト34FLを基準に右方向(SR方向)に配置される。フットレスト34FRは、乗員の右足を支持可能である。
 ポール35は、背部33の背面を基準に上方(U方向)に配置される。具体的には、ポール35は、背部33の幅方向(すなわち左右方向(SL-SR軸方向)))の中心線(鉛直線)とは異なる軸に沿って、当該ポール35の上端の高さ(前輪31FL、前輪31FR、後輪31RLおよび後輪31RRが水平面に接している状態での当該水平面からの高さ(地上高))が背部33の上端よりも高い位置(「基準高」)になるように延設される。基準高は、例えば、移動体1に着座する乗員の頭の高さよりも高く設定され得る。
 ポール35は、当該ポール35の上端にセンサ収容部36を取り付け可能に構成される。
 センサ収容部36は、ポール35を基準に上方(U方向)に配置される。具体的には、センサ収容部36は、ポール35の上端に取り付けられる。センサ収容部36は、LIDAR22を収容するように構成される。センサ収容部36は、LIDAR22に加えて、ランプおよびスピーカの少なくとも1つを収容し得る。
 コントローラ10は、圧力センサ21による圧力の測定結果に基づいて乗員の姿勢を判定する。そして、コントローラ10は、乗員の姿勢の判定結果に基づいて、移動機構31を制御することで移動体1の自動運転中における乗員の安全を確保する。
(2)実施形態の概要
 本実施形態の概要について説明する。図6は、乗員の姿勢の第1の例を示す図である。図7は、乗員の姿勢の第2の例を示す図である。図8は、乗員の姿勢の第3の例を示す図である。図10は、本実施形態の移動体の走行状態の遷移図である。
 図6に示すように、乗員の姿勢の第1の例は、乗員USが、背中を背部33に接触させながら乗員USの重心位置が所定の領域内にあるように座部32に着座した状態で両足をフットレスト34FLおよびフットレスト34FRに載せた姿勢(「正常」と呼ぶこともできる)である。所定の領域は、座部32の座面の前方(F方向)の端部、左方向(SL方向)の端部、および右方向(SR方向)の端部を除いた領域である。乗員USの姿勢が正常である場合には、コントローラ10は、移動体1を通常走行させる。
 図7に示すように、乗員の姿勢の第2の例は、乗員USが、背中を背部33から離して過剰に浅く腰掛けた姿勢(「前傾」と呼ぶこともできる)である。乗員USが前傾姿勢である場合に、乗員USの重心位置は座部32の座面の前方(F方向)の端部を含む領域にある。
 図8に示すように、乗員の姿勢の第3の例は、乗員USが、フットレスト34FLおよびフットレスト34FRの上に立つ姿勢(「起立」と呼ぶこともできる)である。乗員USが起立姿勢である場合に、乗員USは座部32に着座していない。
 図9に示すように、乗員の姿勢の第4の例は、背中が背部33にもたれかかり、かつ過剰に浅く腰掛けた姿勢(「仙骨座り」と呼ぶこともできる)である。乗員USが仙骨座り姿勢である場合に、乗員USの重心位置は座部32の座面の前方(F方向)の端部を含む領域にある。
 乗員の姿勢の第5の例は、乗員の身体が左方向(SL方向)または右方向(SR方向)のどちらかに偏っている姿勢(「左右の偏り」と呼ぶこともできる)である。乗員USが左右の偏り姿勢である場合に、乗員USの重心位置は、座部32の座面の左方向(SL方向)の端部を含む領域または右方向(SR方向)の端部を含む領域にある。
 乗員の姿勢が、前傾(図7)、起立(図8)、仙骨座り(図9)足の脱落(図示されない)、および左右の偏り(図示されない)などの正常でない類型である場合には、以下の事故の少なくとも1つが発生する危険性がある。
 ・乗員USまたは所持品(例えば杖)の転落
 ・乗員USの足もしくは他の部位、または所持品の移動機構31への巻き込み
 ・乗員USの手、足、頭、もしくは他の部位、または所持品の障害物との接触
 故に、コントローラ10は、乗員USの姿勢が正常でない類型と判定した場合には、移動体1を減速させる。これにより、移動体1は徐行または停止するので、乗員USの姿勢が崩れたことに伴う乗員USの転落などの事故を防ぐこと、または仮にかかる事故が起きた場合であっても乗員USが受ける衝撃を和らげることができる。
 より具体的には図10に示すように、本実施形態において、コントローラ10は、乗員USの姿勢を、リスクの昇順に、カテゴリ0、カテゴリ1、およびカテゴリ2のいずれかと判定する。コントローラ10は、乗員USの姿勢がカテゴリ1に該当する場合と、乗員USの姿勢がカテゴリ2に該当する場合とで、異なる減速制御を行う。
 乗員USの姿勢がカテゴリ0に該当する場合には、コントローラ10は、移動体1は通常走行させる。乗員USの姿勢がカテゴリ1に該当する場合には、コントローラ10は、移動体1を徐行させる。乗員USの姿勢がカテゴリ2に該当する場合には、コントローラ10は、移動体1を停止させる。
 図10に示すように、コントローラ10は、移動体1の通常走行時または移動体1の徐行時に、乗員USの姿勢がカテゴリ2に該当すると判定した場合には、移動体1が停止するまで減速させる。コントローラ10は、移動体1の通常走行時に、乗員USの姿勢がカテゴリ1に該当すると判定した場合には、移動体1を所定の徐行速度まで減速させる。
 図10に示すように、コントローラ10は、移動体1の通常走行時に、乗員USの姿勢がカテゴリ0に該当すると判定した場合には、移動体1の速度を維持する。コントローラ10は、移動体1の徐行時に、乗員USの姿勢がカテゴリ1に該当すると判定した場合には、移動体1の速度を維持する。コントローラ10は、移動体1の停止時に、乗員USの姿勢がカテゴリ2に該当すると判定した場合には、移動体1を停止させたままとする。
 図10に示すように、コントローラ10は、移動体1の徐行時に、乗員USの姿勢がカテゴリ0の姿勢に該当すると判定した場合には、移動体1を所定の通常走行速度まで加速させる。コントローラ10は、移動体1の停止時に、乗員USの姿勢がカテゴリ0の姿勢に該当すると判定した場合には、移動体1を発進させるとともに所定の通常走行速度まで加速させる。コントローラ10は、移動体1の停止時に、乗員USの姿勢がカテゴリ1の姿勢に該当すると判定した場合には、移動体1を発進させるとともに所定の徐行速度まで加速させる。
(3)データベース
 本実施形態の姿勢データベースについて説明する。図11は、本実施形態の姿勢データベースのデータ構造を示す図である。
 図11に示すように、姿勢データベースは、「姿勢ID」フィールドと、「姿勢名称」フィールドと、「カテゴリ」フィールドと、「臀部」フィールドと、「背中」フィールドと、「足」フィールドとを含む。各フィールドは、互いに関連付けられている。
 「姿勢ID」フィールドには、姿勢IDが格納される。姿勢IDは、姿勢類型を識別する。「姿勢名称」フィールドには、姿勢名称データが格納される。姿勢名称データは、姿勢類型の名称を示す。
 「カテゴリ」フィールドには、カテゴリデータが格納される。カテゴデータは、姿勢類型が属するカテゴリを示す。
 「臀部」フィールドには、第1の圧力条件が格納される。第1の圧力条件は、圧力センサ21Sの測定結果に関する条件である。
 「背中」フィールドには、第2の圧力条件が格納される。第2の圧力条件は、圧力センサ21Bの測定結果に関する条件である。
 「足」フィールドには、第3の圧力条件が格納される。第3の圧力条件は、圧力センサ21FLおよび圧力センサ21FRの測定結果に関する条件である。
(4)移動体制御処理
 本実施形態の移動体制御処理について説明する。図12は、本実施形態に係る移動体制御処理を例示するフローチャートである。図13は、領域R1を示す図である。図14は、領域R2を示す図である。図15は、領域R5を示す図である。
 図12に示すように、コントローラ10は、自動運転の開始(S100)を実行する。
 具体的には、プロセッサ12は、乗員または介助者からの目的地の設定および自動運転の開始指示を入出力インタフェース13または通信インタフェース14を介して受け付ける。プロセッサ12は、記憶装置11に保存されている現在地データおよびマップデータを参照し、目的地までのルートを決定する。以後、プロセッサ12が、決定したルートに沿って、加速、操舵および制動の少なくとも1つを制御することを繰り返す。
 ステップS100の実行後に、コントローラ10は、姿勢の判定(S110)を実行する。
 具体的には、プロセッサ12は、圧力センサ21S、圧力センサ21B、圧力センサ21FLおよび圧力センサ21FRのうち少なくとも1つの測定結果を取得する。プロセッサ12は、取得した測定結果に基づいて、乗員USの姿勢を姿勢データベース(図11)に登録された姿勢類型のいずれかとして判定する。
 図11の例によれば、プロセッサ12は、「乗員の重心位置が領域R1内」、「Pb>Th1b」、および「(Pfl>Th1f) AND (Pfr>Th1f)」の3条件が満足する場合に、乗員USの姿勢を正常(カテゴリ0)と判定する。図13に示されるように、領域R1は、座部32の座面のうち例えば基準線BL1FよりもB方向側、基準線BL1LよりもR方向側かつ基準線BL1RよりもL方向側の領域である。Pbは、圧力センサ21Bの測定結果(例えば代表値)を表す。Th1bは、乗員USの背中が背部33に接触しているか否かを判定するための閾値を表す。Pflは、圧力センサ21FLの測定結果を表す。Pfrは、圧力センサ21FRの測定結果を表す。Th1fは、乗員USの両足がフットレスト34FLおよびフットレスト34FRに載っているか否かを判定するための閾値を表す。
 図11の例によれば、プロセッサ12は、「乗員の重心位置が領域R2外」、および「Pb<Th2b」の2条件が満足する場合に、乗員USの姿勢を前傾(カテゴリ1)と判定する。図14に示されるように、領域R2は、座部32の座面のうち例えば基準線BL2よりもB方向側の領域である。Th2bは、乗員USの背中が背部33に接触しているか否かを判定するための閾値を表す。Th2bは、前述の閾値Th1bと同じであってもよい。
 図11の例によれば、プロセッサ12は、「Ps<Th3」、「Pb<Th3b」、および「(Pfl>Th3f)OR(Pfr>Th3f)」の3条件が満足する場合に、乗員USの姿勢を起立(カテゴリ2)と判定する。Psは、圧力センサ21Sの測定結果(例えば代表値)を表す。Th3sは、乗員USの臀部が座部32に接触しているか否かを判定するための閾値を表す。Th3bは、乗員USの背中が背部33に接触しているか否かを判定するための閾値を表す。Th3bは、前述の閾値Th1bと同じであってもよい。Th3fは、乗員USの両足がフットレスト34FLおよびフットレスト34FRに載っているか否かを判定するための閾値を表す。Th3fは、前述の閾値TH1fと同じであってもよい。ユーザの姿勢が起立である場合には、ユーザが着座している時に比べて左足および右足の少なくとも一方により大きな重量がかかるので、PflおよびPfrの少なくとも一方が、ユーザの姿勢が正常である場合に比べて大きくなると考えられる。故に、Th3fは、閾値TH1fよりも大きく設定されてもよい。
 図11の例によれば、プロセッサ12は、「(Pfl<Th4f)OR(Pfr<Th4f)」の条件が満足する場合に、乗員USの姿勢を足の脱落(カテゴリ2)と判定する。Th4fは、乗員USの両足がフットレスト34FLおよびフットレスト34FRに載っているか否かを判定するための閾値を表す。Th4fは、前述の閾値TH1fと同じであってもよい。
 図11の例によれば、プロセッサ12は、「乗員の重心位置が領域R5外」の条件が満足する場合に、乗員USの姿勢を左右の偏り(カテゴリ1)と判定する。図15に示されるように、領域R5は、座部32の座面のうち例えば基準線BL5LよりもR方向側かつ基準線BL5RよりもL方向側の領域である。
 図11の例によれば、プロセッサ12は、「乗員の重心位置が領域R6外」、および「Pb>Th6b」の2条件が満足する場合に、乗員USの姿勢を仙骨座り(カテゴリ1)と判定する。領域R2は、座部32の座面のうち例えばある基準線よりもB方向側の領域である。領域R6は、前述の領域R2と同じであってもよい。Th6bは、乗員USの背中が背部33に接触しているか否かを判定するための閾値を表す。Th6bは、前述の閾値Th1bと同じであってもよい。ユーザの姿勢が仙骨座りである場合に、ユーザは背部33にもたれているので、Pbは、ユーザの姿勢が仙骨座りでない場合に比べて大きくなると考えられる。故に、閾値Th6bは、閾値Th1bよりも大きく設定されてもよい。
 ステップS110の判定結果がカテゴリ0に該当する場合に、コントローラ10は、通常走行制御(S111)を実行する。
 具体的には、プロセッサ12は、移動体1が停止している場合には、移動体1が発進するとともに所定の通常走行速度まで加速するよう移動機構31を制御する。プロセッサ12は、移動体1の速度が非零かつ通常走行速度よりも小さい場合には、移動体1を通常走行速度まで加速するよう移動機構31を制御する。プロセッサ12は、移動体1の速度が通常走行速度付近である場合には、移動体1が速度を維持するよう移動機構31を制御する。
 ステップS110の判定結果がカテゴリ1に該当する場合に、コントローラ10は、徐行制御(S112)を実行する。
 具体的には、プロセッサ12は、移動体1が停止している場合には、移動体1が発進するとともに所定の徐行走行速度まで加速するよう移動機構31を制御する。プロセッサ12は、移動体1の速度が徐行速度付近である場合には、移動体1が速度を維持するよう移動機構31を制御する。プロセッサ12は、移動体1の速度が徐行速度を超えている場合には、移動体1が徐行速度まで減速するよう移動機構31を制御する。
 ステップS110の判定結果がカテゴリ2に該当する場合に、コントローラ10は、停止制御(S113)を実行する。
 具体的には、プロセッサ12は、移動体1が停止している場合には、移動体1を停止させたままとする。プロセッサ12は、移動体1が走行している場合には、移動体1が停止するまで減速するよう移動機構31を制御する。
 ステップS111またはステップS112の実行後に、コントローラ10は、障害物回避処理(S120)を実行する。
 具体的には、プロセッサ12は、LIDAR22による距離の測定結果に基づいて、移動機構31を制御する。プロセッサ12は、以下の障害物回避処理の第1の例~第4の例の少なくとも1つを実行し得る。
 障害物回避処理の第1の例では、プロセッサ12は、障害物との距離が閾値以上である場合に、移動体1の速度を維持する。
 この閾値は、固定であってもよいし、距離の測定された方向、移動体1の進行方向、および移動体1の速度の少なくとも1つに応じて可変であってもよい。
 障害物回避処理の第2の例では、プロセッサ12は、障害物との距離が閾値未満であった場合に、移動体1を徐行または停止させる。
 障害物回避処理の第3の例では、プロセッサ12は、障害物との距離が閾値未満であった場合に、移動体1の進行方向を変更させる。
 変更後の進行方向は、プロセッサ12によって決定されてもよいし、外部装置(例えば図示されないサーバ)によって決定されてもよい。変更後の進行方向は、閾値を下回った測定結果に対応する障害物の方向、すなわち接触可能性のある障害物の方向に基づいて決定され得る。
 障害物回避処理の第4の例では、プロセッサ12は、移動体1の進行方向と反対方向にある障害物との距離が閾値未満であった場合に、移動体1を加速させる。例えば、移動体1の進行方向から見て後ろ側から障害物が接近してきた場合に、移動体1を加速させることで接触を回避し、または接触時の衝撃を緩和できる可能性がある。
 ステップS113またはステップS120の実行後に、コントローラ10は、自動運転の終了判定(S130)を実行する。
 具体的には、プロセッサ12は、以下の少なくとも1つの条件が満足する場合に、自動運転を終了すると判定できる。
・移動体1が目的地に到着した
・乗員、介護者、または他の管理者により、自動運転の終了が指示された
・乗員、介護者、または他の管理者により、手動運転モードへの切り替えが指示された
・故障、バッテリ状態、路面状態、などの要素に基づいて、自動運転の継続が困難であると判定された
 ステップS130において自動運転を終了しないと判定した場合に、コントローラ10は、姿勢の判定(S110)を再び実行する。
(5)本実施形態の小括
 以上説明したように、本実施形態の移動体に含まれるコントローラは、移動体に備えられた1以上の圧力センサの測定結果に基づいて乗員の姿勢を判定し、姿勢の判定結果に基づいて移動機構を制御する。例えば、コントローラは、乗員の姿勢が予め定められた類型に該当すると判定された場合に、移動体を減速させる。故に、このコントローラによれば、乗員が姿勢を崩した場合に移動体の走行状態を適切に制御することができる。すなわち、このコントローラによれば、自動運転可能な移動体の安全性を高めることができる。
 なお、コントローラ10による乗員の姿勢の判定方法や、判定結果に応じた移動体1の制御の内容は、上記の例に限定されない。例えば、コントローラ10は、移動体1の座部32に設けられた左右の圧力センサ、背部33に設けられた左右の圧力センサ、並びにフットレスト34FL及びフットレストFRに設けられた圧力センサのすべてが閾値以上の圧力を検知している場合に、乗員の姿勢が正常と判定し、それ以外の場合には乗員の姿勢が異常であると判定してもよい。そしてコントローラ10は、乗員の姿勢が正常だと判定した場合にはキーパッド23による指示に基づいて通常走行するように移動体1を制御し、乗員の姿勢が異常だと判定した場合には移動体1が走行を停止又は減速するように制御したり走行を開始しないように制御したりしてもよい。さらにコントローラ10は、いずれの圧力センサも閾値以上の圧力を検知していない場合には、乗員がいない(ユーザが乗車していない)と判定して移動体1の移動を制限してもよい。
(6)変形例
 本実施形態の変形例について説明する。本変形例は、乗員の姿勢の判定結果に基づいて警報を出力する例である。
(6-1)移動体制御処理
 本変形例の移動体制御処理について説明する。図16は、変形例に係る移動体制御処理を例示するフローチャートである。
 図16に示すように、コントローラ10は、本実施形態(図12)と同様に、自動運転の開始(S100)、姿勢の判定(S110)、通常走行制御(S111)、徐行制御(S112)、及び、停止制御(S113)を実行する。
 ステップS112の実行後に、コントローラ10は、警報の出力(S112a)を実行する。
 具体的には、プロセッサ12は、例えば、以下の少なくとも1つの警報を出力してもよい。警報の内容は、ステップS110において判定された乗員の姿勢類型に応じて異なってもよい。
・乗員に正常な姿勢への復帰を促すテキスト、音声、および画像の少なくとも1つを、移動体1の備える出力装置(例えば、ディスプレイ、スピーカ、など)に出力させるための信号
・乗員の介助者を呼び出すためのテキスト、音声、および画像の少なくとも1つを外部装置(例えば、図示されない介助者の端末)または移動体1の備える出力装置に出力させるための信号
・乗員の介助者または乗員の周囲の人間に、乗員の姿勢が正常でないことを伝えるテキスト、音声、および画像の少なくとも1つを外部装置(例えば、図示されない介助者の端末)または移動体1の備える出力装置に出力させるための信号
・移動体1の備えるランプを乗員の姿勢の異常を伝える点灯パターンで点灯させるための信号
・外部装置(例えば、図示されないサーバ)に乗員の姿勢が正常でないことを伝えるテキスト、音声、および画像の少なくとも1つを出力させるための信号
 例えば、乗員に正常な姿勢への復帰を促すテキストは、「椅子に深く腰掛けて下さい」、「足をフットレストに載せてください」、「左右に寄り掛からないでください」、などであってよい。
 ステップS113の実行後に、コントローラ10は、警報の出力(S113a)を実行する。
 例えば、プロセッサ12は、ステップS113aに関して説明した警報を出力し得る。
 ステップS111またはステップS112aの実行後に、コントローラ10は、障害物回避処理(S120)(図12)を実行する。
 ステップS113またはステップS120の実行後に、コントローラ10は、自動運転の終了判定(S130)(図12)を実行する。
 ステップS130において自動運転を終了しないと判定した場合に、コントローラ10は、姿勢の判定(S110)を再び実行する。
 以上説明したように、本実施形態の移動体に含まれるコントローラは、移動体に備えられた1以上の圧力センサの測定結果に基づいて乗員の姿勢を判定し、姿勢の判定結果に基づいて警報を出力する。例えば、コントローラは、乗員の姿勢が予め定められた類型に該当すると判定された場合に、乗員に正常な姿勢への復帰を促したり、介助者を呼び出したりする。すなわち、このコントローラによれば、乗員の姿勢の崩れを早期に修正できるので、自動運転可能な移動体の安全性を高めることができる。
(7)その他の変形例
 記憶装置11は、ネットワークNWを介して、コントローラ10と接続されてもよい。
 実施形態の説明では、乗員の部位(臀部、背中、および足)毎に姿勢の判定条件を定めた。しかしながら、例えば説明済みの部位の一部について圧力センサが省略されてもよいし、説明していない部位(例えば、腕)について圧力センサが追加されてもよい。説明済みの部位の一部について圧力センサを省略する場合には、当該部位に関する条件が定められていないものとして実施形態の説明を読み替えることができる。
 実施形態の説明では、乗員の部位(臀部、背中、および足)毎に姿勢の判定条件を定めた。しかしながら、乗員が種々の姿勢を取った時の複数の圧力センサの測定結果に基づいて、姿勢類型毎の代表的な圧力分布を予め作成しておいてもよい。そして、姿勢類型毎の代表的な圧力分布と、圧力センサから取得された測定結果とのマッチングを行うことで、乗員の姿勢を判定してもよい。
 実施形態の説明では、乗員の姿勢が予め定められた類型に該当すると判定された場合に移動体を減速させると説明したが、移動体をどのように減速させるか、すなわち移動体1に与えられる負の加速度は、乗員の体重および体格の少なくとも一方に応じて可変としてもよい。例えば、乗員の体重が大きいほど、加速度の絶対値を小さくしてもよい。乗員の体格が大きいほど(例えば、重心の位置が高いほど)、加速度の絶対値を小さくしてもよい。乗員の体重および体格は、圧力センサの測定結果に基づいて推定されてもよいし、他の方法で取得されてもよい。
 上述の実施形態では、乗員の姿勢判定のために圧力センサにより測定された圧力値と比較される閾値(例えば図11のTh1b、Th1f、及びTh2bなど)は、それぞれあらかじめ定められているものとした。ただしこれに限らず、コントローラ10はこれらの圧力センサの閾値を状況に応じて変更してもよい。例えば、乗員の体重が軽い場合よりも乗員の体重が重い場合の方が圧力センサの閾値が高くなるように設定することで、コントローラ10は、様々な体重の乗員が移動体1に乗りうる場合でも適切に乗員の姿勢を判定できる。具体的には、コントローラ10は、乗員の属性を示す情報を外部装置から通信により取得し、取得した情報に基づいて圧力センサの閾値を設定してもよい。また、コントローラ10は、移動体1に乗員が正常な姿勢で乗っている時点(移動体1の発進前や通常走行時)において各圧力センサが出力する値を基準として圧力センサの閾値を設定してもよい。
また例えば、乗員の姿勢が正常な場合、移動体1が下り坂を走行している場合よりも上り坂を走行している場合の方が、移動体1の背部にかかる圧力は大きくなりフットレストにかかる圧力は小さくなる。そこで、コントローラ10は、移動体1が走行している道の勾配に応じて圧力センサの閾値を変更してよい。これにより、移動体1が走行する道に勾配が含まれる場合であっても、コントローラ10は適切に乗員の姿勢を判定できる。コントローラ10は、移動体1が走行している道の勾配を、LIDAR22による測定結果(LIDAR22から地面までの距離)に基づいて判断してもよいし、外部装置から取得した地図情報と移動体1の自己位置推定の結果とに基づいて判断してもよい。
 実施形態の説明では、コントローラ10は、乗員の姿勢の判定結果がカテゴリ1またはカテゴリ2に該当する場合に、移動体1を減速させることがある。移動体1をどのように減速させるか、すなわち移動体1に与えられる負の加速度は、姿勢類型に応じて可変としてもよい。例えば、乗員USの姿勢が前傾または起立である場合には、移動体1を急に減速させると慣性により乗員USが転落する危険性がある。故に、プロセッサ12は、乗員USの姿勢が前傾または起立と判定された場合には、乗員USの姿勢が他の正常でない類型の少なくとも1つと判定された場合に比べて、移動体1を緩やかに減速させてもよい(すなわち、加速度の絶対値を小さくしてもよい)。
 実施形態の説明では、姿勢類型を3つのカテゴリに分類しているが、姿勢類型を2つのカテゴリ、または4以上のカテゴリに分類してもよい。
 実施形態の説明では、乗員の姿勢が予め定められた類型に該当すると判定された場合に移動体を減速させると説明したが、かかる場合に移動体の上限速度が小さくなるように制限してもよい。
 実施形態の説明では、乗員の姿勢が予め定められた類型に該当すると判定された場合に移動体を減速させると説明したが、移動体の停止中に乗員の姿勢が予め定められた類型に該当すると判定された場合に移動体の発進を禁じてもよい。
 実施形態の説明では、障害物との距離と姿勢の判定結果との組み合わせに基づいて、移動機構をどのように制御するかを決定した。しかしながら、障害物との距離に基づく移動機構の制御と、姿勢の判定結果に基づく移動機構の制御とをそれぞれ独立に行ってもよい。
 変形例の説明では、徐行制御および停止制御の後に警報を出力している。しかしながら、徐行制御および停止制御の前に警報を出力してもよいし、徐行制御および停止制御と並列に警報を出力してもよい。
 以上、本発明の実施形態について詳細に説明したが、本発明の範囲は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。また、上記の実施形態及び変形例は、組合せ可能である。
(8)付記
 実施形態で説明した事項を、以下に付記する。
 (付記1)
 移動機構(31)と1以上の圧力センサ(21)とを備えた移動体(1)を制御するコントローラ(10)であって、
 1以上の圧力センサの測定結果に基づいて移動体の乗員の姿勢を判定する手段(S110)と、
 乗員の姿勢の判定結果に基づいて、移動機構を制御する手段(S111,S112,S113)と
 を具備する、コントローラ。
 (付記1)によれば、コントローラは、乗員が姿勢を崩した場合に移動体の走行状態を適切に制御する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記2)
 移動機構を制御する手段は、乗員の姿勢が予め定められた類型に該当すると判定された場合に、移動体を減速させる(S112,S113)、付記1に記載のコントローラ。
 (付記2)によれば、コントローラは、乗員が姿勢を崩した場合に移動体を減速する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記3)
 1以上の圧力センサは、乗員の足を支持可能なフットレスト(34FL,34FR)に配置された圧力センサ(21FL,21FR)を含む、付記1または付記2に記載のコントローラ。
 (付記3)によれば、コントローラは、フットレストに配置された圧力センサの出力に基づいて乗員が姿勢を崩したことを検知した場合に移動体の走行状態を適切に制御する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記4)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当するか否かをフットレストに配置された圧力センサの測定結果に基づいて判定し、
 移動機構を制御する手段は、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当すると判定された場合に、移動体を減速させる(S112,S113)、
 付記3に記載のコントローラ。
 (付記4)によれば、コントローラは、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当する場合に移動体を減速する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記5)
 移動機構を制御する手段は、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当すると判定された場合に、移動体を停止するまで減速させる(S113)、付記4に記載のコントローラ。
 (付記5)によれば、コントローラは、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当する場合に移動体を停止させる。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記6)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当するか否かをフットレストに配置された圧力センサの測定結果に基づいて判定し、
 コントローラは、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当すると判定された場合に、警報を出力する手段(S112a,S113a)をさらに具備する、
 付記3乃至付記5のいずれかに記載のコントローラ。
 (付記6)によれば、コントローラは、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当する場合に乗員に正常な姿勢への復帰を促したり、介助者を呼び出したりすることで、乗員の姿勢の崩れを早期に修正できるので、自動運転可能な移動体の安全性を高めることができる。
 (付記7)
 1以上の圧力センサは、乗員の背中を支持可能な背部(33)に配置された圧力センサ(21B)を含む、
 付記1乃至付記6のいずれかに記載のコントローラ。
 (付記7)によれば、コントローラは、背部に配置された圧力センサの出力に基づいて乗員が姿勢を崩したことを検知した場合に移動体の走行状態を適切に制御する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記8)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の背中が背部に接触していない類型に該当するか否かを背部に配置された圧力センサの測定結果に基づいて判定し、
 移動機構を制御する手段は、乗員の姿勢が乗員の背中が背部に接触していない類型に該当すると判定された場合に、移動体を減速させる(S112,S113)、
 付記7に記載のコントローラ。
 (付記8)によれば、コントローラは、乗員の姿勢が乗員の背中が背部に接触していない類型に該当する場合に移動体を減速する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記9)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の背中が背部に接触していない類型に該当するか否かを背部に配置された圧力センサの測定結果に基づいて判定し、
 コントローラは、乗員の姿勢が乗員の背中が背部に接触していない類型に該当すると判定された場合に、警報を出力する手段(S112a,S113a)をさらに具備する、
 付記7または付記8に記載のコントローラ。
 (付記9)によれば、コントローラは、乗員の姿勢が乗員の背中が背部に接触していない類型に該当する場合に乗員に正常な姿勢への復帰を促したり、介助者を呼び出したりすることで、乗員の姿勢の崩れを早期に修正できるので、自動運転可能な移動体の安全性を高めることができる。
 (付記10)
 1以上の圧力センサは、乗員の背中を支持可能な背部(33)に配置された圧力センサ(21B)を含み、
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当するか否かをフットレストに配置された圧力センサの測定結果に基づいて判定し、
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の背中が背部に接触していない類型に該当するか否かを背部に配置された圧力センサの測定結果に基づいて判定し、
 移動機構を制御する手段は、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当すると判定された場合に、移動体を停止するまで減速させ(S113)、
 移動機構を制御する手段は、乗員の姿勢が、乗員の足がフットレストから脱落している類型に該当せず、かつ、乗員の背中が背部に接触していない類型に該当すると判定された場合に、移動体を所定の徐行速度まで減速させる(S112)、
 付記3乃至付記6のいずれかに記載のコントローラ。
 (付記10)によれば、コントローラは、乗員の姿勢が乗員の背中が背部に接触していない類型に該当する場合に移動体を徐行するに留め、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当する場合に移動体を停止させる。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記11)
 1以上の圧力センサは、乗員の臀部を支持可能な座部(32)に配置された圧力センサ(21S)を含む、付記1乃至付記10のいずれかに記載のコントローラ。
 (付記11)によれば、コントローラは、座部に配置された圧力センサの出力に基づいて乗員が姿勢を崩したことを検知した場合に移動体の走行状態を適切に制御する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記12)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当するか否かを座部に配置された圧力センサの測定結果に基づいて判定し、
 移動機構を制御する手段は、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当すると判定された場合に、移動体を減速させる(S112,S113)、
 付記11に記載のコントローラ。
 (付記12)によれば、コントローラは、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当する場合に移動体を減速する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記13)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当するか否かを座部に配置された圧力センサの測定結果に基づいて判定し、
 コントローラは、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当すると判定された場合に、警報を出力する手段(S112a,S113a)をさらに具備する、
 付記11または付記12に記載のコントローラ。
 (付記13)によれば、コントローラは、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当する場合に乗員に正常な姿勢への復帰を促したり、介助者を呼び出したりすることで、乗員の姿勢の崩れを早期に修正できるので、自動運転可能な移動体の安全性を高めることができる。
 (付記14)
 1以上の圧力センサは、乗員の臀部を支持可能な座部(32)に配置された圧力センサ(21S)を含み、
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当するか否かをフットレストに配置された圧力センサの測定結果に基づいて判定し、
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当するか否かを座部に配置された圧力センサの測定結果に基づいて判定し、
 移動機構を制御する手段は、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当すると判定された場合に、移動体を停止するまで減速させ(S113)、
 移動機構を制御する手段は、乗員の姿勢が、乗員の足がフットレストから脱落している類型に該当せず、かつ、乗員の重心位置が予め定められた範囲外にある類型に該当すると判定された場合に、移動体を所定の徐行速度まで減速させる(S112)、
 付記3乃至付記6のいずれかに記載のコントローラ。
 (付記14)によれば、コントローラは、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当する場合に移動体を徐行するに留め、乗員の姿勢が乗員の足がフットレストから脱落している類型に該当する場合に移動体を停止させる。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記15)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当するか否かを座部に配置された圧力センサの測定結果に基づいて判定し、
 移動機構を制御する手段は、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当すると判定された場合に、移動体を減速させる(S112,S113)、
 付記11乃至付記14のいずれかに記載のコントローラ。
 (付記15)によれば、コントローラは、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当する場合に移動体を減速する。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記16)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当するか否かを座部に配置された圧力センサの測定結果に基づいて判定し、
 コントローラは、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当すると判定された場合に、警報を出力する手段(S112a,S113a)をさらに具備する、
 付記11乃至付記15のいずれかに記載のコントローラ。
 (付記16)によれば、コントローラは、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当する場合に乗員に正常な姿勢への復帰を促したり、介助者を呼び出したりすることで、乗員の姿勢の崩れを早期に修正できるので、自動運転可能な移動体の安全性を高めることができる。
 (付記17)
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当するか否かを座部に配置された圧力センサの測定結果に基づいて判定し、
 乗員の姿勢を判定する手段は、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当するか否かを座部に配置された圧力センサの測定結果に基づいて判定し、
 移動機構を制御する手段は、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当すると判定された場合に、移動体を停止するまで減速させ、
 移動機構を制御する手段は、乗員の姿勢が、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当せず、かつ、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当すると判定された場合に、移動体を所定の徐行速度まで減速させる、
 付記11に記載のコントローラ。
 (付記17)によれば、コントローラは、乗員の姿勢が乗員の重心位置が予め定められた範囲外にある類型に該当する場合に移動体を徐行するに留め、乗員の姿勢が乗員の臀部が座部に接触していない類型に該当する場合に移動体を停止させる。すなわち、自動運転可能な移動体の安全性を高めることができる。
 (付記18)
 移動体であって、
 移動体を移動させる移動機構と、
 1以上の圧力センサと、
 1以上の圧力センサの測定結果に基づいて移動体の乗員の姿勢を判定し、且つ、乗員の姿勢の判定結果に基づいて、移動機構を制御する、コントローラと
 を具備する、移動体。
 (付記18)によれば、移動体は、乗員が姿勢を崩した場合に自らの走行状態を適切に制御する。すなわち、自動運転可能な移動体の安全性を高めることができる。
1    :移動体
10   :コントローラ
11   :記憶装置
12   :プロセッサ
13   :入出力インタフェース
14   :通信インタフェース
21   :圧力センサ
22   :LIDAR
31   :移動機構
32   :座部
33   :背部
35   :ポール

Claims (20)

  1.  移動機構と1以上の圧力センサとを備えた移動体を制御するコントローラであって、
     前記1以上の圧力センサの測定結果に基づいて前記移動体の乗員の姿勢を判定する手段と、
     前記乗員の姿勢の判定結果に基づいて、前記移動機構を制御する手段と
     を具備する、コントローラ。
  2.  前記移動機構を制御する手段は、前記乗員の姿勢が予め定められた類型に該当すると判定された場合に、前記移動体を減速させる、請求項1に記載のコントローラ。
  3.  前記1以上の圧力センサは、前記乗員の足を支持可能なフットレストに配置された圧力センサを含む、請求項1または請求項2に記載のコントローラ。
  4.  前記乗員の姿勢を判定する手段は、前記乗員の足が前記フットレストから脱落しているか否かを前記フットレストに配置された圧力センサの測定結果に基づいて判定し、
     前記移動機構を制御する手段は、前記乗員の足が前記フットレストから脱落していると判定された場合に、前記移動体を減速させる、
     請求項3に記載のコントローラ。
  5.  前記移動機構を制御する手段は、前記乗員の足が前記フットレストから脱落していると判定された場合に、前記移動体を停止するまで減速させる、請求項4に記載のコントローラ。
  6.  前記乗員の姿勢を判定する手段は、前記乗員の足が前記フットレストから脱落しているか否かを前記フットレストに配置された圧力センサの測定結果に基づいて判定し、
     前記コントローラは、前記乗員の足が前記フットレストから脱落していると判定された場合に、警報を出力する手段をさらに具備する、
     請求項3乃至請求項5のいずれかに記載のコントローラ。
  7.  前記1以上の圧力センサは、前記乗員の背中を支持可能な背部に配置された圧力センサを含む、
     請求項1乃至請求項6のいずれかに記載のコントローラ。
  8.  前記乗員の姿勢を判定する手段は、前記乗員の背中が前記背部に接触しているか否かを前記背部に配置された圧力センサの測定結果に基づいて判定し、
     前記移動機構を制御する手段は、前記乗員の背中が前記背部に接触していないと判定された場合に、前記移動体を減速させる、
     請求項7に記載のコントローラ。
  9.  前記乗員の姿勢を判定する手段は、前記乗員の背中が前記背部に接触しているか否かを前記背部に配置された圧力センサの測定結果に基づいて判定し、
     前記コントローラは、前記乗員の背中が前記背部に接触していない判定された場合に、警報を出力する手段をさらに具備する、
     請求項7または請求項8に記載のコントローラ。
  10.  前記1以上の圧力センサは、前記乗員の臀部を支持可能な座部に配置された圧力センサを含む、請求項1乃至請求項9のいずれかに記載のコントローラ。
  11.  前記乗員の姿勢を判定する手段は、前記乗員の重心位置が予め定められた範囲内にあるか否かを前記座部に配置された圧力センサの測定結果に基づいて判定し、
     前記移動機構を制御する手段は、前記乗員の重心位置が前記範囲外にあると判定された場合に、前記移動体を減速させる、
     請求項10に記載のコントローラ。
  12.  前記乗員の姿勢を判定する手段は、前記乗員の重心位置が予め定められた範囲内にあるか否かを前記座部に配置された圧力センサの測定結果に基づいて判定し、
     前記コントローラは、前記乗員の重心位置が前記範囲外にあると判定された場合に、警報を出力する手段をさらに具備する、
     請求項10に記載のコントローラ。
  13.  前記乗員の姿勢を判定する手段は、前記乗員の臀部が前記座部に接触しているか否かを前記座部に配置された圧力センサの測定結果に基づいて判定し、
     前記移動機構を制御する手段は、前記乗員の臀部が前記座部に接触していないと判定された場合に、前記移動体を減速させる、
     請求項10乃至請求項12のいずれかに記載のコントローラ。
  14.  前記乗員の姿勢を判定する手段は、前記乗員の臀部が前記座部に接触しているか否かを前記座部に配置された圧力センサの測定結果に基づいて判定し、
     前記コントローラは、前記乗員の臀部が前記座部に接触していないと判定された場合に、警報を出力する手段をさらに具備する、
     請求項10乃至請求項13のいずれかに記載のコントローラ。
  15.  前記乗員の姿勢を判定する手段は、前記1以上の圧力センサにより測定された圧力値と閾値との比較結果に基づいて前記乗員の姿勢を判定し、
     前記コントローラは、前記乗員の属性と、前記移動体1が走行する道の勾配との、少なくとも何れかに基づいて前記閾値を変更する手段をさらに具備する、
     請求項1乃至請求項14のいずれかに記載のコントローラ。
  16.  前記移動体は、電動車椅子である、請求項1乃至請求項15のいずれかに記載のコントローラ。
  17.  移動機構と1以上の圧力センサとを備えた移動体を制御する制御方法であって、
     前記1以上の圧力センサの測定結果に基づいて前記移動体の乗員の姿勢を判定し、
     前記乗員の姿勢の判定結果に基づいて、前記移動機構を制御する、制御方法。
  18.  前記乗員の姿勢が予め定められた類型に該当すると判定された場合に、前記移動体を減速させる、請求項17に記載の制御方法。
  19.  前記移動体は、電動車椅子である、請求項17又は請求項18に記載の制御方法。
  20.  コンピュータを、請求項1乃至請求項16のいずれかに記載のコントローラの各手段として機能させるためのプログラム。
     
PCT/JP2021/001548 2020-02-13 2021-01-19 コントローラ、制御方法、およびプログラム WO2021161727A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020022855A JP2021126332A (ja) 2020-02-13 2020-02-13 コントローラおよび移動体
JP2020-022855 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021161727A1 true WO2021161727A1 (ja) 2021-08-19

Family

ID=77291732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001548 WO2021161727A1 (ja) 2020-02-13 2021-01-19 コントローラ、制御方法、およびプログラム

Country Status (2)

Country Link
JP (1) JP2021126332A (ja)
WO (1) WO2021161727A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023613A (ja) * 1996-07-04 1998-01-23 Yamaha Motor Co Ltd 電動式移動体
JP2012071098A (ja) * 2010-08-31 2012-04-12 Tokai Rubber Ind Ltd シートおよび車椅子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023613A (ja) * 1996-07-04 1998-01-23 Yamaha Motor Co Ltd 電動式移動体
JP2012071098A (ja) * 2010-08-31 2012-04-12 Tokai Rubber Ind Ltd シートおよび車椅子

Also Published As

Publication number Publication date
JP2021126332A (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
KR101158372B1 (ko) 도립 차륜형 이동체 및 그 제어 방법
JP4872276B2 (ja) 走行体
JP2008068801A (ja) 車両
US8447506B2 (en) Traveling device and its control method
JP5316142B2 (ja) 倒立車輪型移動体
JP5293900B2 (ja) 倒立型移動体及びその乗降方法
JP2009104360A (ja) 倒立型移動体および倒立型移動体の制御方法
JP2008126936A (ja) 移動装置
JP2010125969A (ja) 移動体
JP5065206B2 (ja) 移動体、倒立型移動体、及びその制御方法
JP2010167808A (ja) 移動体
JP4978622B2 (ja) 倒立型移動体及びその異常判断方法
US20100230919A1 (en) Mobile unit
WO2021161727A1 (ja) コントローラ、制御方法、およびプログラム
JP2007118807A (ja) 車両
JP2009126295A (ja) 2輪自動車
JP6326240B2 (ja) 移動体及びその最高速度の制御方法
JP2014198499A (ja) 倒立振子型車両
JP2011031762A (ja) 移動体およびその制御プログラム
JP5360178B2 (ja) 走行体
JP2011162161A (ja) 移動体及びその制御方法
JP2010030523A (ja) 二輪自動車
JP2022144387A (ja) コントローラ、プログラム、移動体、および移動体の制御方法
JP5167077B2 (ja) 移動体、及びその制御方法
JP6589122B2 (ja) 一人乗り移動機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754168

Country of ref document: EP

Kind code of ref document: A1