WO2021154024A1 - 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2021154024A1
WO2021154024A1 PCT/KR2021/001203 KR2021001203W WO2021154024A1 WO 2021154024 A1 WO2021154024 A1 WO 2021154024A1 KR 2021001203 W KR2021001203 W KR 2021001203W WO 2021154024 A1 WO2021154024 A1 WO 2021154024A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
positive electrode
material precursor
cathode active
Prior art date
Application number
PCT/KR2021/001203
Other languages
English (en)
French (fr)
Inventor
정진후
우상원
심종현
주진욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/773,202 priority Critical patent/US20220411283A1/en
Priority to EP21747432.9A priority patent/EP4037030A4/en
Priority to JP2022526460A priority patent/JP2023500940A/ja
Priority to CN202180006089.0A priority patent/CN114728811A/zh
Publication of WO2021154024A1 publication Critical patent/WO2021154024A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material precursor for a secondary battery, a cathode active material, a manufacturing method thereof, and a lithium secondary battery comprising the same.
  • lithium secondary battery has been in the spotlight as a driving power source for a portable device because it is lightweight and has a high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries are being actively conducted.
  • an organic electrolyte or a polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions, and lithium ions are intercalated/deintercalated from the positive electrode and the negative electrode. Electric energy is produced by a reduction reaction with
  • lithium cobalt oxide (LiCoO 2 ) lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO 4 ), etc. were used. .
  • lithium cobalt oxide (LiCoO 2 ) has the advantage of high operating voltage and excellent capacity characteristics, and is widely used, and is applied as a positive electrode active material for high voltage.
  • there is a limit to mass use as a power source in fields such as electric vehicles due to an increase in the price of cobalt (Co) and unstable supply, and the need to develop a cathode active material that can replace it has emerged.
  • 'NCM-based lithium composite transition metal oxide' nickel-cobalt-manganese-based lithium composite transition metal oxide in which a part of cobalt (Co) is substituted with nickel (Ni) and manganese (Mn) has been developed.
  • the NCM-based cathode active material precursor is synthesized through a co-precipitation method, and the shape of the precursor primary particles is different depending on the co-precipitation conditions.
  • the primary particles of the positive active material are also formed in a spherical or cube shape. In this case, the lithium movement path becomes longer and lithium mobility decreases. Accordingly, a technology for synthesizing the shape of the primary particle of the precursor into a shape such as a rod or columnar shape has been developed.
  • the primary particles When the shape of the precursor primary particles is a rod or columnar shape, the primary particles are formed in a radially arranged form from the center of the secondary particles toward the surface, and having such a primary particle arrangement
  • a positive electrode active material is manufactured using a precursor, the distance that lithium ions move along the primary particle interface is shortened, and thus lithium mobility can be improved.
  • the (003) plane where lithium insertion/desorption is impossible, is formed parallel to the long axis direction of the primary particles, thereby reducing the capacity or output characteristics. there was.
  • Patent Document 1 Korean Patent Publication No. 2013-0138073
  • An object of the present invention is to provide a positive electrode active material precursor in which the crystal structure orientation of primary particles is specifically controlled in the positive electrode active material precursor step, and a method for manufacturing the same.
  • an object of the present invention is to provide a positive electrode active material prepared by using a precursor with controlled crystal structure orientation and a lithium secondary battery including the same.
  • the present invention is in the form of secondary particles in which a plurality of primary particles are aggregated, the primary particles are a cathode active material precursor in which a long axis is arranged in a direction from the center of the secondary particles to the surface, and the primary particles are (001 ) provides a cathode active material precursor for a secondary battery comprising crystal grains disposed in a direction having an angle of 20 to 160° with respect to the long axis direction of the primary particles.
  • a cathode active material precursor is formed by input and co-precipitation, and the aluminum-containing solution includes sodium aluminate (NaAlO 2 ).
  • the present invention is in the form of secondary particles in which a plurality of primary particles are aggregated, and the primary particles are a positive active material in which a long axis is arranged in a direction from the center of the secondary particles to the surface, and the primary particles are ( 003) provides a positive active material for a secondary battery comprising crystal grains disposed in a direction having an angle of 20 to 160° with respect to the long axis direction of the primary particles.
  • the present invention provides a positive electrode and a lithium secondary battery including the positive electrode active material.
  • the (001) plane of the crystal grains is not parallel to the long axis direction of the primary particles and is shifted, when the positive electrode active material is manufactured using this, the interface between the primary particles, which is the lithium movement path The contact area of the (003) plane where insertion/desorption of lithium is impossible is reduced.
  • the positive electrode active material prepared using the positive electrode active material precursor of the present invention has excellent lithium mobility compared to the conventional positive electrode active material, and when it is applied to a lithium secondary battery, it is possible to obtain the effect of improving capacity characteristics and output characteristics.
  • FIG. 1 is a cross-sectional STEM (Scanning Transmission Electron Microscopy) image of a conventional positive electrode active material in which a (003) plane is formed in a direction parallel to the long axis of the primary particles.
  • the arrow in the drawing indicates the (003) plane direction.
  • the image in the upper left of FIG. 1 is an Energy Dispersive X-ray (STEM-EDX) mapping image.
  • FIG. 2 is a graph showing a surface area ratio of a (001) plane according to a crystal structure of a cathode active material precursor primary particle and an aspect ratio of the primary particle according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional scanning transmission electron microscopy (STEM) image of a cathode active material according to an embodiment of the present invention.
  • the short arrow indicates the (003) plane direction
  • the long arrow indicates the long axis direction of the primary particles.
  • the positive active material according to the present invention is arranged so that the (003) plane is not parallel to the primary particle major axis and has an angle of 20° to 160°.
  • the image in the upper left of FIG. 3 is an Energy Dispersive X-ray (STEM-EDX) mapping image.
  • Example 4 is a cross-sectional TEM photograph of the cathode active material precursor prepared in Example 1.
  • Example 5 is a graph showing the capacity and output characteristics of the lithium secondary battery using the positive electrode active material prepared in Example 2 and Comparative Examples 3 and 4;
  • 'crystalline' refers to a single crystal particle unit having a regular atomic arrangement, and the crystal grain structures of the cathode active material precursor and the cathode active material can be confirmed through transmission electron microscopy (TEM/STEM) analysis.
  • TEM/STEM transmission electron microscopy
  • the 'primary particle' means a minimum particle unit that is distinguished into one lump when the cross section of the positive active material particle or the positive electrode active material precursor particle is observed through a scanning transmission electron microscope (STEM). By doing so, it may consist of one crystal grain, or it may consist of a plurality of crystal grains.
  • the average particle diameter of the primary particles may be measured by measuring the respective particle sizes distinguished in the cross-sectional STEM image of the positive electrode active material particles and obtaining an arithmetic average value thereof.
  • 'secondary particles' means a secondary structure formed by aggregation of a plurality of primary particles.
  • the average particle diameter of the secondary particles may be measured using a particle size analyzer, and in the present invention, Microtrac's s3500 was used as the particle size analyzer.
  • the 'particle diameter Dn' of the positive active material means the particle diameter at n% of the cumulative volume distribution according to the particle diameter. That is, D50 is the particle size at the 50% point of the cumulative volume distribution according to the particle size, D90 is the particle size at the 90% point of the cumulative volume distribution according to the particle size, and D10 is the particle size at the 10% point of the cumulative volume distribution according to the particle size. is the size
  • the Dn may be measured using a laser diffraction method.
  • the powder to be measured is dispersed in a dispersion medium (distilled water), and then introduced into a commercially available laser diffraction particle size measuring device (eg Microtrac S3500) to measure the diffraction pattern difference according to particle size when particles pass through a laser beam to calculate the particle size distribution.
  • a commercially available laser diffraction particle size measuring device eg Microtrac S3500
  • D10, D50, and D90 can be measured by calculating the particle diameter at the point used as 10%, 50%, and 90% of the cumulative volume distribution according to the particle diameter in a measuring apparatus.
  • the positive electrode active material precursor according to the present invention is a positive electrode active material precursor in the form of secondary particles in which a plurality of primary particles are aggregated, wherein the primary particles are arranged in a direction whose long axis is from the center of the secondary particles to the surface,
  • the primary particles are characterized in that the (001) plane includes crystal grains arranged in a direction having an angle of 20 to 160° with respect to the long axis direction of the primary particles.
  • the conventional cathode active material precursor was prepared in a form in which spherical primary particles were randomly arranged without orientation.
  • primary particles of the positive active material also exist in an unaligned form.
  • lithium ions move along the interface between the primary particles in the positive active material particles, when the primary particles are randomly arranged in the positive active material particles, lithium movement between the primary particles (intraparticle) There is a problem in that the path lengthens and the output characteristics decrease.
  • a cathode active material precursor having a structure in which rod-shaped or column-shaped primary particles are radially arranged in the surface direction from the center of secondary particles.
  • the primary particles of the cathode active material also maintain a radial arrangement, and thus the lithium movement path between the primary particles is minimized.
  • the (001) plane in the precursor was grown parallel to the long axis direction of the primary particles.
  • the (001) plane of the precursor is converted to the (003) plane of the positive electrode active material after firing, when a positive electrode active material is manufactured using such a precursor, the (003) plane of the positive electrode active material is arranged parallel to the long axis direction of the primary particles will become Since the (003) side of the positive electrode active material is a side where insertion/desorption of lithium ions is impossible, there is a problem in that capacity characteristics and output characteristics are deteriorated when the area of the (003) side exposed to the lithium movement path is large.
  • the present invention provides that the long axes of the primary particles are arranged in a direction from the center of the secondary particles toward the surface, and the (001) plane of the crystal grains in the primary particles is not parallel to the long axis direction of the primary particles.
  • the primary particles include crystal grains with a (001) plane disposed in a direction not parallel to the long axis direction of the primary particles, and more specifically, (001) ) plane includes crystal grains arranged in a direction having an angle of 20 to 160° more preferably, 40 to 140° with respect to the primary particle major axis direction.
  • the cathode active material precursor of the present invention may be formed of a hydroxide including nickel (Ni), cobalt (Co), manganese (Mn), and aluminum (Al). More preferably, the cathode active material precursor may contain 1 mol% or more of aluminum (Al) among all metal elements, and more preferably, 1 to 10 mol% of the aluminum (Al). When aluminum (Al) is contained in the above concentration range, it is possible to suppress the formation of cation disordering and oxygen vacancy.
  • the aluminum (Al) may be included in the secondary particle without a concentration gradient, that is, at a constant concentration regardless of the position in the particle.
  • Aluminum (Al) is distributed in a constant concentration without a concentration gradient in the secondary particles, thereby suppressing the aluminum (Al) aggregation phenomenon to minimize capacity reduction, and with a small amount of aluminum (Al), it is possible to increase the effect of improving life characteristics and resistance increase rate characteristics. .
  • the cathode active material precursor according to the present invention may be a transition metal hydroxide represented by the following formula (1).
  • x1 represents the molar ratio of nickel among all metal elements in the transition metal hydroxide, and may be 0.7 ⁇ x1 ⁇ 0.99, 0.8 ⁇ x1 ⁇ 0.99, 0.85 ⁇ x1 ⁇ 0.99, or 0.88 ⁇ x1 ⁇ 0.99. there is.
  • y1 represents a molar ratio of cobalt among all metal elements in the transition metal hydroxide, and may be 0 ⁇ y1 ⁇ 0.3, 0 ⁇ y1 ⁇ 0.2, 0 ⁇ y1 ⁇ 0.15, or 0 ⁇ y1 ⁇ 0.12.
  • the z1 represents the molar ratio of manganese among all metal elements in the transition metal hydroxide, and may be 0 ⁇ z1 ⁇ 0.3, 0 ⁇ z1 ⁇ 0.2, 0 ⁇ z1 ⁇ 0.15, or 0 ⁇ z1 ⁇ 0.12.
  • the s1 represents the molar ratio of aluminum among all metal elements in the transition metal hydroxide, and may be 0.01 ⁇ s1 ⁇ 0.1, 0.01 ⁇ s1 ⁇ 0.08, or 0.01 ⁇ s1 ⁇ 0.05.
  • the primary particles of the positive electrode active material precursor may have a columnar shape, and in this case, the aspect ratio of the primary particles may be 3 or more. More preferably, the aspect ratio of the cathode active material precursor primary particles may be 3 to 15, more preferably 5 to 8.
  • the aspect ratio of the cathode active material precursor primary particles satisfies the above range, the surface area of the crystal planes capable of lithium insertion/desorption at the interface between the primary particles, which is a lithium movement path, increases, so that a cathode active material with excellent capacity and output characteristics can be manufactured. there is.
  • FIG. 2 is a graph showing the surface area ratio of the crystal plane and the (001) plane in which insertion/desorption of lithium ions are possible from the outer surface of the primary particle according to the crystal grain structure and aspect ratio of the positive electrode active material precursor according to an embodiment of the present invention. is shown.
  • the cathode active material precursor according to the present invention has a (001) plane disposed in a direction not parallel to the growth direction of the crystal structure (the long axis direction of the primary particles) (for example, a perpendicular direction). Accordingly, compared to the conventional positive electrode active material precursor, the area in which crystal planes other than the (001) plane are exposed to the interface between the primary particles is increased. In addition, as the aspect ratio of the primary particles increases, the ratio at which crystal planes other than the (001) plane are exposed on the outer surface of the primary particles increases. Accordingly, when a positive active material is manufactured using the positive electrode active material precursor as described above, the surface area of the (003) plane exposed to the outer surface of the primary particle can be minimized, and thus capacity and output characteristics can be improved.
  • the positive electrode active material precursor of the present invention comprises a transition metal-containing solution containing cations of nickel (Ni), cobalt (Co) and manganese (Mn) in a reactor, an aluminum-containing solution containing cations of aluminum (Al), a basic aqueous solution and An ammonium solution is added and a co-precipitation reaction is performed to form a cathode active material precursor, and the aluminum-containing solution is prepared including sodium aluminate (NaAlO 2 ).
  • a method of preparing the cathode active material precursor will be described in detail step by step.
  • a solution containing a transition metal containing a transition metal cation containing cations of nickel (Ni), cobalt (Co) and manganese (Mn), an aluminum containing solution containing a cation of aluminum (Al), a basic solution and A positive electrode active material precursor is prepared by co-precipitation reaction by introducing an ammonium solution.
  • the transition metal-containing solution may include, for example, a nickel (Ni)-containing raw material, a cobalt (Co)-containing raw material, and a manganese (Mn)-containing raw material.
  • the nickel (Ni)-containing raw material may be, for example, nickel-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, specifically, Ni(OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni(OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni(NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 ⁇ 6H 2 O, fatty acid nickel salt, nickel halide Or it may be a combination thereof, but is not limited thereto.
  • the cobalt (Co)-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, specifically Co(OH) 2 , CoOOH, Co(OCOCH 3 ) 2 ⁇ 4H 2 O, Co(NO 3 ) 2 ⁇ 6H 2 O, CoSO 4 , Co(SO 4 ) 2 ⁇ 7H 2 O, or a combination thereof, but is not limited thereto.
  • the manganese (Mn)-containing raw material may be, for example, manganese-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide, or a combination thereof, specifically Mn 2 O 3 , MnO 2 , manganese oxides such as Mn 3 O 4 ; manganese salts such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, dicarboxylic acid manganese salt, manganese citrate, fatty acid manganese salt; It may be manganese oxyhydroxide, manganese chloride, or a combination thereof, but is not limited thereto.
  • the transition metal-containing solution includes a nickel (Ni)-containing raw material, a cobalt (Co)-containing raw material, and a manganese (Mn)-containing raw material in a solvent, specifically water, or an organic solvent that can be uniformly mixed with water (eg, For example, it may be prepared by adding it to a mixed solvent of alcohol, etc., or by mixing an aqueous solution of a nickel (Ni)-containing raw material, an aqueous solution of a cobalt (Co)-containing raw material, and a manganese (Mn)-containing raw material. there is.
  • the aluminum-containing solution includes sodium aluminate (NaAlO 2 ) as an aluminum (Al)-containing raw material.
  • the sodium aluminate (NaAlO 2 ) forms AlO(OH) rather than Al(OH) 3 during the co-precipitation reaction.
  • AlO(OH) has a steric effect different from that of Al(OH) 3 , so when sodium aluminate is used as an Al-containing raw material when preparing a precursor, the (001) plane is in the long axis direction of the primary particles. In a non-parallel direction, specifically, a crystal grain having a shape located in a direction having an angle of 20 to 160° with respect to the major axis direction of the primary particles is formed.
  • the ammonium solution may include, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3 or a combination thereof as a complexing agent.
  • the present invention is not limited thereto.
  • the ammonium solution may be used in the form of an aqueous solution, and as the solvent, water or a mixture of water and an organic solvent that can be uniformly mixed with water (specifically, alcohol, etc.) and water may be used.
  • the basic solution may include a hydroxide of an alkali metal or alkaline earth metal, such as NaOH, KOH or Ca(OH) 2 , a hydrate thereof, or an alkali compound of a combination thereof as a precipitating agent.
  • the basic solution may also be used in the form of an aqueous solution, and as the solvent, water or a mixture of water and an organic solvent that is uniformly miscible with water (specifically, alcohol, etc.) and water may be used.
  • the basic compound is added to adjust the pH of the reaction solution, and may be added in an amount such that the pH of the metal solution is 11 to 13.
  • the co-precipitation reaction may be performed at a temperature of 40° C. to 70° C. under an inert atmosphere such as nitrogen or argon.
  • particles of a transition metal hydroxide having a specific orientation of the present invention for example, nickel-cobalt-manganese-aluminum hydroxide are generated and precipitated in the reaction solution.
  • the precipitated transition metal hydroxide particles may be separated according to a conventional method and dried to obtain a cathode active material precursor.
  • the present invention provides a positive electrode active material prepared by using the positive electrode active material precursor.
  • the cathode active material may be manufactured by mixing the cathode active material precursor with the lithium source and sintering to form a lithium transition metal oxide.
  • the lithium source may include lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxyhydroxide, and is not particularly limited as long as it can be dissolved in water.
  • the lithium source is Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH•H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , CH 3 COOLi, or Li 3 C 6 H 5 O 7 and the like, and any one or a mixture of two or more thereof may be used.
  • a lithium transition metal oxide may be formed by mixing the cathode active material precursor and a lithium source and then calcining at 730 to 830°C. More preferably, sintering may be performed at 750 to 810°C, more preferably at 780 to 800°C, and may be fired for 5 to 20 hours, more preferably 8 to 15 hours.
  • a raw material containing a doping element M 1 may be additionally mixed during the sintering.
  • M1 may be, for example, at least one selected from the group consisting of Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P and S, and the doping element M
  • the raw material containing 1 may be an M1-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide, or a combination thereof.
  • the positive active material of the present invention prepared as described above is in the form of secondary particles in which a plurality of primary particles are aggregated, and the primary particles are a positive active material in which a long axis is arranged in a direction from the center of the secondary particles to the surface,
  • the (003) plane of the primary particles may include crystal grains disposed in a direction having an angle of 20° to 160°, preferably 40° to 140° with respect to the long axis direction of the primary particles.
  • the long axes of the primary particles are arranged in a direction from the center of the secondary particles toward the surface, and in this case, the primary particles may have a columnar shape. Since lithium ions move along the interface between the primary particles inside the positive active material particles, when the primary particles are arranged in a direction in which the long axis is from the center of the secondary particles to the surface When the primary particles are randomly arranged Compared to that, the lithium migration path is shortened and lithium mobility is improved.
  • the (001) plane of the positive electrode active material precursor is converted to the (003) plane of the positive electrode active material through firing, and the (003) plane cannot be inserted/deintercalated with lithium ions. Therefore, if the area of the (003) plane exposed to the lithium migration path is large, the capacity characteristics and output characteristics are deteriorated.
  • the positive electrode active material of the present invention is prepared using a positive electrode active material precursor disposed at an angle of 20° to 160°, preferably 40° to 140° with respect to the long axis direction of the primary particle (001) plane.
  • the (003) plane is disposed in a direction having an angle of 20° to 160°, preferably 40° to 140° with respect to the long axis direction of the primary particles.
  • the cathode active material of the present invention minimizes the exposure of the (003) plane where lithium insertion/deintercalation is impossible on the surface of the primary particle, and thus exhibits excellent capacity, charge/discharge efficiency, and output characteristics.
  • FIG. 3 is a view showing a cathode active material according to an embodiment of the present invention, and a short arrow in the figure indicates a direction in which the (003) plane is disposed. 3, it can be confirmed that the (003) plane of the positive active material of the present invention is disposed in a direction not parallel to the long axis direction of the primary particles, specifically, in a direction having an angle of 20° to 160°, or 40° to 140°. can
  • the positive active material of the present invention may be formed of a lithium transition metal oxide including nickel (Ni), cobalt (Co), manganese (Mn), and aluminum (Al). More preferably, the lithium transition metal oxide may contain aluminum (Al) in an amount of 1 mol% or more, preferably 1 to 10 mol%, among all metal elements excluding lithium. When aluminum (Al) is contained in the above concentration range, cation disordering and formation of oxygen vacancy may be suppressed, and thus lifespan characteristics and resistance increase rate characteristics may be improved.
  • the aluminum (Al) may be contained in the secondary particles of the positive electrode active material without a concentration gradient. As aluminum (Al) is uniformly distributed without concentration gradient in the secondary particles, it is possible to suppress aluminum (Al) aggregation, thereby minimizing capacity reduction, and improving the life characteristics and resistance increase rate characteristics with a small amount of aluminum (Al).
  • the positive active material according to the present invention may be a lithium transition metal oxide represented by the following [Formula 2].
  • a represents the molar ratio of lithium to transition metal, and may be 0.8 ⁇ a ⁇ 1.2, 0.9 ⁇ a ⁇ 1.2, or 0.9 ⁇ a ⁇ 1.1.
  • x1 represents the molar ratio of nickel among all transition metal elements, and may be 0.7 ⁇ x1 ⁇ 0.99, 0.8 ⁇ x1 ⁇ 0.99, 0.85 ⁇ x1 ⁇ 0.99, or 0.88 ⁇ x1 ⁇ 0.99. .
  • y1 represents a molar ratio of cobalt among all transition metal elements, and may be 0 ⁇ y1 ⁇ 0.3, 0 ⁇ y1 ⁇ 0.2, 0 ⁇ y1 ⁇ 0.15, or 0 ⁇ y1 ⁇ 0.12. .
  • z1 represents the molar ratio of manganese among all transition metal elements, and may be 0 ⁇ z1 ⁇ 0.3, 0 ⁇ z1 ⁇ 0.2, 0 ⁇ z1 ⁇ 0.15, or 0 ⁇ z1 ⁇ 0.12. .
  • s1 represents a molar ratio of aluminum among all transition metal elements, and may be 0.01 ⁇ s1 ⁇ 0.1, 0.01 ⁇ s1 ⁇ 0.08, or 0.01 ⁇ s1 ⁇ 0.05.
  • M 1 is a doping element doped with lithium transition metal oxide, for example, from the group consisting of Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P and S. It may be one or more selected.
  • b represents the molar ratio of the doping element M 1 substituted at the transition metal site, and may be 0 ⁇ b ⁇ 0.1, or 0 ⁇ b ⁇ 0.05.
  • a positive electrode for a secondary battery and a lithium secondary battery including the positive electrode active material prepared as described above.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , nickel, titanium, silver, etc. may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the positive electrode current collector.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body, and the like.
  • the positive active material layer may include a conductive material and a binder together with the above-described positive active material.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it has electronic conductivity without causing chemical change.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one type alone or a mixture of two or more types thereof may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material. Specifically, it may be prepared by coating the positive electrode composite material including the positive electrode active material and, optionally, a binder and a conductive material on the positive electrode current collector, followed by drying and rolling. In this case, the type and content of the positive electrode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent commonly used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity during application for the production of the positive electrode thereafter. do.
  • the positive electrode may be manufactured by casting the positive electrode composite material on a separate support and then laminating a film obtained by peeling the positive electrode from the support on the positive electrode current collector.
  • an electrochemical device including the positive electrode is provided.
  • the electrochemical device may specifically be a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel surface. Carbon, nickel, titanium, one surface-treated with silver, an aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 to 500 ⁇ m, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam body, a nonwoven body, and the like.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the anode active material layer may be formed by, for example, coating a negative electrode mixture including a negative electrode active material, and optionally a binder and a conductive material on a negative electrode current collector and drying, or casting the negative electrode mixture on a separate support, and then removing the negative electrode mixture from the support. It can also be produced by laminating the film obtained by peeling on the negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Alternatively, a composite including the above-mentioned metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, scale-like, spherical or fibrous shape, and Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbons such as derived cokes) are representative.
  • binder and the conductive material may be the same as described above for the positive electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for the movement of lithium ions, and can be used without particular limitation as long as it is normally used as a separator in a lithium secondary battery, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to and excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or these
  • a laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes, which can be used in the manufacture of lithium secondary batteries, and are limited to these. it's not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether-based solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon-based solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a C2 to C20 linear, branched or cycl
  • a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 and the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, the electrolyte may exhibit excellent electrolyte performance because it has appropriate conductivity and viscosity, and lithium ions may move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexamethyl phosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imine
  • One or more additives such as dazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and capacity retention rate, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle, HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • nucleation was generated while stirring at 600 rpm, and then particles were grown while stirring at 250 to 600 rpm.
  • the stirring was stopped and the precursor particles were precipitated when the inside of the batch-type reactor was filled.
  • the reaction was carried out for a total of 40 hours to form precursor particles.
  • the precursor particles were separated, washed in water, dried in a hot air dryer at 130° C. for 12 hours or more, and then pulverized and sieved to prepare a cathode active material precursor Ni 0.86 Co 0.05 Mn 0.07 Al 0.02 (OH) 2 .
  • the cathode active material precursor, LiOH and ZrO 2 prepared in Example 1 were mixed in an amount such that Ni+Co+Mn+Al:Li:Zr had a molar ratio of 1:1.07:0.0015, and 10 at 790°C under an oxygen atmosphere.
  • the cathode active material Li[Ni 0.86 Co 0.05 Mn 0.07 Al 0.02 ] 0.9985 Zr 0.0015 O 2 was prepared by calcination for a period of time, doped with 1,500 ppm of Zr.
  • nucleation was generated while stirring at 600 rpm, and then particles were grown while stirring at 250 to 600 rpm.
  • the stirring was stopped and the precursor particles were precipitated when the inside of the batch-type reactor was filled.
  • the reaction was carried out for a total of 40 hours to form precursor particles.
  • the precursor particles were separated, washed in water, dried in a hot air dryer at 130° C. for 12 hours or more, and then pulverized and sieved to prepare a cathode active material precursor Ni 0.88 Co 0.05 Mn 0.07 (OH) 2 .
  • nucleation was generated while stirring at 600 rpm, and then particles were grown while stirring at 250 to 600 rpm.
  • the stirring was stopped and the precursor particles were precipitated when the inside of the batch-type reactor was filled.
  • the reaction was carried out for a total of 40 hours to form precursor particles.
  • the precursor particles were separated, washed in water, dried in a hot air dryer at 130° C. for 12 hours or more, and then pulverized and sieved to prepare a cathode active material precursor Ni 0.86 Co 0.05 Mn 0.07 Al 0.02 (OH) 2 .
  • the cathode active material precursor prepared in Comparative Example 2 LiOH and ZrO 2 were mixed with Ni+Co+Mn+Al:Li:Zr in a molar ratio of 1:1.07:0.0015, and calcined at 790°C for 10 hours under an oxygen atmosphere.
  • a positive active material Li[Ni 0.86 Co 0.05 Mn 0.07 Al 0.02 ] 0.9985 Zr 0.0015 O 2 was prepared in which Zr was doped with 1,500 ppm.
  • TEM Transmission electron microscopy
  • FFT FAST Fourier transform
  • FIG. 1 is a cross-sectional STEM image of the positive active material prepared in Comparative Example 4, and the arrow in the drawing indicates the direction of the (003) plane.
  • the positive active material of Comparative Example 4 has a radially arranged structure in which the long axis of the columnar primary particles is arranged from the center of the secondary particles toward the surface.
  • the (003) plane grew in a direction parallel to the long axis direction of the primary particles in the positive active material of Comparative 4 .
  • FIG. 3 is a cross-sectional STEM image of the positive electrode active material prepared in Example 2, in which a short arrow indicates a (003) plane direction, and a long arrow indicates a long axis direction of the primary particles.
  • the positive active material of Example 2 has a radially arranged structure in which the long axis of the columnar primary particles is arranged from the center of the secondary particles toward the surface.
  • an angle between the (003) plane and the long axis direction of the primary particles was 54°.
  • the positive electrode active material, carbon black conductive material, and PVdF binder prepared in Example 2 and Comparative Examples 3 and 4 were mixed in an N-methylpyrrolidone solvent in a weight ratio of 96:2:2 to prepare a positive electrode mixture, which was After coating on one surface of an aluminum current collector, drying at 100° C., and rolling to prepare a positive electrode.
  • lithium metal As the negative electrode, lithium metal was used.
  • An electrode assembly was prepared by interposing a separator of porous polyethylene between the positive electrode and the negative electrode prepared as described above, and the electrode assembly was placed inside the case, and then the electrolyte was injected into the case to prepare a lithium secondary battery.
  • Each of the lithium secondary battery half-cells manufactured as described above was charged at 25°C with a constant current of 1C up to 4.25V with a 3C cut-off. Thereafter, the discharge was performed at a constant current of 0.1C until 3.0V to evaluate the capacity, efficiency, and output characteristics.
  • the results are shown in Table 1 and FIG. 5 below.
  • Example 2 Referring to Table 1, the capacity and efficiency of the positive active material of Example 2 were measured the most, and as shown in FIG. 5 , the output characteristics at room temperature were also remarkably excellent in the case of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 이차전지용 양극 활물질 전구체 및 그 제조 방법에 관한 것으로, 본 발명의 양극 활물질 전구체는, 복수개의 1차 입자들이 응집된 2차 입자 형태이고, 상기 1차 입자들은 장축이 상기 2차 입자의 중심에서 표면을 향하는 방향으로 배열된 양극 활물질 전구체이며, 상기 1차 입자는 (001)면이 상기 1차 입자의 장축 방향에 대해 20° 내지 160°의 각도를 갖는 방향으로 배치된 결정립을 포함한다.

Description

이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
본 발명은 2020년 1월 29일에 출원된 한국특허출원 제10-2020-0010701호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자 기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 이 중에서도 리튬 코발트 산화물(LiCoO2)은 작동 전압이 높고 용량 특성이 우수한 장점이 있어, 널리 사용되고 있으며, 고전압용 양극 활물질로 적용되고 있다. 그러나, 코발트(Co)의 가격 상승 및 공급 불안정 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에 한계가 있어, 이를 대체할 수 있는 양극 활물질 개발의 필요성이 대두되었다.
이에 따라, 코발트(Co)의 일부를 니켈(Ni)과 망간(Mn)으로 치환한 니켈코발트망간계 리튬 복합 전이금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다.
일반적으로 NCM계 양극 활물질 전구체는 공침법을 통해 합성되는데, 공침 조건에 따라 전구체 1차 입자의 형상이 상이하게 형성된다. 1차 입자의 형상이 구형이나 정육면체 형태인 전구체를 이용하여 양극 활물질을 제조할 경우, 양극 활물질의 1차 입자 역시 구형이나 정육면체 형태로 형성되는데, 이 경우 리튬 이동 경로가 길어져 리튬 이동성이 떨어진다. 이에 전구체의 1차 입자의 형상을 막대(Rod)나 원주(Columnar) 형상과 같은 형태로 합성하는 기술이 개발되었다. 전구체 1차 입자의 형상이 막대(Rod)나 원주(Columnar) 형상인 경우, 1차 입자들이 2차 입자의 중심에서 표면 방향을 향해 방사형으로 배열된 형태로 형성되며, 이러한 1차 입자 배열을 갖는 전구체를 이용하여 양극 활물질을 제조할 경우, 1차 입자 계면을 따라 리튬 이온이 이동하는 거리가 짧아져 리튬 이동성이 개선되는 효과를 얻을 수 있다. 그러나, 1차 입자가 방사형 배열을 갖도록 형성된 종래의 양극 활물질의 경우, 리튬의 삽입/탈리가 불가능한 (003)면이 1차 입자의 장축 방향과 평행하게 형성되어 용량이나 출력 특성이 저하되는 문제가 있었다.
이에, 리튬 이차전지에 적용시 우수한 방전 용량 및 출력 특성을 나타낼 수 있는 배향성을 나타내는 양극 활물질 전구체 및 양극 활물질의 개발이 필요한 실정이다.
<선행기술문헌>
(특허문헌 1) 한국공개특허 제2013-0138073호
본 발명은 양극 활물질 전구체 단계에서 1차 입자의 결정 구조 배향성을 특정하게 제어한 양극 활물질 전구체 및 그 제조방법을 제공하고자 하는 것이다.
또한, 본 발명은 결정 구조의 배향성이 제어된 전구체를 이용하여 제조된 양극 활물질 및 이를 포함하는 리튬 이차 전지를 제공하고자 한다.
본 발명은 복수개의 1차 입자들이 응집된 2차 입자 형태이고, 상기 1차 입자들은 장축이 상기 2차 입자의 중심에서 표면을 향하는 방향으로 배열된 양극 활물질 전구체이며, 상기 1차 입자는 (001)면이 상기 1차 입자의 장축 방향에 대해 20 내지 160°의 각도를 갖는 방향으로 배치된 결정립을 포함하는 것인 이차전지용 양극 활물질 전구체를 제공한다.
또한, 본 발명은 반응기에 니켈(Ni), 코발트(Co) 및 망간(Mn)의 양이온을 포함하는 전이금속 함유 용액, 알루미늄(Al)의 양이온을 포함하는 알루미늄 함유 용액, 염기성 수용액 및 암모늄 용액을 투입하며 공침 반응시켜 양극 활물질 전구체를 형성하며, 상기 알루미늄 함유 용액은 소듐 알루미네이트(NaAlO2)를 포함하는 상기에 따른 이차전지용 양극 활물질 전구체의 제조방법을 제공한다.
또한, 본 발명은 복수개의 1차 입자가 응집된 2차 입자 형태이고, 상기 1차 입자들은 장축이 상기 2차 입자의 중심에서 표면을 향하는 방향으로 배열된 양극 활물질이며, 상기 1차 입자는 (003)면이 상기 1차 입자의 장축 방향에 대해 20 내지 160°의 각도를 갖는 방향으로 배치된 결정립을 포함하는 것인 이차전지용 양극 활물질을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
본 발명에 따른 양극 활물질 전구체는 결정립의 (001)면이 1차 입자의 장축 방향과 평행하지 않고 어긋나게 형성되어 있기 때문에, 이를 이용하여 양극 활물질을 제조할 경우, 리튬 이동 경로인 1차 입자들 계면과 리튬의 삽입/탈리 가 불가능한 (003)면의 접촉 면적이 감소된다.
따라서, 본 발명의 양극 활물질 전구체를 이용하여 제조된 양극 활물질은 종래의 양극 활물질에 비해 우수한 리튬 이동성을 가지며, 이를 리튬 이차 전지에 적용할 경우 용량 특성 및 출력 특성 개선효과를 얻을 수 있다.
도 1은 (003)면이 1차 입자의 장축과 평행한 방향으로 형성된 종래의 양극 활물질의 단면 STEM(Scanning Transmission Electron Microscopy) 이미지이다. 도면에 화살표는 (003)면 방향을 나타낸다. 도 1의 좌측 상단의 이미지는 STEM-EDX(Energy Dispersive X-ray) 맵핑(Mapping) 이미지이다.
도 2는 본 발명의 일 실시예에 따른 양극 활물질 전구체 1차 입자의 결정 구조 및 1차 입자의 종횡비에 따른 (001)면의 표면적 비율을 보여주는 그래프이다.
도 3은 본 발명의 일 실시예에 따른 양극 활물질의 단면 STEM(Scanning Transmission Electron Microscopy) 이미지이다. 도면에서 짧은 화살표는 (003)면 방향을 나타내고, 긴 화살표는 1차 입자의 장축 방향을 나타낸다. 도면에 도시된 바와 같이 본 발명에 따른 양극 활물질은 (003)면이 1차 입자 장축에 평행하지 않고 20° 내지 160°의 각도를 갖도록 배열된다. 도 3의 좌측 상단의 이미지는 STEM-EDX(Energy Dispersive X-ray) 맵핑(Mapping) 이미지이다.
도 4는 실시예 1에서 제조한 양극 활물질 전구체의 단면 TEM 사진이다.
도 5는 실시예 2, 비교예 3, 4에서 제조한 양극 활물질을 사용한 리튬 이차전지의 용량 및 출력 특성을 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 있어서, '결정립(Crystalline)'은 규칙적인 원자 배열을 갖는 단결정 입자 단위를 의미하며, 양극 활물질 전구체 및 양극 활물질의 결정립 구조는 투과전자현미경(TEM/STEM) 분석을 통해 확인할 수 있다.
본 발명에 있어서, '1차 입자'는 주사투과전자현미경(Scanning Transmission Electron Microscopy, STEM)을 통해 양극 활물질 입자 또는 양극 활물질 전구체 입자의 단면을 관찰하였을 때 1개의 덩어리로 구별되는 최소 입자 단위를 의미하는 것으로, 하나의 결정립으로 이루어질 수도 있고, 복수개의 결정립으로 이루어질 수도 있다. 본 발명에서, 상기 1차 입자의 평균 입경은, 양극 활물질 입자의 단면 STEM 이미지에서 구별되는 각각의 입자 크기를 측정하고, 이들의 산술 평균값을 구하는 방법으로 측정될 수 있다.
본 발명에 있어서, '2차 입자'는 복수 개의 1차 입자가 응집되어 형성되는 2차 구조체를 의미한다. 상기 2차 입자의 평균 입경은, 입도 분석기를 이용하여 측정될 수 있으며, 본 발명에서는 입도 분석기로 Microtrac社의 s3500을 사용하였다.
본 발명에서 양극 활물질의 '입경 Dn'은, 입경에 따른 체적 누적 분포의 n% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 체적 누적 분포의 50% 지점에서의 입경이며, D90은 입경에 따른 체적 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 체적 누적 분포의 10% 지점에서의 입경이다. 상기 Dn은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매(증류수) 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저 빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 체적 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 직경을 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
이하, 본 발명을 구체적으로 설명한다.
<양극 활물질 전구체>
본 발명에 따른 양극 활물질 전구체는, 복수개의 1차 입자들이 응집된 2차 입자 형태의 양극 활물질 전구체이며, 이때 상기 1차 입자들은 장축이 상기 2차 입자의 중심에서 표면을 향하는 방향으로 배열되고, 상기 1차 입자가 (001)면이 상기 1차 입자의 장축 방향에 대해 20 내지 160°의 각도를 갖는 방향으로 배치된 결정립을 포함하는 것을 특징으로 한다.
종래의 양극 활물질 전구체는 구형의 1차 입자가 배향성 없이 랜덤(random)하게 배열된 형태로 제조되었다. 이와 같이 1차 입자가 배향성 없이 랜덤하게 배열된 구조의 양극 활물질 전구체를 이용하여 양극 활물질을 제조할 경우, 양극 활물질의 1차 입자들도 정렬되지 않은 형태로 존재하게 된다. 한편, 양극 활물질 입자 내부에서 리튬 이온은 1차 입자들 사이의 계면을 따라 이동하기 때문에, 양극 활물질 입자에서 1차 입자들이 랜덤하게 배열된 형태일 경우, 1차 입자들 사이(intraparticle)의 리튬 이동 경로가 길어져 출력 특성이 감소하는 문제가 있다.
이러한 문제를 해결하기 위해서 도 1에 나타난 바와 같이, 막대형 또는 컬럼 형태의 1차 입자들이 2차 입자의 중심에서 표면 방향으로 방사형으로 배열된 구조의 양극 활물질 전구체가 개발되었다. 이와 같이 1차 입자가 방사형으로 배열된 양극 활물질 전구체를 이용하여 양극 활물질을 제조할 경우, 양극 활물질의 1차 입자들 역시 방사형 배열을 유지하며, 이에 따라 1차 입자들 사이의 리튬 이동 경로가 최소화되어 리튬 이동성이 개선되는 효과를 얻을 수 있다. 그러나, 현재까지 개발된 양극 활물질의 경우, 전구체에서의 (001)면이 1차 입자의 장축 방향과 평행하게 성장된 형태였다. 전구체의 (001)면은 소성 후 양극 활물질의 (003)면으로 전환되게 때문에 이러한 전구체를 이용하여 양극 활물질을 제조할 경우, 양극 활물질의 (003)면이 1차 입자의 장축 방향과 평행하게 배치되게 된다. 양극 활물질의 (003)면의 경우 리튬 이온의 삽입/탈리가 불가능한 면이기 때문에 리튬 이동 경로에 노출되는 (003)면 면적이 넓을 경우 용량 특성 및 출력 특성이 저하된다는 문제점이 있다.
이러한 문제를 개선하기 위하여, 본 발명은 1차 입자들의 장축이 상기 2차 입자의 중심에서 표면을 향하는 방향으로 배열되되, 1차 입자 내 결정립의 (001)면이 1차 입자 장축 방향에 평행하지 않도록 형성함으로써, 1차 입자 계면에 노출되는 (001)면의 면적을 최소화하여 용량, 충방전 효율 및 출력 특성을 개선하였다.
구체적으로는, 본 발명에 따른 양극 활물질 전구체에 있어서, 상기 1차 입자는 (001)면이 1차 입자의 장축 방향과 평행하지 않은 방향으로 배치된 결정립을 포함하며, 보다 구체적으로는, (001)면이 1차 입자 장축 방향에 대하여 20 내지 160° 보다 바람직하게는, 40 내지 140°의 각도를 갖는 방향으로 배치된 결정립을 포함한다.
한편, 본 발명의 양극 활물질 전구체는 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al)을 포함하는 수산화물로 이루어질 수 있다. 보다 바람직하게는 상기 양극 활물질 전구체는 전체 금속 원소 중 알루미늄(Al)을 1몰% 이상으로 함유할 수 있으며, 더욱 바람직하게는 상기 알루미늄(Al)을 1 내지 10몰%로 함유할 수 있다. 상기 농도 범위로 알루미늄(Al)이 함유될 경우 캐타이온 디스오더링(Cation Disordering) 및 옥시젠 베이컨시(Oxygen Vacancy)의 형성을 억제시킬 수 있다.
한편, 상기 알루미늄(Al)은 2차 입자 내에 농도 구배 없이, 즉, 입자 내 위치에 관계없이 일정한 농도로 포함될 수 있다. 알루미늄(Al)이 2차 입자 내에 농도 구배 없이 일정한 농도로 분포함으로써 알루미늄(Al) 뭉침 현상을 억제하여 용량 감소를 최소화하고 소량의 알루미늄(Al)으로 수명 특성 및 저항 증가율 특성 개선 효과를 높일 수 있다.
바람직하게는 본 발명에 따른 양극 활물질 전구체는 하기 화학식 1로 표시되는 전이금속 수산화물일 수 있다.
[화학식 1]
Nix1Coy1Mnz1Als1(OH)2
상기 화학식 1에서, 상기 x1은 전이금속 수산화물 내 전체 금속 원소들 중 니켈의 몰비를 나타내는 것으로, 0.7≤x1≤0.99, 0.8≤x1≤0.99, 0.85≤x1≤0.99, 또는 0.88≤x1≤0.99일 수 있다.
상기 y1은 전이금속 수산화물 내 전체 금속 원소들 중 코발트의 몰비를 나타내는 것으로, 0<y1<0.3, 0<y1<0.2, 0<y1<0.15, 또는 0<y1<0.12일 수 있다.
상기 z1은 전이금속 수산화물 내 전체 금속 원소들 중 망간의 몰비를 나타내는 것으로, 0<z1<0.3, 0<z1<0.2, 0<z1<0.15, 또는 0<z1<0.12일 수 있다.
상기 s1은 전이금속 수산화물 내 전체 금속 원소들 중 알루미늄의 몰비를 나타내는 것으로, 0.01≤s1≤0.1, 0.01≤s1≤0.08 또는 0.01≤s1≤0.05일 수 있다.
한편, 상기 양극 활물질 전구체의 1차 입자는 원주(columnar) 형태일 수 있으며, 이때, 1차 입자의 종횡비가 3 이상일 수 있다. 보다 바람직하게는 상기 양극 활물질 전구체 1차 입자의 종횡비는 3 내지 15일 수 있으며, 더욱 바람직하게는 5 내지 8일 수 있다. 양극 활물질 전구체 1차 입자의 종횡비가 상기 범위를 만족할 때, 리튬 이동 통로인 1차 입자들 간의 계면에 리튬 삽입/탈리가 가능한 결정면들의 표면적이 증가하여 용량 및 출력 특성이 우수한 양극 활물질을 제조할 수 있다.
도 2에는 본 발명의 일 실시예에 따른 양극 활물질 전구체의 결정립 구조와, 종횡비에 따른 1차 입자 외부 표면에서 리튬 이온의 삽입/탈리가 가능한 결정면과 (001)면의 표면적 비율을 도시한 그래프가 도시되어 있다.
도 2에 도시된 바와 같이, 본 발명에 따른 양극 활물질 전구체는 (001)면이 결정 구조의 성장 방향(1차 입자의 장축 방향)과 평행하지 않은 방향(예를 들면, 수직한 방향)으로 배치되며, 이에 따라 종래의 양극 활물질 전구체에 비해 (001)면이 아닌 결정면들이 1차 입자들 사이의 계면에 노출되는 면적이 넓어진다. 또한, 1차 입자의 종횡비가 커질수록 1차 입자 외부 표면에서 (001)면 이외의 결정면들이 노출되는 비율이 높아진다. 따라서, 상기와 같은 양극 활물질 전구체를 이용하여 양극 활물질을 제조할 경우, 1차 입자의 외부 표면에 노출되는 (003)면의 표면적을 최소화할 수 있어 용량 및 출력 특성을 향상시킬 수 있다.
다음으로, 본 발명의 양극 활물질 전구체의 제조방법을 설명한다.
본 발명의 양극 활물질 전구체는, 반응기에 니켈(Ni), 코발트(Co) 및 망간(Mn)의 양이온을 포함하는 전이금속 함유 용액, 알루미늄(Al)의 양이온을 포함하는 알루미늄 함유 용액, 염기성 수용액 및 암모늄 용액을 투입하며 공침 반응시켜 양극 활물질 전구체를 형성하며, 상기 알루미늄 함유 용액은 소듐 알루미네이트(NaAlO2)를 포함하여 제조한다.
상기 양극 활물질 전구체의 제조방법을 단계별로 구체적으로 설명한다.
먼저, 반응기에 니켈(Ni), 코발트(Co) 및 망간(Mn)의 양이온을 포함하는 전이금속 양이온을 포함하는 전이금속 함유 용액, 알루미늄(Al)의 양이온을 포함하는 알루미늄 함유 용액, 염기성 용액 및 암모늄 용액을 투입하며 공침 반응시켜 양극 활물질 전구체를 제조한다.
상기 전이금속 함유 용액은 예를 들면, 니켈(Ni) 함유 원료물질, 코발트(Co) 함유 원료물질 및 망간(Mn) 함유 원료물질을 포함할 수 있다.
상기 니켈(Ni) 함유 원료물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트(Co) 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, CoSO4, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 망간(Mn) 함유 원료물질은 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 전이금속 함유 용액은 니켈(Ni) 함유 원료물질, 코발트(Co) 함유 원료물질 및 망간(Mn) 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈(Ni) 함유 원료물질의 수용액, 코발트(Co) 함유 원료물질의 수용액 및 망간(Mn) 함유 원료물질을 혼합하여 제조된 것일 수 있다.
상기 알루미늄 함유 용액은 알루미늄(Al) 함유 원료물질로서 소듐 알루미네이트(NaAlO2)를 포함한다. 상기 소듐 알루미네이트(NaAlO2)는 공침 반응시 Al(OH)3가 아닌 AlO(OH)을 형성하게 된다. AlO(OH)는 Al(OH)3와는 다른 입체 구조(Steric Effect)를 가짐으로써, 전구체 제조 시에 Al 함유 원료 물질로 소듐 알루미네이트를 사용할 경우, (001)면이 1차 입자의 장축 방향에 평행하지 않은 방향, 구체적으로는 1차 입자의 장축 방향에 대해 20 내지 160° 각도를 갖는 방향으로 위치한 형태의 결정립이 형성된다.
상기 암모늄 용액은 착물 형성제로서, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합을 포함할 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 용액은 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 용액은 침전제로서 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합의 알칼리 화합물을 포함할 수 있다. 상기 염기성 용액 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 화합물은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 금속 용액의 pH가 11 내지 13이 되는 양으로 첨가될 수 있다.
한편, 상기 공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 40℃내지 70℃의 온도에서 수행될 수 있다.
상기와 같은 공정에 의해 본 발명의 특정 배향성을 갖는 전이금속 수산화물, 예를 들면, 니켈-코발트-망간-알루미늄 수산화물의 입자가 생성되고, 반응 용액 내에 침전된다. 침전된 전이금속 수산화물 입자를 통상의 방법에 따라 분리시키고, 건조시켜 양극 활물질 전구체를 얻을 수 있다.
<양극 활물질>
또한, 본 발명은 상기 양극 활물질 전구체를 사용하여 제조된 양극 활물질을 제공한다.
구체적으로, 상기 양극 활물질 전구체와 리튬 소스를 혼합하고 소성하여 리튬 전이금속 산화물을 형성하는 단계를 거쳐 양극 활물질을 제조할 수 있다.
상기 리튬 소스는 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다. 구체적으로 상기 리튬 소스는 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H5O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질 전구체와 리튬 소스를 혼합 후 730 내지 830℃로 소성하여 리튬 전이금속 산화물을 형성할 수 있다. 보다 바람직하게는 750 내지 810℃, 더욱 바람직하게는 780 내지 800℃로 소성할 수 있고, 5 내지 20시간, 보다 바람직하게는 8 내지 15시간 소성할 수 있다.
한편, 필요에 따라 상기 소성 시에 도핑 원소 M1을 함유하는 원료 물질을 추가로 혼합할 수 있다. 상기 M1은, 예를 들면, Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 도핑 원소 M1을 함유하는 원료 물질은, M1 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있다. 소성 시에 M1을 추가로 혼합할 경우, 소성에 의해 M1 원소가 리튬 전이금속 산화물 내부로 확산되어 도핑되어, 양극 활물질의 구조 안정성을 개선하는 효과를 얻을 수 있다.
이와 같이 제조된 본 발명의 양극 활물질은 복수개의 1차 입자가 응집된 2차 입자 형태이고, 상기 1차 입자들은 장축이 상기 2차 입자의 중심에서 표면을 향하는 방향으로 배열된 양극 활물질이며, 상기 1차 입자가 (003)면이 상기 1차 입자의 장축 방향에 대해 20° 내지 160°, 바람직하게는 40° 내지 140°의 각도를 갖는 방향으로 배치된 결정립을 포함하는 것일 수 있다.
본 발명의 양극 활물질은 1차 입자들의 장축이 2차 입자의 중심에서 표면을 향하는 방향으로 배열된 것이며, 이때, 상기 1차 입자는 원주(columnar) 형태일 수 있다. 양극 활물질 입자 내부에서 리튬 이온이 1차 입자들 사이의 계면을 따라 이동하기 때문에, 1차 입자들이 장축이 2차 입자의 중심에서 표면을 향하는 방향으로 배열될 경우 1차 입자들이 랜덤하게 배열된 경우에 비해 리튬 이동 경로가 짧아져 리튬 이동성이 향상된다.
한편, 양극 활물질 전구체에서의 (001)면은 소성을 통해 양극 활물질의 (003)면으로 전환되는데, (003)면은 리튬 이온의 삽입/탈리가 불가능하다. 따라서, 리튬 이동 경로에 노출되는 (003)면의 면적이 넓으면 용량 특성 및 출력 특성이 저하된다.
그러나, 본 발명의 양극 활물질은 (001)면이 1차 입자의 장축 방향에 대해 20° ~ 160°, 바람직하게는 40° ~ 140°의 각도로 배치된 양극 활물질 전구체를 이용하여 제조되기 때문에, 양극 활물질의 결정립에서 (003)면이 1차 입자의 장축 방향에 대해 20° ~ 160°, 바람직하게는 40° ~ 140°의 각도를 갖는 방향으로 배치된다.
이에 따라 본 발명의 양극 활물질은 1차 입자 표면에 리튬 삽입/탈리가 불가능한 (003)면의 노출이 최소화되어, 우수한 용량, 충방전 효율 및 출력 특성을 나타낸다.
도 3은 본 발명의 일 실시예에 따른 양극 활물질을 나타낸 것으로, 도면에 도시된 짧은 화살표는 (003)면이 배치된 방향을 의미한다. 도 3을 통해 본 발명의 양극 활물질은 (003)면이 1차 입자의 장축 방향과 평행하지 않은 방향, 구체적으로 20° 내지 160°, 또는 40° 내지 140°의 각도를 갖는 방향으로 배치되었음을 확인할 수 있다.
본 발명의 양극 활물질은 니켈(Ni), 코발트(Co), 망간(Mn), 알루미늄(Al)을 포함하는 리튬 전이금속 산화물로 이루어질 수 있다. 보다 바람직하게는 상기 리튬 전이금속 산화물은 리튬을 제외한 전체 금속 원소 중 알루미늄(Al)을 1몰% 이상, 바람직하게는, 1 내지 10몰%로 함유할 수 있다. 상기 농도 범위로 알루미늄(Al)이 함유될 경우 캐타이온 디스오더링(Cation Disordering) 및 옥시젠 베이컨시(Oxygen Vacancy)의 형성을 억제시킬 수 있고, 이에 따라 수명 특성 및 저항 증가율 특성을 개선할 수 있다.
상기 알루미늄(Al)은 양극 활물질의 2차 입자 내에 농도 구배 없이 함유될 수 있다. 알루미늄(Al)이 2차 입자 내에 농도 구배 없이 균일하게 분포함으로써 알루미늄(Al) 뭉침 현상을 억제하여 용량 감소를 최소화하고 소량의 알루미늄(Al)으로 수명 특성 및 저항 증가율 특성 개선 효과를 높일 수 있다.
본 발명에 따른 양극 활물질은 하기 [화학식 2]로 표시되는 리튬 전이금속 산화물일 수 있다.
[화학식 2]
Lia[Nix1Coy1Mnz1Als1]1-bM1 bO2
상기 화학식 2에서,
상기 a는 리튬 전이금속 산화물에 있어서, 전이금속에 대한 리튬의 몰비를 나타내는 것으로, 0.8≤a≤1.2, 0.9≤a≤1.2, 또는 0.9≤a≤1.1일 수 있다.
상기 x1은 리튬 전이금속 산화물에 있어서, 전체 전이금속 원소들 중 니켈의 몰비를 나타내는 것으로, 0.7≤x1≤0.99, 0.8≤x1≤0.99, 0.85≤x1≤0.99, 또는 0.88≤x1≤0.99일 수 있다.
상기 y1은 리튬 전이금속 산화물에 있어서, 전체 전이금속 원소들 중 코발트의 몰비를 나타내는 것으로, 0<y1<0.3, 0<y1<0.2, 0<y1<0.15, 또는 0<y1<0.12일 수 있다.
상기 z1은 리튬 전이금속 산화물에 있어서, 전체 전이금속 원소들 중 망간의 몰비를 나타내는 것으로, 0<z1<0.3, 0<z1<0.2, 0<z1<0.15, 또는 0<z1<0.12일 수 있다.
상기 s1은 리튬 전이금속 산화물에 있어서, 전체 전이금속 원소들 중 알루미늄의 몰비를 나타내는 것으로, 0.01≤s1≤0.1, 0.01≤s1≤0.08 또는 0.01≤s1≤0.05일 수 있다.
상기 M1은 리튬 전이금속 산화물에 도핑된 도핑 원소로, 예를 들면, Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 b는 리튬 전이금속 산화물에 있어서, 전이금속 사이트에 치환된 도핑원소 M1의 몰비를 나타내는 것으로, 0≤b≤0.1, 또는 0≤b≤0.05일 수 있다.
<양극 및 리튬 이차전지>
본 발명의 또 다른 일 실시예에 따르면 상기와 같이 제조된 양극 활물질을 포함하는 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질 층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극 활물질 층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질 층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 합재를 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지 용기, 및 상기 전지 용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질 층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 합재를 도포하고 건조하거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성 탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사메틸인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
반응기(용량 20L)에 증류수 4리터를 넣은 뒤 58℃ 온도를 유지시키고, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 88:5:7가 되도록 혼합된 2.29mol/L 농도의 전이금속 수용액을 500ml/hr로, 0.291mol/L 농도의 NaAlO2를 수산화 나트륨 용액에 용해시킨 용액을 100mL/hr로 반응기에 투입하고, 9중량%의 암모니아 수용액을 510ml/hr로 반응기에 연속적으로 투입하였다. 그리고, 15중량%의 수산화나트륨 수용액을 206ml/hr로 투입하였으며, pH가 11.7을 유지하도록 수산화나트륨 수용액 투입을 조절하였다.
초반 30분은 600rpm으로 교반하며 핵 생성하고, 이후 250~600rpm으로 교반하며 입자 성장시켰다. 20시간 공침 반응시켜 배치식 반응기 내부가 채워지면 교반을 정지하고 전구체 입자들을 침전시키고, 반응물을 4L 남기고 상등액을 제거한 후 다시 반응을 진행하였다. 총 40시간 반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 물에 세척 후 130℃의 온풍 건조기에서 12시간 이상 건조시키고 해쇄 및 체질하여 양극 활물질 전구체 Ni0.86Co0.05Mn0.07Al0.02(OH)2를 제조하였다.
실시예 2
실시예 1에서 제조한 양극 활물질 전구체, LiOH 및 ZrO2을 Ni+Co+Mn+Al : Li : Zr이 1:1.07:0.0015의 몰비율이 되도록 하는 양으로 혼합하고, 산소 분위기 하 790℃에서 10시간 동안 소성하여 Zr이 1,500ppm으로 도핑된 양극 활물질 Li[Ni0.86Co0.05Mn0.07Al0.02]0.9985Zr0.0015O2 을 제조하였다.
비교예 1
반응기(용량 20L)에 증류수 4리터를 넣은 뒤 58℃ 온도를 유지시키고, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 88:5:7가 되도록 혼합된 2.29mol/L 농도의 전이금속 수용액을 510ml/hr로 반응기에 투입하고, 9중량%의 암모니아 수용액을 680ml/hr로 반응기에 연속적으로 투입하였다. 그리고, 15중량%의 수산화나트륨 수용액을 612ml/hr로 투입하였으며, pH가 11.6을 유지하도록 수산화나트륨 수용액 투입을 조절하였다.
초반 30분은 600rpm으로 교반하며 핵 생성하고, 이후 250~600rpm으로 교반하며 입자 성장시켰다. 20시간 공침 반응시켜 배치식 반응기 내부가 채워지면 교반을 정지하고 전구체 입자들을 침전시키고, 반응물을 4L 남기고 상등액을 제거한 후 다시 반응을 진행하였다. 총 40시간 반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 물에 세척 후 130℃의 온풍 건조기에서 12시간 이상 건조시키고 해쇄 및 체질하여 양극 활물질 전구체 Ni0.88Co0.05Mn0.07(OH)2를 제조하였다.
비교예 2
반응기(용량 20L)에 증류수 4리터를 넣은 뒤 58℃ 온도를 유지시키고, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 88:5:7가 되도록 혼합된 2.29mol/L 농도의 전이금속 수용액을 500ml/hr로, 1.145mol/L 농도의 Al(NO3)3 수용액을 20mL/hr로 반응기에 투입하고, 9중량%의 암모니아 수용액을 510ml/hr로 반응기에 연속적으로 투입하였다. 그리고, 15중량%의 수산화나트륨 수용액을 306ml/hr로 투입하였으며, pH가 11.4을 유지하도록 수산화나트륨 수용액 투입을 조절하였다.
초반 30분은 600rpm으로 교반하며 핵 생성하고, 이후 250~600rpm으로 교반하며 입자 성장시켰다. 20시간 공침 반응시켜 배치식 반응기 내부가 채워지면 교반을 정지하고 전구체 입자들을 침전시키고, 반응물을 4L 남기고 상등액을 제거한 후 다시 반응을 진행하였다. 총 40시간 반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 물에 세척 후 130℃의 온풍 건조기에서 12시간 이상 건조시키고 해쇄 및 체질하여 양극 활물질 전구체 Ni0.86Co0.05Mn0.07Al0.02(OH)2를 제조하였다.
비교예 3
비교예 1에서 제조한 양극 활물질 전구체, LiOH, Al2O3 및 ZrO2를 Ni+Co+Mn : Li : Al : Zr이 1:1.07:0.02:0.0015의 몰비율이 되도록 하는 양으로 혼합하고, 산소 분위기 하 770℃에서 10시간 동안 소성하여 Zr이 1,500ppm으로 도핑된 양극 활물질 Li[Ni0.88Co0.05Mn0.07]0.9785Al0.02Zr0.0015O2 을 제조하였다.
비교예 4
비교예 2에서 제조한 양극 활물질 전구체, LiOH 및 ZrO2를 Ni+Co+Mn+Al : Li : Zr이 1:1.07:0.0015의 몰비율로 혼합하고, 산소 분위기 하 790℃에서 10시간 동안 소성하여 Zr이 1,500ppm으로 도핑된 양극 활물질 Li[Ni0.86Co0.05Mn0.07Al0.02]0.9985Zr0.0015O2 을 제조하였다.
[실험예 1: 결정 배향성 확인]
실시예 1의 양극 활물질 전구체에 대한 투과전자현미경(TEM) 분석을 수행하였으며, 1차 입자의 장축과 (001)면 사이의 각도를 고분해능 이미지(High resolution image)의 FAST 퓨리에 변환(FFT) 패턴을 통해 확인하였다. 실시예 1에서 제조한 양극 활물질 전구체의 단면 TEM 이미지를 도 4에 도시하였다. 고분해능 이미지(High resolution image)의 FFT 패턴을 확인한 결과, 실시예 1의 양극 활물질 전구체에서 (001)면이 1차 입자의 장축과 이루는 각이 54°인 것을 확인할 수 있었다.
또한, 실시예 2의 양극 활물질 및 비교예 4의 양극 활물질에 대하여 단면 STEM 분석을 수행하였으며, 제한 시야 회절 패턴(selected area diffraction pattern, SADP)을 통해 1차 입자 장축과 (003)면 사이의 각도를 확인하였다.
도 1은 비교예 4에서 제조한 양극 활물질의 단면 STEM 이미지이며, 도면에서 화살표는 (003)면 방향을 나타낸다. 도 1에 도시된 바와 같이, 비교예 4의 양극 활물질은 원주(Columnar) 형태의 1차 입자의 장축이 2차 입자의 중심에서 표면 방향을 향해 배열된 방사형 배열 구조를 가짐을 확인할 수 있다. 또한, SADP로 확인한 결과, 비교에 4의 양극 활물질에서 (003)면이 1차 입자의 장축 방향과 평행한 방향으로 성장한 것을 확인할 수 있었다.
도 3은 실시예 2에서 제조한 양극 활물질의 단면 STEM 이미지이며, 도면에서 짧은 화살표는 (003)면 방향을 나타내고, 긴 화살표는 1차 입자의 장축 방향을 나타낸다. 도 3에 도시된 바와 같이, 실시예 2의 양극 활물질은 원주(Columnar) 형태의 1차 입자의 장축이 2차 입자의 중심에서 표면 방향을 향해 배열된 방사형 배열 구조를 가짐을 확인할 수 있다. 또한, SADP로 확인한 결과, 실시예 2의 양극 활물질에서, (003)면이 1차 입자의 장축 방향과 이루는 각이 54°인 것을 확인할 수 있었다.
[실험에 2: 용량, 출력 특성]
상기 실시예 2, 비교예 3, 4에서 제조한 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 96:2:2의 비율로 혼합하여 양극 합재을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 100℃에서 건조 후, 압연하여 양극을 제조하였다.
음극은 리튬 메탈을 사용하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/에틸메틸카보네이트/디에틸카보네이트/(EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
이와 같이 제조된 각 리튬 이차전지 하프 셀(half-cell)에 대해, 25℃에서 1C의 정전류로 4.25V까지 3C cut off로 충전하였다. 이후 0.1C 정전류로 3.0V가 될 때까지 방전을 하여 용량, 효율 및 출력 특성을 평가하였다. 그 결과를 하기 표 1 및 도 5에 나타내었다.
충전용량(0.1C) (mAh/g) 방전용량(0.1C) (mAh/g) 효율(%)
실시예2 231.1 212.6 92
비교예3 228.6 204.9 89.7
비교예4 230.0 208.1 90.5
상기 표 1을 참조하면, 실시예 2의 양극 활물질이 용량이나 효율이 가장 우수하게 측정되었으며, 도 5에서 보이는 바와 같이 상온 출력 특성 또한 실시예 2의 경우가 현저히 우수하였다.

Claims (15)

  1. 복수개의 1차 입자들이 응집된 2차 입자 형태이고,
    상기 1차 입자들은 장축이 상기 2차 입자의 중심에서 표면을 향하는 방향으로 배열된 양극 활물질 전구체이며,
    상기 1차 입자는 (001)면이 상기 1차 입자의 장축 방향에 대해 20° 내지 160°의 각도를 갖는 방향으로 배치된 결정립을 포함하는 것인 이차전지용 양극 활물질 전구체.
  2. 제1항에 있어서,
    상기 1차 입자는 (001)면이 상기 1차 입자의 장축 방향에 대해 40° 내지 140°의 각도를 갖는 방향으로 배치된 결정립을 포함하는 것인 이차전지용 양극 활물질 전구체.
  3. 제1항에 있어서,
    상기 양극 활물질 전구체는 니켈(Ni), 코발트(Co), 망간(Mn), 및 알루미늄(Al)을 포함하는 수산화물인 이차전지용 양극 활물질 전구체.
  4. 제3항에 있어서,
    상기 양극 활물질 전구체는 전체 금속 원소 중 알루미늄(Al)을 1몰% 이상으로 함유하는 것인 이차전지용 양극 활물질 전구체.
  5. 제3항에 있어서,
    상기 양극 활물질 전구체는 전체 금속 원소 중 알루미늄(Al)을 1 내지 10몰%로 함유하는 것인 이차전지용 양극 활물질 전구체.
  6. 제1항에 있어서,
    상기 1차 입자의 종횡비(aspect ratio)가 3 내지 15인 이차전지용 양극 활물질 전구체.
  7. 제3항에 있어서,
    상기 알루미늄(Al)은 상기 2차 입자 내에 일정한 농도로 포함되는 것인 이차전지용 양극 활물질 전구체.
  8. 제1항에 있어서,
    상기 양극 활물질 전구체는 하기 화학식 1로 표시되는 것인 이차전지용 양극 활물질 전구체:
    [화학식 1]
    Nix1Coy1Mnz1Als1(OH)2
    상기 화학식 1에서,
    0.7≤x1≤0.99, 0<y1<0.3, 0<z1<0.3, 0.01≤s1≤0.1이다.
  9. 반응기에 니켈(Ni), 코발트(Co) 및 망간(Mn)의 양이온을 포함하는 전이금속 함유 용액, 알루미늄(Al)의 양이온을 포함하는 알루미늄 함유 용액, 염기성 수용액 및 암모늄 용액을 투입하며 공침 반응시켜 양극 활물질 전구체를 형성하며,
    상기 알루미늄 함유 용액은 소듐 알루미네이트(NaAlO2)를 포함하는 제1항에 따른 이차전지용 양극 활물질 전구체의 제조방법.
  10. 제9항에 있어서,
    상기 소듐 알루미네이트(NaAlO2)로 공침 반응시켜 AlO(OH)를 형성하는 이차전지용 양극 활물질 전구체의 제조방법.
  11. 제1항의 양극 활물질 전구체와 리튬 소스를 혼합하고 소성하여 리튬 전이금속 산화물을 형성하는 이차전지용 양극 활물질의 제조방법.
  12. 복수개의 1차 입자가 응집된 2차 입자 형태이고,
    상기 1차 입자들은 장축이 상기 2차 입자의 중심에서 표면을 향하는 방향으로 배열된 양극 활물질이며,
    상기 1차 입자는 (003)면이 상기 1차 입자의 장축 방향에 대해 20° 내지 160°의 각도를 갖는 방향으로 배치된 결정립을 포함하는 것인 이차전지용 양극 활물질.
  13. 제12항에 있어서,
    상기 1차 입자는 (003)면이 1차 입자의 장축 방향에 대해 40 내지 140°의 각도를 갖는 방향으로 배치된 결정립을 포함하는 것인 이차전지용 양극 활물질.
  14. 제12항에 따른 양극 활물질을 포함하는 이차전지용 양극.
  15. 제14항에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2021/001203 2020-01-29 2021-01-29 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 WO2021154024A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/773,202 US20220411283A1 (en) 2020-01-29 2021-01-29 Positive Electrode Active Material Precursor For Secondary Battery, Positive Electrode Active Material, Preparation Methods Thereof, And Lithium Secondary Battery Including The Positive Electrode Active Material
EP21747432.9A EP4037030A4 (en) 2020-01-29 2021-01-29 POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY, POSITIVE ELECTRODE ACTIVE MATERIAL, METHOD OF PRODUCTION THEREOF AND LITHIUM SECONDARY BATTERY CONTAINING THIS
JP2022526460A JP2023500940A (ja) 2020-01-29 2021-01-29 二次電池用正極活物質前駆体、正極活物質、その製造方法及びそれを含むリチウム二次電池
CN202180006089.0A CN114728811A (zh) 2020-01-29 2021-01-29 二次电池用正极活性材料前体、正极活性材料、其制备方法和包含所述正极活性材料的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0010701 2020-01-29
KR20200010701 2020-01-29

Publications (1)

Publication Number Publication Date
WO2021154024A1 true WO2021154024A1 (ko) 2021-08-05

Family

ID=77078292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001203 WO2021154024A1 (ko) 2020-01-29 2021-01-29 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US20220411283A1 (ko)
EP (1) EP4037030A4 (ko)
JP (1) JP2023500940A (ko)
KR (1) KR102664291B1 (ko)
CN (1) CN114728811A (ko)
WO (1) WO2021154024A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246102A1 (zh) * 2022-06-20 2023-12-28 山东省科学院能源研究所 一种铪改性的高镍层状氧化物电极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090029253A1 (en) * 2005-04-28 2009-01-29 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
JP2009137834A (ja) * 2007-11-12 2009-06-25 Toda Kogyo Corp 非水電解液二次電池用Li−Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR20110122809A (ko) * 2003-06-11 2011-11-11 히타치 긴조쿠 가부시키가이샤 양극 재료와 그 제조방법 및 리튬 2차 전지
KR20130138073A (ko) 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101684219B1 (ko) * 2016-04-05 2016-12-08 한양대학교 산학협력단 양극활물질, 및 이를 포함하는 이차 전지
KR20200010701A (ko) 2018-07-19 2020-01-31 삼성디스플레이 주식회사 표시 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789066B2 (ja) * 2006-03-06 2011-10-05 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法
JP5971109B2 (ja) * 2011-12-20 2016-08-17 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2014038394A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 リチウム二次電池用正極活物質
US10468678B2 (en) * 2014-06-30 2019-11-05 Basf Se Process for making cathode materials for lithium ion batteries
KR101593401B1 (ko) * 2014-10-14 2016-02-12 주식회사 이엔에프테크놀로지 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법
KR101937896B1 (ko) * 2016-03-04 2019-01-14 주식회사 엘지화학 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
JP6616218B2 (ja) * 2016-03-08 2019-12-04 ユミコア リチウムイオン電池用正極活物質の製造方法
JP2018037393A (ja) * 2016-08-25 2018-03-08 Basf戸田バッテリーマテリアルズ合同会社 Niを含む非水電解質二次電池用正極活物質粒子粉末の熱安定性評価方法
JP2019006616A (ja) * 2017-06-21 2019-01-17 Jx金属株式会社 ニッケルコバルトアルミニウム複合水酸化物粒子の製造方法及び正極活物質の製造方法
KR102217105B1 (ko) * 2017-09-19 2021-02-22 주식회사 엘지화학 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122809A (ko) * 2003-06-11 2011-11-11 히타치 긴조쿠 가부시키가이샤 양극 재료와 그 제조방법 및 리튬 2차 전지
US20090029253A1 (en) * 2005-04-28 2009-01-29 Nissan Motor Co., Ltd. Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
JP2009137834A (ja) * 2007-11-12 2009-06-25 Toda Kogyo Corp 非水電解液二次電池用Li−Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR20130138073A (ko) 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101684219B1 (ko) * 2016-04-05 2016-12-08 한양대학교 산학협력단 양극활물질, 및 이를 포함하는 이차 전지
KR20200010701A (ko) 2018-07-19 2020-01-31 삼성디스플레이 주식회사 표시 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246102A1 (zh) * 2022-06-20 2023-12-28 山东省科学院能源研究所 一种铪改性的高镍层状氧化物电极材料及其制备方法

Also Published As

Publication number Publication date
KR102664291B1 (ko) 2024-05-09
KR20210097058A (ko) 2021-08-06
US20220411283A1 (en) 2022-12-29
JP2023500940A (ja) 2023-01-11
CN114728811A (zh) 2022-07-08
EP4037030A1 (en) 2022-08-03
EP4037030A4 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2021066574A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2016053053A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2021154024A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2023038472A1 (ko) 리튬 이차 전지용 양극 활물질 분말, 이의 제조 방법, 리튬 이차 전지용 양극, 및 리튬 이차 전지
WO2022124801A1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
WO2022114872A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법
WO2020180060A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질 전구체
WO2020180125A1 (ko) 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526460

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021747432

Country of ref document: EP

Effective date: 20220428

NENP Non-entry into the national phase

Ref country code: DE