WO2021153213A1 - Molded body, precursor thereof, methods for producing same, and uses thereof - Google Patents

Molded body, precursor thereof, methods for producing same, and uses thereof Download PDF

Info

Publication number
WO2021153213A1
WO2021153213A1 PCT/JP2021/000663 JP2021000663W WO2021153213A1 WO 2021153213 A1 WO2021153213 A1 WO 2021153213A1 JP 2021000663 W JP2021000663 W JP 2021000663W WO 2021153213 A1 WO2021153213 A1 WO 2021153213A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded product
region
resin
group
dielectric filler
Prior art date
Application number
PCT/JP2021/000663
Other languages
French (fr)
Japanese (ja)
Inventor
豊 磯部
慎介 石川
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020227029418A priority Critical patent/KR20220134586A/en
Priority to JP2021574595A priority patent/JPWO2021153213A1/ja
Priority to CN202180007079.9A priority patent/CN114829505B/en
Publication of WO2021153213A1 publication Critical patent/WO2021153213A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the present disclosure relates to a molded product having a region in which a dielectric filler is aggregated in a resin, a precursor thereof, a manufacturing method, and an application thereof.
  • Dielectric materials are widely used as passive element components such as capacitors, resistors, and inductors in electrical and electronic equipment because they have the property of storing electricity due to electric polarization when a voltage is applied. ing.
  • the dielectric material used in these applications is usually in the form of a sheet, which requires mechanical strength and durability, and is often wound in a roll shape, and is also flexible. Required. Therefore, as a dielectric material, a composite dielectric material in which a dielectric filler is contained in a resin has also been developed, but in the composite dielectric material, there is a trade-off relationship between electrical properties and mechanical properties, and a dielectric material is used. Increasing the proportion of filler to increase the relative permittivity reduces the mechanical properties of the dielectric material.
  • Patent Document 1 a dielectric composite material in which a film made of a dielectric filler is formed around matrix particles made of a resin, and the dielectric filler forms a three-dimensional network. Is disclosed.
  • Patent Document 2 a coating material obtained by mixing a resin melt and a dispersion of an inorganic filler dispersed in a dispersion medium and dispersing the inorganic filler in the resin by ultrasonic vibration is provided.
  • a high dielectric constant film in which an inorganic filler is dispersed in a resin in a non-uniform state by coating is disclosed.
  • Patent Document 1 the dielectric composite materials and high dielectric constant films of Patent Documents 1 and 2 are not easy to control the structure, are low in convenience and productivity, and are not sufficiently high in dielectric constant.
  • Patent Document 1 the parallel model represented by the schematic cross-sectional view of FIG. 1 is described as an impractical model because it is not easy to manufacture using a small amount of dielectric filler.
  • an object of the present disclosure is to provide a method capable of easily producing a molded product having a region in which a dielectric filler is aggregated in a resin.
  • Another object of the present disclosure is to provide a molded product in which the agglutinating region of the dielectric filler is formed in various shapes or patterns, a precursor thereof, a manufacturing method, and an application thereof.
  • Yet another object of the present disclosure is to provide a film-like molded article having a filler agglomerated region in a form that traverses or penetrates in the thickness direction, a precursor thereof, a manufacturing method, and an application.
  • Another object of the present disclosure is to provide a film-like molded product capable of achieving both mechanical properties such as flexibility (or toughness) and high dielectric constant properties, a precursor thereof, a manufacturing method, and an application thereof.
  • Yet another object of the present disclosure is to provide a film-like molded product capable of improving high dielectric constant characteristics, low dielectric loss and heat resistance, and a precursor thereof, a manufacturing method and an application thereof.
  • the present inventors apply active energy to a part of the region of the liquid precursor containing the resin precursor and the dielectric filler, and the dielectric filler is applied to a specific region.
  • the present invention has been completed by finding that a molded product having a region in which the dielectric filler is aggregated in the resin can be easily produced.
  • the molded product of the present disclosure contains a resin and a dielectric filler (or dielectric particles), and has an agglomerated portion which is a region where the dielectric filler is agglomerated and a non-aggregated portion which is a region other than the agglomerated portion.
  • the abundance ratio of the dielectric filler in the agglomerated portion is gradually reduced toward the interface at least in the vicinity of the interface with the non-aggregated portion.
  • the resin may be a cured product of a photocurable resin.
  • the photocurable resin may be a cationically polymerizable compound.
  • the dielectric filler may be an inorganic filler formed of a titanium-containing composite metal oxide.
  • the ratio of the dielectric filler may be 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin.
  • the molded product may be in the form of a film.
  • the film-shaped molded product may be formed in such a form that a plurality of agglomerated portions form a pattern shape and at least one agglomerated portion of the plurality of agglomerated portions extends in the thickness direction and penetrates.
  • the molded product may be a dielectric film.
  • the present disclosure comprises an aggregation step of applying active energy to a part of a region of a liquid precursor containing a resin precursor and a dielectric filler to aggregate the dielectric filler to obtain a precursor molded article.
  • the manufacturing method is also included.
  • This production method may include a polymerization completion step of applying active energy to the uncured region of the precursor molded product that has undergone the aggregation step to complete the polymerization.
  • the liquid precursor may contain a photoacid generator, and the active energy may be active light rays.
  • the present disclosure also includes a molded product obtained by the above-mentioned production method.
  • a molded product containing a photocurable resin and a dielectric filler and having an agglomerated portion which is a region where the dielectric filler is agglomerated and a non-aggregated portion which is a region other than the agglomerated portion is formed.
  • a liquid precursor for this purpose which also includes a liquid precursor containing a photocurable resin and a dielectric filler.
  • the present disclosure also includes a bonded body in which a base material formed of resin, ceramics or metal and the molded product are bonded to each other.
  • This junction may be a capacitor.
  • a molded product having a region in which the dielectric filler is aggregated in the resin can be easily (efficiently) used. Can be manufactured. Further, by using a desired mold, a patterned mask, or the like, a molded product in which the agglutinating region of the dielectric filler is formed in various shapes or patterns can be easily or accurately manufactured. Further, a filler agglomeration region in a form that is transverse or continuous in the thickness direction (a high dielectric constant structure in which the dielectric is continuous in the thickness direction, which is called a parallel connection model: for example, the structure shown in FIG.
  • a film-like (or sheet-like) molded body having (etc.) can be easily manufactured. Therefore, the dielectric property can be effectively exhibited in the thickness direction of the film-shaped molded product. Further, since the dielectric property can be efficiently imparted even if the amount of the dielectric filler added is small, it is possible to achieve both mechanical properties such as flexibility (or toughness) of the film-shaped molded product and high dielectric constant characteristics. Further, a molded product having high dielectric constant characteristics, low dielectric loss and excellent heat resistance can be obtained.
  • FIG. 1 is a schematic cross-sectional view of a composite material described in Patent Document 1 as not easy to manufacture.
  • FIG. 2 is a schematic partial longitudinal sectional view of the sheet-shaped molded product of the present invention shown to explain the non-uniformity of the dielectric filler concentration in the agglomerated portion.
  • FIG. 3 is a diagram showing a pattern shape of the photomask used in the examples.
  • FIG. 4 is a diagram showing other pattern shapes of the photomask used in the examples.
  • FIG. 5 is a CCD (charge-coupled device) photograph of the surface of the film obtained in Comparative Example 1 ((a) 100 times, (b) 400 times).
  • FIG. 6 is a CCD photograph of the surface of the film obtained in Comparative Example 2 ((a) 100 times, (b) 400 times).
  • FIG. 7 is a CCD photograph of the surface of the film obtained in Example 1 ((a) 100 times, (b) 400 times).
  • FIG. 8 is a CCD photograph of the surface of the film obtained in Example 2 ((a) 100 times, (b) 400 times).
  • FIG. 9 is a CCD photograph of the surface of the film obtained in Example 3 ((a) 100 times, (b) 400 times).
  • FIG. 10 is a CCD photograph of the surface of the film obtained in Example 4 ((a) 100 times, (b) 400 times).
  • FIG. 11 is a CCD photograph of the surface of the film obtained in Example 5 ((a) 100 times, (b) 400 times).
  • FIG. 12 is a CCD photograph of the surface of the film obtained in Example 6 ((a) 100 times, (b) 400 times).
  • FIG. 13 is a CCD photograph of the surface of the film obtained in Example 7 ((a) 100 times, (b) 400 times).
  • FIG. 14 is a CCD photograph of the surface of the film obtained in Example 8 ((a) 100 times, (b) 400 times).
  • FIG. 15 is a CCD photograph of the surface of the film obtained in Example 9 ((a) 100 times, (b) 400 times).
  • FIG. 16 is a CCD photograph of the surface of the film obtained in Example 10 ((a) 100 times, (b) 400 times).
  • FIG. 17 is a CCD photograph of the surface of the film obtained in Example 11 ((a) 100 times, (b) 400 times).
  • FIG. 18 is a CCD photograph of the surface of the film obtained in Example 12 ((a) 100 times, (b) 400 times).
  • FIG. 19 is a CCD photograph of the surface of the film obtained in Example 13 ((a) 100 times, (b) 400 times).
  • FIG. 20 is a CCD photograph of the surface of the film obtained in Example 14 ((a) 100 times, (b) 400 times).
  • FIG. 21 is a CCD photograph of the surface of the film obtained in Example 15 ((a) 100 times, (b) 400 times).
  • FIG. 22 is a CCD photograph of the surface of the film obtained in Example 16 ((a) 100 times, (b) 400 times).
  • FIG. 23 is a CCD photograph of the surface of the film obtained in Example 17 ((a) 100 times, (b) 400 times).
  • FIG. 24 is a CCD photograph of the surface of the film obtained in Example 18 ((a) 100 times, (b) 400 times).
  • FIG. 25 is a CCD photograph of the surface (100 times) of the film obtained in Comparative Example 4.
  • FIG. 26 is a CCD photograph of the surface (100 times) of the film obtained in Example 19.
  • FIG. 27 is a CCD photograph of the surface (100 times) of the film obtained in Example 20.
  • FIG. 28 is a CCD photograph of the surface (100 times) of the film obtained in Example 21.
  • FIG. 29 is a CCD photograph of the surface (100 times) of the film obtained in Comparative Example 5.
  • FIG. 30 is a CCD photograph of the surface (100 times) of the film obtained in Example 22.
  • FIG. 31 is a CCD photograph of the surface (100 times) of the film obtained in Example 23.
  • FIG. 32 is a CCD photograph of the surface (100 times) of the film obtained in Example 24.
  • FIG. 33 is a CCD photograph of the surface (100 times) of the film obtained in Comparative Example 6.
  • FIG. 34 is a CCD photograph of the surface (100 times) of the film obtained in Example 25.
  • FIG. 35 is a CCD photograph of the surface (100 times) of the film obtained in Example 26.
  • FIG. 36 is a CCD photograph of the surface (100 times) of the film obtained in Example 27.
  • FIG. 37 is a CCD photograph of the surface (100 times) of the film obtained in Comparative Example 7.
  • FIG. 38 is a CCD photograph of the surface (100 times) of the film obtained in Example 28.
  • FIG. 39 is a CCD photograph of the surface (100 times) of the film obtained in Example 29.
  • the molded product of the present disclosure contains a resin and a dielectric filler, and is formed by an agglomerated portion which is a region where the dielectric filler is agglomerated and a non-aggregated portion (or a matrix portion) which is a region other than the agglomerated portion.
  • a molded product having such a structure is a molded product obtained by imparting active energy to a part of a region of a liquid precursor containing a resin precursor and a dielectric filler. It is obtained by going through a coagulation step of coagulating the filler.
  • the resin precursor in the agglomeration step, is polymerized in the region to which the active energy is applied, and the dielectric filler moves with the polymerization to form an agglomerated portion.
  • the dielectric filler can be moved to a region where active energy is not applied, or can be moved to a region where active energy is applied, depending on the combination of formulations and the selection of production conditions.
  • the resin may be any resin that can be polymerized by active energy, and the resin obtained by polymerization may be a thermoplastic resin. However, since it is easy to aggregate the dielectric filler, it can be cured by active energy. A cured product of a sex resin is preferable.
  • the curable resin examples include cationically polymerizable compounds and / or radically polymerizable resins.
  • cationically polymerizable compounds are preferable from the viewpoint of productivity and the like.
  • the cationically polymerizable compound can easily or accurately prepare a desired molded product, probably because the reaction rate is suitable for the movement (aggregation) of the dielectric filler.
  • the cationic polymerization can be reacted in the presence of oxygen such as in the air, and further, the curability can be easily controlled by using a dark reaction (or post-polymerization), so that the productivity is excellent. There is.
  • the cationically polymerizable compound is not particularly limited as long as it has at least one cationically polymerizable group, and may be a monofunctional cationically polymerizable compound having one cationically polymerizable group, or two or more identical or different cationically polymerizable groups. It may be a polyfunctional cationically polymerizable compound having. From the viewpoint of curability and resin strength (or molded product strength such as hardness), a polyfunctional cationically polymerizable compound is usually often used.
  • the number of cationically polymerizable groups can be selected from the range of, for example, about 2 to 10, for example, 2 to 8 (for example, 2 to 6), preferably 2 to 4, and more preferably. It may be 2 to 3, especially 2.
  • Examples of the cationically polymerizable group include an epoxy (oxylan ring) -containing group, an oxetane ring-containing group, and a vinyl ether group.
  • the epoxy-containing group may be a group having at least an oxylan ring skeleton, and is, for example, an epoxy group (or an oxylan-2-yl group), a 2-methyloxylan-2-yl group, or a glycidyl-containing group (for example, a glycidyl group). , 2-Methylglycidyl group, etc.), alicyclic epoxy group (eg, epoxycycloalkyl group such as 3,4-epoxidecyclohexyl group, alkyl-epoxidecycloalkyl group such as 3,4-epoxy-6-methylcyclohexyl group) Etc.) and so on.
  • epoxycycloalkyl group such as 3,4-epoxidecyclohexyl group
  • alkyl-epoxidecycloalkyl group such as 3,4-epoxy-6-methylcyclohexyl group
  • the oxetane ring-containing group may be a group having at least an oxetane ring skeleton.
  • C 1-4 alkyl oxetaneyl groups such as 3-oxetanyl groups) and the like.
  • cationically polymerizable groups may be present alone or in combination of two or more.
  • epoxy-containing groups such as glycidyl-containing groups and alicyclic epoxy groups are often used from the viewpoint of curability and productivity suitable for aggregation of dielectric fillers.
  • a typical cationically polymerizable compound 2 selected from an epoxy compound having an epoxy-containing group, an oxetane compound having an oxetane ring-containing group, a vinyl ether compound having a vinyl ether group, an epoxy-containing group, an oxetane ring-containing group, and a vinyl ether group.
  • examples thereof include polyfunctional compounds having more than one species of cationically polymerizable groups.
  • These cationically polymerizable compounds can be used alone or in combination of two or more.
  • compounds having at least one cationically polymerizable group selected from the epoxy-containing group such as an epoxy compound and an oxetane compound and an oxetane ring-containing group are often used, and among them, at least epoxy.
  • a compound having a group is preferable, and an epoxy compound is more preferable from the viewpoint of curability and productivity suitable for agglomeration of the dielectric filler.
  • Examples of the epoxy compound include a monofunctional epoxy compound having one epoxy-containing group and a polyfunctional epoxy compound having two or more epoxy-containing groups as cationically polymerizable groups. These epoxy compounds can also be used alone or in combination of two or more.
  • Examples of the monofunctional epoxy compound include a monofunctional glycidyl type epoxy compound having a glycidyl group (or 2-methylglycidyl group), a monofunctional alicyclic epoxy compound having an alicyclic epoxy group, and the like.
  • Examples of the monofunctional glycidyl type epoxy compound include alkyl glycidyl ethers such as butyl glycidyl ether, 2-ethylhexyl glycidyl ether, dodecyl glycidyl ether and tridecyl glycidyl ether; phenyl glycidyl ether and alkylphenyl glycidyl ether (tril glycidyl ether, t- Aryl glycidyl ethers such as butylphenyl glycidyl ethers; (poly) alkylene glycol monoglycidyl ethers such as ethylene glycol monoglycidyl ethers, 1,4-butanediol monoglycidyl ethers, diethylene glycol monoglycidyl ethers; 2,3-epoxy-1 -Propanol (or glycidole); glycidyl
  • Examples of the monofunctional alicyclic epoxy compound include 1,2-epoxycyclohexane and substituted epoxycyclohexane (eg, 1,2-epoxy-4-hydroxymethylcyclohexane, 1,2-epoxy-4-vinylcyclohexane, 3, 4-Epoxy-cyclohexylmethyl (meth) acrylate, allyl-3,4-epoxycyclohexanecarboxylate, etc.) and the like.
  • 1,2-epoxycyclohexane and substituted epoxycyclohexane eg, 1,2-epoxy-4-hydroxymethylcyclohexane, 1,2-epoxy-4-vinylcyclohexane, 3, 4-Epoxy-cyclohexylmethyl (meth) acrylate, allyl-3,4-epoxycyclohexanecarboxylate, etc.
  • polyfunctional epoxy compound examples include a polyfunctional glycidyl type epoxy compound having a glycidyl group (and / or a 2-methylglycidyl group), a polyfunctional alicyclic epoxy compound having at least one alicyclic epoxy group, and the like. Be done.
  • an epoxy compound having both a glycidyl group and an alicyclic epoxy group is classified as an alicyclic epoxy compound.
  • polyfunctional glycidyl type epoxy compound examples include a glycidyl ether type epoxy compound (or glycidyl ether type epoxy resin), a glycidyl ester type epoxy compound (or glycidyl ester type epoxy resin), and a glycidyl amine type epoxy compound (or glycidyl amine type epoxy resin). Resin), heterocyclic glycidyl type epoxy compound and the like.
  • Examples of the glycidyl ester type epoxy compound include diglycidyl phthalates such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, and diglycidyl hexahydrophthalate; glycidyl (meth) acrylate alone or copolymer; glycidyl group in these compounds. Examples thereof include a compound having a 2-methylglycidyl group.
  • Examples of the glycidylamine type epoxy compound include tetraglycidyldiamines such as tetraglycidyldiaminodiphenylmethane, tetraglycidylmethoxylylylene diamine, and tetraglycidylbisaminomethylcyclohexane; diglycidylaniline, diglycidyltoluidine, N, N-diglycidyl-2.
  • tetraglycidyldiamines such as tetraglycidyldiaminodiphenylmethane, tetraglycidylmethoxylylylene diamine, and tetraglycidylbisaminomethylcyclohexane
  • diglycidylaniline diglycidyltoluidine
  • N N-diglycidyl-2.
  • heterocyclic glycidyl-type epoxy compound examples include isocyanurate-type epoxy compounds such as triglycidyl isocyanurate; hydantoin-type epoxy compounds such as diglycidyl hydantoin; and compounds in which the glycidyl group in these compounds is a 2-methylglycidyl group. Can be mentioned.
  • polyfunctional glycidyl type epoxy compounds can be used alone or in combination of two or more.
  • the glycidyl ether type epoxy compound is preferable from the viewpoint of curability and productivity suitable for agglutination of the dielectric filler.
  • glycidyl ether type epoxy compound examples include an aromatic glycidyl ether type epoxy compound, an alicyclic glycidyl ether type epoxy compound, and an aliphatic glycidyl ether type epoxy compound.
  • aromatic glycidyl ether type epoxy compound examples include polyglycidyl ether of an aromatic polyol or an alkylene oxide adduct thereof, and examples thereof include bi or bisphenol type epoxy compounds (for example, bisphenol A type epoxy compound and bisphenol F type epoxy compound).
  • Examples of the alicyclic glycidyl ether type epoxy compound include polyglycidyl ether of an alicyclic polyol or an alkylene oxide adduct thereof, and for example, a hydrogenated product of the aromatic glycidyl ether compound [for example, hydrogenated bi or bisphenol].
  • Type epoxy compounds such as diglycidyl ether, which is a hydrogenated product of conventional bisphenols such as hydrogenated bisphenol A type epoxy compounds); hydrogenated novolak type epoxy resins, etc.]; (Glysidyloxy) C 5-10 cycloalkane; bis (glycidyloxy C 1-4 alkyl) C 5-10 cycloalcan such as diglycidyl ether of 1,4-cyclohexanedimethanol; alicyclic type corresponding to these compounds Polyglycidyl ether of C 2-4 alkylene oxide adduct of polyol; compounds in which the glycidyl group in these compounds is 2-methylglycidyl group and the like can be mentioned.
  • diglycidyl ether which is a hydrogenated product of conventional bisphenols such as hydrogenated bisphenol A type epoxy compounds); hydrogenated novolak type epoxy resins, etc.
  • (Glysidyloxy) C 5-10 cycloalkane bis (glycidyloxy
  • glycidyl ether type epoxy compounds can be used alone or in combination of two or more.
  • an aliphatic glycidyl ether type epoxy compound is preferable because it has a low viscosity and easily promotes aggregation of the dielectric filler.
  • Examples of the aliphatic glycidyl ether type epoxy compound include polyglycidyl ether of an aliphatic polyhydric alcohol (aliphatic polyol) or a condensate (or a multimer) thereof.
  • Examples of the aliphatic polyhydric alcohol for forming the aliphatic glycidyl ether type epoxy compound include aliphatic diols [for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1, Linear or branched C 2-12 alkanes such as 4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol Diols and the like]; Aliphatic polyols having a trivalent or higher valence [for example, polymethylol al
  • aliphatic glycidyl ether type epoxy compound examples include a divalent glycidyl ether type compound and a trivalent or higher glycidyl ether type compound.
  • divalent glycidyl ether type compound examples include the (poly) alkylene glycol diglycidyl ether represented by the following formula (1); trimethylolpropane diglycidyl ether, glycerin diglycidyl ether, pentaerythritol diglycidyl ether and the like.
  • diglycidyl ether which is a trivalent or higher aliphatic polyol or a condensate containing the polyol.
  • a 1 is a linear or branched alkylene group, m is an integer of 1 or more, and R 1 is an independent hydrogen atom or methyl group).
  • Examples of the linear or branched alkylene group represented by A for example, ethylene group, propylene group, trimethylene group, 1,2-butanediyl group, tetramethylene group, 2,2 -Dimethylpropan-1,3-diyl group (neopentylene group), pentamethylene group, hexamethylene group, octamethylene group, decamethylene group and other linear or branched C 2-12 alkylene groups (eg, linear)
  • a branched C 2-10 alkylene group preferably a linear or branched C 2-8 alkylene group (eg, a linear or branched C 3-7 alkylene group), more preferably an ethylene group.
  • a linear or branched C 2-7 alkylene group such as a propylene group, a trimethylene group, a tetramethylene group, or a hexamethylene group (for example, a linear or branched C 2-6 alkylene group such as a tetramethylene group).
  • a linear or branched C 3-6 alkylene group particularly a linear or branched C 4-6 alkylene group).
  • the repetition number m may be an integer of 1 or more, and can be selected from an integer of, for example, about 1 to 30 (for example, 1 to 15), for example, 1 to 10 (for example, 1 to 8), preferably 1 to 6 (for example, 1 to 1 to 1). 4), more preferably 1 to 3 (eg 1 or 2), especially 1. If m is too large, the viscosity of the liquid precursor may increase and the controllability of the dielectric filler may decrease. Further, when m is 2 or more, kinds of a plurality of alkylene groups A 1 may be the same or different from each other.
  • R 1 may be either a hydrogen atom or a methyl group, and is usually a hydrogen atom in many cases.
  • the types of R 1 may be different from each other, but are usually the same.
  • the (poly) alkylene glycol diglycidyl ether represented by the formula (1) include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,3-propanediol diglycidyl ether, and 1, 2-butanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,5-pentanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,8-octane Linear or branched C 2-12 alkylene glycol-diglycidyl ethers such as diol diglycidyl ethers and 1,10-decanediol diglycidyl ethers; diethylene glycol diglycidyl ethers, dipropylene glycol diglycidyl ethers, triethylene glycol
  • the (poly) alkylene glycol diglycidyl ether represented by the formula (1) can be used alone or in combination of two or more.
  • alkylene glycol diglycidyl ether having m of 1 is preferable, and among them, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1 , 6-Hexanediol Diglycidyl ether, etc.
  • Linear or branched C 2-8 alkylene glycol-diglycidyl ether eg, linear or branched C 3-7 alkylene glycol-diglycidyl ether
  • Linear or branched C 2-6 alkylene glycol-diglycidyl ether eg, linear or branched C 4-6 alkylene glycol such as neopentyl glycol, 1,6-hexanediol diglycidyl ether- Diglycidyl ether, preferably branched chain C 4-6 alkylene glycol-diglycidyl ether such as neopentyl glycol
  • linear or branched C 2-8 alkylene glycol-diglycidyl ether eg, linear or branched C 3-7 alkylene glycol-diglycidyl ether
  • Linear or branched C 2-6 alkylene glycol-diglycidyl ether eg, linear or branched C 4-6 alkylene glycol such as ne
  • examples of the trivalent or higher glycidyl ether type compound include (poly) trimethylolpropane tri to pentaglycidyl ether [for example, trimethylolpropane triglycidyl ether, ditrimethylolpropane triglycidyl ether, ditrimethylolpropane tetraglycidyl ether and the like.
  • (Poly) glycerin polyglycidyl ether for example, mono-tri (glycerin) such as glycerin triglycidyl ether, diglycerin triglycidyl ether, diglycerin tetraglycidyl ether, etc.
  • Pentaerythritol polyglycidyl ether for example, mono to tri, such as pentaerythritol triglycidyl ether, pentaerythritol tetraglycidyl ether, dipentaerythritol pentaglycidyl ether, dipentaerythritol hexaglycidyl ether, etc.
  • aliphatic glycidyl ether type epoxy compounds can be used alone or in combination of two or more.
  • the divalent glycidyl ether type compound is represented by the above formula (1) because it is easy to improve the controllability of the dielectric filler and it is easy to procure it.
  • (Poly) alkylene glycol diglycidyl ether (particularly, alkylene glycol diglycidyl ether) is often used.
  • the polyfunctional alicyclic epoxy compound may be a compound having two or more epoxy-containing groups and at least one of which is an alicyclic epoxy group.
  • a compound having one alicyclic epoxy group and one or more non-alicyclic epoxy groups eg, 1,2: 8,9-diepoxide limonene (or 1-methyl-4- (2)).
  • -Methyloxylanyl) -7-oxabicyclo eg. 1,2: 8,9-diepoxide limonene (or 1-methyl-4- (2)).
  • -Methyloxylanyl) -7-oxabicyclo [4.1.0] heptane, ARKEMA's "LIMONENE DIOXIDE" and other compounds having one alicyclic epoxy group and one ethylene oxide group, etc.];
  • 2 Compounds having one alicyclic epoxy group; compounds having three or more alicyclic epoxy groups and the like can be mentioned.
  • Examples of the compound having two alicyclic epoxy groups include a compound represented by the following formula (2).
  • X represents a single bond or a linking group, and each cyclohexene oxide group may have a substituent).
  • examples of the linking group represented by X include a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, and a carbonyl group (-CO-). ), Ether bond (-O-), ester bond (-COO-), carbonate group (-O-CO-O-), amide group (-CONH-), and a group in which a plurality of these are linked. ..
  • Examples of the divalent hydrocarbon group include a linear or branched C 1-18 alkylene group and a divalent C 3-18 alicyclic hydrocarbon group.
  • Examples of the linear or branched C 1-18 alkylene group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group and the like.
  • Examples of the divalent C 3-18 alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group and 1 , 3-Cyclohexylene group, 1,4-cyclohexylene group, cycloalkylene group such as cyclohexylidene group (including cycloalkylidene group) and the like.
  • alkenylene group in the alkenylene group in which a part or all of the carbon-carbon double bond is epoxidized include a vinylene group, a propenylene group, and a 1-butenylene group.
  • an alkenylene group in which the entire carbon-carbon double bond is epoxidized is preferable, and a C 2-4 alkenylene group in which the entire carbon-carbon double bond is epoxidized is more preferable.
  • X a carbonyloxymethylene group or the like is preferable.
  • a substituent may be independently bonded to each of the two cyclohexene oxide groups, and the substituents include, for example, a halogen atom, a C 1-10 alkyl group, and a C 1-.
  • Typical examples of the compound represented by the above formula (2) are (3,4,3', 4'-diepoxy) bicyclohexyl, bis (3,4-epoxycyclohexylmethyl) ether, 1,2-.
  • Examples thereof include epoxycyclohexane-1-yl) ethane and compounds represented by the following formulas (2-1) to (2-8).
  • L represents a C 1-8 alkylene group (for example, a linear or branched C 1-3 alkylene group such as a methylene group, an ethylene group, a propylene group, an isopropylene group), and n1 and n2 are. Each indicates an integer from 1 to 30).
  • Examples of the compound having three or more alicyclic epoxy groups include compounds represented by the following formulas (2-9) and (2-10).
  • n3 to n8 independently represent integers of 1 to 30).
  • polyfunctional alicyclic epoxy compounds can be used alone or in combination of two or more.
  • compounds having two alicyclic epoxy groups such as the compound represented by the above formula (2) are preferable, and among them, X is a carbonyloxymethylene group 3, 4-Epoxide cyclohexylmethyl (3,4-epoxide) cyclohexanecarboxylate (compound represented by the above formula (2-1)) is preferable.
  • polyfunctional epoxy compounds different from the polyfunctional glycidyl type epoxy compound and the polyfunctional alicyclic epoxy compound include, for example, 1,2-epoxy-4- (2-oxylanyl) of a polyol (such as trimethylolpropane).
  • examples thereof include a cyclohexane adduct (for example, “EHPE3150” manufactured by Daicel Co., Ltd.).
  • polyfunctional epoxy compounds can be used alone or in combination of two or more.
  • polyfunctional epoxy compounds are usually often used from the viewpoint of curability and productivity.
  • a polyfunctional glycidyl type epoxy compound and a polyfunctional alicyclic epoxy compound are preferable, and more preferably a glycidyl ether type epoxy, from the viewpoint of curability and productivity which are particularly suitable for agglomeration of a dielectric filler.
  • the combination of the polyfunctional alicyclic epoxy compound and the polyfunctional glycidyl type epoxy compound is preferable from the viewpoint that the controllability of the dielectric filler is excellent and the flexibility of the molded product can be improved.
  • a combination of the compound having two alicyclic epoxy groups and the (poly) alkylene glycol diglycidyl ether represented by the above formula (1) is particularly preferable.
  • the viscosity of the cationically polymerizable compound at 25 ° C. can be selected from the range of, for example, about 500 mPa ⁇ s or less (for example, 1 to 400 mPa ⁇ s), for example, 2 to 350 mPa ⁇ s, from the viewpoint of promoting the aggregation of the dielectric filler in the agglomeration step.
  • s for example, 3 to 300 mPa ⁇ s
  • 4 to 250 mPa ⁇ s for example, 5 to 200 mPa ⁇ s
  • more preferably 5 to 150 mPa ⁇ s for example, 5 to 100 mPa ⁇ s
  • s for example, 5.5 to 50 mPa ⁇ s
  • 6 to 30 mPa ⁇ s for example, 6.5 to 20 mPa ⁇ s
  • more preferably 7 to 15 mPa ⁇ s for example, 7.5 mPa ⁇ s
  • the viscosity can be measured using a conventional viscometer (for example, a single cylindrical rotational viscometer).
  • the ratio of the cationically polymerizable compound can be selected from the range of, for example, about 10 to 100% by mass (for example, 30 to 99% by mass) with respect to the entire resin contained in the liquid precursor, and for example, 50 to 100% by mass (for example, 50 to 100% by mass). 60 to 98% by mass), preferably 70 to 100% by mass (for example, 80 to 97% by mass), more preferably 80 to 100% by mass (for example, 90 to 95% by mass), particularly 95 to 100% by mass (particularly substantial substance). It may be about 100% by mass). If the proportion of the cationically polymerizable compound is too small, there is a risk that the agglomerated portion cannot be easily or sufficiently (or accurately) formed in the agglutination step.
  • a photocurable resin is preferable, and a photocationic polymerizable compound is particularly preferable, from the viewpoint of easily forming an agglomerated portion.
  • the molded product may further contain a polymerization initiator for polymerizing the resin.
  • the polymerization initiator can be appropriately selected depending on the type of resin, and when the resin is a curable resin, it may be a radical polymerization initiator, a cationic polymerization initiator, or an anionic polymerization initiator.
  • a preferred polymerization initiator is a cationic polymerization initiator (acid generator).
  • Cationic polymerization initiators include photoacid generators and thermoacid generators.
  • Examples of the photoacid generator include sulfonium salt (salt of sulfonium ion and anion), diazonium salt (salt of diazonium ion and anion), iodonium salt (salt of iodonium ion and anion), and selenium salt (selenium ion). And anion salt), ammonium salt (ammonium ion and anion salt), phosphonium salt (phosphonium ion and anion salt), oxonium salt (oxonium ion and anion salt), transition metal complex ion and anion Examples include salts with and bromine compounds. These photoacid generators can be used alone or in combination of two or more. Among these photoacid generators, an acid generator having high acidity, for example, a sulfonium salt is preferable from the viewpoint of improving reactivity.
  • sulfonium salt examples include triphenylsulfonium salt, tri-p-tolylsulfonium salt, tri-o-tolylsulfonium salt, tris (4-methoxyphenyl) sulfonium salt, 1-naphthyldiphenylsulfonium salt, and 2-naphthyldiphenylsulfonium.
  • Tris (4-fluorophenyl) sulfonium salt Tri-1-naphthyl sulfonium salt, tri-2-naphthyl sulfonium salt, tris (4-hydroxyphenyl) sulfonium salt, diphenyl [4- (phenylthio) phenyl] sulfonium salt, Triarylsulfonium salts such as [4- (4-biphenylthio) phenyl] -4-biphenylphenylsulfonium salt, 4- (p-tolylthio) phenyldi- (p-phenyl) sulfonium salt; diphenylphenacil sulfonium salt, diphenyl 4 -Diarylsulfonium salts such as nitrophenacylsulfonium salt, diphenylbenzylsulfonium salt, diphenylmethylsulfonium salt; monoaryl
  • Examples of anions (counterions) for forming salts with cations include SbF 6- , PF 6- , BF 4- , fluorinated alkylfluorophosphate ion [(CF 3 CF 2 ) 3 PF 3- , ( CF 3 CF 2 CF 2) 3 PF 3- etc.], (C 6 F 5) 4 B -, (C 6 F 5) 4 Ga -, a sulfonate anion (trifluoromethanesulfonic acid anion, pentafluoroethane sulfonate anion , nonafluorobutanesulfonic acid anion, methanesulfonic acid anion, benzenesulfonic acid anion, p- toluenesulfonate anion, etc.), (CF 3 SO 2) 3 C -, (CF 3 SO 2) 2 N -, perhalogenated acid Examples thereof include ions, halogenated sulfonic acid ions, sulfate
  • anions can also be used alone or in combination of two or more.
  • SbF 6- , PF 6- , fluorinated alkylfluorophosphate ion and the like are widely used, and fluorinated alkyl fluorophosphate ion and the like are preferable from the viewpoint of solubility and the like, and usually PF 6- and the like are used. Often.
  • a commercially available photoacid generator can be used as the photoacid generator.
  • Examples of commercially available photoacid generators include “CPI-101A”, “CPI-110A”, “CPI-100P”, “CPI-110P”, “CPI-210S”, and “CPI-200K” manufactured by San-Apro Co., Ltd.
  • UVACURE1590 manufactured by Daicel Ornex Co., Ltd .
  • CD-1010 "CD-1011” and “CD-” manufactured by Sartmer of the United States.
  • thermoacid generator examples include aryl sulfonium salts, aryl iodonium salts, allen-ion complexes, quaternary ammonium salts, aluminum chelates, boron trifluoride amine complexes and the like. These thermoacid generators can be used alone or in combination of two or more. Among these thermoacid generators, an acid generator having high acidity, for example, an arylsulfonium salt is preferable from the viewpoint of improving reactivity.
  • the anionic such as the same anion as the photoacid generator and the like, or may be a fluoride ion antimony such as SbF 6-.
  • thermoacid generator A commercially available thermoacid generator can be used as the thermoacid generator.
  • examples of commercially available thermoacid generators include "Sun Aid SI-60L”, “Sun Aid SI-60S”, “Sun Aid SI-80L”, “Sun Aid SI-100L” manufactured by Sanshin Chemical Industry Co., Ltd., and Co., Ltd. ) ADEKA's "SP-66", “SP-77”, etc. can be used.
  • thermoacid generators may be able to generate acid by either the action of light or heat, respectively.
  • cationic polymerization initiators can be used alone or in combination of two or more.
  • a photoacid generator is preferable because an aggregated portion can be easily formed in a pattern by using a photomask or the like.
  • the ratio of the polymerization initiator may be appropriately selected according to the type of the resin and the like to adjust the curability of the liquid precursor.
  • the resin particularly, the cationically polymerizable compound. It can be selected from the range of about 0.01 to 100 parts by mass with respect to 100 parts by mass of the total amount of the above, for example, 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass, and more preferably. Is 5 to 15 parts by mass, most preferably 8 to 12 parts by mass. If the proportion of the polymerization initiator is too small, the curing reaction is difficult to proceed, and the dielectric filler may be difficult to aggregate in the aggregating step. There is a risk of hardening in a state of insufficient aggregation, and it is costly and disadvantageous in terms of productivity.
  • Dielectric filler As the dielectric filler, a conventional dielectric filler (dielectric particle or granular dielectric) can be used. Conventional dielectric fillers can be roughly classified into inorganic fillers (or particles) and organic fillers (or particles).
  • the material of the inorganic filler includes a metal oxide, a metal composite oxide, and the like.
  • the metal oxide include titanium oxide, zirconium oxide, lanthanum oxide and the like.
  • the composite metal oxide include titanium metals such as magnesium titanate, calcium titanate, strontium titanate, barium titanate (BaTIO 3 ), zinc titanate, and bismuth titanate; and metal zirconate such as barium zirconate; Metal succinate such as barium titanate; metal hafnium acid such as barium titanate; metal niobate such as lithium niobate; metal tantrate such as lithium titanate; barium titanate titanate, lead zirconate titanate (PZT) Examples include metal zirconate titanate.
  • the composite metal oxide such as barium titanate may further contain an alkaline earth metal such as calcium and strontium, and a rare earth metal such as yttrium, neodymium, samarium and dysprosium as trace components.
  • alkaline earth metal such as calcium and strontium
  • rare earth metal such as yttrium, neodymium, samarium and dysprosium as trace components.
  • Examples of the material of the organic filler include polyvinylidene fluoride, vinylidene fluoride-ethylene trifluoride copolymer, vinylidene fluoride-ethylene tetrafluoride copolymer, vinylidene fluoride-vinylidene hexafluoride copolymer, and the like.
  • Vinylidene fluoride-based polymer such as polyamide 5, polyamide 7, polyamide 11; cyano resin such as cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl hydroxyethyl cellulose, cyanoethyl cellulose; polyurea; polythiourea; trisulfate Examples include glycine.
  • Dielectric fillers made of these materials can be used alone or in combination of two or more.
  • an inorganic filler is preferable from the viewpoint of easily forming an agglomerated portion, an inorganic filler formed of a composite metal oxide (composite metal oxide filler) is more preferable, and an inorganic filler formed of a titanium-containing composite metal oxide is more preferable. Fillers are more preferred, and inorganic fillers made of alkaline earth metal titanate are most preferred.
  • the dielectric filler may be an inorganic filler having a perovskite structure (particularly, an inorganic filler formed of a composite metal oxide having a perovskite structure) from the viewpoint of easily forming an agglomerated portion.
  • a ferroelectric filler may be used because the relative permittivity of the molded product can be improved.
  • the relative permittivity ( ⁇ r ) of the dielectric filler may be 100 or more, for example, 500 or more, preferably 1000 or more, and more preferably 3000 or more (for example, 3000 to 10000).
  • the shape of the dielectric filler (the shape of the primary particles) is not particularly limited as long as it is granular, and for example, a spherical shape such as a true sphere or a substantially spherical shape; an ellipsoidal (elliptical sphere) shape; a conical shape, a polygonal pyramid shape, or the like.
  • the central particle size (D 50 ) of the dielectric filler may be 1 ⁇ m or more, but is preferably 1 ⁇ m or less, and more preferably 0.01 to 1 ⁇ m. If the central particle size is too small, the viscosity of the liquid precursor tends to increase, and it may be difficult for the dielectric filler to aggregate in the aggregation step, or it may be difficult to effectively impart dielectric property due to the influence of interfacial resistance (contact resistance). There is. On the other hand, if it is too large, the dielectric filler may not move easily in the agglutination step, making it difficult to agglomerate, and depending on the dielectric filler, the photocurability may decrease due to the influence of the shadow of the dielectric filler itself. Further, particles having different sizes may be intentionally mixed in a predetermined ratio in order to efficiently increase the concentration of the dielectric filler in the agglomerated portion.
  • the central particle size of the dielectric filler means the central particle size of the primary particles, and is a nanoparticle size distribution measuring device (“SALD-7500 nano” manufactured by Shimadzu Corporation). Can be measured on a volume basis using. It is also obtained by an image analysis method. That is, for example, a scanning electron microscope (SEM) is used to take electron microscope images of a sufficient number (for example, 10 or more) of particulate matter, and the maximum diameter, cross diameter, and thickness of these particulate matter are determined. It is obtained by measuring and arithmetically averaging this.
  • SEM scanning electron microscope
  • the ratio of the dielectric filler can be selected from the range of about 0.01 to 300 parts by mass (for example, 0.1 to 100 parts by mass) with respect to 100 parts by mass of the resin (or resin precursor), for example, 0.1 to 80 parts. It is by mass, preferably 0.2 to 70 parts by mass. Even if the proportion of the derivative filler is large, the aggregation of the derivative filler can be controlled, and the proportion of the derivative filler is, for example, 1 to 300 parts by mass, preferably 10 to 200 parts by mass, and more preferably 20 parts by mass with respect to 100 parts by mass of the resin. It may be up to 100 parts by mass, more preferably 30 to 80 parts by mass.
  • the relative permittivity of the molded product may not be improved.
  • the relative permittivity is formed by forming an agglomerated portion. Can be improved.
  • the amount is too large, the viscosity of the liquid precursor tends to increase and the dielectric filler may not easily aggregate in the aggregation step, and depending on the dielectric filler, the photocurability may decrease due to the influence of the shadow of the dielectric filler itself. There is a risk. Further, the flexibility (or toughness) of the obtained molded product tends to decrease, and the molded product may become brittle.
  • the molded product (or liquid precursor for forming the molded product) may further contain, if necessary, other components such as conventional additives, in addition to the resin and the dielectric filler.
  • additives include, for example, stabilizers (heat stabilizers, ultraviolet absorbers, photostabilizers, antioxidants, etc.), dispersants, antioxidants, colorants, lubricants, sensitizers (acridines, etc.). Benzoflavins, perylenes, anthracenes, thioxanthones, laser pigments, etc.), sensitizers, hardening accelerators (imidazoles, alkali metals or alkaline earth metal alkoxides, phosphins, amide compounds, Lewis acid complex compounds) , Sulfur compounds, boron compounds, condensable organic metal compounds, etc.), defoaming agents, flame retardants, etc.
  • the ratio of the conventional additive is, for example, 30 parts by mass or less (for example, 0.01 to 30 parts by mass), preferably 20 parts by mass or less, and more preferably 10 parts by mass with respect to 100 parts by mass of the resin (or resin precursor). It may be less than or equal to a part.
  • the agglomerated portion of the molded body is a region formed by aggregating the dielectric filler without being uniformly dispersed inside the molded body by applying active energy, but the non-aggregated portion (or matrix). It has a structure in which the abundance ratio of the dielectric filler gradually decreases toward the interface at least in the vicinity of the interface with the part). That is, the agglomerated portion is not a homogeneous structure in which the dielectric filler is present at a constant ratio in the entire region of the agglomerated portion, and the concentration is gradually (linearly or linearly or) in the vicinity of at least the interface between the agglomerated portion and the non-aggregated portion.
  • the structure near the interface has a concentration gradient, it is not typical, so it is impossible or extremely difficult to specify the microstructure, which is not practical.
  • the property derived from the present disclosure such as the improvement of the interfacial strength due to the anchor effect.
  • Such a structure can be easily observed with a digital microscope (CCD observation image) or the like. For example, in a CCD photograph of the cross section or surface of the agglomerated portion taken at a magnification of about 200 to 1000 times, the dielectric material at the agglomerated portion. It can be easily confirmed that the abundance ratio (concentration) of the filler is non-uniform.
  • the non-uniformity of the abundance ratio (concentration) of the dielectric filler in the agglomerated portion can be determined by elemental analysis (or surface analysis) of a predetermined region in the agglomerated portion or analysis of a chemical species to determine the element (dielectric) constituting the dielectric filler. It can also be confirmed by detecting (also called a body filler constituent element) or a chemical species.
  • the element analysis method (or apparatus) may be appropriately selected depending on the form of the molded body (type of dielectric filler, etc.), and may be, for example, energy dispersive X-ray spectroscopy (EDX or EDS), wavelength dispersion.
  • Type X-ray spectroscopy (WDX, WDS or EPMA), X-ray photoelectron spectroscopy (XPS or ESCA), Auger electron spectroscopy (AES), secondary ion mass analysis (SIMS) [time-of-flight secondary ion mass analysis
  • TOF-SIMS time-of-flight secondary ion mass analysis
  • conventional methods such as Raman spectroscopy and infrared spectroscopy (IR) can be mentioned as methods for detecting chemical species.
  • SEM- Energy dispersive X-ray spectroscopy such as EDX (SEM-EDS) is often used.
  • the dielectric filler concentration decreases or gradually decreases toward the interface (or the interface direction) at least in the peripheral region near the interface of the agglomerated portion. It can be confirmed that the abundance ratio of the dielectric filler constituent elements is low at least near the interface (or the peripheral region) of the agglomerated portion.
  • the central portion of the agglomerated portion (the portion inside the agglomerated portion, which is the farthest from the interface with the non-aggregated portion that separately partitions the agglomerated portion) and the portion adjacent to the agglomerated portion.
  • the aggregated portion is divided into three equal parts (distance from the central portion to the interface) from the central portion toward the interface (or the interface direction). Is divided into 3 parts so that they are evenly spaced).
  • the central region central region, near the central region or the first region
  • the intermediate region intermediate region, the intermediate region or the second region
  • the peripheral region peripheral region in the order from the central portion to the interface of each divided region. Part, near the interface or a third region).
  • the abundance ratio in the peripheral region is at least the intermediate region. It can be confirmed that it is lower than the abundance ratio.
  • the abundance ratio may be a ratio based on the number of atoms (frequency or intensity), but is usually a ratio based on the mass of atoms.
  • FIG. 2 is a schematic partial longitudinal sectional view of the molded product of the present disclosure, that is, a film (or sheet) -shaped molded product having an agglomerated portion 1 in a form in which a dielectric filler penetrates in the thickness direction. That is, FIG. 2 shows a central portion 4 of an arbitrary agglomerated portion 1 in a molded body (a central axis extending in the thickness direction at the center in the plane direction of the agglomerated portion) and a non-aggregated portion 2 adjacent to the agglomerated portion 1. It shows a cross section (or a longitudinal cross section) that passes through (or crosses) the interface 3 and is substantially parallel to the thickness direction of the molded body.
  • the distance from the central portion 4 to the interface 3 in the agglomerated portion is the region from the central portion 4 to at least one interface (the interface on the left side of the central portion 4 in the figure) 3 (the shortest). Is divided into three in the width direction (horizontal direction) of the agglomerated portion so that the agglomerates are evenly spaced.
  • the divided regions are defined as a central region 1a, an intermediate region 1b, and a peripheral region (or near the interface) 1c in the order from the region on the central portion 4 side toward the interface 3.
  • each region 1a to 1c elemental analysis is performed at a plurality of randomly selected measurement points (preferably 3 or more), and the abundance ratio of at least one element among the dielectric filler constituent elements is determined for each measurement point.
  • the average value of the obtained abundance ratio is calculated and adopted as the abundance ratio of each of the regions to which the measurement point belongs.
  • the distribution state of the dielectric filler in the agglomerated portion of the molded body cross section is such that the horizontal axis is the horizontal direction (the direction perpendicular to the thickness direction) in the molded body cross section.
  • the width direction of the agglomerated portion may be visualized by a graph in which the abundance ratio (dielectric filler concentration) of one element selected from the dielectric filler constituent elements is used.
  • the abundance ratio (concentration) in the peripheral region is at least lower than the abundance ratio (concentration) in the intermediate region, probably because the aggregated portion is formed by the movement of the dielectric filler. Therefore, as the shape (concentration distribution of aggregates in the vertical cross section) shown by the graph (a graph in which the horizontal axis is a section from one peripheral region to the central region (or the central region) to the other peripheral region).
  • the graph shape may be satisfied for at least one element of the dielectric filler constituent elements, preferably for a plurality of dielectric filler constituent elements, and more preferably for all the dielectric filler constituent elements. (The same applies to the abundance ratios described below).
  • the abundance ratio may be the abundance ratio of one element selected from the dielectric filler constituent elements, and constitutes all the elements and resins constituting the dielectric filler. It may be the ratio of the abundance ratio of one element selected from the dielectric filler constituent elements to the total abundance ratio of carbon.
  • the method for preparing the analysis sample to be subjected to the element analysis is not particularly limited as long as it does not affect the measurement result of the abundance ratio, and is a conventional method, for example, cutting the molded product and observing the cross section (or observation).
  • the surface After cutting out the surface), it may be embedded in a predetermined resin and prepared by precision polishing or the like, and further, depending on the analysis method or the like, further observe the elements not contained in the resin and the dielectric filler. It may be vapor-deposited on the surface.
  • the method of confirming the non-uniformity of the abundance ratio (concentration) of the dielectric filler by elemental analysis has been described, but instead of the elemental analysis, the concentration of the filler such as the method of analyzing the chemical species.
  • a method capable of detecting (or confirming) may be used.
  • the region in the cross section has been described with reference to FIG. 2, if the molded product has an agglomerated portion in a form in which the dielectric filler penetrates or is exposed on the surface, the region is similarly formed on the surface of the molded product instead of the cross section. It may be set and the abundance ratio of the dielectric filler constituent elements may be compared. Usually, the region is often set by a cross section, and the cross section may be an arbitrary cross section, but a cross section substantially parallel to the thickness direction (longitudinal cross section) is preferable.
  • the central portion of the agglomerated portion can be appropriately determined according to the form of the agglomerated portion.
  • the agglomerated portion is usually formed so as to extend in a thickness direction or a direction forming a predetermined angle in the thickness direction (preferably in the thickness direction). Therefore, the central portion is the center of the agglomerated portion (or agglomerated portion element) in the cross section (cross section perpendicular to the thickness direction) of the molded body [the center of gravity of the cross-sectional shape of the agglomerated portion or (when linear)). It may be a central axis (or a central surface) that passes through the center in the width direction and extends along the direction (or thickness direction) in which the agglomerated portion extends.
  • the cross-sectional shape of the agglomerated portion (or agglomerated portion element) in the cross section is not particularly limited, and may be a shape corresponding to the shape of the agglomerated portion described later, for example, a substantially circular shape, a substantially elliptical shape, or a polygonal shape ( Examples include triangular shape, square shape, rectangular shape, etc.), linear shape (straight line or curved shape), spiral shape, irregular shape, and the like.
  • the agglomerates are formed of a plurality of agglomerate elements having the same or different shapes and / or directions [for example, complex (or irregular) with a plurality of agglomerate elements.
  • the central portion of the agglomerate portion having a complicated shape is a central portion in at least one agglomerate element selected from the agglomerate element [aggregate portion]. It can be the center of gravity of the cross-sectional shape of the element or the center in the width direction (if linear).
  • the agglomerate element often has a relatively simple cross-sectional shape (for example, the above-exemplified cross-sectional shape), and the specific shape of the agglomerate element is, for example, a dot shape [cylindrical shape, It may be a polygonal columnar shape such as a square columnar shape (or a rectangular parallelepiped shape)], a linear shape (a wall shape extending linearly or curvedly), and the like.
  • Typical examples of the complex-shaped agglomerate include a U-shaped agglomerate [for example, a pair of rectangular parallelepiped elements (or linear elements having a predetermined length) facing each other, and one end thereof. Agglomerates formed by a rectangular parallelepiped element extending in the opposite direction of the pair of rectangular parallelepiped elements]; Aggregates formed by a pair of columnar elements); Frame-shaped aggregates (for example, aggregates in which predetermined regions such as triangular frame-shaped aggregates and square frame-shaped aggregates are partitioned by wall-shaped aggregate elements).
  • U-shaped agglomerate for example, a pair of rectangular parallelepiped elements (or linear elements having a predetermined length) facing each other, and one end thereof. Agglomerates formed by a rectangular parallelepiped element extending in the opposite direction of the pair of rectangular parallelepiped elements]; Aggregates formed by a pair of columnar elements); Frame-shaped aggregates (for example, aggregates in which predetermined regions such as triangular
  • Lattice agglomerates for example, a plurality of first linear elements extending in parallel with each other at a predetermined interval, intersecting the plurality of first linear elements at a predetermined angle, and having a predetermined interval. It may be an agglomerate formed by a plurality of second linear elements extending in parallel with each other; a honeycomb-like or mesh-like agglomerate, etc.).
  • the agglomerated portion functions as a region for expressing the function of the dielectric filler in the molded product. Therefore, in the molded body, the agglomerated portion is formed into various shapes and structures depending on the application and purpose, but in the present disclosure, it is a simple method of applying active energy to a part of a region and has a complicated shape. And even the structure can be easily formed.
  • the shape of the agglomerated portion is not particularly limited, and examples thereof include a linear shape, a columnar shape (or a rod shape), a spherical shape, an ellipsoidal shape, an indefinite shape, and a planar shape. Further, the shape of the agglomerated portion may be a shape in which the above shapes are combined (for example, a grid shape or the like), or may be a shape corresponding to the cross-sectional shape. Of these shapes, linear, columnar (cylindrical, prismatic, etc.), planar, grid-like, or a combination of these shapes is often used.
  • the shape of the agglomerated portion can be selected from the above-mentioned shapes, but even if it is formed in a pattern (pattern or pattern shape), it is highly productive and the mechanical properties of the molded product can be improved by symmetry and homogeneity. good.
  • the pattern shape may be formed by one agglomerate (a continuous single agglutination), and usually, a plurality of agglomerates separated from each other are often formed.
  • the pattern may be, for example, a pattern (geometric pattern, etc.), a pattern, a symbol (or mark), a character, a picture, a combination of two or more of these, and the molded product due to such a pattern shape. May be given a design.
  • a typical pattern may be a pattern on a plane of a film-like molded body, for example, dots in a regularly or irregularly arranged manner, parallel or non-parallel at predetermined intervals (for example, for example). Examples include straight lines or curves (line-like), grid-like, grid-like, frame-like, spiral-shaped, and combinations of two or more of these arranged at equal intervals (distances different from each other, etc.).
  • the shapes of the dot-shaped aggregates (or the shape of the cross section perpendicular to the thickness direction) arranged regularly or irregularly include polygonal shapes such as squares, circular shapes, star shapes, and indefinite shapes. The above combinations and the like can be mentioned.
  • the molded product of the present disclosure may have a single continuous agglomerate (for example, an agglomerate forming a grid pattern), or may have a plurality of agglomerates separated from each other. Of these, it is preferable to have a plurality of agglomerates from the viewpoint of easily imparting anisotropy to the function of the agglomerates and reducing the proportion of the dielectric filler to improve the mechanical properties of the molded product.
  • the shape of each agglomerated portion may be the same shape or may be a different shape.
  • a mask having various shapes corresponding to an active energy imparting region (polymerization region or curing region) and a three-dimensional mold for molding a resin into a predetermined shape are combined, various shapes can be obtained.
  • the agglomerated portion can be easily formed, and a molded body having a different shape of each agglomerated portion can be easily formed. From the viewpoint of productivity and the like, a molded product having substantially the same shape of the agglomerated portion is preferable.
  • a film-like molded body (particularly) formed in a form in which a plurality of agglomerated portions form a pattern shape and at least one agglomerated portion of the plurality of agglomerated portions extends in the thickness direction and crosses (or penetrates). It may be a dielectric film or a sheet). Further, the agglomerated portions (both ends in the thickness direction) may be exposed on the front surface (particularly, both the front surface and the back surface) of the sheet-shaped molded product.
  • the size such as the width and diameter of the agglomerated portion is not particularly limited and may be, for example, 1 mm or more, but in the present disclosure, a relatively small size (or a relatively small size (or the minimum width in the shape of the agglomerated portion) may be 1 mm or more.
  • a relatively small size or a relatively small size (or the minimum width in the shape of the agglomerated portion) may be 1 mm or more.
  • an agglomerated portion (about 1 mm or less) can be formed. Therefore, the size of the agglomerated portion can be selected from the range of about 0.01 to 500 ⁇ m (for example, 0.1 to 300 ⁇ m), and may be, for example, 1 to 200 ⁇ m or less, preferably about 10 to 150 ⁇ m.
  • the molded product of the present disclosure may be in any shape of one-dimensional shape (for example, fibrous shape), two-dimensional shape (for example, plate shape, sheet shape, film shape, etc.), and three-dimensional shape shape. Of these, the two-dimensional shape is often used.
  • the thickness (average thickness) of the two-dimensional molded product can be selected from the range of, for example, about 0.1 ⁇ m to 1 mm, for example, 0.5 to 500 ⁇ m (for example, 1 to 100 ⁇ m), preferably 3 to 80 ⁇ m (for example, 5 to 50 ⁇ m). More preferably, it may be about 8 to 45 ⁇ m (for example, 10 to 40 ⁇ m), and in particular, when forming a self-supporting film, for example, 5 ⁇ m or more (for example, 10 to 100 ⁇ m), preferably 20 ⁇ m or more (for example, 25 to 25 to 70 ⁇ m), more preferably about 30 to 50 ⁇ m.
  • the method for producing a molded product of the present disclosure includes an agglomeration step of applying active energy to a part of a region of a liquid precursor containing a resin precursor and a dielectric filler to agglomerate the dielectric filler.
  • active energy is applied to a part of the region to polymerize the resin precursor, and the dielectric filler uniformly dispersed inside the molded product moves to part of the inside of the liquid precursor. Aggregates in the area of.
  • the partial region where the dielectric filler aggregates is either a region to which active energy is not applied (unpolymerized region or unexposed region) or a region to which active energy is applied (polymerized region or exposed region). It is an area.
  • the combination of blending and the production conditions particularly, the type of resin and dielectric filler to be combined
  • the active energy is applied to a region other than the region corresponding to the target aggregated form, and conversely, when moving to the polymerization region, the target pattern is simply applied by applying the active energy to the region corresponding to the target aggregated form. Can be formed.
  • the detailed mechanism by which the dielectric filler exhibits such behavior is unknown, but as the resin precursor polymerizes to form a resin in the region to which the active energy is applied, the resin component [resin precursor] It can be presumed that this is because the relationship of affinity between the body and its polymer (cured product) resin] and the dielectric filler changes.
  • the aggregated portion is formed in this way, it is possible to suppress the generation of voids (voids generated at the resin / filler interface, etc.) that are often seen in resin molded products containing fillers. Further, when the dielectric filler is agglomerated in the polymerization region, the thickness of the agglomerated portion may be larger than the thickness of the non-aggregated portion.
  • the resin precursor can be selected according to the type of resin, and when the resin is a thermoplastic resin, the resin precursor contains a monomer (monofunctional polymerizable compound) for forming the thermoplastic resin as the polymerizable compound.
  • the resin is a cured product of a curable resin (such as a cured product having a three-dimensional network structure), it may contain a thermoplastic polymerizable compound.
  • the liquid precursor does not have to contain a solvent (or dispersion medium) and, if necessary, in addition to the cationically polymerizable compound and filler (and other additives if necessary), the liquid precursor.
  • the solvent may be further included to reduce the viscosity of the.
  • solvent examples include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), and alicyclic hydrocarbons.
  • Classes (cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), carbon halides (dichloromethane, dichloroethane, etc.), esters (acetic acid esters such as methyl acetate, ethyl acetate, n-butyl acetate, etc.), Water, alcohols (ethanol, isopropanol, butanol, cyclohexanol, etc.), cellosolves [methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether (1-methoxy-2-propanol), etc.], cellosolve acetates, sulfoxides (dimethyl sulfoxide, etc.) Etc.), amides (dimethylformamide, dimethylacetamide, etc.), carbonates [eg, chain carbonates such as dimethyl carbonate, diethyl carbonate, cyclic carbonates such as ethylene carbonate, prop
  • the solvent may be a mixed solvent.
  • these solvents alcohols such as 2-propanol, carbonates such as propylene carbonate, and esters such as n-butyl acetate are often used.
  • the viscosity of the solvent at 20 ° C. is, for example, 0.5 to 100 mPa ⁇ s (for example, 0.6 to 50 mPa ⁇ s), preferably 0.5 to 20 mPa ⁇ s (for example, 0.7 to 10 mPa ⁇ s), and more preferably. It may be about 0.5 to 5 mPa ⁇ s (for example, 1 to 3 mPa ⁇ s).
  • the viscosity can be measured using a conventional viscometer (such as a single cylindrical rotational viscometer). If the viscosity of the solvent is too high, the viscosity of the liquid precursor may not be sufficiently reduced.
  • the ratio thereof is, for example, 300 parts by mass or less (for example, 1 to 200 parts by mass), preferably 180 parts by mass or less (for example, 50 to 150 parts by mass), preferably 50 parts by mass, based on 100 parts by mass of the liquid precursor. It is about 130 parts by mass or less (for example, 80 to 120 parts by mass). If the amount of the solvent is too small, the viscosity of the liquid precursor may not be sufficiently reduced, and if it is too large, it may be difficult to prepare a molded product having a large thickness.
  • the liquid precursor for imparting active energy may be filled in a mold depending on the desired shape, or may be applied in the case of a sheet-shaped or film-shaped molded product.
  • Conventional methods include roll coaters, air knife coaters, blade coaters, rod coaters, reverse coaters, bar coaters, comma coaters, dip squeeze coaters, die coaters, gravure coaters, micro gravure coaters, and silk screen coaters. Examples include the method, dip method, spray method, and spinner method.
  • the active energy examples include thermal energy from a laser and the like, and active light rays such as ultraviolet rays and electron beams.
  • active rays such as ultraviolet rays and electron beams are preferable, and ultraviolet rays are particularly preferable from the viewpoint of handleability and the like.
  • an energy source (heat source or light source) can be selected according to the type of active energy.
  • the active energy is ultraviolet rays
  • the light source for example, in the case of ultraviolet rays, Deep UV lamp, low pressure mercury lamp, high pressure mercury lamp, ultrahigh pressure mercury lamp, halogen lamp, laser light source (helium-cadmium laser, excima laser, etc.) Light source) etc. can be used.
  • the illuminance may be appropriately selected according to the type and concentration of the polymerizable compound, and the illuminance at a wavelength of 365 nm, for example, 0.1 to 20 mW / cm 2 ( For example 1 ⁇ 18mW / cm 2), preferably 0.3 ⁇ 15mW / cm 2 (e.g., 5 ⁇ 12mW / cm 2), more preferably 0.6 ⁇ 10mW / cm 2 (e.g., 6 ⁇ 9.5mW / cm 2 ) May be the case.
  • the irradiation time may be selected according to the illuminance, and may be, for example, 1 to 60 minutes, preferably 3 to 25 minutes, and more preferably about 5 to 15 minutes.
  • the polymerization of the resin precursor in the applied region can be started, and a dielectric material is applied to the portion to which the active energy is not applied or to the portion to which the active energy is applied.
  • a dielectric material is applied to the portion to which the active energy is not applied or to the portion to which the active energy is applied.
  • an aggregated portion and a non-aggregated portion can be formed.
  • the polymerization of the resin precursor may be completed, or in the polymerization step described later, the polymerization may be completed.
  • the method of imparting active energy to a part of the liquid precursor (or A-stage precursor) can be appropriately selected according to the type of the active energy.
  • a laser is applied to a part of the region. It may be irradiated with light or the like, and in the case of active light such as ultraviolet rays or electron beams, a part of the area is used by using a photomask having a region capable of blocking the active light to the uncured region (or unpolymerized region). (Curing region or polymerization region) may be irradiated with active light.
  • active energy may be applied (or irradiated) diagonally at a predetermined angle to a flat liquid precursor such as a coating film in the aggregation step, but it is usually flat. It is preferable to irradiate the liquid precursor in a direction substantially perpendicular to the liquid precursor.
  • the dielectric filler is aggregated or oriented (regularly or randomly oriented) in the thickness direction of the sheet-shaped molded product, and is formed so as to extend in the thickness direction (irradiation direction). Can easily form agglomerates in a form that traverses or penetrates (or a form in which the dielectric filler is exposed on the surface).
  • the active energy of the precursor molded product (semi-solid precursor molded article, solid precursor molded article, or B-stage precursor molded article) that has undergone the aggregation step is applied. It is preferable to further include a polymerization completion step of imparting active energy to a region (uncured region or unpolymerized region) that has not been imparted to complete the polymerization. By going through the polymerization completion step, the resin precursor in the region to which the active energy has not been applied can also be polymerized to form a resin.
  • the region to which the activation energy is applied may be a region including the region to which the activation energy is not applied in the aggregation step, but it can be easily operated, is excellent in productivity, and further advances the polymerization.
  • a method of imparting active energy to the entire region is preferable from the viewpoint that the mechanical properties of the molded product can be improved.
  • the same active energy as in the aggregation step may be used, and usually, the conditions for imparting the active energy may be changed in a direction of increasing strength. Further, the illuminance may be increased stepwise to irradiate. When using active light (light energy), if the irradiation time is too long, productivity may decrease.
  • thermal energy is applied (or annealed) in the polymerization completion step to complete the polymerization by utilizing the dark reaction (post-polymerization) of the cationically polymerizable compound.
  • the annealing temperature may be, for example, 50 to 200 ° C. (for example, 70 to 180 ° C.), preferably 80 to 150 ° C. (for example, 90 to 130 ° C.), and more preferably about 100 to 120 ° C.
  • the heating time may be, for example, 10 to 120 minutes, preferably about 30 to 60 minutes.
  • a bonded body in which the base material and the molded body are joined by molding the molded body in a state where the liquid precursor is brought into contact with a predetermined base material by a method such as coating.
  • the body may be formed.
  • the material of the base material is not particularly limited and may be either an organic material or an inorganic material.
  • organic material examples include resins [for example, olefin resins such as polyethylene and polypropylene, styrene resins such as ABS resin, vinyl resins such as vinyl chloride resin, (meth) acrylic resins such as polymethylmethacrylate, and polyethylene.
  • resins for example, olefin resins such as polyethylene and polypropylene, styrene resins such as ABS resin, vinyl resins such as vinyl chloride resin, (meth) acrylic resins such as polymethylmethacrylate, and polyethylene.
  • Polyester resin such as terephthalate (PET), polycarbonate resin, polyamide resin, polyimide resin, cellulose ester, cellulose derivative such as cellulose ether, thermoplastic elastomer, etc.]; Synthetic rubber material (isoprene rubber, butyl rubber, etc.); Resin Alternatively, rubber foams (eg, polyurethane foam, foamed polychloroprene rubber, etc.); plant or animal-derived materials (wood, pulp, natural rubber, leather, yarn, etc.) and the like can be mentioned.
  • PET terephthalate
  • polycarbonate resin polycarbonate resin
  • polyamide resin polyamide resin
  • polyimide resin cellulose ester
  • cellulose derivative such as cellulose ether
  • thermoplastic elastomer thermoplastic elastomer, etc.
  • Synthetic rubber material isoprene rubber, butyl rubber, etc.
  • Inorganic materials include, for example, ceramics (glass, silicon, cement, etc.); metals [for example, simple metals (aluminum, iron, nickel, copper, zinc, chromium, titanium, etc.), alloys containing these metals (aluminum alloys, etc.) Steel (stainless steel, etc.), etc.)] and the like.
  • resins for example, polyester resin, polyimide resin, etc., preferably polyimide resin, etc.
  • ceramics glass, etc.
  • metals copper, etc.
  • the form (shape) of the base material is not particularly limited, and for example, a one-dimensional shape such as a fibrous shape (thread shape, rope shape, wire shape, etc.), a plate shape, a sheet shape, a film shape, a foil shape, a cloth or a cloth.
  • Two-dimensional shapes such as shapes (woven cloth, knitted cloth, non-woven fabric, etc.), paper-like (high-quality paper, glassine paper, kraft paper, Japanese paper, etc.), lumps, blocks, rods (cylindrical, polygonal columns, etc.), tubular, etc.
  • the three-dimensional shape of the above can be mentioned.
  • a two-dimensional shape such as a plate shape, a sheet shape, a film shape, or a foil shape.
  • NPG Neopentyl glycol diglycidyl ether, "Epogosee (registered trademark) NPG (D)” manufactured by Yokkaichi Chemical Co., Ltd., viscosity 8 mPa ⁇ s (25 ° C, catalog value)
  • EP1 CEL2021P: 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, "Celoxide 2021P” manufactured by Daicel Corporation, viscosity 240 mPa ⁇ s (25 ° C)
  • EP2 (3,4,3', 4'-diepoxy) bicyclohexyl, viscosity 60 mPa ⁇ s (25 ° C) (Dielectric filler)
  • BaTIO 3 Barium titanate fine particles, manufactured by Kanto Chemical Co., Inc., particle size approx. 100 nm (Initiator) C
  • No. 7 A photomask (5-inch glass mask manufactured by Tokyo Process Service Co., Ltd.) in which square or square dots, 100 ⁇ m ⁇ 100 ⁇ m size square shading parts are regularly arranged in a checkered pattern.
  • dielectric constant As a pretreatment step, platinum was deposited on a film whose dielectric constant was measured by an ion sputtering apparatus (“MC1000” manufactured by Hitachi High-Tech Co., Ltd.) on both sides in a circular shape having a diameter of 40 mm so that the centers were the same.
  • the dielectric constant (relative permittivity) of the pretreated film was measured under the following conditions, and the relative value with respect to the corresponding comparative example was taken as the degree of increase.
  • Each component was mixed and stirred at the ratios shown in Table 1 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator.
  • the prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film.
  • the obtained coating film is irradiated with ultraviolet light (wavelength 365 nm) under the conditions (illuminance, irradiation time) shown in Table 1 using a spot UV device without using a mask, and then the illuminance is further increased.
  • a film having a coating layer having the thickness shown in Table 1 was prepared by irradiating with ultraviolet light without passing through a mask.
  • Examples 1 to 4 Each component was mixed and stirred at the ratios shown in Table 1 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator.
  • the prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film.
  • the obtained coating film was irradiated with ultraviolet light (wavelength 365 nm) through a mask under the conditions (illuminance, irradiation time) shown in Table 1 using a spot UV device (first stage), and then A film having a coating layer having the film thickness shown in Table 1 was prepared by rapidly irradiating ultraviolet light without passing through a mask (second stage).
  • Examples 5 to 18 Each component was mixed and stirred at the ratios shown in Table 1 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator.
  • the prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film.
  • the obtained coating film was irradiated with ultraviolet light (wavelength 365 nm) through a mask under the conditions (illumination, irradiation time) shown in Table 1 using a spot UV device (first stage), and then Immediately irradiate ultraviolet light without passing through a mask (second stage), further increase the illuminance and irradiate ultraviolet light without passing through a mask (third stage), and apply the coating layer having the film thickness shown in Table 1.
  • the film to have was prepared.
  • Table 1 shows the evaluation results of the films obtained in Comparative Examples 1 and 2 and Examples 1 to 18.
  • FIGS. 5 to 24 the CCD photographs of the obtained film are shown in FIGS. 5 to 24.
  • the filler agglomerated portion is shown in black (dark color) for observation by transmitted light.
  • the film of the example was excellent in curability, and the dielectric filler was also sufficiently controlled.
  • Each component was mixed and stirred at the ratios shown in Table 2 to prepare a liquid precursor containing a cationically polymerizable compound and an initiator.
  • the prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film.
  • the obtained coating film was irradiated with ultraviolet light (wavelength 365 nm) under the conditions (illuminance, irradiation time) shown in Table 2 using a spot UV device without using a mask, and is shown in Table 2.
  • a film having a coating layer having a film thickness was prepared.
  • Each component was mixed and stirred at the ratios shown in Table 2 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator.
  • the prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film.
  • the obtained coating film is irradiated with ultraviolet light (wavelength 365 nm) under the conditions (illuminance, irradiation time) shown in Table 2 using a spot UV device without using a mask, and then the illuminance is further increased.
  • a film having a coating layer having the thickness shown in Table 2 was prepared by irradiating with ultraviolet light without passing through a mask.
  • Example 19 to 29 Each component was mixed and stirred at the ratios shown in Table 2 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator.
  • the prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film.
  • the obtained coating film was irradiated with ultraviolet light (wavelength 365 nm) through a mask under the conditions (illumination, irradiation time) shown in Table 2 using a spot UV device (first stage), and then Immediately irradiate ultraviolet light without passing through a mask (second stage), further increase the illuminance and irradiate ultraviolet light without passing through a mask (third stage), and apply the coating layer having the film thickness shown in Table 2.
  • the film to have was prepared.
  • Table 2 shows the evaluation results of the films obtained in Comparative Examples 3 to 7 and Examples 19 to 29. Moreover, the CCD photograph of the obtained film is shown in FIGS. 25-39.
  • the film of the example was excellent in curability, the dielectric filler was sufficiently controlled, and the dielectric constant was also improved.
  • the relative permittivity is shown as a relative value with respect to the comparative example, but in the example, the relative permittivity increased by 20% or more as compared with the comparative example. Further, the dielectric film obtained in the examples did not break even when wound around a glass rod having a diameter of 5 mm, and was excellent in flexibility.
  • the molded body of the present disclosure can be used as a dielectric used in various electric / electronic devices, transportation devices, etc., and is particularly suitable as a dielectric used as a passive element component such as a capacitor, a register, and an inductor.
  • the film-shaped molded body is suitable as a dielectric film (high dielectric constant insulating film) because it has excellent flexibility, and is used as a film capacitor for home appliances, in-vehicle electronic devices, industrial devices, power electronics devices, etc. Especially suitable.
  • Aggregation part 1a Central area (central part, near the central part or the first area) 1b ... Intermediate region (intermediate region, intermediate region or second region) 1c ... Peripheral area (peripheral part, near interface or third area) 2 ... Non-aggregated part 3 ... Interface 4 ... Central part of aggregated part

Abstract

This molded body comprising a resin and a dielectric filler is produced through an aggregation step in which active energy is applied to a partial region of a liquid precursor including a resin precursor and dielectric fillers, and the dielectric fillers are aggregated to thereby obtain a precursor molded body. This molded body has: an aggregated part which is a region where the dielectric fillers are aggregated; and a non-aggregated part which is a region other than the aggregated part. In addition, the abundance ratio of the dielectric fillers in the aggregated part gradually decreases towards an interface between the aggregated part and the non-aggregated part, at least in the vicinity of the interface. The resin may be a cured product of a photocurable resin. The photocurable resin may be a cationically polymerizable compound. The proportion of the dielectric fillers may be 0.1-100 parts by mass with respect to 100 parts by mass of the resin. The molded body may have a film shape.

Description

成形体ならびにその前駆体、製造方法および用途Molded article and its precursor, manufacturing method and application
 本開示は、樹脂中に誘電体フィラーが凝集した領域を有する成形体ならびにその前駆体、製造方法および用途に関する。 The present disclosure relates to a molded product having a region in which a dielectric filler is aggregated in a resin, a precursor thereof, a manufacturing method, and an application thereof.
 誘電材料は、電圧が負荷されると、電気分極が起こり、電気を蓄える性質を有しているため、電気・電子機器において、コンデンサ(キャパシタ)、レジスタ、インダクタなどの受動素子部品として広く利用されている。また、これらの用途で使用される誘電材料は、通常、シート状であり、機械的強度や耐久性が要求される上に、ロール状に巻回された形態であることも多く、柔軟性も要求される。そのため、誘電材料としては、樹脂中に誘電体フィラーを含有させた複合誘電材料も開発されているが、複合誘電材料においては、電気特性と機械的特性とはトレードオフの関係にあり、誘電体フィラーの割合を増加して比誘電率を向上させると、誘電材料の機械的特性は低下する。近年、スマートフォンなどのモバイル機器の普及により、電子部品の高密度化、小型化が進んでいるため、複合誘電材料にも、比誘電率の向上(高誘電率化)と柔軟性などの機械的特性との両立が求められている。 Dielectric materials are widely used as passive element components such as capacitors, resistors, and inductors in electrical and electronic equipment because they have the property of storing electricity due to electric polarization when a voltage is applied. ing. In addition, the dielectric material used in these applications is usually in the form of a sheet, which requires mechanical strength and durability, and is often wound in a roll shape, and is also flexible. Required. Therefore, as a dielectric material, a composite dielectric material in which a dielectric filler is contained in a resin has also been developed, but in the composite dielectric material, there is a trade-off relationship between electrical properties and mechanical properties, and a dielectric material is used. Increasing the proportion of filler to increase the relative permittivity reduces the mechanical properties of the dielectric material. In recent years, with the spread of mobile devices such as smartphones, the density and size of electronic components have been increasing. Therefore, even for composite dielectric materials, the relative permittivity has been improved (higher permittivity) and mechanical features such as flexibility. Compatibility with characteristics is required.
 特開2018-6052号公報(特許文献1)には、樹脂からなるマトリックス粒子の周囲に誘電体フィラーからなる被膜が形成され、前記誘電体フィラーが三次元的にネットワークを形成した誘電体複合材料が開示されている。 In Japanese Patent Application Laid-Open No. 2018-6052 (Patent Document 1), a dielectric composite material in which a film made of a dielectric filler is formed around matrix particles made of a resin, and the dielectric filler forms a three-dimensional network. Is disclosed.
 特許第6264897号公報(特許文献2)には、樹脂の溶融液と、分散媒中に分散させた無機フィラーの分散液とを混合し、超音波振動によって無機フィラーを樹脂に分散させた塗料を塗工することにより、不均一状態で樹脂に無機フィラーが分散した高誘電率フィルムが開示されている。 In Japanese Patent No. 6264897 (Patent Document 2), a coating material obtained by mixing a resin melt and a dispersion of an inorganic filler dispersed in a dispersion medium and dispersing the inorganic filler in the resin by ultrasonic vibration is provided. A high dielectric constant film in which an inorganic filler is dispersed in a resin in a non-uniform state by coating is disclosed.
特開2018-6052号公報JP-A-2018-6052 特許第6264897号公報Japanese Patent No. 6264897
 しかし、特許文献1および2の誘電体複合材料および高誘電率フィルムは、構造制御が容易ではなく、簡便性および生産性が低い上に、高誘電率化も十分ではない。なお、特許文献1では、図1の断面模式図で表される並列モデルは、少量の誘電体フィラーを用いて製造することは容易ではなく、現実的でないモデルとして記載されている。 However, the dielectric composite materials and high dielectric constant films of Patent Documents 1 and 2 are not easy to control the structure, are low in convenience and productivity, and are not sufficiently high in dielectric constant. In Patent Document 1, the parallel model represented by the schematic cross-sectional view of FIG. 1 is described as an impractical model because it is not easy to manufacture using a small amount of dielectric filler.
 従って、本開示の目的は、樹脂中で誘電体フィラーが凝集した領域を有する成形体を簡便に製造できる方法を提供することにある。 Therefore, an object of the present disclosure is to provide a method capable of easily producing a molded product having a region in which a dielectric filler is aggregated in a resin.
 本開示の他の目的は、誘電体フィラーの凝集領域が各種形状またはパターン状に形成されている成形体ならびにその前駆体、製造方法および用途を提供することにある。 Another object of the present disclosure is to provide a molded product in which the agglutinating region of the dielectric filler is formed in various shapes or patterns, a precursor thereof, a manufacturing method, and an application thereof.
 本開示のさらに他の目的は、厚み方向に横断または貫通する形態のフィラー凝集領域を有するフィルム状成形体ならびにその前駆体、製造方法および用途を提供することにある。 Yet another object of the present disclosure is to provide a film-like molded article having a filler agglomerated region in a form that traverses or penetrates in the thickness direction, a precursor thereof, a manufacturing method, and an application.
 本開示の別の目的は、柔軟性(または靭性)などの機械的特性と高誘電率特性とを両立できるフィルム状成形体ならびにその前駆体、製造方法および用途を提供することにある。 Another object of the present disclosure is to provide a film-like molded product capable of achieving both mechanical properties such as flexibility (or toughness) and high dielectric constant properties, a precursor thereof, a manufacturing method, and an application thereof.
 本開示のさらに別の目的は、高誘電率特性、低誘電損失および耐熱性を向上できるフィルム状成形体ならびにその前駆体、製造方法および用途を提供することにある。 Yet another object of the present disclosure is to provide a film-like molded product capable of improving high dielectric constant characteristics, low dielectric loss and heat resistance, and a precursor thereof, a manufacturing method and an application thereof.
 本発明者らは、前記課題を達成するためさらに鋭意検討した結果、樹脂前駆体および誘電体フィラーを含む液状前駆体の一部の領域に活性エネルギーを付与すると、前記誘電体フィラーを特定の領域に凝集でき、樹脂中で誘電体フィラーが凝集した領域を有する成形体を簡便に製造できることを見出し、本発明を完成した。 As a result of further diligent studies to achieve the above problems, the present inventors apply active energy to a part of the region of the liquid precursor containing the resin precursor and the dielectric filler, and the dielectric filler is applied to a specific region. The present invention has been completed by finding that a molded product having a region in which the dielectric filler is aggregated in the resin can be easily produced.
 すなわち、本開示の成形体は、樹脂と誘電体フィラー(または誘電体粒子)とを含み、前記誘電体フィラーが凝集した領域である凝集部と、前記凝集部以外の領域である非凝集部とで形成され、かつ前記凝集部における誘電体フィラーの存在割合が、前記非凝集部との少なくとも界面近傍において、界面に向かって漸減する。前記樹脂は光硬化性樹脂の硬化物であってもよい。前記光硬化性樹脂はカチオン重合性化合物であってもよい。前記誘電体フィラーはチタン含有複合金属酸化物で形成された無機フィラーであってもよい。前記誘電体フィラーの割合は、前記樹脂100質量部に対して0.1~100質量部であってもよい。前記成形体は、フィルム状であってもよい。前記フィルム状成形体は、複数の凝集部がパターン形状を形成し、かつ前記複数の凝集部のうち少なくとも1つの凝集部が厚み方向に延びて貫通した形態に形成されていてもよい。前記成形体は、誘電フィルムであってもよい。 That is, the molded product of the present disclosure contains a resin and a dielectric filler (or dielectric particles), and has an agglomerated portion which is a region where the dielectric filler is agglomerated and a non-aggregated portion which is a region other than the agglomerated portion. The abundance ratio of the dielectric filler in the agglomerated portion is gradually reduced toward the interface at least in the vicinity of the interface with the non-aggregated portion. The resin may be a cured product of a photocurable resin. The photocurable resin may be a cationically polymerizable compound. The dielectric filler may be an inorganic filler formed of a titanium-containing composite metal oxide. The ratio of the dielectric filler may be 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin. The molded product may be in the form of a film. The film-shaped molded product may be formed in such a form that a plurality of agglomerated portions form a pattern shape and at least one agglomerated portion of the plurality of agglomerated portions extends in the thickness direction and penetrates. The molded product may be a dielectric film.
 本開示には、樹脂前駆体および誘電体フィラーを含む液状前駆体の一部の領域に活性エネルギーを付与して前記誘電体フィラーを凝集させて前駆成形体を得る凝集工程を含む前記成形体の製造方法も含まれる。この製造方法は、凝集工程を経た前駆成形体の未硬化の領域に活性エネルギーを付与して重合を完結させる重合完結工程を含んでいてもよい。前記製造方法において、前記液状前駆体は光酸発生剤を含んでいてもよく、前記活性エネルギーは活性光線であってもよい。また、本開示には、前記製造方法で得られた成形体も含まれる。 The present disclosure comprises an aggregation step of applying active energy to a part of a region of a liquid precursor containing a resin precursor and a dielectric filler to aggregate the dielectric filler to obtain a precursor molded article. The manufacturing method is also included. This production method may include a polymerization completion step of applying active energy to the uncured region of the precursor molded product that has undergone the aggregation step to complete the polymerization. In the production method, the liquid precursor may contain a photoacid generator, and the active energy may be active light rays. The present disclosure also includes a molded product obtained by the above-mentioned production method.
 本開示には、光硬化性樹脂と誘電体フィラーとを含み、前記誘電体フィラーが凝集した領域である凝集部と、前記凝集部以外の領域である非凝集部とを有する成形体を形成するための液状前駆体であって、光硬化性樹脂および誘電体フィラーを含む液状前駆体も含まれる。 In the present disclosure, a molded product containing a photocurable resin and a dielectric filler and having an agglomerated portion which is a region where the dielectric filler is agglomerated and a non-aggregated portion which is a region other than the agglomerated portion is formed. A liquid precursor for this purpose, which also includes a liquid precursor containing a photocurable resin and a dielectric filler.
 本開示には、樹脂、セラミックスまたは金属で形成された基材と、前記成形体とが接合された接合体も含まれる。この接合体は、コンデンサであってもよい。 The present disclosure also includes a bonded body in which a base material formed of resin, ceramics or metal and the molded product are bonded to each other. This junction may be a capacitor.
 本開示では、樹脂前駆体および誘電体フィラーを含む液状前駆体の一部の領域に活性エネルギーを付与するため、樹脂中で誘電体フィラーが凝集した領域を有する成形体を簡便に(効率良く)製造できる。また、所望の型やパターン状のマスクなどを用いれば、誘電体フィラーの凝集領域が各種形状またはパターン状に形成されている成形体も簡便にまたは精度良く製造できる。さらに、厚み方向に横断または連続する形態のフィラー凝集領域(並列接続モデルと称される厚み方向に誘電体が連続する高誘電率構造:例えば、特許文献1に記載されている図1に示す構造等)を有するフィルム状(またはシート状)成形体も簡便に製造できる。そのため、フィルム状成形体の厚み方向に誘電特性を有効に発現できる。また、誘電体フィラーの添加量が少なくても効率的に誘電特性を付与できるため、フィルム状成形体の柔軟性(または靭性)などの機械的特性と高誘電率特性とを両立できる。さらに、高誘電率特性、低誘電損失および耐熱性も優れた成形体も得ることができる。 In the present disclosure, in order to impart active energy to a part of a region of a liquid precursor containing a resin precursor and a dielectric filler, a molded product having a region in which the dielectric filler is aggregated in the resin can be easily (efficiently) used. Can be manufactured. Further, by using a desired mold, a patterned mask, or the like, a molded product in which the agglutinating region of the dielectric filler is formed in various shapes or patterns can be easily or accurately manufactured. Further, a filler agglomeration region in a form that is transverse or continuous in the thickness direction (a high dielectric constant structure in which the dielectric is continuous in the thickness direction, which is called a parallel connection model: for example, the structure shown in FIG. 1 described in Patent Document 1. A film-like (or sheet-like) molded body having (etc.) can be easily manufactured. Therefore, the dielectric property can be effectively exhibited in the thickness direction of the film-shaped molded product. Further, since the dielectric property can be efficiently imparted even if the amount of the dielectric filler added is small, it is possible to achieve both mechanical properties such as flexibility (or toughness) of the film-shaped molded product and high dielectric constant characteristics. Further, a molded product having high dielectric constant characteristics, low dielectric loss and excellent heat resistance can be obtained.
図1は、特許文献1において製造が容易でないと記載されている複合材料の断面模式図である。FIG. 1 is a schematic cross-sectional view of a composite material described in Patent Document 1 as not easy to manufacture. 図2は、凝集部における誘電体フィラー濃度の不均一性を説明するために示した本発明のシート状成形体の概略部分縦断面図である。FIG. 2 is a schematic partial longitudinal sectional view of the sheet-shaped molded product of the present invention shown to explain the non-uniformity of the dielectric filler concentration in the agglomerated portion. 図3は、実施例で使用したフォトマスクのパターン形状を示す図である。FIG. 3 is a diagram showing a pattern shape of the photomask used in the examples. 図4は、実施例で使用したフォトマスクの他のパターン形状を示す図である。FIG. 4 is a diagram showing other pattern shapes of the photomask used in the examples. 図5は比較例1で得られたフィルムの表面((a)100倍、(b)400倍)のCCD(電荷結合素子)写真である。FIG. 5 is a CCD (charge-coupled device) photograph of the surface of the film obtained in Comparative Example 1 ((a) 100 times, (b) 400 times). 図6は、比較例2で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 6 is a CCD photograph of the surface of the film obtained in Comparative Example 2 ((a) 100 times, (b) 400 times). 図7は、実施例1で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 7 is a CCD photograph of the surface of the film obtained in Example 1 ((a) 100 times, (b) 400 times). 図8は、実施例2で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 8 is a CCD photograph of the surface of the film obtained in Example 2 ((a) 100 times, (b) 400 times). 図9は、実施例3で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 9 is a CCD photograph of the surface of the film obtained in Example 3 ((a) 100 times, (b) 400 times). 図10は、実施例4で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 10 is a CCD photograph of the surface of the film obtained in Example 4 ((a) 100 times, (b) 400 times). 図11は、実施例5で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 11 is a CCD photograph of the surface of the film obtained in Example 5 ((a) 100 times, (b) 400 times). 図12は、実施例6で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 12 is a CCD photograph of the surface of the film obtained in Example 6 ((a) 100 times, (b) 400 times). 図13は、実施例7で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 13 is a CCD photograph of the surface of the film obtained in Example 7 ((a) 100 times, (b) 400 times). 図14は、実施例8で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 14 is a CCD photograph of the surface of the film obtained in Example 8 ((a) 100 times, (b) 400 times). 図15は、実施例9で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 15 is a CCD photograph of the surface of the film obtained in Example 9 ((a) 100 times, (b) 400 times). 図16は、実施例10で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 16 is a CCD photograph of the surface of the film obtained in Example 10 ((a) 100 times, (b) 400 times). 図17は、実施例11で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 17 is a CCD photograph of the surface of the film obtained in Example 11 ((a) 100 times, (b) 400 times). 図18は、実施例12で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 18 is a CCD photograph of the surface of the film obtained in Example 12 ((a) 100 times, (b) 400 times). 図19は、実施例13で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 19 is a CCD photograph of the surface of the film obtained in Example 13 ((a) 100 times, (b) 400 times). 図20は、実施例14で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 20 is a CCD photograph of the surface of the film obtained in Example 14 ((a) 100 times, (b) 400 times). 図21は、実施例15で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 21 is a CCD photograph of the surface of the film obtained in Example 15 ((a) 100 times, (b) 400 times). 図22は、実施例16で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 22 is a CCD photograph of the surface of the film obtained in Example 16 ((a) 100 times, (b) 400 times). 図23は、実施例17で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 23 is a CCD photograph of the surface of the film obtained in Example 17 ((a) 100 times, (b) 400 times). 図24は、実施例18で得られたフィルムの表面((a)100倍、(b)400倍)のCCD写真である。FIG. 24 is a CCD photograph of the surface of the film obtained in Example 18 ((a) 100 times, (b) 400 times). 図25は、比較例4で得られたフィルムの表面(100倍)のCCD写真である。FIG. 25 is a CCD photograph of the surface (100 times) of the film obtained in Comparative Example 4. 図26は、実施例19で得られたフィルムの表面(100倍)のCCD写真である。FIG. 26 is a CCD photograph of the surface (100 times) of the film obtained in Example 19. 図27は、実施例20で得られたフィルムの表面(100倍)のCCD写真である。FIG. 27 is a CCD photograph of the surface (100 times) of the film obtained in Example 20. 図28は、実施例21で得られたフィルムの表面(100倍)のCCD写真である。FIG. 28 is a CCD photograph of the surface (100 times) of the film obtained in Example 21. 図29は、比較例5で得られたフィルムの表面(100倍)のCCD写真である。FIG. 29 is a CCD photograph of the surface (100 times) of the film obtained in Comparative Example 5. 図30は、実施例22で得られたフィルムの表面(100倍)のCCD写真である。FIG. 30 is a CCD photograph of the surface (100 times) of the film obtained in Example 22. 図31は、実施例23で得られたフィルムの表面(100倍)のCCD写真である。FIG. 31 is a CCD photograph of the surface (100 times) of the film obtained in Example 23. 図32は、実施例24で得られたフィルムの表面(100倍)のCCD写真である。FIG. 32 is a CCD photograph of the surface (100 times) of the film obtained in Example 24. 図33は、比較例6で得られたフィルムの表面(100倍)のCCD写真である。FIG. 33 is a CCD photograph of the surface (100 times) of the film obtained in Comparative Example 6. 図34は、実施例25で得られたフィルムの表面(100倍)のCCD写真である。FIG. 34 is a CCD photograph of the surface (100 times) of the film obtained in Example 25. 図35は、実施例26で得られたフィルムの表面(100倍)のCCD写真である。FIG. 35 is a CCD photograph of the surface (100 times) of the film obtained in Example 26. 図36は、実施例27で得られたフィルムの表面(100倍)のCCD写真である。FIG. 36 is a CCD photograph of the surface (100 times) of the film obtained in Example 27. 図37は、比較例7で得られたフィルムの表面(100倍)のCCD写真である。FIG. 37 is a CCD photograph of the surface (100 times) of the film obtained in Comparative Example 7. 図38は、実施例28で得られたフィルムの表面(100倍)のCCD写真である。FIG. 38 is a CCD photograph of the surface (100 times) of the film obtained in Example 28. 図39は、実施例29で得られたフィルムの表面(100倍)のCCD写真である。FIG. 39 is a CCD photograph of the surface (100 times) of the film obtained in Example 29.
 [成形体]
 本開示の成形体は、樹脂と誘電体フィラーとを含み、かつ前記誘電体フィラーが凝集した領域である凝集部と、前記凝集部以外の領域である非凝集部(またはマトリックス部)とで形成された成形体であるが、このような構造を有する成形体(複合成形体)は、樹脂前駆体および誘電体フィラーを含む液状前駆体の一部の領域に活性エネルギーを付与して前記誘電体フィラーを凝集させる凝集工程を経ることにより得られる。本開示では、凝集工程において、活性エネルギーが付与された領域で前記樹脂前駆体が重合しつつ、前記誘電体フィラーが重合に伴って移動して凝集部を形成していると推測できる。誘電体フィラーは、配合の組み合わせや製造条件の選択によって、活性エネルギーの付与されていない領域に移動させることもでき、活性エネルギーの付与されている領域に移動させることもできる。
[Molded product]
The molded product of the present disclosure contains a resin and a dielectric filler, and is formed by an agglomerated portion which is a region where the dielectric filler is agglomerated and a non-aggregated portion (or a matrix portion) which is a region other than the agglomerated portion. A molded product having such a structure (composite molded product) is a molded product obtained by imparting active energy to a part of a region of a liquid precursor containing a resin precursor and a dielectric filler. It is obtained by going through a coagulation step of coagulating the filler. In the present disclosure, it can be inferred that in the agglomeration step, the resin precursor is polymerized in the region to which the active energy is applied, and the dielectric filler moves with the polymerization to form an agglomerated portion. The dielectric filler can be moved to a region where active energy is not applied, or can be moved to a region where active energy is applied, depending on the combination of formulations and the selection of production conditions.
 (樹脂)
 樹脂としては、活性エネルギーによって重合可能な樹脂であればよく、重合によって得られた樹脂は熱可塑性樹脂であってもよいが、誘電体フィラーを凝集させ易い点から、活性エネルギーによって硬化可能な硬化性樹脂の硬化物が好ましい。
(resin)
The resin may be any resin that can be polymerized by active energy, and the resin obtained by polymerization may be a thermoplastic resin. However, since it is easy to aggregate the dielectric filler, it can be cured by active energy. A cured product of a sex resin is preferable.
 硬化性樹脂としては、カチオン重合性化合物および/またはラジカル重合性樹脂などが挙げられる。これらのうち、生産性などの点から、カチオン重合性化合物が好ましい。カチオン重合性化合物は、反応速度が誘電体フィラーの移動(凝集)に対して適しているためか、所望の成形体を簡便にまたは精度よく調製することができる。また、カチオン重合は、空気中など酸素存在下で反応させることができ、さらには、暗反応(または後重合)などを利用することで硬化性の制御も容易であるため、生産性に優れている。 Examples of the curable resin include cationically polymerizable compounds and / or radically polymerizable resins. Of these, cationically polymerizable compounds are preferable from the viewpoint of productivity and the like. The cationically polymerizable compound can easily or accurately prepare a desired molded product, probably because the reaction rate is suitable for the movement (aggregation) of the dielectric filler. Further, the cationic polymerization can be reacted in the presence of oxygen such as in the air, and further, the curability can be easily controlled by using a dark reaction (or post-polymerization), so that the productivity is excellent. There is.
 カチオン重合性化合物は少なくとも1つのカチオン重合性基を有する限り特に制限されず、1つのカチオン重合性基を有する単官能カチオン重合性化合物であってもよく、2以上の同一または異なるカチオン重合性基を有する多官能カチオン重合性化合物であってもよい。硬化性や樹脂強度(または硬さなどの成形体強度)の観点から、通常、多官能カチオン重合性化合物がよく利用される。多官能カチオン重合性化合物である場合、カチオン重合性基の数は、例えば、2~10程度の範囲から選択でき、例えば2~8(例えば2~6)、好ましくは2~4、さらに好ましくは2~3、特に2であってもよい。 The cationically polymerizable compound is not particularly limited as long as it has at least one cationically polymerizable group, and may be a monofunctional cationically polymerizable compound having one cationically polymerizable group, or two or more identical or different cationically polymerizable groups. It may be a polyfunctional cationically polymerizable compound having. From the viewpoint of curability and resin strength (or molded product strength such as hardness), a polyfunctional cationically polymerizable compound is usually often used. In the case of a polyfunctional cationically polymerizable compound, the number of cationically polymerizable groups can be selected from the range of, for example, about 2 to 10, for example, 2 to 8 (for example, 2 to 6), preferably 2 to 4, and more preferably. It may be 2 to 3, especially 2.
 カチオン重合性基としては、例えば、エポキシ(オキシラン環)含有基、オキセタン環含有基、ビニルエーテル基などが挙げられる。 Examples of the cationically polymerizable group include an epoxy (oxylan ring) -containing group, an oxetane ring-containing group, and a vinyl ether group.
 エポキシ含有基としては、オキシラン環骨格を少なくとも有する基であればよく、例えば、エポキシ基(またはオキシラン-2-イル基)、2-メチルオキシラン-2-イル基、グリシジル含有基(例えば、グリシジル基、2-メチルグリシジル基など)、脂環式エポキシ基(例えば、3,4-エポキシシクロヘキシル基などのエポキシシクロアルキル基、3,4-エポキシ-6-メチルシクロヘキシル基などのアルキル-エポキシシクロアルキル基など)などが挙げられる。 The epoxy-containing group may be a group having at least an oxylan ring skeleton, and is, for example, an epoxy group (or an oxylan-2-yl group), a 2-methyloxylan-2-yl group, or a glycidyl-containing group (for example, a glycidyl group). , 2-Methylglycidyl group, etc.), alicyclic epoxy group (eg, epoxycycloalkyl group such as 3,4-epoxidecyclohexyl group, alkyl-epoxidecycloalkyl group such as 3,4-epoxy-6-methylcyclohexyl group) Etc.) and so on.
 オキセタン環含有基としては、オキセタン環骨格を少なくとも有する基であればよく、例えば、オキセタニル基(3-オキセタニル基など)、アルキルオキセタニル基(例えば、3-メチル-3-オキセタニル基、3-エチル-3-オキセタニル基などのC1-4アルキルオキセタニル基など)などが挙げられる。 The oxetane ring-containing group may be a group having at least an oxetane ring skeleton. C 1-4 alkyl oxetaneyl groups such as 3-oxetanyl groups) and the like.
 これらのカチオン重合性基は、単独でまたは2種以上組み合わせて有していてもよい。これらのカチオン重合性基のうち、誘電体フィラーの凝集に適した硬化性や生産性などの観点から、グリシジル含有基、脂環式エポキシ基などのエポキシ含有基がよく利用される。 These cationically polymerizable groups may be present alone or in combination of two or more. Among these cationically polymerizable groups, epoxy-containing groups such as glycidyl-containing groups and alicyclic epoxy groups are often used from the viewpoint of curability and productivity suitable for aggregation of dielectric fillers.
 代表的なカチオン重合性化合物としては、エポキシ含有基を有するエポキシ化合物、オキセタン環含有基を有するオキセタン化合物、ビニルエーテル基を有するビニルエーテル化合物、エポキシ含有基、オキセタン環含有基、ビニルエーテル基から選択された2種以上のカチオン重合性基を有する多官能化合物などが挙げられる。 As a typical cationically polymerizable compound, 2 selected from an epoxy compound having an epoxy-containing group, an oxetane compound having an oxetane ring-containing group, a vinyl ether compound having a vinyl ether group, an epoxy-containing group, an oxetane ring-containing group, and a vinyl ether group. Examples thereof include polyfunctional compounds having more than one species of cationically polymerizable groups.
 これらのカチオン重合性化合物は、単独でまたは2種以上組み合わせて使用することもできる。これらのカチオン重合性化合物のうち、エポキシ化合物、オキセタン化合物などの前記エポキシ含有基、オキセタン環含有基から選択された少なくとも1種のカチオン重合性基を有する化合物がよく利用され、なかでも、少なくともエポキシ基を有する化合物が好ましく、誘電体フィラーの凝集に適した硬化性や生産性などの観点から、エポキシ化合物がさらに好ましい。 These cationically polymerizable compounds can be used alone or in combination of two or more. Among these cationically polymerizable compounds, compounds having at least one cationically polymerizable group selected from the epoxy-containing group such as an epoxy compound and an oxetane compound and an oxetane ring-containing group are often used, and among them, at least epoxy. A compound having a group is preferable, and an epoxy compound is more preferable from the viewpoint of curability and productivity suitable for agglomeration of the dielectric filler.
 前記エポキシ化合物としては、カチオン重合性基として、1つのエポキシ含有基を有する単官能エポキシ化合物、2以上のエポキシ含有基を有する多官能エポキシ化合物が挙げられる。これらのエポキシ化合物は、単独でまたは2種以上組み合わせて使用することもできる。 Examples of the epoxy compound include a monofunctional epoxy compound having one epoxy-containing group and a polyfunctional epoxy compound having two or more epoxy-containing groups as cationically polymerizable groups. These epoxy compounds can also be used alone or in combination of two or more.
 単官能エポキシ化合物としては、例えば、グリシジル基(または2-メチルグリシジル基)を有する単官能グリシジル型エポキシ化合物、脂環式エポキシ基を有する単官能脂環式エポキシ化合物などが挙げられる。単官能グリシジル型エポキシ化合物としては、例えば、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ドデシルグリシジルエーテル、トリデシルグリシジルエーテルなどのアルキルグリシジルエーテル;フェニルグリシジルエーテル、アルキルフェニルグリシジルエーテル(トリルグリシジルエーテル、t-ブチルフェニルグリシジルエーテルなど)などのアリールグリシジルエーテル;エチレングリコールモノグリシジルエーテル、1,4-ブタンジオールモノグリシジルエーテル、ジエチレングリコールモノグリシジルエーテルなどの(ポリ)アルキレングリコールモノグリシジルエーテル;2,3-エポキシ-1-プロパノール(又はグリシドール);グリシジル(メタ)アクリレート;グリシジルオキシエチル(メタ)アクリレートなどのグリシジルオキシアルキル(メタ)アクリレート;2-(2-グリシジルオキシエトキシ)エチル(メタ)アクリレートなどのグリシジルオキシ(ポリ)アルコキシアルキル(メタ)アクリレート;これらの化合物におけるグリシジル基を2-メチルグリシジル基とした化合物などが挙げられる。 Examples of the monofunctional epoxy compound include a monofunctional glycidyl type epoxy compound having a glycidyl group (or 2-methylglycidyl group), a monofunctional alicyclic epoxy compound having an alicyclic epoxy group, and the like. Examples of the monofunctional glycidyl type epoxy compound include alkyl glycidyl ethers such as butyl glycidyl ether, 2-ethylhexyl glycidyl ether, dodecyl glycidyl ether and tridecyl glycidyl ether; phenyl glycidyl ether and alkylphenyl glycidyl ether (tril glycidyl ether, t- Aryl glycidyl ethers such as butylphenyl glycidyl ethers; (poly) alkylene glycol monoglycidyl ethers such as ethylene glycol monoglycidyl ethers, 1,4-butanediol monoglycidyl ethers, diethylene glycol monoglycidyl ethers; 2,3-epoxy-1 -Propanol (or glycidole); glycidyl (meth) acrylate; glycidyloxyalkyl (meth) acrylate such as glycidyloxyethyl (meth) acrylate; glycidyloxy (poly) such as 2- (2-glycidyloxyethoxy) ethyl (meth) acrylate ) Alkoxyalkyl (meth) acrylate; Examples thereof include compounds in which the glycidyl group in these compounds is a 2-methylglycidyl group.
 単官能脂環式エポキシ化合物としては、例えば、1,2-エポキシシクロヘキサン、置換エポキシシクロヘキサン(例えば、1,2-エポキシ-4-ヒドロキシメチルシクロヘキサン、1,2-エポキシ-4-ビニルシクロヘキサン、3,4-エポキシ-シクロヘキシルメチル(メタ)アクリレート、アリル-3,4-エポキシシクロヘキサンカルボキシレートなど)などが挙げられる。 Examples of the monofunctional alicyclic epoxy compound include 1,2-epoxycyclohexane and substituted epoxycyclohexane (eg, 1,2-epoxy-4-hydroxymethylcyclohexane, 1,2-epoxy-4-vinylcyclohexane, 3, 4-Epoxy-cyclohexylmethyl (meth) acrylate, allyl-3,4-epoxycyclohexanecarboxylate, etc.) and the like.
 多官能エポキシ化合物としては、例えば、グリシジル基(および/または2-メチルグリシジル基)を有する多官能グリシジル型エポキシ化合物、少なくとも1つの脂環式エポキシ基を有する多官能脂環式エポキシ化合物などが挙げられる。なお、本明細書および特許請求の範囲において、グリシジル基および脂環式エポキシ基の双方を有するエポキシ化合物は、脂環式エポキシ化合物に分類する。 Examples of the polyfunctional epoxy compound include a polyfunctional glycidyl type epoxy compound having a glycidyl group (and / or a 2-methylglycidyl group), a polyfunctional alicyclic epoxy compound having at least one alicyclic epoxy group, and the like. Be done. In addition, in this specification and claims, an epoxy compound having both a glycidyl group and an alicyclic epoxy group is classified as an alicyclic epoxy compound.
 多官能グリシジル型エポキシ化合物としては、例えば、グリシジルエーテル型エポキシ化合物(またはグリシジルエーテル型エポキシ樹脂)、グリシジルエステル型エポキシ化合物(またはグリシジルエステル型エポキシ樹脂)、グリシジルアミン型エポキシ化合物(またはグリシジルアミン型エポキシ樹脂)、複素環式グリシジル型エポキシ化合物などが挙げられる。 Examples of the polyfunctional glycidyl type epoxy compound include a glycidyl ether type epoxy compound (or glycidyl ether type epoxy resin), a glycidyl ester type epoxy compound (or glycidyl ester type epoxy resin), and a glycidyl amine type epoxy compound (or glycidyl amine type epoxy resin). Resin), heterocyclic glycidyl type epoxy compound and the like.
 グリシジルエステル型エポキシ化合物としては、例えば、ジグリシジルフタレート、ジグリシジルテトラヒドロフタレート、ジグリシジルヘキサヒドロフタレートなどのジグリシジルフタレート類;グリシジル(メタ)アクリレートの単独又は共重合体;これらの化合物におけるグリシジル基を2-メチルグリシジル基とした化合物などが挙げられる。 Examples of the glycidyl ester type epoxy compound include diglycidyl phthalates such as diglycidyl phthalate, diglycidyl tetrahydrophthalate, and diglycidyl hexahydrophthalate; glycidyl (meth) acrylate alone or copolymer; glycidyl group in these compounds. Examples thereof include a compound having a 2-methylglycidyl group.
 グリシジルアミン型エポキシ化合物としては、例えば、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルメタキシリレンジアミン、テトラグリシジルビスアミノメチルシクロヘキサンなどのテトラグリシジルジアミン類;ジグリシジルアニリン、ジグリシジルトルイジン、N,N-ジグリシジル-2,4,6-トリブロモアニリン、トリグリシジル-p-アミノフェノール、トリグリシジル-m-アミノフェノールなどのグリシジルアニリン類;これらの化合物におけるグリシジル基を2-メチルグリシジル基とした化合物などが挙げられる。 Examples of the glycidylamine type epoxy compound include tetraglycidyldiamines such as tetraglycidyldiaminodiphenylmethane, tetraglycidylmethoxylylylene diamine, and tetraglycidylbisaminomethylcyclohexane; diglycidylaniline, diglycidyltoluidine, N, N-diglycidyl-2. , 4,6-Tribromoaniline, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol and other glycidylanilins; compounds in which the glycidyl group in these compounds is a 2-methylglycidyl group and the like can be mentioned.
 複素環式グリシジル型エポキシ化合物としては、例えば、トリグリシジルイソシアヌレートなどのイソシアヌレート型エポキシ化合物;ジグリシジルヒダントインなどのヒダントイン型エポキシ化合物;これらの化合物におけるグリシジル基を2-メチルグリシジル基とした化合物などが挙げられる。 Examples of the heterocyclic glycidyl-type epoxy compound include isocyanurate-type epoxy compounds such as triglycidyl isocyanurate; hydantoin-type epoxy compounds such as diglycidyl hydantoin; and compounds in which the glycidyl group in these compounds is a 2-methylglycidyl group. Can be mentioned.
 これらの多官能グリシジル型エポキシ化合物は、単独でまたは2種以上組み合わせて使用することもできる。これらのうち、誘電体フィラーの凝集に適した硬化性や生産性などの観点から、グリシジルエーテル型エポキシ化合物が好ましい。 These polyfunctional glycidyl type epoxy compounds can be used alone or in combination of two or more. Of these, the glycidyl ether type epoxy compound is preferable from the viewpoint of curability and productivity suitable for agglutination of the dielectric filler.
 グリシジルエーテル型エポキシ化合物として代表的には、芳香族グリシジルエーテル型エポキシ化合物、脂環族グリシジルエーテル型エポキシ化合物、脂肪族グリシジルエーテル型エポキシ化合物などが挙げられる。 Typical examples of the glycidyl ether type epoxy compound include an aromatic glycidyl ether type epoxy compound, an alicyclic glycidyl ether type epoxy compound, and an aliphatic glycidyl ether type epoxy compound.
 芳香族グリシジルエーテル型エポキシ化合物としては、芳香族ポリオールまたはそのアルキレンオキシド付加体のポリグリシジルエーテルなどが挙げられ、例えば、ビまたはビスフェノール型エポキシ化合物(例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、ビスフェノールS型エポキシ化合物などの慣用のビスフェノール類のジグリシジルエーテル、p,p’-ビフェノールなどのビフェノール類のジグリシジルエーテルなど);ノボラック型エポキシ樹脂(例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂など);ポリヒドロキシアレーンのポリグリシジルエーテル[例えば、ビス(グリシジルオキシ)ベンゼン、ビス(グリシジルオキシ)ナフタレンなど];テトラキスフェノール型エポキシ化合物[例えば、テトラキス(グリシジルオキシフェニル)エタンなど];これらの化合物に対応する芳香族ポリオールのC2-4アルキレンオキシド付加体のポリグリシジルエーテル;これらの化合物におけるグリシジル基を2-メチルグリシジル基とした化合物などが挙げられる。 Examples of the aromatic glycidyl ether type epoxy compound include polyglycidyl ether of an aromatic polyol or an alkylene oxide adduct thereof, and examples thereof include bi or bisphenol type epoxy compounds (for example, bisphenol A type epoxy compound and bisphenol F type epoxy compound). , Bisphenol AD type epoxy compound, Bisphenol S type epoxy compound and other conventional bisphenol diglycidyl ethers, p, p'-biphenol and other biphenol diglycidyl ethers, etc.); Epoxy resin, cresol novolac type epoxy resin, etc.); Polyhydroxyarene polyglycidyl ether [for example, bis (glycidyloxy) benzene, bis (glycidyloxy) naphthalene, etc.]; Tetrakissphenol type epoxy compound [for example, tetrakis (glycidyloxyphenyl) ) Etan and the like]; Polyglycidyl ether of C 2-4 alkylene oxide adduct of aromatic polyol corresponding to these compounds; Compounds in which the glycidyl group in these compounds is a 2-methylglycidyl group and the like can be mentioned.
 脂環式グリシジルエーテル型エポキシ化合物としては、脂環族ポリオールまたはそのアルキレンオキシド付加体のポリグリシジルエーテルなどが挙げられ、例えば、前記芳香族グリシジルエーテル化合物の水添物[例えば、水添ビまたはビスフェノール型エポキシ化合物(水添ビスフェノールA型エポキシ化合物などの慣用のビスフェノール類の水添物のジグリシジルエーテルなど);水添ノボラック型エポキシ樹脂など];1,4-ビス(グリシジルオキシ)シクロヘキサンなどのビス(グリシジルオキシ)C5-10シクロアルカン;1,4-シクロヘキサンジメタノールのジグリシジルエーテルなどのビス(グリシジルオキシC1-4アルキル)C5-10シクロアルカン;これらの化合物に対応する脂環式ポリオールのC2-4アルキレンオキシド付加体のポリグリシジルエーテル;これらの化合物におけるグリシジル基を2-メチルグリシジル基とした化合物などが挙げられる。 Examples of the alicyclic glycidyl ether type epoxy compound include polyglycidyl ether of an alicyclic polyol or an alkylene oxide adduct thereof, and for example, a hydrogenated product of the aromatic glycidyl ether compound [for example, hydrogenated bi or bisphenol]. Type epoxy compounds (such as diglycidyl ether, which is a hydrogenated product of conventional bisphenols such as hydrogenated bisphenol A type epoxy compounds); hydrogenated novolak type epoxy resins, etc.]; (Glysidyloxy) C 5-10 cycloalkane; bis (glycidyloxy C 1-4 alkyl) C 5-10 cycloalcan such as diglycidyl ether of 1,4-cyclohexanedimethanol; alicyclic type corresponding to these compounds Polyglycidyl ether of C 2-4 alkylene oxide adduct of polyol; compounds in which the glycidyl group in these compounds is 2-methylglycidyl group and the like can be mentioned.
 これらのグリシジルエーテル型エポキシ化合物は、単独でまたは2種以上組み合わせて使用することもできる。これらのうち、低粘度で誘電体フィラーの凝集を促進し易い点などから、脂肪族グリシジルエーテル型エポキシ化合物が好ましい。 These glycidyl ether type epoxy compounds can be used alone or in combination of two or more. Of these, an aliphatic glycidyl ether type epoxy compound is preferable because it has a low viscosity and easily promotes aggregation of the dielectric filler.
 脂肪族グリシジルエーテル型エポキシ化合物としては、例えば、脂肪族多価アルコール(脂肪族ポリオール)またはその縮合物(又は多量体)のポリグリシジルエーテルなどが挙げられる。脂肪族グリシジルエーテル型エポキシ化合物を形成するための脂肪族多価アルコールとしては、例えば、脂肪族ジオール[例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオールなどの直鎖状または分岐鎖状C2-12アルカンジオールなど];3価以上の脂肪族ポリオール[例えば、トリメチロールプロパンなどのポリメチロールアルカン;グリセリン、ペンタエリスリトール、ソルビトール、マンニトールなどの糖アルコール;これらのアルキレンオキシド付加体など]などが挙げられる。なお、脂肪族多価アルコールの縮合物は、これらの脂肪族多価アルコールが単独でまたは2種以上組み合わせて縮合された化合物であってもよい。 Examples of the aliphatic glycidyl ether type epoxy compound include polyglycidyl ether of an aliphatic polyhydric alcohol (aliphatic polyol) or a condensate (or a multimer) thereof. Examples of the aliphatic polyhydric alcohol for forming the aliphatic glycidyl ether type epoxy compound include aliphatic diols [for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1, Linear or branched C 2-12 alkanes such as 4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol Diols and the like]; Aliphatic polyols having a trivalent or higher valence [for example, polymethylol alkanes such as trimethylolpropane; sugar alcohols such as glycerin, pentaerythritol, sorbitol, mannitol; alkylene oxide adducts thereof and the like] and the like. The condensate of the aliphatic polyhydric alcohol may be a compound obtained by condensing these aliphatic polyhydric alcohols alone or in combination of two or more.
 脂肪族グリシジルエーテル型エポキシ化合物として代表的には、2価のグリシジルエーテル型化合物、3価以上のグリシジルエーテル型化合物が挙げられる。2価のグリシジルエーテル型化合物としては、例えば、下記式(1)で表される(ポリ)アルキレングリコールジグリシジルエーテル;トリメチロールプロパンジグリシジルエーテル、グリセリンジグリシジルエーテル、ペンタエリスリトールジグリシジルエーテルなどの前記3価以上の脂肪族ポリオールまたはそのポリオールを含む縮合物のジグリシジルエーテルなどが挙げられる。 Typical examples of the aliphatic glycidyl ether type epoxy compound include a divalent glycidyl ether type compound and a trivalent or higher glycidyl ether type compound. Examples of the divalent glycidyl ether type compound include the (poly) alkylene glycol diglycidyl ether represented by the following formula (1); trimethylolpropane diglycidyl ether, glycerin diglycidyl ether, pentaerythritol diglycidyl ether and the like. Examples thereof include diglycidyl ether, which is a trivalent or higher aliphatic polyol or a condensate containing the polyol.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Aは直鎖状または分岐鎖状アルキレン基、mは1以上の整数、Rはそれぞれ独立して水素原子またはメチル基を示す)。 (In the formula, A 1 is a linear or branched alkylene group, m is an integer of 1 or more, and R 1 is an independent hydrogen atom or methyl group).
 前記式(1)において、Aで表される直鎖状又は分岐鎖状アルキレン基としては、例えば、エチレン基、プロピレン基、トリメチレン基、1,2-ブタンジイル基、テトラメチレン基、2,2-ジメチルプロパン-1,3-ジイル基(ネオペンチレン基)、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基などの直鎖状または分岐鎖状C2-12アルキレン基(例えば、直鎖状または分岐鎖状C2-10アルキレン基)、好ましくは直鎖状または分岐鎖状C2-8アルキレン基(例えば、直鎖状または分岐鎖状C3-7アルキレン基)、さらに好ましくはエチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基などの直鎖状または分岐鎖状C2-7アルキレン基(例えば、テトラメチレン基などの直鎖状または分岐鎖状C2-6アルキレン基、好ましくは直鎖状または分岐鎖状C3-6アルキレン基、特に直鎖状または分岐鎖状C4-6アルキレン基)などが挙げられる。 In the formula (1) Examples of the linear or branched alkylene group represented by A 1, for example, ethylene group, propylene group, trimethylene group, 1,2-butanediyl group, tetramethylene group, 2,2 -Dimethylpropan-1,3-diyl group (neopentylene group), pentamethylene group, hexamethylene group, octamethylene group, decamethylene group and other linear or branched C 2-12 alkylene groups (eg, linear) Alternatively, a branched C 2-10 alkylene group), preferably a linear or branched C 2-8 alkylene group (eg, a linear or branched C 3-7 alkylene group), more preferably an ethylene group. , A linear or branched C 2-7 alkylene group such as a propylene group, a trimethylene group, a tetramethylene group, or a hexamethylene group (for example, a linear or branched C 2-6 alkylene group such as a tetramethylene group). , Preferably a linear or branched C 3-6 alkylene group, particularly a linear or branched C 4-6 alkylene group).
 繰り返し数mは1以上の整数であればよく、例えば1~30(例えば1~15)程度の整数から選択でき、例えば1~10(例えば1~8)、好ましくは1~6(例えば1~4)、さらに好ましくは1~3(例えば1または2)、特に1であってもよい。mが大きすぎると、液状前駆体の粘度が上昇して誘電体フィラーの制御性が低下する虞がある。また、mが2以上である場合、複数のアルキレン基Aの種類は、互いに同一または異なっていてもよい。 The repetition number m may be an integer of 1 or more, and can be selected from an integer of, for example, about 1 to 30 (for example, 1 to 15), for example, 1 to 10 (for example, 1 to 8), preferably 1 to 6 (for example, 1 to 1 to 1). 4), more preferably 1 to 3 (eg 1 or 2), especially 1. If m is too large, the viscosity of the liquid precursor may increase and the controllability of the dielectric filler may decrease. Further, when m is 2 or more, kinds of a plurality of alkylene groups A 1 may be the same or different from each other.
 Rは水素原子またはメチル基のいずれであってもよく、通常、水素原子である場合が多い。Rの種類は互いに異なっていてもよいが、通常、同一である。 R 1 may be either a hydrogen atom or a methyl group, and is usually a hydrogen atom in many cases. The types of R 1 may be different from each other, but are usually the same.
 前記式(1)で表される(ポリ)アルキレングリコールジグリシジルエーテルとして、具体的には、例えば、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,3-プロパンジオールジグリシジルエーテル、1,2-ブタンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,5-ペンタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、1,8-オクタンジオールジグリシジルエーテル、1,10-デカンジオールジグリシジルエーテルなどの直鎖状または分岐鎖状C2-12アルキレングリコール-ジグリシジルエーテル;ジエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテルなどの(ジ乃至ペンタ)直鎖状または分岐鎖状C2-12アルキレングリコール-ジグリシジルエーテル;これらの化合物のグリシジルオキシ基を2-メチルグリシジルオキシ基に置換した化合物などが挙げられる。 Specific examples of the (poly) alkylene glycol diglycidyl ether represented by the formula (1) include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,3-propanediol diglycidyl ether, and 1, 2-butanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,5-pentanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,8-octane Linear or branched C 2-12 alkylene glycol-diglycidyl ethers such as diol diglycidyl ethers and 1,10-decanediol diglycidyl ethers; diethylene glycol diglycidyl ethers, dipropylene glycol diglycidyl ethers, triethylene glycol di Examples include (di to penta) linear or branched C 2-12 alkylene glycol-diglycidyl ethers such as glycidyl ethers; compounds in which the glycidyl oxy group of these compounds is replaced with a 2-methyl glycidyl oxy group.
 前記式(1)で表される(ポリ)アルキレングリコールジグリシジルエーテルは、単独で又は2種以上組み合わせて使用することもできる。これらのうち、mが1であるアルキレングリコールジグリシジルエーテルが好ましく、なかでも、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテルなどの直鎖状または分岐鎖状C2-8アルキレングリコール-ジグリシジルエーテル(例えば、直鎖状または分岐鎖状C3-7アルキレングリコール-ジグリシジルエーテル)、特に、直鎖状または分岐鎖状C2-6アルキレングリコール-ジグリシジルエーテル(例えば、ネオペンチルグリコール、1,6-ヘキサンジオールジグリシジルエーテルなどの直鎖状または分岐鎖状C4-6アルキレングリコール-ジグリシジルエーテル、好ましくはネオペンチルグリコールなどの分岐鎖状C4-6アルキレングリコール-ジグリシジルエーテルなど)が好ましい。 The (poly) alkylene glycol diglycidyl ether represented by the formula (1) can be used alone or in combination of two or more. Of these, alkylene glycol diglycidyl ether having m of 1 is preferable, and among them, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1 , 6-Hexanediol Diglycidyl ether, etc. Linear or branched C 2-8 alkylene glycol-diglycidyl ether (eg, linear or branched C 3-7 alkylene glycol-diglycidyl ether), in particular , Linear or branched C 2-6 alkylene glycol-diglycidyl ether (eg, linear or branched C 4-6 alkylene glycol such as neopentyl glycol, 1,6-hexanediol diglycidyl ether- Diglycidyl ether, preferably branched chain C 4-6 alkylene glycol-diglycidyl ether such as neopentyl glycol) is preferred.
 一方、3価以上のグリシジルエーテル型化合物としては、例えば、(ポリ)トリメチロールプロパントリ乃至ペンタグリシジルエーテル[例えば、トリメチロールプロパントリグリシジルエーテル、ジトリメチロールプロパントリグリシジルエーテル、ジトリメチロールプロパンテトラグリシジルエーテルなどのモノ乃至トリ(トリメチロールプロパン)トリ乃至ペンタグリシジルエーテルなど];(ポリ)グリセリンポリグリシジルエーテル[例えば、グリセリントリグリシジルエーテル、ジグリセリントリグリシジルエーテル、ジグリセリンテトラグリシジルエーテルなどのモノ乃至トリ(グリセリン)トリ乃至ペンタグリシジルエーテルなど];(ポリ)ペンタエリスリトールポリグリシジルエーテル[例えば、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ジペンタエリスリトールペンタグリシジルエーテル、ジペンタエリスリトールヘキサグリシジルエーテルなどのモノ乃至トリ(ペンタエリスリトール)トリ乃至オクタグリシジルエーテルなど]などの3価以上のポリオール又はその縮合物(あるいはそれらのC2-4アルキレンオキシド付加体)のポリグリシジルエーテル;これらの化合物におけるグリシジル基を2-メチルグリシジル基とした化合物などが挙げられる。 On the other hand, examples of the trivalent or higher glycidyl ether type compound include (poly) trimethylolpropane tri to pentaglycidyl ether [for example, trimethylolpropane triglycidyl ether, ditrimethylolpropane triglycidyl ether, ditrimethylolpropane tetraglycidyl ether and the like. Mono-tri (trimethylolpropane) tri-pentaglycidyl ether, etc.]; (Poly) glycerin polyglycidyl ether [for example, mono-tri (glycerin) such as glycerin triglycidyl ether, diglycerin triglycidyl ether, diglycerin tetraglycidyl ether, etc. ) Tri to pentaglycidyl ether, etc.]; (Poly) Pentaerythritol polyglycidyl ether [for example, mono to tri, such as pentaerythritol triglycidyl ether, pentaerythritol tetraglycidyl ether, dipentaerythritol pentaglycidyl ether, dipentaerythritol hexaglycidyl ether, etc. (Pentaerythritol) Tri-octaglycidyl ether, etc.] Polyglycidyl ethers of trivalent or higher valent polyols or their condensates (or their C 2-4 alkylene oxide adducts); 2-methyl glycidyl groups in these compounds Examples thereof include a compound having a glycidyl group.
 これらの脂肪族グリシジルエーテル型エポキシ化合物は、単独でまたは2種以上組み合わせて使用することもできる。これらの脂肪族グリシジルエーテル型エポキシ化合物のうち、2価のグリシジルエーテル型化合物、なかでも、誘電体フィラーの制御性を向上し易く、調達も容易な点などから、前記式(1)で表される(ポリ)アルキレングリコールジグリシジルエーテル(特に、アルキレングリコールジグリシジルエーテル)がよく利用される。 These aliphatic glycidyl ether type epoxy compounds can be used alone or in combination of two or more. Among these aliphatic glycidyl ether type epoxy compounds, the divalent glycidyl ether type compound is represented by the above formula (1) because it is easy to improve the controllability of the dielectric filler and it is easy to procure it. (Poly) alkylene glycol diglycidyl ether (particularly, alkylene glycol diglycidyl ether) is often used.
 前記多官能脂環式エポキシ化合物は、2以上のエポキシ含有基を有し、かつ少なくとも1つが脂環式エポキシ基である化合物であればよい。代表的には、1つの脂環式エポキシ基と1以上の非脂環式エポキシ基とを有する化合物[例えば、1,2:8,9-ジエポキシリモネン(または1-メチル-4-(2-メチルオキシラニル)-7-オキサビシクロ[4.1.0]ヘプタン、ARKEMA社製「LIMONENE DIOXIDE」)などの脂環式エポキシ基とエチレンオキシド基とをそれぞれ1つずつ有する化合物など];2つの脂環式エポキシ基を有する化合物;3以上の脂環式エポキシ基を有する化合物などが挙げられる。 The polyfunctional alicyclic epoxy compound may be a compound having two or more epoxy-containing groups and at least one of which is an alicyclic epoxy group. Typically, a compound having one alicyclic epoxy group and one or more non-alicyclic epoxy groups [eg, 1,2: 8,9-diepoxide limonene (or 1-methyl-4- (2)). -Methyloxylanyl) -7-oxabicyclo [4.1.0] heptane, ARKEMA's "LIMONENE DIOXIDE") and other compounds having one alicyclic epoxy group and one ethylene oxide group, etc.]; 2 Compounds having one alicyclic epoxy group; compounds having three or more alicyclic epoxy groups and the like can be mentioned.
 2つの脂環式エポキシ基を有する化合物としては、下記式(2)で表される化合物が挙げられる。 Examples of the compound having two alicyclic epoxy groups include a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Xは単結合または連結基を示し、シクロヘキセンオキシド基は、それぞれ置換基を有していてもよい)。 (In the formula, X represents a single bond or a linking group, and each cyclohexene oxide group may have a substituent).
 式(2)において、Xで表される連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部または全部がエポキシ化されたアルケニレン基、カルボニル基(-CO-)、エーテル結合(-O-)、エステル結合(-COO-)、カーボネート基(-O-CO-O-)、アミド基(-CONH-)、およびこれらが複数個連結した基などが挙げられる。 In the formula (2), examples of the linking group represented by X include a divalent hydrocarbon group, an alkenylene group in which part or all of the carbon-carbon double bond is epoxidized, and a carbonyl group (-CO-). ), Ether bond (-O-), ester bond (-COO-), carbonate group (-O-CO-O-), amide group (-CONH-), and a group in which a plurality of these are linked. ..
 上記二価の炭化水素基としては、例えば、直鎖状または分岐鎖状C1-18アルキレン基、二価のC3-18脂環式炭化水素基等が挙げられる。直鎖状または分岐鎖状C1-18アルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基などが挙げられる。二価のC3-18脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等のシクロアルキレン基(シクロアルキリデン基を含む)などが挙げられる。 Examples of the divalent hydrocarbon group include a linear or branched C 1-18 alkylene group and a divalent C 3-18 alicyclic hydrocarbon group. Examples of the linear or branched C 1-18 alkylene group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group and the like. Examples of the divalent C 3-18 alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group and 1 , 3-Cyclohexylene group, 1,4-cyclohexylene group, cycloalkylene group such as cyclohexylidene group (including cycloalkylidene group) and the like.
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基などの直鎖状または分岐鎖状C2-8アルケニレン基等が挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化されたC2-4アルケニレン基である。 Examples of the alkenylene group in the alkenylene group in which a part or all of the carbon-carbon double bond is epoxidized (sometimes referred to as “epoxidized alkenylene group”) include a vinylene group, a propenylene group, and a 1-butenylene group. , 2-Butenylene group, butazienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group and other linear or branched C 2-8 alkenylene groups. In particular, as the epoxidized alkenylene group, an alkenylene group in which the entire carbon-carbon double bond is epoxidized is preferable, and a C 2-4 alkenylene group in which the entire carbon-carbon double bond is epoxidized is more preferable. Is.
 これらのうち、Xとしては、カルボニルオキシメチレン基などが好ましい。 Of these, as X, a carbonyloxymethylene group or the like is preferable.
 上記式(2)において、2つのシクロヘキセンオキシド基には、それぞれ独立して置換基が結合していてもよく、前記置換基としては、例えば、ハロゲン原子、C1-10アルキル基、C1-10アルコキシ基、C2-10アルケニルオキシ基、C6-14アリールオキシ基、C7-18アラルキルオキシ基、C1-10アシルオキシ基、C1-10アルコキシカルボニル基、C6-14アリールオキシカルボニル基、C7-18アラルキルオキシカルボニル基、エポキシ基含有基、オキセタン環含有基、C1-10アシル基、イソシアナート基、スルホ基、カルバモイル基、オキソ基などが挙げられる。シクロヘキセンオキシド基には、前記置換基が結合していないのが好ましい。 In the above formula (2), a substituent may be independently bonded to each of the two cyclohexene oxide groups, and the substituents include, for example, a halogen atom, a C 1-10 alkyl group, and a C 1-. 10 alkoxy group, C 2-10 alkenyloxy group, C 6-14 aryloxy group, C 7-18 aralkyloxy group, C 1-10 acyloxy group, C 1-10 alkoxycarbonyl group, C 6-14 aryloxycarbonyl Examples thereof include a group, a C 7-18 aralkyloxycarbonyl group, an epoxy group-containing group, an oxetane ring-containing group, a C 1-10 acyl group, an isocyanato group, a sulfo group, a carbamoyl group, and an oxo group. It is preferable that the substituent is not bonded to the cyclohexene oxide group.
 上記式(2)で表される化合物の代表的な例としては、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパン、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタンや、下記式(2-1)~(2-8)で表される化合物などが挙げられる。 Typical examples of the compound represented by the above formula (2) are (3,4,3', 4'-diepoxy) bicyclohexyl, bis (3,4-epoxycyclohexylmethyl) ether, 1,2-. Epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2-bis (3,4-epoxycyclohexane-1-yl) propane, 1,2-bis (3,4-yl) Examples thereof include epoxycyclohexane-1-yl) ethane and compounds represented by the following formulas (2-1) to (2-8).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、LはC1-8アルキレン基(例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基などの直鎖状又は分岐鎖状C1-3アルキレン基)を示し、n1及びn2はそれぞれ1~30の整数を示す)。 (In the formula, L represents a C 1-8 alkylene group (for example, a linear or branched C 1-3 alkylene group such as a methylene group, an ethylene group, a propylene group, an isopropylene group), and n1 and n2 are. Each indicates an integer from 1 to 30).
 前記3以上の脂環式エポキシ基を有する化合物としては、例えば、下記式(2-9)(2-10)で表される化合物などが挙げられる。 Examples of the compound having three or more alicyclic epoxy groups include compounds represented by the following formulas (2-9) and (2-10).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、n3~n8は、それぞれ独立して1~30の整数を示す)。 (In the formula, n3 to n8 independently represent integers of 1 to 30).
 これらの多官能脂環式エポキシ化合物は、単独でまたは2種以上組み合わせて使用することもできる。これらの多官能脂環式エポキシ化合物のうち、前記式(2)で表される化合物などの2つの脂環式エポキシ基を有する化合物が好ましく、なかでも、Xがカルボニルオキシメチレン基である3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート(前記式(2-1)で表される化合物)が好ましい。 These polyfunctional alicyclic epoxy compounds can be used alone or in combination of two or more. Among these polyfunctional alicyclic epoxy compounds, compounds having two alicyclic epoxy groups such as the compound represented by the above formula (2) are preferable, and among them, X is a carbonyloxymethylene group 3, 4-Epoxide cyclohexylmethyl (3,4-epoxide) cyclohexanecarboxylate (compound represented by the above formula (2-1)) is preferable.
 前記多官能グリシジル型エポキシ化合物および多官能脂環式エポキシ化合物とは異なる他の多官能エポキシ化合物としては、例えば、ポリオール(トリメチロールプロパンなど)の1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加体(例えば、(株)ダイセル製「EHPE3150」など)などが挙げられる。 Other polyfunctional epoxy compounds different from the polyfunctional glycidyl type epoxy compound and the polyfunctional alicyclic epoxy compound include, for example, 1,2-epoxy-4- (2-oxylanyl) of a polyol (such as trimethylolpropane). Examples thereof include a cyclohexane adduct (for example, “EHPE3150” manufactured by Daicel Co., Ltd.).
 これらの多官能エポキシ化合物は、単独でまたは2種以上組み合わせて使用することもできる。これらのエポキシ化合物のうち、通常、硬化性や生産性の観点から多官能エポキシ化合物がよく利用される。多官能エポキシ化合物のうち、誘電体フィラーの凝集に特に適した硬化性や生産性などの観点から、多官能グリシジル型エポキシ化合物、多官能脂環式エポキシ化合物が好ましく、さらに好ましくはグリシジルエーテル型エポキシ化合物、2つの脂環式エポキシ基を有する化合物、より好ましくは前記式(1)で表される(ポリ)アルキレングリコールジグリシジルエーテル、前記式(2)で表される2つの脂環式エポキシ基を有する化合物である。 These polyfunctional epoxy compounds can be used alone or in combination of two or more. Of these epoxy compounds, polyfunctional epoxy compounds are usually often used from the viewpoint of curability and productivity. Among the polyfunctional epoxy compounds, a polyfunctional glycidyl type epoxy compound and a polyfunctional alicyclic epoxy compound are preferable, and more preferably a glycidyl ether type epoxy, from the viewpoint of curability and productivity which are particularly suitable for agglomeration of a dielectric filler. A compound, a compound having two alicyclic epoxy groups, more preferably a (poly) alkylene glycol diglycidyl ether represented by the above formula (1), and two alicyclic epoxy groups represented by the above formula (2). It is a compound having.
 さらに、誘電体フィラーの制御性に優れるとともに、成形体の柔軟性も向上できる点から、多官能脂環式エポキシ化合物と多官能グリシジル型エポキシ化合物との組み合わせが好ましく、前記式(2)で表される2つの脂環式エポキシ基を有する化合物と前記式(1)で表される(ポリ)アルキレングリコールジグリシジルエーテルとの組み合わせが特に好ましい。 Further, the combination of the polyfunctional alicyclic epoxy compound and the polyfunctional glycidyl type epoxy compound is preferable from the viewpoint that the controllability of the dielectric filler is excellent and the flexibility of the molded product can be improved. A combination of the compound having two alicyclic epoxy groups and the (poly) alkylene glycol diglycidyl ether represented by the above formula (1) is particularly preferable.
 多官能脂環式エポキシ化合物と多官能グリシジル型エポキシ化合物との質量比は、前者/後者=99/1~1/99の範囲から選択でき、例えば90/10~10/90、好ましくは80/20~20/80、さらに好ましくは70/30~30/70、より好ましくは60/40~40/60である。 The mass ratio of the polyfunctional alicyclic epoxy compound to the polyfunctional glycidyl type epoxy compound can be selected from the range of the former / latter = 99/1 to 1/99, for example, 90/10 to 10/90, preferably 80 /. It is 20 to 20/80, more preferably 70/30 to 30/70, and more preferably 60/40 to 40/60.
 凝集工程における誘電体フィラーの凝集を促進できる点から、カチオン重合性化合物の25℃における粘度は、例えば500mPa・s以下(例えば1~400mPa・s)程度の範囲から選択でき、例えば2~350mPa・s(例えば3~300mPa・s)、好ましくは4~250mPa・s(例えば5~200mPa・s)、より好ましくは5~150mPa・s(例えば5~100mPa・s)、さらに好ましくは5~80mPa・s(例えば5.5~50mPa・s)であり、これらのなかでも、好ましくは6~30mPa・s(例えば6.5~20mPa・s)、さらに好ましくは7~15mPa・s(例えば7.5~10mPa・s)程度であってもよい。なお、粘度は、慣用の粘度計(例えば、単一円筒形回転粘度計など)を用いて測定できる。 The viscosity of the cationically polymerizable compound at 25 ° C. can be selected from the range of, for example, about 500 mPa · s or less (for example, 1 to 400 mPa · s), for example, 2 to 350 mPa · s, from the viewpoint of promoting the aggregation of the dielectric filler in the agglomeration step. s (for example, 3 to 300 mPa · s), preferably 4 to 250 mPa · s (for example, 5 to 200 mPa · s), more preferably 5 to 150 mPa · s (for example, 5 to 100 mPa · s), still more preferably 5 to 80 mPa · s. s (for example, 5.5 to 50 mPa · s), and among these, preferably 6 to 30 mPa · s (for example, 6.5 to 20 mPa · s), and more preferably 7 to 15 mPa · s (for example, 7.5 mPa · s). It may be about 10 mPa · s). The viscosity can be measured using a conventional viscometer (for example, a single cylindrical rotational viscometer).
 カチオン重合性化合物の割合は、液状前駆体中に含まれる樹脂全体に対して、例えば10~100質量%(例えば30~99質量%)程度の範囲から選択でき、例えば50~100質量%(例えば60~98質量%)、好ましくは70~100質量%(例えば80~97質量%)、さらに好ましくは80~100質量%(例えば90~95質量%)、特に95~100質量%(特に、実質的に100質量%)程度であってもよい。カチオン重合性化合物の割合が少なすぎると、凝集工程において、簡便にまたは十分に(または精度よく)凝集部を形成できない虞がある。 The ratio of the cationically polymerizable compound can be selected from the range of, for example, about 10 to 100% by mass (for example, 30 to 99% by mass) with respect to the entire resin contained in the liquid precursor, and for example, 50 to 100% by mass (for example, 50 to 100% by mass). 60 to 98% by mass), preferably 70 to 100% by mass (for example, 80 to 97% by mass), more preferably 80 to 100% by mass (for example, 90 to 95% by mass), particularly 95 to 100% by mass (particularly substantial substance). It may be about 100% by mass). If the proportion of the cationically polymerizable compound is too small, there is a risk that the agglomerated portion cannot be easily or sufficiently (or accurately) formed in the agglutination step.
 硬化性樹脂としては、凝集部を形成し易い点から、光硬化性樹脂が好ましく、光カチオン重合性化合物が特に好ましい。 As the curable resin, a photocurable resin is preferable, and a photocationic polymerizable compound is particularly preferable, from the viewpoint of easily forming an agglomerated portion.
 (重合開始剤)
 成形体(または成形体を形成するための液状前駆体)は、前記樹脂を重合するための重合開始剤をさらに含んでいてもよい。重合開始剤は、樹脂の種類に応じて適宜選択でき、樹脂が硬化性樹脂の場合、ラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤であってもよい。好ましい重合開始剤は、カチオン重合開始剤(酸発生剤)である。カチオン重合開始剤には、光酸発生剤および熱酸発生剤が含まれる。
(Polymerization initiator)
The molded product (or liquid precursor for forming the molded product) may further contain a polymerization initiator for polymerizing the resin. The polymerization initiator can be appropriately selected depending on the type of resin, and when the resin is a curable resin, it may be a radical polymerization initiator, a cationic polymerization initiator, or an anionic polymerization initiator. A preferred polymerization initiator is a cationic polymerization initiator (acid generator). Cationic polymerization initiators include photoacid generators and thermoacid generators.
 光酸発生剤としては、例えば、スルホニウム塩(スルホニウムイオンとアニオンとの塩)、ジアゾニウム塩(ジアゾニウムイオンとアニオンとの塩)、ヨードニウム塩(ヨードニウムイオンとアニオンとの塩)、セレニウム塩(セレニウムイオンとアニオンとの塩)、アンモニウム塩(アンモニウムイオンとアニオンとの塩)、ホスホニウム塩(ホスホニウムイオンとアニオンとの塩)、オキソニウム塩(オキソニウムイオンとアニオンとの塩)、遷移金属錯体イオンとアニオンとの塩、臭素化合物などが挙げられる。これらの光酸発生剤は、単独でまたは2種以上組み合わせて使用できる。これらの光酸発生剤のうち、反応性を向上できる点から、酸性度の高い酸発生剤、例えば、スルホニウム塩が好ましい。 Examples of the photoacid generator include sulfonium salt (salt of sulfonium ion and anion), diazonium salt (salt of diazonium ion and anion), iodonium salt (salt of iodonium ion and anion), and selenium salt (selenium ion). And anion salt), ammonium salt (ammonium ion and anion salt), phosphonium salt (phosphonium ion and anion salt), oxonium salt (oxonium ion and anion salt), transition metal complex ion and anion Examples include salts with and bromine compounds. These photoacid generators can be used alone or in combination of two or more. Among these photoacid generators, an acid generator having high acidity, for example, a sulfonium salt is preferable from the viewpoint of improving reactivity.
 スルホニウム塩としては、例えば、トリフェニルスルホニウム塩、トリ-p-トリルスルホニウム塩、トリ-o-トリルスルホニウム塩、トリス(4-メトキシフェニル)スルホニウム塩、1-ナフチルジフェニルスルホニウム塩、2-ナフチルジフェニルスルホニウム塩、トリス(4-フルオロフェニル)スルホニウム塩、トリ-1-ナフチルスルホニウム塩、トリ-2-ナフチルスルホニウム塩、トリス(4-ヒドロキシフェニル)スルホニウム塩、ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩、[4-(4-ビフェニルチオ)フェニル]-4-ビフェニルフェニルスルホニウム塩、4-(p-トリルチオ)フェニルジ-(p-フェニル)スルホニウム塩などのトリアリールスルホニウム塩;ジフェニルフェナシルスルホニウム塩、ジフェニル4-ニトロフェナシルスルホニウム塩、ジフェニルベンジルスルホニウム塩、ジフェニルメチルスルホニウム塩などのジアリールスルホニウム塩;フェニルメチルベンジルスルホニウム塩、4-ヒドロキシフェニルメチルベンジルスルホニウム塩、4-メトキシフェニルメチルベンジルスルホニウム塩などのモノアリールスルホニウム塩;ジメチルフェナシルスルホニウム塩、フェナシルテトラヒドロチオフェニウム塩、ジメチルベンジルスルホニウム塩などのトリアルキルスルホニウム塩などが挙げられる。これらのスルホニウム塩は、単独でまたは2種以上組み合わせて使用できる。これらのスルホニウム塩のうち、トリアリールスルホニウム塩が好ましい。 Examples of the sulfonium salt include triphenylsulfonium salt, tri-p-tolylsulfonium salt, tri-o-tolylsulfonium salt, tris (4-methoxyphenyl) sulfonium salt, 1-naphthyldiphenylsulfonium salt, and 2-naphthyldiphenylsulfonium. Salt, Tris (4-fluorophenyl) sulfonium salt, tri-1-naphthyl sulfonium salt, tri-2-naphthyl sulfonium salt, tris (4-hydroxyphenyl) sulfonium salt, diphenyl [4- (phenylthio) phenyl] sulfonium salt, Triarylsulfonium salts such as [4- (4-biphenylthio) phenyl] -4-biphenylphenylsulfonium salt, 4- (p-tolylthio) phenyldi- (p-phenyl) sulfonium salt; diphenylphenacil sulfonium salt, diphenyl 4 -Diarylsulfonium salts such as nitrophenacylsulfonium salt, diphenylbenzylsulfonium salt, diphenylmethylsulfonium salt; monoarylsulfonium such as phenylmethylbenzylsulfonium salt, 4-hydroxyphenylmethylbenzylsulfonium salt, 4-methoxyphenylmethylbenzylsulfonium salt Salts: Trialkyl sulfonium salts such as dimethylphenacil sulfonium salt, phenacil tetrahydrothiophenium salt, dimethylbenzyl sulfonium salt and the like. These sulfonium salts can be used alone or in combination of two or more. Of these sulfonium salts, triarylsulfonium salts are preferable.
 カチオンと塩を形成するためのアニオン(対イオン)としては、例えば、SbF6-、PF6-、BF4-、フッ化アルキルフルオロリン酸イオン[(CFCFPF3-、(CFCFCFPF3-など]、(C、(CGa、スルホン酸アニオン(トリフルオロメタンスルホン酸アニオン、ペンタフルオロエタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオンなど)、(CFSO、(CFSO、過ハロゲン酸イオン、ハロゲン化スルホン酸イオン、硫酸イオン、炭酸イオン、アルミン酸イオン、ヘキサフルオロビスマス酸イオン、カルボン酸イオン、アリールホウ酸イオン、チオシアン酸イオン、硝酸イオンなどが挙げられる。これらのアニオンは、単独でまたは2種以上組み合わせて使用することもできる。これらのアニオンのうち、SbF6-、PF6-、フッ化アルキルフルオロリン酸イオンなどが汎用され、溶解性などの点からはフッ化アルキルフルオロリン酸イオンなどが好ましく、通常、PF6-などであることが多い。 Examples of anions (counterions) for forming salts with cations include SbF 6- , PF 6- , BF 4- , fluorinated alkylfluorophosphate ion [(CF 3 CF 2 ) 3 PF 3- , ( CF 3 CF 2 CF 2) 3 PF 3- etc.], (C 6 F 5) 4 B -, (C 6 F 5) 4 Ga -, a sulfonate anion (trifluoromethanesulfonic acid anion, pentafluoroethane sulfonate anion , nonafluorobutanesulfonic acid anion, methanesulfonic acid anion, benzenesulfonic acid anion, p- toluenesulfonate anion, etc.), (CF 3 SO 2) 3 C -, (CF 3 SO 2) 2 N -, perhalogenated acid Examples thereof include ions, halogenated sulfonic acid ions, sulfate ions, carbonate ions, aluminates ions, hexafluorobismasate ions, carboxylic acid ions, arylborates ions, thiocyanates ions, and nitrate ions. These anions can also be used alone or in combination of two or more. Among these anions, SbF 6- , PF 6- , fluorinated alkylfluorophosphate ion and the like are widely used, and fluorinated alkyl fluorophosphate ion and the like are preferable from the viewpoint of solubility and the like, and usually PF 6- and the like are used. Often.
 光酸発生剤は市販の光酸発生剤を使用できる。市販の光酸発生剤としては、例えば、サンアプロ(株)製「CPI-101A」、「CPI-110A」、「CPI-100P」、「CPI-110P」、「CPI-210S」、「CPI-200K」;ダウ・ケミカル社製「CYRACURE UVI-6990」、「CYRACURE UVI-6992」;ダイセル・オルネクス(株)製「UVACURE1590」;米国サートマー製「CD-1010」、「CD-1011」、「CD-1012」;BASF社製「イルガキュア-264」;日本曹達(株)製「CIT-1682」;ローディアジャパン(株)製「PHOTOINITIATOR 2074」などを利用できる。 A commercially available photoacid generator can be used as the photoacid generator. Examples of commercially available photoacid generators include "CPI-101A", "CPI-110A", "CPI-100P", "CPI-110P", "CPI-210S", and "CPI-200K" manufactured by San-Apro Co., Ltd. "CYRACURE UVI-6990" and "CYRACURE UVI-6992" manufactured by Dow Chemical Co., Ltd .; "UVACURE1590" manufactured by Daicel Ornex Co., Ltd .; "CD-1010", "CD-1011" and "CD-" manufactured by Sartmer of the United States. "1012"; "Irgacure-264" manufactured by BASF; "CIT-1682" manufactured by Nippon Soda Co., Ltd .; "PHOTOINITIATOR 2074" manufactured by Rhodia Japan Co., Ltd. can be used.
 熱酸発生剤としては、例えば、アリールスルホニウム塩、アリールヨードニウム塩、アレン-イオン錯体、第4級アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体などが挙げられる。これらの熱酸発生剤は、単独でまたは2種以上組み合わせて使用できる。これらの熱酸発生剤のうち、反応性を向上できる点から、酸性度の高い酸発生剤、例えば、アリールスルホニウム塩が好ましい。アニオンとしては、光酸発生剤と同様のアニオンなどが挙げられ、SbF6-などのアンチモンのフッ化物イオンであってもよい。 Examples of the thermoacid generator include aryl sulfonium salts, aryl iodonium salts, allen-ion complexes, quaternary ammonium salts, aluminum chelates, boron trifluoride amine complexes and the like. These thermoacid generators can be used alone or in combination of two or more. Among these thermoacid generators, an acid generator having high acidity, for example, an arylsulfonium salt is preferable from the viewpoint of improving reactivity. Examples of the anionic, such as the same anion as the photoacid generator and the like, or may be a fluoride ion antimony such as SbF 6-.
 熱酸発生剤も市販の熱酸発生剤を使用できる。市販の熱酸発生剤としては、例えば、三新化学工業(株)製「サンエイドSI-60L」、「サンエイドSI-60S」、「サンエイドSI-80L」、「サンエイドSI-100L」や、(株)ADEKA製「SP-66」、「SP-77」などを利用できる。 A commercially available thermoacid generator can be used as the thermoacid generator. Examples of commercially available thermoacid generators include "Sun Aid SI-60L", "Sun Aid SI-60S", "Sun Aid SI-80L", "Sun Aid SI-100L" manufactured by Sanshin Chemical Industry Co., Ltd., and Co., Ltd. ) ADEKA's "SP-66", "SP-77", etc. can be used.
 なお、これらの光または熱酸発生剤は、それぞれ光及び熱のいずれの作用によっても酸を発生できる場合がある。 Note that these light or thermoacid generators may be able to generate acid by either the action of light or heat, respectively.
 これらのカチオン重合開始剤は、単独でまたは2種以上組み合わせて使用することもできる。これらのカチオン重合開始剤のうち、フォトマスクなどを利用して凝集部をパターン状に容易に形成できる点から、光酸発生剤が好ましい。 These cationic polymerization initiators can be used alone or in combination of two or more. Among these cationic polymerization initiators, a photoacid generator is preferable because an aggregated portion can be easily formed in a pattern by using a photomask or the like.
 重合開始剤(特に、カチオン重合開始剤)の割合は、樹脂の種類などに応じて適宜選択し、液状前駆体の硬化性を調整してもよく、例えば、樹脂(特に、カチオン重合性化合物)の総量100質量部に対して0.01~100質量部程度の範囲から選択でき、例えば0.1~50質量部、好ましくは1~30質量部、さらに好ましくは3~20質量部、より好ましくは5~15質量部、最も好ましくは8~12質量部である。重合開始剤の割合が少なすぎると、硬化反応が進行し難く、凝集工程において誘電体フィラーが凝集し難くなる虞があり、多すぎると、硬化反応が速すぎて、凝集工程で誘電体フィラーの凝集が不十分な状態で硬化してしまう虞があるとともに、コストもかかり生産性の点でも不利である。 The ratio of the polymerization initiator (particularly, the cationic polymerization initiator) may be appropriately selected according to the type of the resin and the like to adjust the curability of the liquid precursor. For example, the resin (particularly, the cationically polymerizable compound). It can be selected from the range of about 0.01 to 100 parts by mass with respect to 100 parts by mass of the total amount of the above, for example, 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass, and more preferably. Is 5 to 15 parts by mass, most preferably 8 to 12 parts by mass. If the proportion of the polymerization initiator is too small, the curing reaction is difficult to proceed, and the dielectric filler may be difficult to aggregate in the aggregating step. There is a risk of hardening in a state of insufficient aggregation, and it is costly and disadvantageous in terms of productivity.
 (誘電体フィラー)
 誘電体フィラーとしては、慣用の誘電体フィラー(誘電体粒子または粒状誘電体)を利用できる。慣用の誘電体フィラーは、無機フィラー(または粒子)、有機フィラー(または粒子)に大別できる。
(Dielectric filler)
As the dielectric filler, a conventional dielectric filler (dielectric particle or granular dielectric) can be used. Conventional dielectric fillers can be roughly classified into inorganic fillers (or particles) and organic fillers (or particles).
 無機フィラーの材質には、金属酸化物、金属複合酸化物などが含まれる。金属酸化物としては、例えば、酸化チタン、酸化ジルコニウム、酸化ランタンなどが挙げられる。複合金属酸化物としては、例えば、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム(BaTiO)、チタン酸亜鉛、チタン酸ビスマスなどのチタン金属;ジルコン酸バリウムなどのジルコン酸金属;スズ酸バリウムなどのスズ酸金属;ハフニウム酸バリウムなどのハフニウム酸金属;ニオブ酸リチウムなどのニオブ酸金属;タンタル酸リチウムなどのタンタル酸金属;チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛(PZT)などのチタン酸ジルコン酸金属などが挙げられる。また、チタン酸バリウムなどの複合金属酸化物は、微量成分として、カルシウム、ストロンチウムどのアルカリ土類金属、イットリウム、ネオジム、サマリウム、ジスプロシウムなどの希土類金属をさらに含んでいてもよい。 The material of the inorganic filler includes a metal oxide, a metal composite oxide, and the like. Examples of the metal oxide include titanium oxide, zirconium oxide, lanthanum oxide and the like. Examples of the composite metal oxide include titanium metals such as magnesium titanate, calcium titanate, strontium titanate, barium titanate (BaTIO 3 ), zinc titanate, and bismuth titanate; and metal zirconate such as barium zirconate; Metal succinate such as barium titanate; metal hafnium acid such as barium titanate; metal niobate such as lithium niobate; metal tantrate such as lithium titanate; barium titanate titanate, lead zirconate titanate (PZT) Examples include metal zirconate titanate. Further, the composite metal oxide such as barium titanate may further contain an alkaline earth metal such as calcium and strontium, and a rare earth metal such as yttrium, neodymium, samarium and dysprosium as trace components.
 有機フィラーの材質としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン-三フッ化エチレン共重合体、フッ化ビニリデン-四フッ化エチレン共重合体、フッ化ビニリデン-六フッ化ビニリデン共重合体などのフッ化ビニリデン系重合体;ポリアミド5、ポリアミド7、ポリアミド11などの奇数ポリアミド(奇数ナイロン);シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルヒドロキシエチルセルロース、シアノエチルセルロースなどのシアノ樹脂;ポリ尿素;ポリチオ尿素;硫酸トリグリシンなどが挙げられる。 Examples of the material of the organic filler include polyvinylidene fluoride, vinylidene fluoride-ethylene trifluoride copolymer, vinylidene fluoride-ethylene tetrafluoride copolymer, vinylidene fluoride-vinylidene hexafluoride copolymer, and the like. Vinylidene fluoride-based polymer; odd polyamide (odd nylon) such as polyamide 5, polyamide 7, polyamide 11; cyano resin such as cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl hydroxyethyl cellulose, cyanoethyl cellulose; polyurea; polythiourea; trisulfate Examples include glycine.
 これらの材質で形成された誘電体フィラーは、単独でまたは二種以上組み合わせて使用できる。これらのうち、凝集部を形成し易い点から、無機フィラーが好ましく、複合金属酸化物で形成された無機フィラー(複合金属酸化物フィラー)がさらに好ましく、チタン含有複合金属酸化物で形成された無機フィラーがより好ましく、チタン酸アルカリ土類金属で形成された無機フィラーが最も好ましい。また、誘電体フィラーは、凝集部を形成し易い点から、ペロブスカイト構造を有する無機フィラー(特に、ペロブスカイト構造を有する複合金属酸化物で形成された無機フィラー)であってもよい。さらに、誘電体フィラーのうち、成形体の比誘電率を向上できる点から、強誘電体フィラーであってもよい。 Dielectric fillers made of these materials can be used alone or in combination of two or more. Of these, an inorganic filler is preferable from the viewpoint of easily forming an agglomerated portion, an inorganic filler formed of a composite metal oxide (composite metal oxide filler) is more preferable, and an inorganic filler formed of a titanium-containing composite metal oxide is more preferable. Fillers are more preferred, and inorganic fillers made of alkaline earth metal titanate are most preferred. Further, the dielectric filler may be an inorganic filler having a perovskite structure (particularly, an inorganic filler formed of a composite metal oxide having a perovskite structure) from the viewpoint of easily forming an agglomerated portion. Further, among the dielectric fillers, a ferroelectric filler may be used because the relative permittivity of the molded product can be improved.
 誘電体フィラーの比誘電率(ε)は100以上であってもよく、例えば500以上、好ましくは1000以上、さらに好ましくは3000以上(例えば3000~10000)であってもよい。 The relative permittivity (ε r ) of the dielectric filler may be 100 or more, for example, 500 or more, preferably 1000 or more, and more preferably 3000 or more (for example, 3000 to 10000).
 誘電体フィラーの形状(一次粒子の形状)は、粒状状であれば特に限定されず、例えば、真球状または略球状などの球状;楕円体(楕円球)状;円錐状、多角錘状などの錘状;立方体状や直方体状などの多角方体状;扁平状、鱗片状、薄片状などの板状;ロッド状または棒状;繊維状、樹針状などの線状;不定形状などが挙げられる。 The shape of the dielectric filler (the shape of the primary particles) is not particularly limited as long as it is granular, and for example, a spherical shape such as a true sphere or a substantially spherical shape; an ellipsoidal (elliptical sphere) shape; a conical shape, a polygonal pyramid shape, or the like. Pile shape; Polygonal shape such as cube or rectangular parallelepiped; Plate shape such as flat, scaly, flaky; Rod or rod; Linear such as fibrous or dendritic; Indefinite shape, etc. ..
 誘電体フィラーの中心粒径(D50)は1μm以上であってもよいが、1μm以下が好ましく、さらに好ましくは0.01~1μmである。中心粒径が小さすぎると、液状前駆体の粘度が上昇し易く凝集工程において誘電体フィラーが凝集し難くなる虞や、界面抵抗(接触抵抗)の影響により誘電性を有効に付与し難くなる虞がある。逆に、大きすぎると、凝集工程において誘電体フィラーが移動し難く凝集が困難になる虞や、誘電体フィラーによっては誘電体フィラー自身の影の影響により光硬化性が低下する虞がある。また、凝集部の誘電体フィラー濃度を効率的に高めるために大きさの違う粒子を意図的に所定の割合で混ぜてもよい。 The central particle size (D 50 ) of the dielectric filler may be 1 μm or more, but is preferably 1 μm or less, and more preferably 0.01 to 1 μm. If the central particle size is too small, the viscosity of the liquid precursor tends to increase, and it may be difficult for the dielectric filler to aggregate in the aggregation step, or it may be difficult to effectively impart dielectric property due to the influence of interfacial resistance (contact resistance). There is. On the other hand, if it is too large, the dielectric filler may not move easily in the agglutination step, making it difficult to agglomerate, and depending on the dielectric filler, the photocurability may decrease due to the influence of the shadow of the dielectric filler itself. Further, particles having different sizes may be intentionally mixed in a predetermined ratio in order to efficiently increase the concentration of the dielectric filler in the agglomerated portion.
 なお、本明細書および特許請求の範囲において、誘電体フィラーの中心粒径は、一次粒子の中心粒径を意味し、ナノ粒子径分布測定装置((株)島津製作所製「SALD-7500nano」)を用いて体積基準で測定できる。また、画像解析法により求められる。すなわち、例えば、走査型電子顕微鏡(SEM)を用いて十分な数(例えば10個以上)の粒子状物質について電子顕微鏡像を撮影し、これらの粒子状物質の最大径、交差径、および厚みを計測し、これを算術平均することにより求められる。 In the present specification and claims, the central particle size of the dielectric filler means the central particle size of the primary particles, and is a nanoparticle size distribution measuring device (“SALD-7500 nano” manufactured by Shimadzu Corporation). Can be measured on a volume basis using. It is also obtained by an image analysis method. That is, for example, a scanning electron microscope (SEM) is used to take electron microscope images of a sufficient number (for example, 10 or more) of particulate matter, and the maximum diameter, cross diameter, and thickness of these particulate matter are determined. It is obtained by measuring and arithmetically averaging this.
 誘電体フィラーの割合は、樹脂(または樹脂前駆体)100質量部に対して0.01~300質量部(例えば0.1~100質量部)程度の範囲から選択でき、例えば0.1~80質量部、好ましくは0.2~70質量部である。誘導体フィラーの割合が多くても、誘導体フィラーの凝集を制御でき、誘導体フィラーの割合は、樹脂100質量部に対して、例えば1~300質量部、好ましくは10~200質量部、さらに好ましくは20~100質量部、より好ましくは30~80質量部であってもよい。誘電体フィラーの割合が少なすぎると、成形体の比誘電率を向上できない虞があるが、本開示では、比較的少ない誘電体フィラー量であっても、凝集部を形成することにより比誘電率を向上できる。逆に、多すぎると、液状前駆体の粘度が上昇し易く凝集工程において誘電体フィラーが凝集し難くなる虞や、誘電体フィラーによっては誘電体フィラー自身の影の影響により光硬化性が低下する虞がある。さらには、得られる成形体の柔軟性(または靭性)が低下し易く、脆い成形体となる虞がある。 The ratio of the dielectric filler can be selected from the range of about 0.01 to 300 parts by mass (for example, 0.1 to 100 parts by mass) with respect to 100 parts by mass of the resin (or resin precursor), for example, 0.1 to 80 parts. It is by mass, preferably 0.2 to 70 parts by mass. Even if the proportion of the derivative filler is large, the aggregation of the derivative filler can be controlled, and the proportion of the derivative filler is, for example, 1 to 300 parts by mass, preferably 10 to 200 parts by mass, and more preferably 20 parts by mass with respect to 100 parts by mass of the resin. It may be up to 100 parts by mass, more preferably 30 to 80 parts by mass. If the proportion of the dielectric filler is too small, the relative permittivity of the molded product may not be improved. However, in the present disclosure, even if the amount of the dielectric filler is relatively small, the relative permittivity is formed by forming an agglomerated portion. Can be improved. On the other hand, if the amount is too large, the viscosity of the liquid precursor tends to increase and the dielectric filler may not easily aggregate in the aggregation step, and depending on the dielectric filler, the photocurability may decrease due to the influence of the shadow of the dielectric filler itself. There is a risk. Further, the flexibility (or toughness) of the obtained molded product tends to decrease, and the molded product may become brittle.
 (他の成分)
 成形体(または成形体を形成するための液状前駆体)は、樹脂および誘電体フィラーに加えて、必要に応じ、慣用の添加剤などの他の成分をさらに含んでいてもよい。
(Other ingredients)
The molded product (or liquid precursor for forming the molded product) may further contain, if necessary, other components such as conventional additives, in addition to the resin and the dielectric filler.
 慣用の添加剤としては、例えば、安定剤(熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤など)、分散剤、帯電防止剤、着色剤、潤滑剤、増感剤(アクリジン類、ベンゾフラビン類、ペリレン類、アントラセン類、チオキサントン類、レーザ色素類など)、増感助剤、硬化促進剤(イミダゾール類、アルカリ金属またはアルカリ土類金属アルコキシド、ホスフィン類、アミド化合物、ルイス酸錯体化合物、硫黄化合物、ホウ素化合物、縮合性有機金属化合物など)、消泡剤、難燃剤などが挙げられる。これらの添加剤は、単独でまたは2種以上組み合わせて使用できる。慣用の添加剤の割合は、樹脂(または樹脂前駆体)100質量部に対して、例えば30質量部以下(例えば0.01~30質量部)、好ましくは20質量部以下、さらに好ましくは10質量部以下であってもよい。 Conventional additives include, for example, stabilizers (heat stabilizers, ultraviolet absorbers, photostabilizers, antioxidants, etc.), dispersants, antioxidants, colorants, lubricants, sensitizers (acridines, etc.). Benzoflavins, perylenes, anthracenes, thioxanthones, laser pigments, etc.), sensitizers, hardening accelerators (imidazoles, alkali metals or alkaline earth metal alkoxides, phosphins, amide compounds, Lewis acid complex compounds) , Sulfur compounds, boron compounds, condensable organic metal compounds, etc.), defoaming agents, flame retardants, etc. These additives can be used alone or in combination of two or more. The ratio of the conventional additive is, for example, 30 parts by mass or less (for example, 0.01 to 30 parts by mass), preferably 20 parts by mass or less, and more preferably 10 parts by mass with respect to 100 parts by mass of the resin (or resin precursor). It may be less than or equal to a part.
 (成形体の特性)
 成形体の凝集部は、前述のように、活性エネルギーの付与によって前記誘電体フィラーが成形体内部で均一に分散することなく凝集して形成された領域であるが、前記非凝集部(またはマトリックス部)との少なくとも界面近傍において、誘電体フィラーの存在割合が界面に向かって漸減する構造を有している。すなわち、凝集部は、凝集部の全領域において、誘電体フィラーが一定の割合で存在する均質な構造ではなく、凝集部と非凝集部との少なくとも界面近傍において、濃度が徐々に(直線的または曲線的に、あるいは連続的にまたは段階的に)減少する濃度勾配または傾斜構造を有している。特に、界面近傍の構造は、濃度勾配を有するものの、定型的ではないため、ミクロ的な構造の特定は不可能または極めて困難であり、実際的ではない。また、この構造特性を有することで、アンカー効果による界面強度の向上などの本開示に由来する特性を付与できる。このような構造は、デジタルマイクロスコープ(CCD観察像)などによって容易に観察でき、例えば、凝集部の断面または表面を200~1000倍程度の倍率で撮影したCCD写真において、凝集部での誘電体フィラーの存在割合(濃度)が不均一であることは容易に確認できる。
(Characteristics of molded product)
As described above, the agglomerated portion of the molded body is a region formed by aggregating the dielectric filler without being uniformly dispersed inside the molded body by applying active energy, but the non-aggregated portion (or matrix). It has a structure in which the abundance ratio of the dielectric filler gradually decreases toward the interface at least in the vicinity of the interface with the part). That is, the agglomerated portion is not a homogeneous structure in which the dielectric filler is present at a constant ratio in the entire region of the agglomerated portion, and the concentration is gradually (linearly or linearly or) in the vicinity of at least the interface between the agglomerated portion and the non-aggregated portion. It has a concentration gradient or sloping structure that decreases curvilinearly or continuously or stepwise. In particular, although the structure near the interface has a concentration gradient, it is not typical, so it is impossible or extremely difficult to specify the microstructure, which is not practical. Further, by having this structural property, it is possible to impart the property derived from the present disclosure such as the improvement of the interfacial strength due to the anchor effect. Such a structure can be easily observed with a digital microscope (CCD observation image) or the like. For example, in a CCD photograph of the cross section or surface of the agglomerated portion taken at a magnification of about 200 to 1000 times, the dielectric material at the agglomerated portion. It can be easily confirmed that the abundance ratio (concentration) of the filler is non-uniform.
 また、凝集部での誘電体フィラーの存在割合(濃度)の不均一性は、凝集部内の所定領域の元素分析(または表面分析)または化学種の分析により、誘電体フィラーを構成する元素(誘電体フィラー構成元素ともいう)または化学種を検出することからも確認できる。元素分析の方法(または装置)としては、成形体の形態(誘電体フィラーの種類など)に応じて適宜選択してもよく、例えば、エネルギー分散型X線分光法(EDXまたはEDS)、波長分散型X線分光法(WDX、WDSまたはEPMA)、X線光電子分光分析(XPSまたはESCA)、オージェ電子分光法(AES)、二次イオン質量分析法(SIMS)[飛行時間型二次イオン質量分析法(TOF-SIMS)など]などの慣用の方法が挙げられ、化学種を検出する方法としては、ラマン分光法、赤外分光法(IR)などの慣用の方法が挙げられ、通常、SEM-EDX(SEM-EDS)などのエネルギー分散型X線分光法がよく利用される。 In addition, the non-uniformity of the abundance ratio (concentration) of the dielectric filler in the agglomerated portion can be determined by elemental analysis (or surface analysis) of a predetermined region in the agglomerated portion or analysis of a chemical species to determine the element (dielectric) constituting the dielectric filler. It can also be confirmed by detecting (also called a body filler constituent element) or a chemical species. The element analysis method (or apparatus) may be appropriately selected depending on the form of the molded body (type of dielectric filler, etc.), and may be, for example, energy dispersive X-ray spectroscopy (EDX or EDS), wavelength dispersion. Type X-ray spectroscopy (WDX, WDS or EPMA), X-ray photoelectron spectroscopy (XPS or ESCA), Auger electron spectroscopy (AES), secondary ion mass analysis (SIMS) [time-of-flight secondary ion mass analysis Conventional methods such as method (TOF-SIMS)] can be mentioned, and conventional methods such as Raman spectroscopy and infrared spectroscopy (IR) can be mentioned as methods for detecting chemical species. Usually, SEM- Energy dispersive X-ray spectroscopy such as EDX (SEM-EDS) is often used.
 本開示の成形体は、凝集部の少なくとも界面近傍の周辺域において、界面(または界面方向)に向かって誘電体フィラー濃度が減少または漸減しているため、凝集部内の所定領域を元素分析すると、凝集部の少なくとも界面近傍(または周辺域)における誘電体フィラー構成元素の存在割合が低いことが確認できる。 In the molded product of the present disclosure, the dielectric filler concentration decreases or gradually decreases toward the interface (or the interface direction) at least in the peripheral region near the interface of the agglomerated portion. It can be confirmed that the abundance ratio of the dielectric filler constituent elements is low at least near the interface (or the peripheral region) of the agglomerated portion.
 代表的な確認方法としては、例えば、まず、凝集部の中心部(凝集部内部のうち、隣接して凝集部を区画する非凝集部との界面から最も遠い部分)および前記凝集部と隣接する非凝集部との界面を厚み方向に沿って横断する成形体断面(または表面)において、凝集部を前記中心部から界面(または界面方向)に向かって3等分(中心部から界面までの距離が等間隔となるように3分割)する。分割した各領域を前記中心部から前記界面へ向かう順に、中央域(中央部、中心部近傍または第1の領域)、中間域(中間部、中間領域または第2の領域)、周辺域(周辺部、界面近傍または第3の領域)とする。これらの領域をそれぞれ元素分析して誘電体フィラーを構成する少なくとも1つの元素の存在割合を測定し、各領域の前記存在割合を比較することにより、周辺域における前記存在割合が少なくとも中間域における前記存在割合よりも低いことが確認できる。なお、前記存在割合は、原子の個数基準(頻度または強度)の割合であってもよいが、通常、原子の質量基準の割合である。本明細書および特許請求の範囲において、具体的な元素分析の方法としては、SEM-EDS(本体 日立ハイテクノロジーズ(株)製「SU5000」;SDD検出器 オックスフォード・インストゥルメンツ製「X-MaxN」)を利用できる。 As a typical confirmation method, for example, first, the central portion of the agglomerated portion (the portion inside the agglomerated portion, which is the farthest from the interface with the non-aggregated portion that separately partitions the agglomerated portion) and the portion adjacent to the agglomerated portion. In the cross section (or surface) of the molded body that crosses the interface with the non-aggregated portion along the thickness direction, the aggregated portion is divided into three equal parts (distance from the central portion to the interface) from the central portion toward the interface (or the interface direction). Is divided into 3 parts so that they are evenly spaced). The central region (central region, near the central region or the first region), the intermediate region (intermediate region, the intermediate region or the second region), and the peripheral region (periphery) in the order from the central portion to the interface of each divided region. Part, near the interface or a third region). By elemental analysis of each of these regions to measure the abundance ratio of at least one element constituting the dielectric filler and comparing the abundance ratios of the respective regions, the abundance ratio in the peripheral region is at least the intermediate region. It can be confirmed that it is lower than the abundance ratio. The abundance ratio may be a ratio based on the number of atoms (frequency or intensity), but is usually a ratio based on the mass of atoms. Within the scope of this specification and claims, as a specific elemental analysis method, SEM-EDS (main body "SU5000" manufactured by Hitachi High-Technologies Corporation; SDD detector "X-MaxN" manufactured by Oxford Instruments " ) Can be used.
 以下、図2に基づいて、より具体的に説明する。図2は、本開示の成形体、すなわち、厚み方向に誘電体フィラーが貫通した形態の凝集部1を有するフィルム(またはシート)状成形体の概略部分縦断面図である。すなわち、図2は、成形体中の任意の凝集部1の中心部4(凝集部の面方向における中心で厚み方向に延びる中心軸)、および前記凝集部1に隣接する非凝集部2との界面3を通り(または横断し)、かつ成形体の厚み方向にほぼ平行な断面(または縦断面)を示している。 Hereinafter, a more specific explanation will be given based on FIG. FIG. 2 is a schematic partial longitudinal sectional view of the molded product of the present disclosure, that is, a film (or sheet) -shaped molded product having an agglomerated portion 1 in a form in which a dielectric filler penetrates in the thickness direction. That is, FIG. 2 shows a central portion 4 of an arbitrary agglomerated portion 1 in a molded body (a central axis extending in the thickness direction at the center in the plane direction of the agglomerated portion) and a non-aggregated portion 2 adjacent to the agglomerated portion 1. It shows a cross section (or a longitudinal cross section) that passes through (or crosses) the interface 3 and is substantially parallel to the thickness direction of the molded body.
 図中、凝集部内において、前記中心部4から少なくとも一方の界面(図中、中心部4の左側の界面)3に至る(最短で至る)までの領域を、中心部4から界面3までの距離が等間隔となるよう凝集部の幅方向(横方向)に3分割する。分割した領域を前記中心部4側の領域から界面3に向かう順に、中央域1a、中間域1b、周辺域(または界面近傍)1cとする。各領域1a~1cにおいて、無作為に選択した複数(好ましくは3以上)の測定箇所で元素分析して、誘電体フィラー構成元素のうち少なくとも1つの元素の存在割合を測定箇所ごとに求める。得られた前記存在割合の平均値を算出し、測定箇所が属する前記各領域の存在割合として採用する。このようにして得られた前記各領域における誘電体フィラー構成元素の存在割合を比較することで、凝集部での誘電体フィラーの存在割合(濃度)が不均一であることが確認できる。 In the figure, the distance from the central portion 4 to the interface 3 in the agglomerated portion is the region from the central portion 4 to at least one interface (the interface on the left side of the central portion 4 in the figure) 3 (the shortest). Is divided into three in the width direction (horizontal direction) of the agglomerated portion so that the agglomerates are evenly spaced. The divided regions are defined as a central region 1a, an intermediate region 1b, and a peripheral region (or near the interface) 1c in the order from the region on the central portion 4 side toward the interface 3. In each region 1a to 1c, elemental analysis is performed at a plurality of randomly selected measurement points (preferably 3 or more), and the abundance ratio of at least one element among the dielectric filler constituent elements is determined for each measurement point. The average value of the obtained abundance ratio is calculated and adopted as the abundance ratio of each of the regions to which the measurement point belongs. By comparing the abundance ratios of the dielectric filler constituent elements in each of the regions thus obtained, it can be confirmed that the abundance ratio (concentration) of the dielectric filler in the agglomerated portion is non-uniform.
 より詳しくは、成形体断面(凝集部の中心部および界面を通る縦断面)の凝集部における誘電体フィラーの分布状態は、横軸を成形体断面における横方向(厚み方向に対して垂直な方向、または凝集部の幅方向)、縦軸を誘電体フィラー構成元素から選択された1つの元素の存在割合(誘電体フィラー濃度)とするグラフにより可視化してもよい。本開示の成形体では誘電体フィラーの移動により凝集部が形成されるためか、前記周辺域における前記存在割合(濃度)が、少なくとも前記中間域における前記存在割合(濃度)よりも低い。そのため、前記グラフ(横軸を一方の周辺域から中央域(または中心部)を通り、他方の周辺域に至るまでの区間としたグラフ)が示す形状(縦断面における凝集部の濃度分布)としては、山形状または正規分布状[中央域の存在割合が高く、周辺域(界面方向)にいくにつれて直線的または湾曲して連続的または段階的に低下する形状];台形状[中央域および中間域の存在割合がほぼ同程度に高く、周辺域にいくにつれて直線的または湾曲して連続的または段階的に低下する形状];カルデラ状[中間域の存在割合が高く、中央域および周辺域にいくにつれて直線的または湾曲して連続的または段階的に低下する形状]などが挙げられ、通常、山形状であることが多い。なお、前記グラフ形状(濃度分布)は、誘電体フィラー構成元素のうち少なくとも1つの元素について満たしていればよく、好ましくは複数の誘電体フィラー構成元素について、さらに好ましくは全ての誘電体フィラー構成元素について満たしていてもよい(以下に記載の存在割合の比についても同じ)。 More specifically, the distribution state of the dielectric filler in the agglomerated portion of the molded body cross section (the central portion of the agglomerated portion and the vertical cross section passing through the interface) is such that the horizontal axis is the horizontal direction (the direction perpendicular to the thickness direction) in the molded body cross section. , Or the width direction of the agglomerated portion), and the vertical axis may be visualized by a graph in which the abundance ratio (dielectric filler concentration) of one element selected from the dielectric filler constituent elements is used. In the molded product of the present disclosure, the abundance ratio (concentration) in the peripheral region is at least lower than the abundance ratio (concentration) in the intermediate region, probably because the aggregated portion is formed by the movement of the dielectric filler. Therefore, as the shape (concentration distribution of aggregates in the vertical cross section) shown by the graph (a graph in which the horizontal axis is a section from one peripheral region to the central region (or the central region) to the other peripheral region). Is a mountain shape or a normal distribution [a shape in which the abundance ratio of the central region is high, and the shape is linear or curved and gradually or gradually decreases toward the peripheral region (interfacial direction)]; trapezoidal shape [central region and intermediate region] A shape in which the abundance ratio of the region is almost the same and decreases linearly or curved toward the peripheral region and continuously or gradually decreases]; Caldera-like [The abundance ratio of the intermediate region is high, and in the central region and the peripheral region A shape that is linear or curved as it goes, and gradually or gradually decreases], etc., and is usually a mountain shape in many cases. The graph shape (concentration distribution) may be satisfied for at least one element of the dielectric filler constituent elements, preferably for a plurality of dielectric filler constituent elements, and more preferably for all the dielectric filler constituent elements. (The same applies to the abundance ratios described below).
 周辺域(第3の領域)における前記存在割合と中間域(第2の領域)における前記存在割合との比は、例えば、第3の領域/第2の領域(質量基準)=1/1.01~1/20(例えば1/1.05~1/15)程度の範囲から選択でき、例えば1/1.1~1/10(例えば1/1.15~1/8)、好ましくは1/1.2~1/7(例えば1/1.25~1/6)、さらに好ましくは1/1.5~1/5(例えば1/2~1/4、好ましくは1/2.5~1/3.5)程度であってもよい。 The ratio of the abundance ratio in the peripheral region (third region) to the abundance ratio in the intermediate region (second region) is, for example, the third region / second region (mass standard) = 1/1. It can be selected from the range of 01 to 1/20 (for example, 1 / 1.05 to 1/15), for example, 1 / 1.1 to 1/10 (for example, 1 / 1.15 to 1/8), preferably 1. /1.2 to 1/7 (eg 1 / 1.25 to 1/6), more preferably 1 / 1.5 to 1/5 (eg 1/2 to 1/4, preferably 1 / 2.5) It may be about 1 / 3.5).
 また、周辺域(界面近傍または第3の領域)の前記存在割合は、中央域(第1の領域)の前記存在割合に比べて必ずしも低くなくてもよいが、通常、低いことが多い。そのため、第3の領域における前記存在割合と第1の領域における前記存在割合との比は、例えば、第3の領域/第1の領域(質量基準)=1/1.1~1/20(例えば1/1.2~1/15)程度の範囲から選択でき、好ましくは1/1.3~1/10(例えば1/1.5~1/8)、さらに好ましくは1/2~1/7(例えば1/3~1/6、好ましくは1/3.5~1/5.5)程度であってもよい。第2の領域における前記存在割合と第1の領域における前記存在割合との比は、例えば、第2の領域/第1の領域(質量基準)=1/0.1~1/5(例えば1/0.5~1/4)程度の範囲から選択でき、例えば、1/0.8~1/3(例えば1/1~1/2.5)、好ましくは1/1.1~1/2(例えば1/1.2~1/1.8)程度であってもよい。 Further, the abundance ratio of the peripheral region (near the interface or the third region) does not necessarily have to be lower than the abundance ratio of the central region (first region), but is usually low. Therefore, the ratio of the abundance ratio in the third region to the abundance ratio in the first region is, for example, 3rd region / 1st region (mass basis) = 1 / 1.1 to 1/20 (mass basis). For example, it can be selected from the range of about 1 / 1.2 to 1/15), preferably 1 / 1.3 to 1/10 (for example, 1 / 1.5 to 1/8), and more preferably 1/2 to 1. It may be about / 7 (for example, 1/3 to 1/6, preferably 1 / 3.5 to 1 / 5.5). The ratio of the abundance ratio in the second region to the abundance ratio in the first region is, for example, 2nd region / 1st region (mass basis) = 1 / 0.1 to 1/5 (for example, 1). It can be selected from the range of about /0.5 to 1/4), for example, 1 / 0.8 to 1/3 (for example, 1/1 to 1 / 2.5), preferably 1 / 1.1 to 1 /. It may be about 2 (for example, 1 / 1.2 to 1 / 1.8).
 なお、SEM-EDXで測定する場合、前記存在割合は、誘電体フィラー構成元素から選択された1つの元素の存在比率であってもよく、誘電体フィラーを構成する全ての元素および樹脂を構成する炭素の存在比率の合計に対する誘電体フィラー構成元素から選択された1つの元素の存在比率の比であってもよい。また、元素分析に供する分析試料の調製方法は、前記存在割合の測定結果に影響を及ぼさない方法であれば特に制限されず、慣用の方法、例えば、成形体を切断して前記断面(または観察面)を切り出した後、所定の樹脂中に包埋して、精密研磨する方法などにより調製してもよく、分析方法などに応じて、さらに、樹脂および誘電体フィラーに含まれない元素を観察面に蒸着してもよい。 When measured by SEM-EDX, the abundance ratio may be the abundance ratio of one element selected from the dielectric filler constituent elements, and constitutes all the elements and resins constituting the dielectric filler. It may be the ratio of the abundance ratio of one element selected from the dielectric filler constituent elements to the total abundance ratio of carbon. Further, the method for preparing the analysis sample to be subjected to the element analysis is not particularly limited as long as it does not affect the measurement result of the abundance ratio, and is a conventional method, for example, cutting the molded product and observing the cross section (or observation). After cutting out the surface), it may be embedded in a predetermined resin and prepared by precision polishing or the like, and further, depending on the analysis method or the like, further observe the elements not contained in the resin and the dielectric filler. It may be vapor-deposited on the surface.
 また、上述の説明では、元素分析により誘電体フィラーの存在割合(濃度)の不均一性を確認する方法について説明したが、元素分析に代えて、前記化学種を分析する方法などのフィラーの濃度を検出(または確認)可能な方法を用いてもよい。 Further, in the above description, the method of confirming the non-uniformity of the abundance ratio (concentration) of the dielectric filler by elemental analysis has been described, but instead of the elemental analysis, the concentration of the filler such as the method of analyzing the chemical species. A method capable of detecting (or confirming) may be used.
 なお、図2では断面における領域について説明したが、誘電体フィラーが表面に貫通または露出した形態の凝集部を有する成形体であれば、前記断面に代えて、成形体表面で同様にして領域を設定し、誘電体フィラー構成元素の存在割合を比較してもよい。通常、断面で領域を設定することが多く、断面は任意の断面であってもよいが、厚み方向に対してほぼ平行な断面(縦断面)が好ましい。 Although the region in the cross section has been described with reference to FIG. 2, if the molded product has an agglomerated portion in a form in which the dielectric filler penetrates or is exposed on the surface, the region is similarly formed on the surface of the molded product instead of the cross section. It may be set and the abundance ratio of the dielectric filler constituent elements may be compared. Usually, the region is often set by a cross section, and the cross section may be an arbitrary cross section, but a cross section substantially parallel to the thickness direction (longitudinal cross section) is preferable.
 凝集部の中心部は、凝集部の形態に応じて適宜決定できる。凝集部は後述する製造方法(凝集工程)との関係から、通常、厚み方向または厚み方向に所定の角度をなす方向(好ましくは厚み方向)に延びて形成されることが多い。そのため、前記中心部は、成形体の横断面(厚み方向に対して垂直な断面)における凝集部(または凝集部エレメント)の中心[凝集部の横断面形状の重心または(線状である場合)幅方向の中心]を通り、凝集部が延びる方向(または厚み方向)に沿って延びる中心軸(または中心面)としてもよい。 The central portion of the agglomerated portion can be appropriately determined according to the form of the agglomerated portion. In relation to the manufacturing method (aggregation step) described later, the agglomerated portion is usually formed so as to extend in a thickness direction or a direction forming a predetermined angle in the thickness direction (preferably in the thickness direction). Therefore, the central portion is the center of the agglomerated portion (or agglomerated portion element) in the cross section (cross section perpendicular to the thickness direction) of the molded body [the center of gravity of the cross-sectional shape of the agglomerated portion or (when linear)). It may be a central axis (or a central surface) that passes through the center in the width direction and extends along the direction (or thickness direction) in which the agglomerated portion extends.
 前記横断面における凝集部(または凝集部エレメント)の断面形状は特に制限されず、後述する凝集部の形状に対応する形状であってもよく、例えば、略円状、略楕円状、多角形状(三角形状、正方形状、長方形状など)、線状(直線状または曲線状)、渦巻状、不定形状などが挙げられる。 The cross-sectional shape of the agglomerated portion (or agglomerated portion element) in the cross section is not particularly limited, and may be a shape corresponding to the shape of the agglomerated portion described later, for example, a substantially circular shape, a substantially elliptical shape, or a polygonal shape ( Examples include triangular shape, square shape, rectangular shape, etc.), linear shape (straight line or curved shape), spiral shape, irregular shape, and the like.
 本明細書および特許請求の範囲において、凝集部が、形状および/または方向が同一または異なる複数の凝集部エレメントで形成されている場合[例えば、複数の凝集部エレメントで複雑(または不規則)な形状(例えば、格子状など)の凝集部を形成している場合]、前記複雑形状の凝集部の中心部は、前記凝集部エレメントから選択される少なくとも1つの凝集部エレメントにおける中心部[凝集部エレメントの横断面形状の重心または(線状である場合)幅方向の中心]とすることができる。前記凝集部エレメントは、横断面形状が比較的単純な形状(例えば、上記例示の断面形状など)である場合が多く、凝集部エレメントの具体的な形状としては、例えば、ドット状[円柱状、四角柱状(または直方体状)などの多角柱状など]、線状(直線的または湾曲して延びる壁状)などであってもよい。 In the present specification and claims, when the agglomerates are formed of a plurality of agglomerate elements having the same or different shapes and / or directions [for example, complex (or irregular) with a plurality of agglomerate elements. When forming a cohesive portion having a shape (for example, a lattice shape)], the central portion of the agglomerate portion having a complicated shape is a central portion in at least one agglomerate element selected from the agglomerate element [aggregate portion]. It can be the center of gravity of the cross-sectional shape of the element or the center in the width direction (if linear). The agglomerate element often has a relatively simple cross-sectional shape (for example, the above-exemplified cross-sectional shape), and the specific shape of the agglomerate element is, for example, a dot shape [cylindrical shape, It may be a polygonal columnar shape such as a square columnar shape (or a rectangular parallelepiped shape)], a linear shape (a wall shape extending linearly or curvedly), and the like.
 代表的な前記複雑形状の凝集部としては、例えば、断面コ字状の凝集部[例えば、互いに対向する一対の直方体状エレメント(または所定長さの直線状エレメント)と、これらの一方の端部にそれぞれ接続し、前記一対の直方体状エレメントが対向する方向に延びる直方体状エレメントとで形成された凝集部など];断面ダンベル形状の凝集部(例えば、直方体状エレメントと、このエレメントの両端に接続する一対の円柱状エレメントとで形成された凝集部など);枠状凝集部(例えば、三角枠状凝集部、四角枠状凝集部などの所定領域を壁状の凝集部エレメントで区画した凝集部など);格子状凝集部(例えば、所定間隔をおいて互いに平行に延びる複数の第1の直線状エレメントと、この複数の第1の直線状エレメントと所定角度で交差し、かつ所定間隔をおいて互いに平行に延びる複数の第2の直線状エレメントとで形成された凝集部;ハニカム状または網目状凝集部など)などであってもよい。 Typical examples of the complex-shaped agglomerate include a U-shaped agglomerate [for example, a pair of rectangular parallelepiped elements (or linear elements having a predetermined length) facing each other, and one end thereof. Agglomerates formed by a rectangular parallelepiped element extending in the opposite direction of the pair of rectangular parallelepiped elements]; Aggregates formed by a pair of columnar elements); Frame-shaped aggregates (for example, aggregates in which predetermined regions such as triangular frame-shaped aggregates and square frame-shaped aggregates are partitioned by wall-shaped aggregate elements). (E.g., etc.); Lattice agglomerates (for example, a plurality of first linear elements extending in parallel with each other at a predetermined interval, intersecting the plurality of first linear elements at a predetermined angle, and having a predetermined interval. It may be an agglomerate formed by a plurality of second linear elements extending in parallel with each other; a honeycomb-like or mesh-like agglomerate, etc.).
 凝集部では誘電体フィラーが凝集されているため、成形体において、凝集部は、誘電体フィラーの機能を発現させる領域として機能する。そのため、成形体において、凝集部は、用途や目的に応じて、様々な形状および構造に形成されるが、本開示では、活性エネルギーを一部の領域に付与する簡便な方法で、複雑な形状および構造であっても容易に形成できる。 Since the dielectric filler is agglomerated in the agglomerated portion, the agglomerated portion functions as a region for expressing the function of the dielectric filler in the molded product. Therefore, in the molded body, the agglomerated portion is formed into various shapes and structures depending on the application and purpose, but in the present disclosure, it is a simple method of applying active energy to a part of a region and has a complicated shape. And even the structure can be easily formed.
 凝集部の形状としては、特に限定されず、例えば、線状、柱状(または棒状)、球状、楕円体状、不定形状、面状などが挙げられる。また、凝集部の形状は、前記形状を組み合わせた形状(例えば、格子状など)であってもよく、前記断面形状に対応する形状であってもよい。これらの形状のうち、線状、柱状(円柱状、角柱状など)、面状、格子状、またはこれらの形状を組み合わせた形状がよく利用される。 The shape of the agglomerated portion is not particularly limited, and examples thereof include a linear shape, a columnar shape (or a rod shape), a spherical shape, an ellipsoidal shape, an indefinite shape, and a planar shape. Further, the shape of the agglomerated portion may be a shape in which the above shapes are combined (for example, a grid shape or the like), or may be a shape corresponding to the cross-sectional shape. Of these shapes, linear, columnar (cylindrical, prismatic, etc.), planar, grid-like, or a combination of these shapes is often used.
 凝集部の形状は、前記形状から選択できるが、生産性が高く、対称性および均質性により成形体の機械的特性も向上できる点から、パターン状(パターンまたはパターン形状)に形成されていてもよい。パターン形状は、1つの凝集部(連続した単一の凝集部)が形成してもよく、通常、互いに分離した複数の凝集部が形成することが多い。パターンとしては、例えば、模様(幾何学的模様など)、柄、記号(またはマーク)、文字、絵、これらの2種以上の組み合わせなどであってもよく、このようなパターン形状により、成形体に意匠性を付与してもよい。代表的なパターンとしては、通常、フィルム状成形体の平面におけるパターンであってもよく、例えば、規則的または不規則的に配列されたドット状、平行にまたは非平行に所定の間隔(例えば、等間隔、互いに異なる間隔など)をおいて配列された直線または曲線状(ライン状)、格子状、井桁状、枠状、うず巻き状、これらの2種以上の組み合わせなどが挙げられる。規則的または不規則的に配列されたドット状凝集部の形状(または厚み方向に垂直な断面の形状)としては、正方形状などの多角形状、円状、星形状、不定形状、これらの2種以上の組み合わせなどが挙げられる。 The shape of the agglomerated portion can be selected from the above-mentioned shapes, but even if it is formed in a pattern (pattern or pattern shape), it is highly productive and the mechanical properties of the molded product can be improved by symmetry and homogeneity. good. The pattern shape may be formed by one agglomerate (a continuous single agglutination), and usually, a plurality of agglomerates separated from each other are often formed. The pattern may be, for example, a pattern (geometric pattern, etc.), a pattern, a symbol (or mark), a character, a picture, a combination of two or more of these, and the molded product due to such a pattern shape. May be given a design. A typical pattern may be a pattern on a plane of a film-like molded body, for example, dots in a regularly or irregularly arranged manner, parallel or non-parallel at predetermined intervals (for example, for example). Examples include straight lines or curves (line-like), grid-like, grid-like, frame-like, spiral-shaped, and combinations of two or more of these arranged at equal intervals (distances different from each other, etc.). The shapes of the dot-shaped aggregates (or the shape of the cross section perpendicular to the thickness direction) arranged regularly or irregularly include polygonal shapes such as squares, circular shapes, star shapes, and indefinite shapes. The above combinations and the like can be mentioned.
 本開示の成形体は、連続した単一の凝集部(例えば、格子状パターンを形成する凝集部など)を有していてもよく、互いに分離した複数の凝集部を有していてもよい。これらのうち、凝集部による機能に異方性を付与し易く、かつ誘電体フィラーの割合を低減して成形体の機械的特性を向上させる観点から、複数の凝集部を有するのが好ましい。成形体が複数の凝集部を有する場合、各凝集部の形状は、同一の形状であってもよく、異なる形状であってもよい。本開示では、活性エネルギーの付与領域(重合領域または硬化領域)に対応する各種形状のマスクと、所定の形状に樹脂を成形するための三次元状の型とを組み合わせれば、様々な形状の凝集部を容易に形成することができ、各凝集部の形状が異なる成形体も容易に形成できる。生産性などの点からは、凝集部の形状が略同一である成形体が好ましい。なかでも、複数の凝集部がパターン形状を形成し、かつ前記複数の凝集部のうち少なくとも1つの凝集部が厚み方向に延びて横断(または貫通)した形態に形成されたフィルム状成形体(特に誘電フィルムまたはシート)であってもよい。また、凝集部(厚み方向の両端部)はシート状成形体の表面(特に、表面および裏面の双方)に露出していてもよい。 The molded product of the present disclosure may have a single continuous agglomerate (for example, an agglomerate forming a grid pattern), or may have a plurality of agglomerates separated from each other. Of these, it is preferable to have a plurality of agglomerates from the viewpoint of easily imparting anisotropy to the function of the agglomerates and reducing the proportion of the dielectric filler to improve the mechanical properties of the molded product. When the molded product has a plurality of agglomerated portions, the shape of each agglomerated portion may be the same shape or may be a different shape. In the present disclosure, if a mask having various shapes corresponding to an active energy imparting region (polymerization region or curing region) and a three-dimensional mold for molding a resin into a predetermined shape are combined, various shapes can be obtained. The agglomerated portion can be easily formed, and a molded body having a different shape of each agglomerated portion can be easily formed. From the viewpoint of productivity and the like, a molded product having substantially the same shape of the agglomerated portion is preferable. Among them, a film-like molded body (particularly) formed in a form in which a plurality of agglomerated portions form a pattern shape and at least one agglomerated portion of the plurality of agglomerated portions extends in the thickness direction and crosses (or penetrates). It may be a dielectric film or a sheet). Further, the agglomerated portions (both ends in the thickness direction) may be exposed on the front surface (particularly, both the front surface and the back surface) of the sheet-shaped molded product.
 なお、凝集部の幅や径などのサイズ(または厚み方向から見た凝集部の形状における最小幅)は特に制限されず、例えば1mm以上であってもよいが、本開示では比較的小さなサイズ(例えば1mm程度以下)の凝集部を形成できる。そのため、前記凝集部のサイズは0.01~500μm(例えば0.1~300μm)程度の範囲から選択でき、例えば1~200μm以下、好ましくは10~150μm程度であってもよい。 The size such as the width and diameter of the agglomerated portion (or the minimum width in the shape of the agglomerated portion when viewed from the thickness direction) is not particularly limited and may be, for example, 1 mm or more, but in the present disclosure, a relatively small size (or a relatively small size (or the minimum width in the shape of the agglomerated portion) may be 1 mm or more. For example, an agglomerated portion (about 1 mm or less) can be formed. Therefore, the size of the agglomerated portion can be selected from the range of about 0.01 to 500 μm (for example, 0.1 to 300 μm), and may be, for example, 1 to 200 μm or less, preferably about 10 to 150 μm.
 本開示の成形体は、一次元状(例えば、繊維状)、二次元状(例えば、板状、シート状、フィルム状など)、三次元状成形体のいずれの形状であってもよい。これらのうち、二次元状がよく利用される。 The molded product of the present disclosure may be in any shape of one-dimensional shape (for example, fibrous shape), two-dimensional shape (for example, plate shape, sheet shape, film shape, etc.), and three-dimensional shape shape. Of these, the two-dimensional shape is often used.
 二次元状成形体の厚み(平均厚み)は、例えば0.1μm~1mm程度の範囲から選択でき、例えば0.5~500μm(例えば1~100μm)、好ましくは3~80μm(例えば5~50μm)、さらに好ましくは8~45μm(例えば10~40μm)程度であってもよく、なかでも、自立膜を形成する場合には、例えば5μm以上(例えば10~100μm)、好ましくは20μm以上(例えば25~70μm)、さらに好ましくは30~50μm程度であってもよい。 The thickness (average thickness) of the two-dimensional molded product can be selected from the range of, for example, about 0.1 μm to 1 mm, for example, 0.5 to 500 μm (for example, 1 to 100 μm), preferably 3 to 80 μm (for example, 5 to 50 μm). More preferably, it may be about 8 to 45 μm (for example, 10 to 40 μm), and in particular, when forming a self-supporting film, for example, 5 μm or more (for example, 10 to 100 μm), preferably 20 μm or more (for example, 25 to 25 to 70 μm), more preferably about 30 to 50 μm.
 [成形体の製造方法]
 本開示の成形体の製造方法は、樹脂前駆体および誘電体フィラーを含む液状前駆体の一部の領域に活性エネルギーを付与して前記誘電体フィラーを凝集させる凝集工程を含む。凝集工程では、一部の領域に活性エネルギーが付与されることにより、樹脂前駆体が重合するととともに、成形体内部で均一に分散されていた誘電体フィラーは移動して液状前駆体内部の一部の領域に凝集する。誘電体フィラーが凝集する前記一部の領域は、活性エネルギーの付与されていない領域(未重合領域または未露光領域)、活性エネルギーの付与されている領域(重合領域または露光領域)のいずれかの領域である。本開示の方法では、配合の組み合わせや製造条件(特に、組み合わせる樹脂と誘電体フィラーの種類)を調整することにより、未重合領域、重合領域のいずれかに凝集させることができる。そのため、目的の凝集形態が決まれば、予め活性エネルギーの付与により、未重合領域、重合領域のいずれの領域に誘電体フィラーが移動する条件または組み合わせであるのか確認した後、未重合領域に移動する場合は目的の凝集形態に相当する領域以外の領域に活性エネルギーを付与し、逆に重合領域に移動する場合は目的の凝集形態に相当する領域に活性エネルギーを付与するだけで簡単に目的のパターンを形成できる。
[Manufacturing method of molded product]
The method for producing a molded product of the present disclosure includes an agglomeration step of applying active energy to a part of a region of a liquid precursor containing a resin precursor and a dielectric filler to agglomerate the dielectric filler. In the agglomeration step, active energy is applied to a part of the region to polymerize the resin precursor, and the dielectric filler uniformly dispersed inside the molded product moves to part of the inside of the liquid precursor. Aggregates in the area of. The partial region where the dielectric filler aggregates is either a region to which active energy is not applied (unpolymerized region or unexposed region) or a region to which active energy is applied (polymerized region or exposed region). It is an area. In the method of the present disclosure, by adjusting the combination of blending and the production conditions (particularly, the type of resin and dielectric filler to be combined), it is possible to aggregate in either the unpolymerized region or the polymerized region. Therefore, once the desired agglomeration form is determined, the active energy is applied in advance to confirm whether the conditions or combinations are such that the dielectric filler moves to the unpolymerized region or the polymerized region, and then moves to the non-polymerized region. In the case, the active energy is applied to a region other than the region corresponding to the target aggregated form, and conversely, when moving to the polymerization region, the target pattern is simply applied by applying the active energy to the region corresponding to the target aggregated form. Can be formed.
 本開示において、誘電体フィラーがこのような挙動を示す詳細なメカニズムは不明であるが、活性エネルギーが付与された領域において、樹脂前駆体が重合して樹脂が生成するにつれて、樹脂成分[樹脂前駆体およびその重合体(硬化物)である樹脂]と誘電体フィラーとの親和性の関係に変化が生じるためであると推定できる。 In the present disclosure, the detailed mechanism by which the dielectric filler exhibits such behavior is unknown, but as the resin precursor polymerizes to form a resin in the region to which the active energy is applied, the resin component [resin precursor] It can be presumed that this is because the relationship of affinity between the body and its polymer (cured product) resin] and the dielectric filler changes.
 本開示では、このように凝集部を形成するため、フィラーを含む樹脂成形体でよく見られるボイド(樹脂/フィラー界面に生じるボイドなど)の発生が抑制できる。また、重合領域に誘電体フィラーを凝集させた場合、凝集部の厚みは、非凝集部の厚みよりも大きくてもよい。 In the present disclosure, since the aggregated portion is formed in this way, it is possible to suppress the generation of voids (voids generated at the resin / filler interface, etc.) that are often seen in resin molded products containing fillers. Further, when the dielectric filler is agglomerated in the polymerization region, the thickness of the agglomerated portion may be larger than the thickness of the non-aggregated portion.
 凝集工程において、樹脂前駆体は、樹脂の種類に応じて選択でき、樹脂が熱可塑性樹脂の場合、重合性化合物として熱可塑性樹脂を形成するための単量体(単官能重合性化合物)を含んでいてもよく、樹脂が硬化性樹脂の硬化物(3次元網目状構造を有する硬化物など)である場合、多官能性重合性化合物を含んでいてもよい。 In the aggregation step, the resin precursor can be selected according to the type of resin, and when the resin is a thermoplastic resin, the resin precursor contains a monomer (monofunctional polymerizable compound) for forming the thermoplastic resin as the polymerizable compound. When the resin is a cured product of a curable resin (such as a cured product having a three-dimensional network structure), it may contain a thermoplastic polymerizable compound.
 液状前駆体は、溶媒(または分散媒)を含んでいなくてもよく、必要に応じて、前記カチオン重合性化合物およびフィラー(および必要に応じて他の添加剤)に加えて、液状前駆体の粘度を低減するために溶媒をさらに含んでいてもよい。 The liquid precursor does not have to contain a solvent (or dispersion medium) and, if necessary, in addition to the cationically polymerizable compound and filler (and other additives if necessary), the liquid precursor. The solvent may be further included to reduce the viscosity of the.
 溶媒(または分散媒)としては、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、エーテル類(ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(トルエン、キシレンなど)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸n-ブチルなどの酢酸エステル類など)、水、アルコール類(エタノール、イソプロパノール、ブタノール、シクロヘキサノールなど)、セロソルブ類[メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル(1-メトキシ-2-プロパノール)など]、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシドなど)、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)、カーボネート類[例えば、ジメチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート類、エチレンカーボネート、プロピレンカーボネート(または炭酸プロピレン)などの環状カーボネート類など]などが例示できる。また、溶媒は混合溶媒であってもよい。これらの溶媒のうち、2-プロパノールなどのアルコール類、炭酸プロピレンなどのカーボネート類、酢酸n-ブチルなどのエステル類などがよく利用される。 Examples of the solvent (or dispersion medium) include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), and alicyclic hydrocarbons. Classes (cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), carbon halides (dichloromethane, dichloroethane, etc.), esters (acetic acid esters such as methyl acetate, ethyl acetate, n-butyl acetate, etc.), Water, alcohols (ethanol, isopropanol, butanol, cyclohexanol, etc.), cellosolves [methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether (1-methoxy-2-propanol), etc.], cellosolve acetates, sulfoxides (dimethyl sulfoxide, etc.) Etc.), amides (dimethylformamide, dimethylacetamide, etc.), carbonates [eg, chain carbonates such as dimethyl carbonate, diethyl carbonate, cyclic carbonates such as ethylene carbonate, propylene carbonate (or propylene carbonate)], etc. It can be exemplified. Moreover, the solvent may be a mixed solvent. Among these solvents, alcohols such as 2-propanol, carbonates such as propylene carbonate, and esters such as n-butyl acetate are often used.
 溶媒の20℃における粘度は、例えば0.5~100mPa・s(例えば0.6~50mPa・s)、好ましくは0.5~20mPa・s(例えば0.7~10mPa・s)、さらに好ましくは0.5~5mPa・s(例えば1~3mPa・s)程度であってもよい。なお、粘度は、慣用の粘度計(単一円筒形回転粘度計など)を用いて測定できる。溶媒の粘度が高すぎると、液状前駆体の粘度を十分に低減できなくなる虞がある。 The viscosity of the solvent at 20 ° C. is, for example, 0.5 to 100 mPa · s (for example, 0.6 to 50 mPa · s), preferably 0.5 to 20 mPa · s (for example, 0.7 to 10 mPa · s), and more preferably. It may be about 0.5 to 5 mPa · s (for example, 1 to 3 mPa · s). The viscosity can be measured using a conventional viscometer (such as a single cylindrical rotational viscometer). If the viscosity of the solvent is too high, the viscosity of the liquid precursor may not be sufficiently reduced.
 溶媒を含む場合、その割合は、液状前駆体100質量部に対して、例えば300質量部以下(例えば1~200質量部)、好ましくは180質量部以下(例えば50~150質量部)、好ましくは130質量部以下(例えば80~120質量部)程度である。溶媒の量が少なすぎると液状前駆体の粘度を十分に低減できなくなる虞があり、多すぎると、厚みの大きな成形体を調製し難くなる虞がある。 When the solvent is contained, the ratio thereof is, for example, 300 parts by mass or less (for example, 1 to 200 parts by mass), preferably 180 parts by mass or less (for example, 50 to 150 parts by mass), preferably 50 parts by mass, based on 100 parts by mass of the liquid precursor. It is about 130 parts by mass or less (for example, 80 to 120 parts by mass). If the amount of the solvent is too small, the viscosity of the liquid precursor may not be sufficiently reduced, and if it is too large, it may be difficult to prepare a molded product having a large thickness.
 活性エネルギーを付与するための液状前駆体は、目的の形状に応じて、型内に充填してもよく、シート状またはフィルム状成形体の場合は塗布してもよい。塗布方法としては、慣用の方法、例えば、ロールコーター、エアナイフコーター、ブレードコーター、ロッドコーター、リバースコーター、バーコーター、コンマコーター、ディップ・スクイズコーター、ダイコーター、グラビアコーター、マイクログラビアコーター、シルクスクリーンコーター法、ディップ法、スプレー法、スピナー法などが挙げられる。 The liquid precursor for imparting active energy may be filled in a mold depending on the desired shape, or may be applied in the case of a sheet-shaped or film-shaped molded product. Conventional methods include roll coaters, air knife coaters, blade coaters, rod coaters, reverse coaters, bar coaters, comma coaters, dip squeeze coaters, die coaters, gravure coaters, micro gravure coaters, and silk screen coaters. Examples include the method, dip method, spray method, and spinner method.
 活性エネルギーとしては、例えば、レーザーなどによる熱エネルギー、紫外線や電子線などの活性光線などが挙げられる。これらのうち、紫外線や電子線などの活性光線が好ましく、取扱性などの点から、紫外線が特に好ましい。 Examples of the active energy include thermal energy from a laser and the like, and active light rays such as ultraviolet rays and electron beams. Of these, active rays such as ultraviolet rays and electron beams are preferable, and ultraviolet rays are particularly preferable from the viewpoint of handleability and the like.
 活性エネルギーの付与方法は、活性エネルギーの種類に応じて、エネルギー源(熱源または光源)を選択できる。活性エネルギーが紫外線の場合、光源としては、例えば、紫外線の場合は、Deep UVランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ハロゲンランプ、レーザー光源(ヘリウム-カドミウムレーザー、エキシマレーザーなどの光源)などを利用できる。 As the method of applying active energy, an energy source (heat source or light source) can be selected according to the type of active energy. When the active energy is ultraviolet rays, as the light source, for example, in the case of ultraviolet rays, Deep UV lamp, low pressure mercury lamp, high pressure mercury lamp, ultrahigh pressure mercury lamp, halogen lamp, laser light source (helium-cadmium laser, excima laser, etc.) Light source) etc. can be used.
 活性光線(光エネルギー)として紫外光を利用する場合、その照度は重合性化合物の種類や濃度などに応じて適宜選択してもよく、波長365nmにおける照度、例えば0.1~20mW/cm(例えば1~18mW/cm)、好ましくは0.3~15mW/cm(例えば5~12mW/cm)、さらに好ましくは0.6~10mW/cm(例えば6~9.5mW/cm)程度であってもよい。照射時間は、照度に応じて選択してもよく、例えば1~60分、好ましくは3~25分、さらに好ましくは5~15分程度であってもよい。 When ultraviolet light is used as the active light (light energy), the illuminance may be appropriately selected according to the type and concentration of the polymerizable compound, and the illuminance at a wavelength of 365 nm, for example, 0.1 to 20 mW / cm 2 ( For example 1 ~ 18mW / cm 2), preferably 0.3 ~ 15mW / cm 2 (e.g., 5 ~ 12mW / cm 2), more preferably 0.6 ~ 10mW / cm 2 (e.g., 6 ~ 9.5mW / cm 2 ) May be the case. The irradiation time may be selected according to the illuminance, and may be, for example, 1 to 60 minutes, preferably 3 to 25 minutes, and more preferably about 5 to 15 minutes.
 凝集工程では、液状前駆体の一部の領域に活性エネルギーを付与することにより、付与した領域の樹脂前駆体の重合を開始できるとともに、活性エネルギーを付与していない部分または付与した部分に誘電体フィラーが移動することにより、凝集部と非凝集部とを形成できる。本工程において、樹脂前駆体の重合は完結していてもよく、後述する重合工程において、重合を完結させてもよい。 In the agglomeration step, by applying active energy to a part of the liquid precursor, the polymerization of the resin precursor in the applied region can be started, and a dielectric material is applied to the portion to which the active energy is not applied or to the portion to which the active energy is applied. By moving the filler, an aggregated portion and a non-aggregated portion can be formed. In this step, the polymerization of the resin precursor may be completed, or in the polymerization step described later, the polymerization may be completed.
 液状前駆体(またはAステージ状前駆体)の一部の領域に活性エネルギーを付与する方法としては、活性エネルギーの種類に応じて適宜選択でき、例えば、熱エネルギーの場合、一部の領域にレーザー光などを照射してもよく、紫外線や電子線などの活性光線の場合、未硬化領域(または未重合領域)への活性光線を遮光できる領域を有するフォトマスクを利用して、一部の領域(硬化領域または重合領域)に活性光線を照射してもよい。 The method of imparting active energy to a part of the liquid precursor (or A-stage precursor) can be appropriately selected according to the type of the active energy. For example, in the case of thermal energy, a laser is applied to a part of the region. It may be irradiated with light or the like, and in the case of active light such as ultraviolet rays or electron beams, a part of the area is used by using a photomask having a region capable of blocking the active light to the uncured region (or unpolymerized region). (Curing region or polymerization region) may be irradiated with active light.
 シート状成形体を形成する場合、凝集工程において、塗膜などの平面状の液状前駆体に対して所定の角度で斜め方向に活性エネルギーを付与(または照射)してもよいが、通常、平面状の液状前駆体に対して略垂直な方向に照射するのが好ましい。略垂直に照射することにより、シート状成形体の厚み方向に誘電体フィラーを凝集または配向(規則的にまたはランダムに配向)させて、厚み方向(照射方向)に延びて形成され、誘電体フィラーが横断または貫通した形態(または表面で誘電体フィラーが露出した形態)の凝集部を容易に形成できる。 When forming a sheet-shaped molded body, active energy may be applied (or irradiated) diagonally at a predetermined angle to a flat liquid precursor such as a coating film in the aggregation step, but it is usually flat. It is preferable to irradiate the liquid precursor in a direction substantially perpendicular to the liquid precursor. By irradiating substantially vertically, the dielectric filler is aggregated or oriented (regularly or randomly oriented) in the thickness direction of the sheet-shaped molded product, and is formed so as to extend in the thickness direction (irradiation direction). Can easily form agglomerates in a form that traverses or penetrates (or a form in which the dielectric filler is exposed on the surface).
 本開示の成形体の製造方法は、前記凝集工程に加えて、凝集工程を経た前駆成形体(半固体状前駆成形体または固体状前駆成形体、あるいはBステージ状前駆成形体)の活性エネルギーを付与しなかった領域(未硬化領域または未重合領域)に活性エネルギーを付与して重合を完結させる重合完結工程をさらに含むのが好ましい。重合完結工程を経ることにより、活性エネルギーを付与しなかった領域の樹脂前駆体も重合して樹脂を形成できる。 In the method for producing a molded product of the present disclosure, in addition to the above-mentioned aggregation step, the active energy of the precursor molded product (semi-solid precursor molded article, solid precursor molded article, or B-stage precursor molded article) that has undergone the aggregation step is applied. It is preferable to further include a polymerization completion step of imparting active energy to a region (uncured region or unpolymerized region) that has not been imparted to complete the polymerization. By going through the polymerization completion step, the resin precursor in the region to which the active energy has not been applied can also be polymerized to form a resin.
 重合完結工程において、活性エネルギーを付与する領域は、凝集工程において活性化エネルギーを付与しなかった領域を含む領域であればよいが、簡便に操作でき、生産性に優れる上に、重合をさらに進行させて成形体の機械的特性を向上できる点から、全領域に活性エネルギーを付与する方法が好ましい。 In the polymerization completion step, the region to which the activation energy is applied may be a region including the region to which the activation energy is not applied in the aggregation step, but it can be easily operated, is excellent in productivity, and further advances the polymerization. A method of imparting active energy to the entire region is preferable from the viewpoint that the mechanical properties of the molded product can be improved.
 活性エネルギーとしては、凝集工程と同一の活性エネルギーを利用してもよく、通常、活性エネルギーを付与する条件を強くなる方向に変更してもよい。また、照度を段階的に挙げて照射してもよい。活性光線(光エネルギー)を利用する場合、照射時間が長すぎると、生産性が低下するおそれがある。 As the active energy, the same active energy as in the aggregation step may be used, and usually, the conditions for imparting the active energy may be changed in a direction of increasing strength. Further, the illuminance may be increased stepwise to irradiate. When using active light (light energy), if the irradiation time is too long, productivity may decrease.
 また、樹脂がカチオン重合性化合物である形態では、重合完結工程において、熱エネルギーを付与(またはアニール処理)することにより、カチオン重合性化合物の暗反応(後重合)を利用して重合を完結させてもよい。アニール温度としては、例えば50~200℃(例えば70~180℃)、好ましくは80~150℃(例えば90~130℃)、さらに好ましくは100~120℃程度であってもよい。加熱時間としては、例えば10~120分、好ましくは30~60分程度であってもよい。 Further, in the form in which the resin is a cationically polymerizable compound, thermal energy is applied (or annealed) in the polymerization completion step to complete the polymerization by utilizing the dark reaction (post-polymerization) of the cationically polymerizable compound. You may. The annealing temperature may be, for example, 50 to 200 ° C. (for example, 70 to 180 ° C.), preferably 80 to 150 ° C. (for example, 90 to 130 ° C.), and more preferably about 100 to 120 ° C. The heating time may be, for example, 10 to 120 minutes, preferably about 30 to 60 minutes.
 なお、本開示では、液状前駆体を所定の基材に塗布などの方法で接触させた状態で、前記成形体を成形することにより、前記基材と成形体とが接合した接合体(複合成形体)を形成してもよい。 In the present disclosure, a bonded body (composite molding) in which the base material and the molded body are joined by molding the molded body in a state where the liquid precursor is brought into contact with a predetermined base material by a method such as coating. The body) may be formed.
 基材の材質は特に制限されず、有機材料または無機材料のいずれであってもよい。 The material of the base material is not particularly limited and may be either an organic material or an inorganic material.
 有機材料としては、例えば、樹脂[例えば、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂、ABS樹脂などのスチレン系樹脂、塩化ビニル樹脂などのビニル系樹脂、ポリメチルメタクリレートなどの(メタ)アクリル系樹脂、ポリエチレンテレフタレート(PET)などのポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロースエステル、セルロースエーテルなどのセルロース誘導体、熱可塑性エラストマーなど];合成ゴム材料(イソプレンゴム、ブチルゴムなど);樹脂またはゴムの発泡体(例えば、発泡ポリウレタン、発泡ポリクロロプレンゴムなど);植物又は動物由来の材料(木材、パルプ、天然ゴム、皮革、毛糸など)などが挙げられる。 Examples of the organic material include resins [for example, olefin resins such as polyethylene and polypropylene, styrene resins such as ABS resin, vinyl resins such as vinyl chloride resin, (meth) acrylic resins such as polymethylmethacrylate, and polyethylene. Polyester resin such as terephthalate (PET), polycarbonate resin, polyamide resin, polyimide resin, cellulose ester, cellulose derivative such as cellulose ether, thermoplastic elastomer, etc.]; Synthetic rubber material (isoprene rubber, butyl rubber, etc.); Resin Alternatively, rubber foams (eg, polyurethane foam, foamed polychloroprene rubber, etc.); plant or animal-derived materials (wood, pulp, natural rubber, leather, yarn, etc.) and the like can be mentioned.
 無機材料としては、例えば、セラミックス(ガラス、シリコン、セメントなど);金属[例えば、金属単体(アルミニウム、鉄、ニッケル、銅、亜鉛、クロム、チタンなど)、これらの金属を含む合金(アルミニウム合金、鋼(ステンレス鋼など)など)など]などが挙げられる。 Inorganic materials include, for example, ceramics (glass, silicon, cement, etc.); metals [for example, simple metals (aluminum, iron, nickel, copper, zinc, chromium, titanium, etc.), alloys containing these metals (aluminum alloys, etc.) Steel (stainless steel, etc.), etc.)] and the like.
 これらの材質のうち、樹脂(例えば、ポリエステル系樹脂、ポリイミド樹脂など、好ましくはポリイミド樹脂など)、セラミックス(ガラスなど)、金属(銅など)がよく利用される。 Of these materials, resins (for example, polyester resin, polyimide resin, etc., preferably polyimide resin, etc.), ceramics (glass, etc.), and metals (copper, etc.) are often used.
 また、基材の形態(形状)は特に制限されず、例えば、繊維状(糸状、ロープ状、ワイヤー状など)などの一次元形状、板状、シート状、フィルム状、箔状、布又はクロス状(織布、編布、不織布など)、紙状(上質紙、グラシン紙、クラフト紙、和紙など)などの二次元形状、塊状、ブロック状、棒状(円柱状、多角柱状など)、管状などの3次元形状などが挙げられる。 The form (shape) of the base material is not particularly limited, and for example, a one-dimensional shape such as a fibrous shape (thread shape, rope shape, wire shape, etc.), a plate shape, a sheet shape, a film shape, a foil shape, a cloth or a cloth. Two-dimensional shapes such as shapes (woven cloth, knitted cloth, non-woven fabric, etc.), paper-like (high-quality paper, glassine paper, kraft paper, Japanese paper, etc.), lumps, blocks, rods (cylindrical, polygonal columns, etc.), tubular, etc. The three-dimensional shape of the above can be mentioned.
 これらの形態のうち、板状、シート状、フィルム状、箔状などの2次元形状であることが多い。 Of these forms, it is often a two-dimensional shape such as a plate shape, a sheet shape, a film shape, or a foil shape.
 なお、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。 It should be noted that each aspect disclosed herein can be combined with any other feature disclosed herein.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。用いた原料は以下の通りであり、得られた積層体を以下の方法で評価した。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples. The raw materials used were as follows, and the obtained laminate was evaluated by the following method.
 [原料]
 (カチオン重合性化合物)
 NPG:ネオペンチルグリコールジグリシジルエーテル、四日市合成(株)製「エポゴーセー(登録商標)NPG(D)」、粘度8mPa・s(25℃、カタログ値)
 EP1:CEL2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製「セロキサイド2021P」、粘度240mPa・s(25℃)
 EP2:(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、粘度60mPa・s(25℃)
 (誘電体フィラー)
 BaTiO:チタン酸バリウム微粒子、(株)関東化学製、particle size 約100nm
 (開始剤)
 CPI-100P:光カチオン重合開始剤、サンアプロ(株)製「CPI(登録商標)-100P」。
[material]
(Cation-polymerizable compound)
NPG: Neopentyl glycol diglycidyl ether, "Epogosee (registered trademark) NPG (D)" manufactured by Yokkaichi Chemical Co., Ltd., viscosity 8 mPa · s (25 ° C, catalog value)
EP1: CEL2021P: 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, "Celoxide 2021P" manufactured by Daicel Corporation, viscosity 240 mPa · s (25 ° C)
EP2: (3,4,3', 4'-diepoxy) bicyclohexyl, viscosity 60 mPa · s (25 ° C)
(Dielectric filler)
BaTIO 3 : Barium titanate fine particles, manufactured by Kanto Chemical Co., Inc., particle size approx. 100 nm
(Initiator)
CPI-100P: Photocationic polymerization initiator, "CPI®-100P" manufactured by San-Apro Co., Ltd.
 [使用した冶具および装置]
 (基材)
 未処理ガラス:厚み1mm、松浪硝子(株)製「S9112」。
[Jigs and equipment used]
(Base material)
Untreated glass: 1 mm thick, "S9112" manufactured by Matsunami Glass Co., Ltd.
 (マスク)
 図3~4に示すパターン形状を有する以下のフォトマスク(No.1~7)
 No.1:スクエアまたはスクエアドット、250μm×250μmサイズの正方形状遮光部が250μm間隔で縦横に規則的に配列したフォトマスク(東京プロセスサービス(株)製 5インチ ガラスマスク)
 No.2:スクエアまたはスクエアドット、50μm×50μmサイズの正方形状遮光部が150μm間隔で縦横に規則的に配列したフォトマスク(東京プロセスサービス(株)製 5インチ ガラスマスク)
 No.3:スクエアまたはスクエアドット、100μm×100μmサイズの正方形状遮光部が100μm間隔で縦横に規則的に配列したフォトマスク(東京プロセスサービス(株)製 5インチ ガラスマスク)
 No.4:スクエアまたはスクエアドット、50μm×50μmサイズの正方形状遮光部が50μm間隔で縦横に規則的に配列したフォトマスク(東京プロセスサービス(株)製 5インチ ガラスマスク)
 No.5:ラインまたはラインアンドスペース(L/S)、幅100μmのライン状遮光部が100μm間隔で規則的に配列したフォトマスク(東京プロセスサービス(株)製 5インチ ガラスマスク)
 No.6:格子状、100μm×100μmサイズの正方形状透光部が100μm間隔で縦横に規則的に配列したフォトマスク(東京プロセスサービス(株)製 5インチ ガラスマスク)
 No.7:スクエアまたはスクエアドット、100μm×100μmサイズの正方形状遮光部が市松模様状に規則的に配列したフォトマスク(東京プロセスサービス(株)製 5インチ ガラスマスク)。
(mask)
The following photomasks (Nos. 1 to 7) having the pattern shapes shown in FIGS. 3 to 4
No. 1: Square or square dot, 250 μm x 250 μm size square light-shielding part is regularly arranged vertically and horizontally at 250 μm intervals (5-inch glass mask manufactured by Tokyo Process Service Co., Ltd.)
No. 2: Square or square dot, 50 μm x 50 μm size square light-shielding part is regularly arranged vertically and horizontally at 150 μm intervals (5-inch glass mask manufactured by Tokyo Process Service Co., Ltd.)
No. 3: Square or square dot, 100 μm x 100 μm size square light-shielding part is regularly arranged vertically and horizontally at 100 μm intervals (5-inch glass mask manufactured by Tokyo Process Service Co., Ltd.)
No. 4: Square or square dot, 50 μm x 50 μm size square light-shielding part is regularly arranged vertically and horizontally at 50 μm intervals (5-inch glass mask manufactured by Tokyo Process Service Co., Ltd.)
No. 5: Line or line-and-space (L / S), photomask in which line-shaped shading parts with a width of 100 μm are regularly arranged at 100 μm intervals (5-inch glass mask manufactured by Tokyo Process Service Co., Ltd.)
No. 6: A photomask in which grid-shaped, 100 μm × 100 μm size square translucent parts are regularly arranged vertically and horizontally at 100 μm intervals (5-inch glass mask manufactured by Tokyo Process Service Co., Ltd.).
No. 7: A photomask (5-inch glass mask manufactured by Tokyo Process Service Co., Ltd.) in which square or square dots, 100 μm × 100 μm size square shading parts are regularly arranged in a checkered pattern.
 (装置)
 バーコーター:第一理科(株)製 8φ×300mm
 スポットUV装置:浜松ホトニクス(株)製「LC8」
 デジタルマイクロスコープ:(株)ハイロックス製「KH-8700」
(Device)
Bar coater: Daiichi Rika Co., Ltd. 8φ x 300mm
Spot UV device: "LC8" manufactured by Hamamatsu Photonics Co., Ltd.
Digital microscope: "KH-8700" manufactured by Hirox Co., Ltd.
 [評価方法]
 (硬化性)
 以下の基準に従って得られたフィルムの硬化性を評価した。
[Evaluation method]
(Curable)
The curability of the obtained film was evaluated according to the following criteria.
  ○…UV照射(2または3段目)後全体硬化
  △…UV照射(2または3段目)後に完全には硬化せず、アニール後全体硬化
  ×…アニール後も全体硬化せず。
◯… Overall curing after UV irradiation (2nd or 3rd stage) Δ… Overall curing after UV irradiation (2nd or 3rd stage) ×… Overall curing after annealing ×… Overall curing after annealing.
 (フィラー制御性)
 デジタルマイクロスコープによるCCD観察像から、得られたフィルムにおける誘電体フィラーの制御性について、以下の基準に従って相対的に評価した。
(Filler controllability)
From the CCD observation image by the digital microscope, the controllability of the dielectric filler in the obtained film was relatively evaluated according to the following criteria.
  ◎…非凝集部へのフィラー残留量 小
  ○…非凝集部へのフィラー残留量 中
  △…非凝集部へのフィラー残留量 大
  ×…マスクパターンの転写無し。
◎… Residual amount of filler in non-aggregated part Small ○… Residual amount of filler in non-aggregated part Medium △… Residual amount of filler in non-aggregated part Large ×… No mask pattern transfer.
 (誘電率)
 前処理工程として、誘電率を測定するフィルムに、イオンスパッタ装置((株)日立ハイテク製「MC1000」)で中心が同じになるように両面に、直径40mmの円形状で白金を蒸着させた。前処理したフィルムについて、以下の条件で誘電率(比誘電率)を測定し、対応する比較例に対する相対値を増加度とした。
 規格:JIS C2138に準拠
 誘電率測定装置:Cencept42(Novocontrol Technologies社製)
 温湿度:23℃、50%RH
 電極形状:ガードリングなしの円形電極(直径40mm)
 電極配置:試験片の中心と電極の中心とを合わせて配置
 試験電圧:1.0V
 試験周波数:10Hz~1MHz。
 (柔軟性)
 得られたコーティング層を有するフィルムを直径5mmのガラス棒に巻き付けて、柔軟性を評価し、割れなかったものを「〇」とした。
(Dielectric constant)
As a pretreatment step, platinum was deposited on a film whose dielectric constant was measured by an ion sputtering apparatus (“MC1000” manufactured by Hitachi High-Tech Co., Ltd.) on both sides in a circular shape having a diameter of 40 mm so that the centers were the same. The dielectric constant (relative permittivity) of the pretreated film was measured under the following conditions, and the relative value with respect to the corresponding comparative example was taken as the degree of increase.
Standard: Compliant with JIS C2138 Dielectric constant measuring device: Centempt42 (manufactured by Novocontrol Technologies)
Temperature and humidity: 23 ° C, 50% RH
Electrode shape: Circular electrode without guard ring (diameter 40 mm)
Electrode placement: Align the center of the test piece with the center of the electrode Test voltage: 1.0V
Test frequency: 10Hz to 1MHz.
(Flexibility)
The film having the obtained coating layer was wound around a glass rod having a diameter of 5 mm, the flexibility was evaluated, and the unbroken film was designated as “◯”.
 [比較例1~2]
 表1に記載の割合で各成分を混合攪拌し、カチオン重合性化合物、誘電体フィラーおよび開始剤を含む液状前駆体を調製した。調製した液状前駆体を、バーコーターを用いてガラス基材上に塗工し、塗膜を形成した。得られた塗膜に対して、スポットUV装置を用い、表1に記載の条件(照度、照射時間)で、マスクを介することなく、紫外光(波長365nm)を照射した後、さらに照度を上げてマスクを介することなく、紫外光を照射し、表1に記載の膜厚のコーティング層を有するフィルムを調製した。
[Comparative Examples 1 and 2]
Each component was mixed and stirred at the ratios shown in Table 1 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator. The prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film. The obtained coating film is irradiated with ultraviolet light (wavelength 365 nm) under the conditions (illuminance, irradiation time) shown in Table 1 using a spot UV device without using a mask, and then the illuminance is further increased. A film having a coating layer having the thickness shown in Table 1 was prepared by irradiating with ultraviolet light without passing through a mask.
 [実施例1~4]
 表1に記載の割合で各成分を混合攪拌し、カチオン重合性化合物、誘電体フィラーおよび開始剤を含む液状前駆体を調製した。調製した液状前駆体を、バーコーターを用いてガラス基材上に塗工し、塗膜を形成した。得られた塗膜に対して、スポットUV装置を用い、表1に記載の条件(照度、照射時間)で、マスクを介して紫外光(波長365nm)を照射した後(1段目)、次いでマスクを介することなく紫外光を速やかに照射し(2段目)、表1に記載の膜厚のコーティング層を有するフィルムを調製した。
[Examples 1 to 4]
Each component was mixed and stirred at the ratios shown in Table 1 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator. The prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film. The obtained coating film was irradiated with ultraviolet light (wavelength 365 nm) through a mask under the conditions (illuminance, irradiation time) shown in Table 1 using a spot UV device (first stage), and then A film having a coating layer having the film thickness shown in Table 1 was prepared by rapidly irradiating ultraviolet light without passing through a mask (second stage).
 [実施例5~18]
 表1に記載の割合で各成分を混合攪拌し、カチオン重合性化合物、誘電体フィラーおよび開始剤を含む液状前駆体を調製した。調製した液状前駆体を、バーコーターを用いてガラス基材上に塗工し、塗膜を形成した。得られた塗膜に対して、スポットUV装置を用い、表1に記載の条件(照度、照射時間)で、マスクを介して紫外光(波長365nm)を照射した後(1段目)、次いでマスクを介することなく紫外光を速やかに照射し(2段目)、さらに照度を上げてマスクを介することなく紫外光を照射し(3段目)、表1に記載の膜厚のコーティング層を有するフィルムを調製した。
[Examples 5 to 18]
Each component was mixed and stirred at the ratios shown in Table 1 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator. The prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film. The obtained coating film was irradiated with ultraviolet light (wavelength 365 nm) through a mask under the conditions (illumination, irradiation time) shown in Table 1 using a spot UV device (first stage), and then Immediately irradiate ultraviolet light without passing through a mask (second stage), further increase the illuminance and irradiate ultraviolet light without passing through a mask (third stage), and apply the coating layer having the film thickness shown in Table 1. The film to have was prepared.
 比較例1~2および実施例1~18で得られたフィルムの評価結果を表1に示す。 Table 1 shows the evaluation results of the films obtained in Comparative Examples 1 and 2 and Examples 1 to 18.
 また、得られたフィルムのCCD写真を図5~24に示す。なお、表面観察像では、透過光による観察のため、フィラー凝集部は黒色(暗色)で示される。 Further, the CCD photographs of the obtained film are shown in FIGS. 5 to 24. In the surface observation image, the filler agglomerated portion is shown in black (dark color) for observation by transmitted light.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1の結果から明らかなように、実施例のフィルムは、硬化性に優れ、誘電体フィラーも十分に制御されていた。 As is clear from the results in Table 1, the film of the example was excellent in curability, and the dielectric filler was also sufficiently controlled.
 [比較例3]
 表2に記載の割合で各成分を混合攪拌し、カチオン重合性化合物および開始剤を含む液状前駆体を調製した。調製した液状前駆体を、バーコーターを用いてガラス基材上に塗工し、塗膜を形成した。得られた塗膜に対して、スポットUV装置を用い、表2に記載の条件(照度、照射時間)で、マスクを介することなく、紫外光(波長365nm)を照射し、表2に記載の膜厚のコーティング層を有するフィルムを調製した。
[Comparative Example 3]
Each component was mixed and stirred at the ratios shown in Table 2 to prepare a liquid precursor containing a cationically polymerizable compound and an initiator. The prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film. The obtained coating film was irradiated with ultraviolet light (wavelength 365 nm) under the conditions (illuminance, irradiation time) shown in Table 2 using a spot UV device without using a mask, and is shown in Table 2. A film having a coating layer having a film thickness was prepared.
 [比較例4~7]
 表2に記載の割合で各成分を混合攪拌し、カチオン重合性化合物、誘電体フィラーおよび開始剤を含む液状前駆体を調製した。調製した液状前駆体を、バーコーターを用いてガラス基材上に塗工し、塗膜を形成した。得られた塗膜に対して、スポットUV装置を用い、表2に記載の条件(照度、照射時間)で、マスクを介することなく、紫外光(波長365nm)を照射した後、さらに照度を上げてマスクを介することなく、紫外光を照射し、表2に記載の膜厚のコーティング層を有するフィルムを調製した。
[Comparative Examples 4 to 7]
Each component was mixed and stirred at the ratios shown in Table 2 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator. The prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film. The obtained coating film is irradiated with ultraviolet light (wavelength 365 nm) under the conditions (illuminance, irradiation time) shown in Table 2 using a spot UV device without using a mask, and then the illuminance is further increased. A film having a coating layer having the thickness shown in Table 2 was prepared by irradiating with ultraviolet light without passing through a mask.
 [実施例19~29]
 表2に記載の割合で各成分を混合攪拌し、カチオン重合性化合物、誘電体フィラーおよび開始剤を含む液状前駆体を調製した。調製した液状前駆体を、バーコーターを用いてガラス基材上に塗工し、塗膜を形成した。得られた塗膜に対して、スポットUV装置を用い、表2に記載の条件(照度、照射時間)で、マスクを介して紫外光(波長365nm)を照射した後(1段目)、次いでマスクを介することなく紫外光を速やかに照射し(2段目)、さらに照度を上げてマスクを介することなく紫外光を照射し(3段目)、表2に記載の膜厚のコーティング層を有するフィルムを調製した。
[Examples 19 to 29]
Each component was mixed and stirred at the ratios shown in Table 2 to prepare a liquid precursor containing a cationically polymerizable compound, a dielectric filler and an initiator. The prepared liquid precursor was applied onto a glass substrate using a bar coater to form a coating film. The obtained coating film was irradiated with ultraviolet light (wavelength 365 nm) through a mask under the conditions (illumination, irradiation time) shown in Table 2 using a spot UV device (first stage), and then Immediately irradiate ultraviolet light without passing through a mask (second stage), further increase the illuminance and irradiate ultraviolet light without passing through a mask (third stage), and apply the coating layer having the film thickness shown in Table 2. The film to have was prepared.
 比較例3~7および実施例19~29で得られたフィルムの評価結果を表2に示す。また、得られたフィルムのCCD写真を図25~39に示す。
Figure JPOXMLDOC01-appb-T000006
Table 2 shows the evaluation results of the films obtained in Comparative Examples 3 to 7 and Examples 19 to 29. Moreover, the CCD photograph of the obtained film is shown in FIGS. 25-39.
Figure JPOXMLDOC01-appb-T000006
 表2の結果から明らかなように、実施例のフィルムは、硬化性に優れ、誘電体フィラーも十分に制御され、誘電率も向上した。比誘電率については、比較例に対する相対値を示しているが、実施例では、比較例よりも20%以上も比誘電率が増加した。さらに、実施例で得られた誘電体フィルムは、直径5mmのガラス棒に巻き付けても、割れず、柔軟性に優れていた。 As is clear from the results in Table 2, the film of the example was excellent in curability, the dielectric filler was sufficiently controlled, and the dielectric constant was also improved. The relative permittivity is shown as a relative value with respect to the comparative example, but in the example, the relative permittivity increased by 20% or more as compared with the comparative example. Further, the dielectric film obtained in the examples did not break even when wound around a glass rod having a diameter of 5 mm, and was excellent in flexibility.
 本開示の成形体は、各種の電気・電子機器、輸送機器などに利用される誘電体として利用でき、特に、コンデンサ(キャパシタ)、レジスタ、インダクタなどの受動素子部品として利用される誘電体として好適である。なかでも、フィルム状成形体は、柔軟性にも優れているため、誘電フィルム(高誘電率絶縁フィルム)として好適であり、家電機器や車載電子機器、産業機器、パワーエレクトロニクス機器などのフィルムコンデンサとして特に好適である。 The molded body of the present disclosure can be used as a dielectric used in various electric / electronic devices, transportation devices, etc., and is particularly suitable as a dielectric used as a passive element component such as a capacitor, a register, and an inductor. Is. Among them, the film-shaped molded body is suitable as a dielectric film (high dielectric constant insulating film) because it has excellent flexibility, and is used as a film capacitor for home appliances, in-vehicle electronic devices, industrial devices, power electronics devices, etc. Especially suitable.
 1…凝集部
 1a…中央域(中央部、中心部近傍または第1の領域)
 1b…中間域(中間部、中間領域または第2の領域)
 1c…周辺域(周辺部、界面近傍または第3の領域)
 2…非凝集部
 3…界面
 4…凝集部の中心部
1 ... Aggregation part 1a ... Central area (central part, near the central part or the first area)
1b ... Intermediate region (intermediate region, intermediate region or second region)
1c ... Peripheral area (peripheral part, near interface or third area)
2 ... Non-aggregated part 3 ... Interface 4 ... Central part of aggregated part

Claims (15)

  1.  樹脂と誘電体フィラーとを含み、前記誘電体フィラーが凝集した領域である凝集部と、前記凝集部以外の領域である非凝集部とで形成され、かつ前記凝集部における誘電体フィラーの存在割合が、前記非凝集部との少なくとも界面近傍において、界面に向かって漸減する成形体。 It contains a resin and a dielectric filler, is formed by an agglomerated portion which is a region where the dielectric filler is agglomerated, and a non-aggregated portion which is a region other than the agglomerated portion, and the abundance ratio of the dielectric filler in the agglomerated portion. However, at least in the vicinity of the interface with the non-aggregated portion, the molded product gradually decreases toward the interface.
  2.  樹脂が光硬化性樹脂の硬化物である請求項1記載の成形体。 The molded product according to claim 1, wherein the resin is a cured product of a photocurable resin.
  3.  光硬化性樹脂がカチオン重合性化合物である請求項2記載の成形体。 The molded product according to claim 2, wherein the photocurable resin is a cationically polymerizable compound.
  4.  誘電体フィラーがチタン含有複合金属酸化物で形成された無機フィラーである請求項1~3のいずれか一項に記載の成形体。 The molded product according to any one of claims 1 to 3, wherein the dielectric filler is an inorganic filler formed of a titanium-containing composite metal oxide.
  5.  誘電体フィラーの割合が、樹脂100質量部に対して0.1~100質量部である請求項1~4のいずれか一項に記載の成形体。 The molded product according to any one of claims 1 to 4, wherein the ratio of the dielectric filler is 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin.
  6.  フィルム状である請求項1~5のいずれか一項に記載の成形体。 The molded product according to any one of claims 1 to 5, which is in the form of a film.
  7.  複数の凝集部がパターン形状を形成し、かつ前記複数の凝集部のうち少なくとも1つの凝集部が厚み方向に延びて貫通した形態に形成されている請求項6記載の成形体。 The molded product according to claim 6, wherein the plurality of agglomerated portions form a pattern shape, and at least one agglomerated portion of the plurality of agglomerated portions is formed so as to extend in the thickness direction and penetrate.
  8.  誘電フィルムである請求項1~7のいずれか一項に記載の成形体。 The molded product according to any one of claims 1 to 7, which is a dielectric film.
  9.  樹脂前駆体および誘電体フィラーを含む液状前駆体の一部の領域に活性エネルギーを付与して前記誘電体フィラーを凝集させて前駆成形体を得る凝集工程を含む請求項1~8のいずれか一項に記載の成形体の製造方法。 Any one of claims 1 to 8 including an aggregation step of applying active energy to a part of a region of a liquid precursor containing a resin precursor and a dielectric filler to aggregate the dielectric filler to obtain a precursor molded product. The method for producing a molded product according to the section.
  10.  凝集工程を経た前駆成形体の未硬化の領域に活性エネルギーを付与して重合を完結させる重合完結工程を含む請求項9記載の製造方法。 The production method according to claim 9, further comprising a polymerization completion step of applying active energy to the uncured region of the precursor molded product that has undergone the aggregation step to complete the polymerization.
  11.  液状前駆体が光酸発生剤を含み、活性エネルギーが活性光線である請求項9または10記載の製造方法。 The production method according to claim 9 or 10, wherein the liquid precursor contains a photoacid generator and the active energy is an active ray.
  12.  請求項9~11のいずれか一項に記載の製造方法で得られた成形体。 A molded product obtained by the manufacturing method according to any one of claims 9 to 11.
  13.  光硬化性樹脂と誘電体フィラーとを含み、前記誘電体フィラーが凝集した領域である凝集部と、前記凝集部以外の領域である非凝集部とを有する成形体を形成するための液状前駆体であって、光硬化性樹脂および誘電体フィラーを含む液状前駆体。 A liquid precursor for forming a molded product containing a photocurable resin and a dielectric filler and having an agglomerated portion which is a region where the dielectric filler is agglomerated and a non-aggregated portion which is a region other than the agglomerated portion. A liquid precursor containing a photocurable resin and a dielectric filler.
  14.  樹脂、セラミックスまたは金属で形成された基材と、請求項1~8および12のいずれか一項に記載の成形体とが接合された接合体。 A bonded body in which a base material made of resin, ceramics or metal and a molded product according to any one of claims 1 to 8 and 12 are bonded.
  15.  コンデンサである請求項14記載の接合体。 The junction according to claim 14, which is a capacitor.
PCT/JP2021/000663 2020-01-30 2021-01-12 Molded body, precursor thereof, methods for producing same, and uses thereof WO2021153213A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227029418A KR20220134586A (en) 2020-01-30 2021-01-12 Molded article and its precursor, manufacturing method and use
JP2021574595A JPWO2021153213A1 (en) 2020-01-30 2021-01-12
CN202180007079.9A CN114829505B (en) 2020-01-30 2021-01-12 Molded body, precursor thereof, method for producing same, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020014057 2020-01-30
JP2020-014057 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153213A1 true WO2021153213A1 (en) 2021-08-05

Family

ID=77078800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000663 WO2021153213A1 (en) 2020-01-30 2021-01-12 Molded body, precursor thereof, methods for producing same, and uses thereof

Country Status (4)

Country Link
JP (1) JPWO2021153213A1 (en)
KR (1) KR20220134586A (en)
CN (1) CN114829505B (en)
WO (1) WO2021153213A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104302A (en) * 2004-10-04 2006-04-20 Sumitomo Bakelite Co Ltd Resin composition and application thereof
JP2016222750A (en) * 2015-05-27 2016-12-28 上海磐樹新材料科技有限公司 Resin composition, molded body, and resin composition manufacturing method
JP2017014406A (en) * 2015-07-01 2017-01-19 味の素株式会社 Resin composition
WO2017098996A1 (en) * 2015-12-09 2017-06-15 株式会社Adeka Thermally curable resin composition
JP2018006052A (en) * 2016-06-29 2018-01-11 株式会社豊田中央研究所 Dielectric composite material and production method thereof
JP6264897B2 (en) * 2014-01-23 2018-01-24 トヨタ自動車株式会社 High dielectric constant film and film capacitor
JP2018048276A (en) * 2016-09-23 2018-03-29 日立化成株式会社 Underfill material and electronic component device using the same
WO2019117156A1 (en) * 2017-12-13 2019-06-20 Jnc株式会社 Method for manufacturing heat dissipation sheet, heat dissipation sheet, substrate, and power semiconductor module
WO2020195656A1 (en) * 2019-03-28 2020-10-01 株式会社ダイセル Formed body and production method therefor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785012B2 (en) * 1999-03-24 2006-06-14 富士通株式会社 Photosensitive high dielectric composition, photosensitive high dielectric film pattern forming method comprising the composition, and capacitor built-in multilayer circuit board manufactured using the composition
JP3974336B2 (en) * 2001-03-01 2007-09-12 ナブテスコ株式会社 Active energy ray-curable resin composition for optical three-dimensional modeling
US7015256B2 (en) * 2002-01-28 2006-03-21 Jsr Corporation Composition for forming photosensitive dielectric material, and transfer film, dielectric material and electronic parts using the same
JP2004172531A (en) * 2002-11-22 2004-06-17 Nippon Paint Co Ltd Dielectric paste
JP2004111400A (en) * 2003-10-07 2004-04-08 Hitachi Ltd Thin film dielectric, multilayered printed circuit board using it, and its manufacturing method
JP2006004854A (en) * 2004-06-21 2006-01-05 Toray Ind Inc Patterned dielectric composition and method for forming the same
CN101025567B (en) * 2005-10-07 2011-12-14 Jsr株式会社 Radiation-sensitive resin composition, method for forming spacer and spacer
JP5129935B2 (en) * 2006-06-13 2013-01-30 日東電工株式会社 Sheet-like composite material and manufacturing method thereof
CN101836511B (en) * 2007-10-26 2013-04-03 纳幕尔杜邦公司 Asymmetric dielectric films
CN102822247B (en) * 2010-04-14 2016-06-08 3M创新有限公司 Patterning gradient polymer film and method
CN104102091B (en) * 2013-04-10 2020-04-21 东京应化工业株式会社 Composition for forming transparent insulating film
CN103762078B (en) * 2014-01-20 2017-02-01 中国科学院物理研究所 Wide-temperature area tunable microwave device based on combined thin film
JP6274039B2 (en) * 2014-06-12 2018-02-07 Jsr株式会社 Radiation-sensitive resin composition, insulating film and display element
EP2960280A1 (en) * 2014-06-26 2015-12-30 E.T.C. S.r.l. Photocrosslinkable compositions, patterned high k thin film dielectrics and related devices
JP6441657B2 (en) * 2014-12-11 2018-12-19 京セラ株式会社 Dielectric film, film capacitor and connection type capacitor using the same, inverter, electric vehicle
JP6742785B2 (en) * 2015-08-13 2020-08-19 太陽インキ製造株式会社 Photosensitive resin composition, dry film and printed wiring board
CN105542399A (en) * 2016-01-18 2016-05-04 西安交通大学 Centrifugal manufacturing method for dielectric functional gradient insulator
JP6409106B1 (en) * 2017-08-30 2018-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP7029267B2 (en) * 2017-10-06 2022-03-03 日鉄ケミカル&マテリアル株式会社 Method for manufacturing a photosensitive resin composition and a substrate with a resin film
CN110183825B (en) * 2019-06-14 2022-02-25 清华大学深圳研究生院 Dielectric gradient material and application thereof
CN110265176B (en) * 2019-06-14 2021-01-12 清华大学深圳研究生院 Dielectric gradient material and application thereof
CN110256813B (en) * 2019-06-14 2022-02-25 清华大学深圳研究生院 Preparation method of dielectric gradient material and encapsulation method of electronic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104302A (en) * 2004-10-04 2006-04-20 Sumitomo Bakelite Co Ltd Resin composition and application thereof
JP6264897B2 (en) * 2014-01-23 2018-01-24 トヨタ自動車株式会社 High dielectric constant film and film capacitor
JP2016222750A (en) * 2015-05-27 2016-12-28 上海磐樹新材料科技有限公司 Resin composition, molded body, and resin composition manufacturing method
JP2017014406A (en) * 2015-07-01 2017-01-19 味の素株式会社 Resin composition
WO2017098996A1 (en) * 2015-12-09 2017-06-15 株式会社Adeka Thermally curable resin composition
JP2018006052A (en) * 2016-06-29 2018-01-11 株式会社豊田中央研究所 Dielectric composite material and production method thereof
JP2018048276A (en) * 2016-09-23 2018-03-29 日立化成株式会社 Underfill material and electronic component device using the same
WO2019117156A1 (en) * 2017-12-13 2019-06-20 Jnc株式会社 Method for manufacturing heat dissipation sheet, heat dissipation sheet, substrate, and power semiconductor module
WO2020195656A1 (en) * 2019-03-28 2020-10-01 株式会社ダイセル Formed body and production method therefor

Also Published As

Publication number Publication date
CN114829505A (en) 2022-07-29
JPWO2021153213A1 (en) 2021-08-05
KR20220134586A (en) 2022-10-05
CN114829505B (en) 2024-05-03

Similar Documents

Publication Publication Date Title
KR101641480B1 (en) Sealing composition
TWI439475B (en) Curable copolymer and curable resin composition
JP5926458B2 (en) Curable composition for optical semiconductor encapsulation
JP2012119470A (en) Wiring board
JP6336002B2 (en) Sealing material
WO2020195656A1 (en) Formed body and production method therefor
JP2014210412A (en) Hard coat film and production method thereof
JPWO2018168862A1 (en) Resin composition, molded body, laminate, coating material and adhesive
JP5144341B2 (en) Fluorene resin composition
KR102624114B1 (en) Sealing composition
WO2021153213A1 (en) Molded body, precursor thereof, methods for producing same, and uses thereof
JP2015137338A (en) Curable composition containing conductive fiber coated particle
WO2011136084A1 (en) Curable resin composition for screen printing and printed wiring board
JP2015196783A (en) sheet-like composition
CN113785016A (en) Latent curing catalyst and resin composition comprising same
JP2005010770A (en) Composition for forming optical waveguide, and optical waveguide
JP6587516B2 (en) Curable composition, cured product and method for producing the same
JP2015137337A (en) Curable composition containing conductive fiber coated particle
JPWO2019193961A1 (en) A resin composition, a method for producing a three-dimensional model using the resin composition, and a three-dimensional model.
KR102225809B1 (en) Filler for three-dimensional mounting of semiconductor element
JP6435226B2 (en) Epoxy resin having fluorene skeleton and method for producing the same
JP2021120435A (en) Molded body and production method thereof
JP2015137339A (en) Curable composition containing conductive fiber coated particle
KR102385096B1 (en) Manufacturing method of resin molded article and manufacturing method of optical part
JP2015137336A (en) Curable composition containing conductive fiber coated particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574595

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227029418

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747899

Country of ref document: EP

Kind code of ref document: A1