JP6264897B2 - High dielectric constant film and film capacitor - Google Patents

High dielectric constant film and film capacitor Download PDF

Info

Publication number
JP6264897B2
JP6264897B2 JP2014010307A JP2014010307A JP6264897B2 JP 6264897 B2 JP6264897 B2 JP 6264897B2 JP 2014010307 A JP2014010307 A JP 2014010307A JP 2014010307 A JP2014010307 A JP 2014010307A JP 6264897 B2 JP6264897 B2 JP 6264897B2
Authority
JP
Japan
Prior art keywords
film
inorganic filler
dielectric constant
high dielectric
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014010307A
Other languages
Japanese (ja)
Other versions
JP2015138904A (en
Inventor
孝博 濟藤
孝博 濟藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014010307A priority Critical patent/JP6264897B2/en
Publication of JP2015138904A publication Critical patent/JP2015138904A/en
Application granted granted Critical
Publication of JP6264897B2 publication Critical patent/JP6264897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高誘電率フィルム及び該フィルムを用いたコンデンサに関する。   The present invention relates to a high dielectric constant film and a capacitor using the film.

近年、電子機器等の小型化、軽量化、高性能化の進行にともなって、電子部品についても小型化、大容量化のニーズが高まっており、この傾向は、フィルムコンデンサについても同様である。   In recent years, with the progress of miniaturization, weight reduction, and high performance of electronic devices and the like, there is an increasing need for miniaturization and large capacity of electronic components, and this tendency is the same for film capacitors.

フィルムコンデンサを小型化するためには、プリント配線板の内層に無機フィラーを加え、プリント配線板自体にコンデンサ機能を持たせる方法が有利であることが知られている。プリント配線板自体にコンデンサ機能を持たせる方法として、無機フィラーと樹脂を含む複合体をプリント配線板の内層に用いる方法が特許文献1及び特許文献2等から知られている。   In order to reduce the size of the film capacitor, it is known that a method of adding an inorganic filler to the inner layer of the printed wiring board so that the printed wiring board itself has a capacitor function is advantageous. As a method for imparting a capacitor function to the printed wiring board itself, a method using a composite containing an inorganic filler and a resin for the inner layer of the printed wiring board is known from Patent Document 1 and Patent Document 2.

しかし、これらは樹脂に無機フィラーを添加しただけであり、高充電することで比誘電率をあげられるが、成型性の低下等が生じるため、比誘電率は低いものとなってしまう。   However, these are only the addition of an inorganic filler to the resin, and the specific permittivity can be increased by high charge, but the relative permittivity becomes low because the moldability is lowered.

特許文献3には、無機フィラーと樹脂からなる高誘電体組成物であって、組成物中の無機フィラーの分布について、単位体積あたりに存在する無機フィラーの含有率のばらつきを示す標準偏差が4以上である高誘電体組成物によって比誘電率を向上させることができることが記載されている。   Patent Document 3 discloses a high-dielectric composition composed of an inorganic filler and a resin, and the standard deviation indicating the variation in the content of the inorganic filler per unit volume is 4 with respect to the distribution of the inorganic filler in the composition. It is described that the dielectric constant can be improved by the high dielectric composition as described above.

しかし、樹脂中の無機フィラーの分散を特許文献3のようにしてもフィルムの比誘電率が不十分である場合があり、無機フィラーを含むフィルムの誘電率については改善の余地がある。   However, even if the dispersion of the inorganic filler in the resin is as described in Patent Document 3, the relative dielectric constant of the film may be insufficient, and there is room for improvement in the dielectric constant of the film containing the inorganic filler.

特開平5−57852号公報JP-A-5-57852 特開2004−247382号公報JP 2004-247382 A 特開2004−67889号公報JP 2004-67889 A

前記のように、無機フィラーを含む従来のフィルムでは、その誘電率について改善の余地がある。それ故、本発明は、誘電率の向上した、無機フィラーを含むフィルムを提供することを目的とする。   As described above, there is room for improvement in the dielectric constant of the conventional film containing an inorganic filler. Therefore, an object of the present invention is to provide a film containing an inorganic filler having an improved dielectric constant.

本発明者らは、前記課題を解決するための手段を種々検討した結果、フィルム中の無機フィラーの分散状態を特定の不均一状態に制御することにより、フィルムの誘電率が向上することを見出し、本発明を完成した。   As a result of various studies on means for solving the above problems, the present inventors have found that the dielectric constant of the film is improved by controlling the dispersion state of the inorganic filler in the film to a specific non-uniform state. The present invention has been completed.

すなわち、本発明の要旨は以下の通りである。   That is, the gist of the present invention is as follows.

(1)無機フィラーを含む高誘電率フィルムであって、膜厚の10倍の長さの任意のフィルム断面を選び、1辺が膜厚の1/2の長さの格子で区切って観察した際に、フィルム断面における無機フィラーの平均面積占有率の1.2倍以上の無機フィラーの面積占有率を有する格子を膜厚方向に連続して有する高誘電率フィルム。
(2)フィルム断面における無機フィラーの平均面積占有率の1.2倍以上の無機フィラーの面積占有率を有する格子が膜厚方向に連続している部分を少なくとも2か所有する、(1)の高誘電率フィルム。
(1) It is a high dielectric constant film containing an inorganic filler, and an arbitrary film cross section having a length 10 times the film thickness is selected, and one side is divided and observed with a lattice having a length ½ of the film thickness. In particular, a high dielectric constant film having a lattice having an area occupancy of the inorganic filler that is 1.2 times or more the average area occupancy of the inorganic filler in the film cross section in the film thickness direction.
(2) The lattice having an area occupancy ratio of the inorganic filler that is 1.2 times or more of the average area occupancy ratio of the inorganic filler in the film cross section possesses at least two portions that are continuous in the film thickness direction. High dielectric constant film.

本発明により、誘電率の向上した、無機フィラーを含むフィルムを提供することが可能となる。   According to the present invention, it is possible to provide a film containing an inorganic filler with improved dielectric constant.

図1は実施例1のフィルムの断面写真の一部を示す図である。1 is a view showing a part of a cross-sectional photograph of the film of Example 1. FIG. 図2は実施例2のフィルムの断面写真の一部を示す図である。FIG. 2 is a diagram showing a part of a cross-sectional photograph of the film of Example 2. 図3は比較例1のフィルムの断面写真の一部を示す図である。FIG. 3 is a view showing a part of a cross-sectional photograph of the film of Comparative Example 1. 図4は比較例2のフィルムの断面写真の一部を示す図である。FIG. 4 is a view showing a part of a cross-sectional photograph of the film of Comparative Example 2.

以下、本発明の好ましい実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明は、無機フィラーのフィルム中の分散状態を制御した高誘電率フィルムに関する。本発明の高誘電率フィルムにおいて、無機フィラーは特定の不均一状態でフィルム中に分散している。   The present invention relates to a high dielectric constant film in which a dispersion state of an inorganic filler in a film is controlled. In the high dielectric constant film of the present invention, the inorganic filler is dispersed in the film in a specific non-uniform state.

本発明の高誘電率フィルムに用いることができる無機フィラーとしては、誘電率の観点から、ペロブスカイト型結晶構造又は複合ペロブスカイト型結晶構造のものを用いることが好ましい。   As the inorganic filler that can be used in the high dielectric constant film of the present invention, it is preferable to use one having a perovskite crystal structure or a composite perovskite crystal structure from the viewpoint of dielectric constant.

無機フィラーとしては、例えば、酸化チタン、チタン酸マグネシウム、チタン酸亜鉛、チタン酸ビスマス、酸化ランタン、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸鉛及びこれらの混合物を挙げることができる。   Examples of the inorganic filler include titanium oxide, magnesium titanate, zinc titanate, bismuth titanate, lanthanum oxide, calcium titanate, strontium titanate, barium titanate, barium zirconate titanate, lead zirconate titanate and the like. Can be mentioned.

本発明の高誘電率フィルムに用いられる無機フィラーの平均粒径は、製造安定性や絶縁性の観点から、例えば0.01μm〜10μm、好ましくは0.05μm〜0.5μmである。   The average particle diameter of the inorganic filler used in the high dielectric constant film of the present invention is, for example, 0.01 μm to 10 μm, preferably 0.05 μm to 0.5 μm, from the viewpoint of manufacturing stability and insulation.

無機フィラーの形状は、球形、楕円形、三角状、長方形状、針状等のいずれでもよく、それらを取り合わせて用いることも可能である。   The shape of the inorganic filler may be any of a spherical shape, an elliptical shape, a triangular shape, a rectangular shape, a needle shape, and the like, and these may be used in combination.

本発明の高誘電率フィルムのフィルム原料として用いられる樹脂としては、特に限定されずに熱可塑性及び熱硬化性樹脂を挙げることができる。熱可塑性樹脂としては、例えば、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルサルフォン、ポリエーテルイミド、液晶ポリマー、ポリスチレン、ポリエチレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、フッ素樹脂等を挙げることができる。また、熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、アクリル樹脂等を挙げることができる。本発明のフィルムにおいて、高い比誘電率を有する観点から、ポリフッ化ビニリデン、ポリフッ化ビニリデン−四フッ化エチレン共重合体及びポリフッ化ビニリデン−六フッ化プロピレン共重合体が好ましい。   The resin used as a film raw material for the high dielectric constant film of the present invention is not particularly limited, and examples thereof include thermoplastic and thermosetting resins. Examples of the thermoplastic resin include polyphenylene ether, polyphenylene sulfide, polyether sulfone, polyetherimide, liquid crystal polymer, polystyrene, polyethylene, polyethylene terephthalate, polyethylene naphthalate, polypropylene, and fluororesin. Moreover, as a thermosetting resin, an epoxy resin, a phenol resin, a polyimide resin, an acrylic resin etc. can be mentioned, for example. In the film of the present invention, polyvinylidene fluoride, polyvinylidene fluoride-tetrafluoroethylene copolymer and polyvinylidene fluoride-hexafluoropropylene copolymer are preferable from the viewpoint of having a high relative dielectric constant.

本発明のフィルムにおける無機フィラーの含有量は、好ましくは5体積%以上、さらに好ましくは15体積%以上であり、例えば5体積%〜50体積%、好ましくは15体積%〜45体積%である。   The content of the inorganic filler in the film of the present invention is preferably 5% by volume or more, more preferably 15% by volume or more, for example, 5% by volume to 50% by volume, preferably 15% by volume to 45% by volume.

本発明のフィルムの膜厚は、十分なコンデンサ性能を得るために、好ましくは2μm〜50μmである。   The film thickness of the present invention is preferably 2 μm to 50 μm in order to obtain sufficient capacitor performance.

本発明のフィルムは、無機フィラーがフィルム中に特定の不均一状態で分散している限り、単層であってもよく、複層であってもよい。   The film of the present invention may be a single layer or a multilayer as long as the inorganic filler is dispersed in a specific non-uniform state in the film.

本発明の高誘電率フィルムは、無機フィラーがフィルム中に特定の不均一状態で分散していることを特徴とする。具体的には、本発明の高誘電率フィルムでは、無機フィラーは、膜厚方向に略一様に分散し、幅方向には不均一に分散している。フィルム中の無機フィラーの分散状態をこのように制御することによって、無機フィラー含有量が同程度であるが、無機フィラーの分散状態が異なる他のフィルムと比較して、フィルムの誘電率を向上させることができる。   The high dielectric constant film of the present invention is characterized in that an inorganic filler is dispersed in a specific non-uniform state in the film. Specifically, in the high dielectric constant film of the present invention, the inorganic filler is dispersed substantially uniformly in the film thickness direction and non-uniformly in the width direction. By controlling the dispersion state of the inorganic filler in the film in this manner, the dielectric constant of the film is improved as compared with other films having the same inorganic filler content but different dispersion state of the inorganic filler. be able to.

より具体的には、本発明のフィルムにおける無機フィラーの分散状態は、膜厚の10倍の長さの任意のフィルム断面を選び、1辺が膜厚の1/2の長さの正方形の格子で区切って、1000倍にて拡大観察した断面写真を用いて観察する。ここで、「任意」とは、無作為かつランダムであることを意味し、本発明のフィルムの幅方向のどの部分を選択しても良いことを意味する。本発明のフィルムは、このように観察した際に、フィルム断面における無機フィラーの平均面積占有率の1.2倍以上の無機フィラーの面積占有率を有する格子を膜厚方向に連続して有する。   More specifically, as the dispersion state of the inorganic filler in the film of the present invention, an arbitrary film cross section having a length of 10 times the film thickness is selected, and a square lattice having one side having a length of 1/2 the film thickness. Are observed using a cross-sectional photograph magnified at 1000 times. Here, “arbitrary” means random and random, and means that any part in the width direction of the film of the present invention may be selected. When observed in this way, the film of the present invention continuously has a lattice having an area occupancy of the inorganic filler 1.2 times or more of the average area occupancy of the inorganic filler in the film cross section in the film thickness direction.

本発明において、各格子中の無機フィラーの面積占有率は、前記のように観察した各格子における、格子の面積に対する無機フィラーの面積比率を算出することによって決定することができる。また、フィルム断面における無機フィラーの平均面積占有率は、選ばれたフィルム断面において、膜厚の10倍の長さを長辺とし、膜厚を短辺とする長方形のフィルム断面(格子40個)の面積に対する無機フィラーの面積比率を算出することによって決定することができる。   In the present invention, the area occupancy ratio of the inorganic filler in each lattice can be determined by calculating the area ratio of the inorganic filler to the area of the lattice in each lattice observed as described above. In addition, the average area occupation ratio of the inorganic filler in the film cross section is a rectangular film cross section (40 lattices) having a long side of 10 times the film thickness and a short side of the film thickness in the selected film cross section. It can be determined by calculating the area ratio of the inorganic filler to the area.

本発明のフィルムは、各格子における無機フィラーの面積占有率がフィルム断面における無機フィラーの平均面積占有率の1.2倍以上である格子を膜厚方向に連続して有することによって、フィルム断面の膜厚方向に連続している2つの格子の少なくとも一方が、フィルム断面における無機フィラーの平均面積占有率の1.2倍未満の無機フィラーの面積占有率を有するフィルムと比較して、フィルム中の無機フィラー含有量が同程度であってもフィルムの誘電率を向上させることができる。   The film of the present invention has a lattice in which the area occupancy of the inorganic filler in each lattice is 1.2 times or more the average area occupancy of the inorganic filler in the film cross section in the film thickness direction. Compared with a film in which at least one of the two lattices continuous in the film thickness direction has an area occupancy of the inorganic filler less than 1.2 times the average area occupancy of the inorganic filler in the film cross section, Even if the inorganic filler content is about the same, the dielectric constant of the film can be improved.

本発明のフィルムは、誘電率の向上の観点から、前記のように観察したフィルム断面において、フィルム断面における無機フィラーの平均面積占有率の1.2倍以上の無機フィラーの面積占有率を有する格子が膜厚方向に連続している部分を少なくとも1か所、好ましくは少なくとも2か所有する。   From the viewpoint of improving the dielectric constant, the film of the present invention is a lattice having an inorganic filler area occupancy of 1.2 times or more of the average area occupancy of the inorganic filler in the film cross section, as observed above. Possesses at least one, preferably at least two portions that are continuous in the film thickness direction.

無機フィラーが特定の不均一状態で分散している本発明のフィルムを得るためには、無機フィラーを分散させるための適切な分散媒を選択し、さらに、適切な分散力で無機フィラーをフィルム原料の樹脂に分散させることが必要である。   In order to obtain the film of the present invention in which the inorganic filler is dispersed in a specific non-uniform state, an appropriate dispersion medium for dispersing the inorganic filler is selected, and the inorganic filler is used as a film raw material with an appropriate dispersion force. It is necessary to disperse in the resin.

分散媒は、用いる樹脂及び無機フィラーに応じて適宜選択することができ、例えば、炭酸プロピレン、1−プロパノール、2−メトキシエタノール、2−ジメチルアミノエタノール、エチレングリコール、プロピレングリコール等を挙げることができ、ポリフッ化ビニリデンとチタン酸バリウムを用いた場合には炭酸プロピレンを分散媒として用いることが好ましい。   The dispersion medium can be appropriately selected according to the resin and inorganic filler used, and examples thereof include propylene carbonate, 1-propanol, 2-methoxyethanol, 2-dimethylaminoethanol, ethylene glycol, propylene glycol and the like. When using polyvinylidene fluoride and barium titanate, it is preferable to use propylene carbonate as a dispersion medium.

本発明において、無機フィラーを特定の不均一状態で樹脂に分散させるためには、例えば、超音波振動、撹拌機、ミル、ホモジナイザー等を用いることができるが、無機フィラーの分散状態を適切に制御する観点から、超音波振動を用いて無機フィラーを樹脂に分散させることが好ましい。超音波振動を用いて無機フィラーを分散媒に分散させると、例えば、機械的シェアをかけて無機フィラーを樹脂に分散させた場合と比較して、より不均一に分散させることができる。また、無機フィラーを分散させる分散時間、分散濃度、及び分散粘度については、無機フィラーが特定の不均一状態で分散するように適宜選択することができる。   In the present invention, in order to disperse the inorganic filler in the resin in a specific non-uniform state, for example, ultrasonic vibration, stirrer, mill, homogenizer, etc. can be used, but the dispersion state of the inorganic filler is appropriately controlled. Therefore, it is preferable to disperse the inorganic filler in the resin using ultrasonic vibration. When the inorganic filler is dispersed in the dispersion medium using ultrasonic vibration, for example, the inorganic filler can be dispersed more unevenly than when the inorganic filler is dispersed in the resin by applying a mechanical share. The dispersion time, dispersion concentration, and dispersion viscosity for dispersing the inorganic filler can be appropriately selected so that the inorganic filler is dispersed in a specific non-uniform state.

本発明のフィルムは、例えば、溶媒に溶融させた樹脂の溶融液と、分散媒中に分散させた無機フィラーの分散液とを混合し、無機フィラーを樹脂に分散させて塗料を得て、得られた塗料を金属板やフィルム等の基材に塗工し、これを焼成することによって得ることができる。   The film of the present invention is obtained, for example, by mixing a resin melt melted in a solvent and an inorganic filler dispersion liquid dispersed in a dispersion medium, and dispersing the inorganic filler in the resin to obtain a paint. The obtained paint can be applied to a base material such as a metal plate or a film and fired.

溶媒は、用いる樹脂に応じて適宜選択することができ、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、テトラヒドロフラン、N−メチルピロリドン、メチルエチルケトン、エチルアセテート、クロロホルム等を挙げることができ、例えば、樹脂としてポリフッ化ビニリデンを用いた場合にはN,N−ジメチルホルムアミドを分散媒として用いることが好ましい。   The solvent can be appropriately selected depending on the resin to be used, and examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, N-methylpyrrolidone, methyl ethyl ketone, ethyl acetate, and chloroform. For example, when polyvinylidene fluoride is used as the resin, it is preferable to use N, N-dimethylformamide as the dispersion medium.

塗料を基材上に塗工する方法としては、例えば、スピンナー、スクリーン印刷、ブレードコーター、ダイコーター、アプリケータ等を用いることができる。   As a method for applying the paint on the substrate, for example, a spinner, screen printing, blade coater, die coater, applicator, or the like can be used.

焼成温度は、特に限定されずに、樹脂を溶融させるために用いる溶媒の沸点に応じて設定することができ、例えば、溶媒の沸点よりも高い温度であり、好ましくは溶媒の沸点よりも少なくとも20℃以上高い温度であり、例えば、N,N−ジメチルホルムアミドを用いた場合は150℃以上、好ましくは170℃以上である。本発明において、塗料を塗工した基材を焼成する温度が高いほど得られるフィルムの誘電率が高くなる傾向がある。   The baking temperature is not particularly limited and can be set according to the boiling point of the solvent used for melting the resin. For example, the baking temperature is higher than the boiling point of the solvent, and preferably at least 20 than the boiling point of the solvent. For example, when N, N-dimethylformamide is used, the temperature is 150 ° C. or higher, preferably 170 ° C. or higher. In this invention, there exists a tendency for the dielectric constant of the film obtained to become high, so that the temperature which bakes the base material which applied the coating material is high.

本発明の好ましい実施形態において、本発明の高誘電率フィルムは、溶媒に溶融させた樹脂の溶融液と、適切な分散媒中に分散させた無機フィラーの分散液とを混合し、超音波振動によって無機フィラーを樹脂に分散させて塗料を得て、得られた塗料を基材に塗工し、これを焼成することによって得ることができる。   In a preferred embodiment of the present invention, the high dielectric constant film of the present invention is prepared by mixing a melt of a resin melted in a solvent and a dispersion of an inorganic filler dispersed in a suitable dispersion medium, and ultrasonic vibration. The inorganic filler can be dispersed in the resin to obtain a paint, and the obtained paint can be applied to a substrate and fired.

本発明の高誘電率フィルムは、フィルムコンデンサ、基板内蔵コンデンサ(エンベディット基板)等の誘電体として利用できる。その他、アンテナモジュール、無線LANモジュール、ETCモジュール等にも用いることができる。   The high dielectric constant film of the present invention can be used as a dielectric such as a film capacitor or a substrate built-in capacitor (embedded substrate). In addition, it can also be used for antenna modules, wireless LAN modules, ETC modules, and the like.

以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.

(実施例1)
ポリフッ化ビニリデン10重量部をN,N−ジメチルホルムアミド40重量部に溶融させた。チタン酸バリウム8.5重量部を炭酸プロピレン35重量部に分散させた。得られたポリフッ化ビニリデンの溶融液とチタン酸バリウムの分散液を混合し、超音波振動を与えることによってチタン酸バリウムを分散させて塗料を得た。得られた塗料を金属板にアプリケータで250μmのWet厚さで塗工した。塗料を塗工した金属板を170℃で5分間焼成し、その後、金属板を常温に冷却し、フィルムを剥離して、ポリフッ化ビニリデンに20体積%のチタン酸バリウムが分散したフィルムを得た。
Example 1
10 parts by weight of polyvinylidene fluoride was melted in 40 parts by weight of N, N-dimethylformamide. 8.5 parts by weight of barium titanate was dispersed in 35 parts by weight of propylene carbonate. The obtained polyvinylidene fluoride melt and barium titanate dispersion were mixed and barium titanate was dispersed by applying ultrasonic vibration to obtain a coating material. The obtained paint was applied to a metal plate with a wet thickness of 250 μm using an applicator. The metal plate coated with the paint was baked at 170 ° C. for 5 minutes, and then the metal plate was cooled to room temperature, and the film was peeled off to obtain a film in which 20% by volume of barium titanate was dispersed in polyvinylidene fluoride. .

得られたフィルムの断面において、膜厚の10倍の長さのフィルム断面を選び、1000倍にて拡大観察して断面写真を得た。この断面写真において、フィルム断面を1辺が膜厚の1/2の長さの正方形の格子で区切って、各格子の無機フィラーの面積占有率を算出した。また、フィルム断面における無機フィラーの平均面積占有率は15.5%であった。得られたフィルムの断面写真の一部を図1に示す。このフィルムでは、チタン酸バリウムが不均一に分散しており、格子中のチタン酸バリウムの面積占有率がフィルム断面におけるチタン酸バリウムの平均面積占有率(15.5%)の1.2倍以上である格子が膜厚方向に連続している部分が2か所あった(図1の太線で囲んだ部分)。   In the cross section of the obtained film, a film cross section having a length 10 times the film thickness was selected, and magnified observation was performed at 1000 times to obtain a cross-sectional photograph. In this cross-sectional photograph, the cross section of the film was divided by a square grid with one side being ½ of the film thickness, and the area occupancy of the inorganic filler in each grid was calculated. Moreover, the average area occupation rate of the inorganic filler in a film cross section was 15.5%. A part of a cross-sectional photograph of the obtained film is shown in FIG. In this film, barium titanate is dispersed non-uniformly, and the area occupation ratio of barium titanate in the lattice is 1.2 times or more the average area occupation ratio (15.5%) of barium titanate in the film cross section. There are two portions where the lattice is continuous in the film thickness direction (the portion surrounded by the thick line in FIG. 1).

(実施例2)
焼成温度を200℃に変えた以外は実施例1と同様の方法でフィルムを得た。
得られたフィルムの断面写真の一部を図2に示す。このフィルムでは、チタン酸バリウムが実施例1のフィルムよりもさらに不均一に分散しており、格子中のチタン酸バリウムの面積占有率がフィルム断面におけるチタン酸バリウムの平均面積占有率(15.5%)の1.2倍以上である格子が膜厚方向に連続している部分が4か所あった(図2の太線で囲んだ部分)。
(Example 2)
A film was obtained in the same manner as in Example 1 except that the baking temperature was changed to 200 ° C.
A part of a cross-sectional photograph of the obtained film is shown in FIG. In this film, barium titanate is dispersed more unevenly than the film of Example 1, and the area occupancy of barium titanate in the lattice is an average area occupancy of barium titanate (15.5 in the film cross section). %), There are four portions where the lattice is continuous in the film thickness direction (the portion surrounded by the thick line in FIG. 2).

(比較例1)
炭酸プロピレンを用いずに、チタン酸バリウムを、超音波振動に代えて機械的シェアをかけて分散させた以外は実施例2と同様の方法でフィルムを得た。
(Comparative Example 1)
A film was obtained in the same manner as in Example 2 except that propylene carbonate was used and barium titanate was dispersed by applying mechanical shear instead of ultrasonic vibration.

得られたフィルムの断面写真の一部を図3に示す。このフィルムでは、チタン酸バリウムがほぼ均一に分散しており、格子中のチタン酸バリウムの面積占有率がフィルム断面におけるチタン酸バリウムの平均面積占有率(15.5%)の1.2倍以上である格子が膜厚方向に連続している部分はなかった。   A part of a cross-sectional photograph of the obtained film is shown in FIG. In this film, barium titanate is almost uniformly dispersed, and the area occupation ratio of barium titanate in the lattice is 1.2 times or more the average area occupation ratio (15.5%) of barium titanate in the film cross section. There was no portion where the lattice was continuous in the film thickness direction.

(比較例2)
チタン酸バリウムを、超音波振動に代えて機械的シェアをかけて分散させた以外は実施例2と同様の方法でフィルムを得た。
(Comparative Example 2)
A film was obtained in the same manner as in Example 2 except that barium titanate was dispersed by applying a mechanical shear instead of ultrasonic vibration.

得られたフィルムの断面写真の一部を図4に示す。このフィルムでは、チタン酸バリウムがやや均一に分散しており、格子中のチタン酸バリウムの面積占有率がフィルム断面におけるチタン酸バリウムの平均面積占有率(15.5%)の1.2倍以上である格子が見られた(図4の太線で囲んだ2つの格子の一方)が、この格子が膜厚方向に連続している部分はなかった。   A part of a cross-sectional photograph of the obtained film is shown in FIG. In this film, barium titanate is dispersed slightly uniformly, and the area occupation ratio of barium titanate in the lattice is 1.2 times or more the average area occupation ratio (15.5%) of barium titanate in the film cross section. Although one of the two lattices (one of the two lattices surrounded by a thick line in FIG. 4) was observed, there was no portion where the lattice was continuous in the film thickness direction.

実施例1、2及び比較例1、2で得られたフィルムにおける任意の格子の無機フィラーの面積占有率及びフィルム断面における無機フィラーの平均面積占有率を表1に示す。

Figure 0006264897
Table 1 shows the area occupancy of the inorganic filler in an arbitrary lattice in the films obtained in Examples 1 and 2 and Comparative Examples 1 and 2, and the average area occupancy of the inorganic filler in the film cross section.
Figure 0006264897

表1中、分散のイメージとは、観察したフィルム断面において任意で選択した、膜厚方向に連続している2個の格子の無機フィラーの面積占有率(%)を示す。表1より、格子中の無機フィラーの面積占有率がフィルム断面における無機フィラーの平均面積占有率の1.2倍以上の格子を膜厚方向に連続して1か所以上有する実施例1及び2のフィルムでは、このような無機フィラーの面積占有率を有する格子を有していない比較例1のフィルム、及び、このような無機フィラーの面積占有率を有する格子を有するが、このような格子が膜厚方向に連続している部分はない比較例2のフィルムと比較して、フィルムの比誘電率が高かった。また、格子中の無機フィラーの面積占有率がフィルム断面における無機フィラーの平均面積占有率の1.2倍以上の格子が膜厚方向に連続している部分を4か所有する実施例2のフィルムでは、このような格子が膜厚方向に連続している部分を2か所有する実施例1のフィルムと比較して、フィルムの比誘電率がさらに向上した。   In Table 1, the image of dispersion indicates the area occupancy (%) of the inorganic filler of two lattices that are arbitrarily selected in the observed film cross section and are continuous in the film thickness direction. From Table 1, Examples 1 and 2 having one or more lattices continuously in the film thickness direction in which the area occupancy of the inorganic filler in the lattice is 1.2 times or more the average area occupancy of the inorganic filler in the film cross section. The film of Comparative Example 1 does not have such a lattice having the area occupancy of the inorganic filler, and has a lattice having such an area occupancy of the inorganic filler. The relative dielectric constant of the film was higher than that of the film of Comparative Example 2 where there was no continuous portion in the film thickness direction. Moreover, the film of Example 2 which owns four parts which the area | region occupancy rate of the inorganic filler in a grating | lattice is 1.2 times or more of the average area occupancy ratio of the inorganic filler in a film cross section in the film thickness direction Then, the relative dielectric constant of the film was further improved as compared with the film of Example 1 which possessed two portions where such a lattice is continuous in the film thickness direction.

Claims (4)

不均一状態で樹脂に分散している無機フィラーを含む高誘電率フィルムであって、膜厚の10倍の長さの任意のフィルム断面を選び、1辺が膜厚の1/2の長さの格子で区切って観察した際に、フィルム断面における無機フィラーの平均面積占有率の1.2倍以上の無機フィラーの面積占有率を有する格子を膜厚方向に連続して有する高誘電率フィルム(但し、多数の透孔を含み、無機フィラーが該透孔に埋入されているフィルムを除く。)A high dielectric constant film containing an inorganic filler dispersed in a resin in a non-uniform state. Select an arbitrary film cross-section that is 10 times the film thickness, and one side is 1/2 the film thickness. A high dielectric constant film having a lattice having an area occupancy of the inorganic filler that is 1.2 times or more of the average area occupancy of the inorganic filler in the film cross section in the film thickness direction (but, (Excluding films containing a large number of through-holes and having an inorganic filler embedded in the through-holes) . フィルム断面における無機フィラーの平均面積占有率の1.2倍以上の無機フィラーの面積占有率を有する格子が膜厚方向に連続している部分を少なくとも2か所有する、請求項1に記載の高誘電率フィルム。   2. The high dielectric constant according to claim 1, wherein the lattice having an area occupancy ratio of the inorganic filler equal to or greater than 1.2 times the average area occupancy ratio of the inorganic filler in the film cross section possesses at least two portions that are continuous in the film thickness direction. the film. 請求項1又は2に記載の高誘電率フィルムの製造方法であって、樹脂の溶融液と、分散媒中に分散させた無機フィラーの分散液とを混合し、超音波振動によって無機フィラーを樹脂に分散させて塗料を得て、得られた塗料を基材に塗工し、これを焼成することを含む、前記製造方法。 A method of manufacturing a high dielectric constant film according to claim 1 or 2, and melt trees fat, and a dispersion of an inorganic filler dispersed in a dispersion medium were mixed, the inorganic filler by ultrasonic vibration The said manufacturing method including disperse | distributing to resin and obtaining a coating material, apply | coating the obtained coating material to a base material, and baking this. 樹脂がポリフッ化ビニリデンを含み、無機フィラーがチタン酸バリウムを含み、無機フィラーの分散媒が炭酸プロピレンを含む、請求項3に記載の方法。4. The method according to claim 3, wherein the resin includes polyvinylidene fluoride, the inorganic filler includes barium titanate, and the dispersion medium of the inorganic filler includes propylene carbonate.
JP2014010307A 2014-01-23 2014-01-23 High dielectric constant film and film capacitor Expired - Fee Related JP6264897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010307A JP6264897B2 (en) 2014-01-23 2014-01-23 High dielectric constant film and film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010307A JP6264897B2 (en) 2014-01-23 2014-01-23 High dielectric constant film and film capacitor

Publications (2)

Publication Number Publication Date
JP2015138904A JP2015138904A (en) 2015-07-30
JP6264897B2 true JP6264897B2 (en) 2018-01-24

Family

ID=53769701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010307A Expired - Fee Related JP6264897B2 (en) 2014-01-23 2014-01-23 High dielectric constant film and film capacitor

Country Status (1)

Country Link
JP (1) JP6264897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153213A1 (en) * 2020-01-30 2021-08-05 株式会社ダイセル Molded body, precursor thereof, methods for producing same, and uses thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052254B2 (en) 2016-11-04 2022-04-12 デクセリアルズ株式会社 Filler-containing film
JP6386395B2 (en) * 2015-02-18 2018-09-05 トヨタ自動車株式会社 Composite dielectric material
KR20190010879A (en) 2016-09-13 2019-01-31 데쿠세리아루즈 가부시키가이샤 Filler-containing film
US20200299474A1 (en) 2016-10-18 2020-09-24 Dexerials Corporation Filler-containing film
CN115710367A (en) 2016-10-18 2023-02-24 迪睿合株式会社 Filled membranes
JP7035370B2 (en) 2016-10-31 2022-03-15 デクセリアルズ株式会社 Filler-containing film
JP7047282B2 (en) 2016-12-01 2022-04-05 デクセリアルズ株式会社 Filler-containing film
CN116253914A (en) 2016-12-01 2023-06-13 迪睿合株式会社 Filler-containing film
TW202014305A (en) 2018-06-06 2020-04-16 日商迪睿合股份有限公司 Filler-containing film
JP7456422B2 (en) * 2021-06-04 2024-03-27 株式会社豊田中央研究所 Dielectric film and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2779891B2 (en) * 1993-10-29 1998-07-23 岡谷電機産業株式会社 Method for producing composite dielectric film
JP5129935B2 (en) * 2006-06-13 2013-01-30 日東電工株式会社 Sheet-like composite material and manufacturing method thereof
GB2478843B (en) * 2010-03-17 2014-09-17 Secr Defence Improvements in dielectrics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153213A1 (en) * 2020-01-30 2021-08-05 株式会社ダイセル Molded body, precursor thereof, methods for producing same, and uses thereof
KR20220134586A (en) 2020-01-30 2022-10-05 주식회사 다이셀 Molded article and its precursor, manufacturing method and use

Also Published As

Publication number Publication date
JP2015138904A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6264897B2 (en) High dielectric constant film and film capacitor
CN103102627B (en) A kind of high filler content PTFE base material, preparation method and its usage
TW201606007A (en) Conductive paste
US10435534B2 (en) Dielectric substrate comprising unsintered polytetrafluoroethylene and methods of making the same
Rajesh et al. The effect of filler on the temperature coefficient of the relative permittivity of PTFE/ceramic composites
Mikolajek et al. Direct inkjet printing of dielectric ceramic/polymer composite thick films
JP2011138704A (en) Conductive paste and ceramic capacitor
JP6386395B2 (en) Composite dielectric material
JP2005154255A (en) Polymer/ceramic composite paste for embedded capacitor, and method for manufacturing the capacitor using the same
JP2008229849A (en) Dielectric film and electronic component using the film
JP5176290B2 (en) Paste composition, dielectric composition, dielectric sheet, and circuit board with built-in capacitor using the same
JP2013254954A (en) Multilayered ceramic component
JP2007027101A5 (en)
JP2022087171A (en) Double-sided copper-clad laminate
US11491706B2 (en) Material for 3D printing and a 3D printed device
CN106427135A (en) High-dielectric material, and preparation method and application thereof
TWI352663B (en) Paste composition and dielectric composition
JP5349067B2 (en) High dielectric constant insulating sheet and manufacturing method thereof
US20190035556A1 (en) Thin film capacitors
CN104877278B (en) A kind of Vinalac 5920/polyvinylidene fluoride compound dielectric film and preparation method thereof
CN106427136A (en) High-dielectric material and preparation method and application thereof
WO2016153071A1 (en) Insulating film
CN111218073A (en) High-energy-storage composite material based on two-dimensional layered bismuth titanate and preparation method thereof
JP2019065094A (en) Dielectric composite material
JP2019048940A (en) Heat radiation insulation film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R151 Written notification of patent or utility model registration

Ref document number: 6264897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees