WO2021153080A1 - Carbonaceous material, method for producing carbonaceous material, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery - Google Patents

Carbonaceous material, method for producing carbonaceous material, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery Download PDF

Info

Publication number
WO2021153080A1
WO2021153080A1 PCT/JP2020/047268 JP2020047268W WO2021153080A1 WO 2021153080 A1 WO2021153080 A1 WO 2021153080A1 JP 2020047268 W JP2020047268 W JP 2020047268W WO 2021153080 A1 WO2021153080 A1 WO 2021153080A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonaceous material
negative electrode
ion secondary
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2020/047268
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 石
哲夫 塩出
間所 靖
Original Assignee
Jfeケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社 filed Critical Jfeケミカル株式会社
Priority to KR1020217014304A priority Critical patent/KR102632742B1/en
Priority to CN202080006722.1A priority patent/CN113195405A/en
Priority to JP2021521446A priority patent/JP6911221B1/en
Publication of WO2021153080A1 publication Critical patent/WO2021153080A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbonaceous material, a method for producing a carbonaceous material, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • a carbonaceous material made from coke may be used as the negative electrode material for lithium-ion secondary batteries.
  • it is common to graphitize the crushed coke, and it has also been proposed to combine granulation and surface modification (Patent Document 1).
  • an object of the present invention is to provide a carbonaceous material having excellent battery characteristics when used as a negative electrode material for a lithium ion secondary battery.
  • the present invention provides the following [1] to [5].
  • [1] Carbon having a minimum particle size of more than 3.00 ⁇ m, a circularity of 0.82 or more and 0.94 or less, an aspect ratio of 1.48 or more and 1.65 or less, and a Raman R value of more than 0.40. Quality material.
  • [2] The carbonaceous material according to the above [1], wherein the carbonaceous material is a graphitized product of coal coke.
  • the method for producing a carbonaceous material according to the above [1] or [2] in which coke as a raw material is crushed and graphitized, and shearing force and compressive force are applied before the graphitization. Or later, a method for producing a carbonaceous material that removes fine powder.
  • the battery characteristics and the negative electrode characteristics are excellent when used as a negative electrode material for a lithium ion secondary battery.
  • the range when the range is indicated by using “ ⁇ ”, the range shall include both ends of “ ⁇ ”.
  • the range A to B includes A and B.
  • the carbonaceous material of the present invention has a minimum particle size of more than 3.00 ⁇ m, a circularity of 0.82 or more and 0.94 or less, an aspect ratio of 1.48 or more and 1.65 or less, and a Raman R value of 0.40. It's super.
  • the negative electrode (negative electrode) for a lithium ion secondary battery obtained by using the carbonaceous material of the present invention has a high density. It is presumed that this is because the carbonaceous material of the present invention has a minimum particle size of more than 3.00 ⁇ m, that is, fine particles having a particle size of 3.00 ⁇ m or less are removed.
  • a lithium ion secondary battery using such a negative electrode is excellent in battery characteristics such as discharge capacity and initial charge / discharge efficiency.
  • the minimum particle size of the carbonaceous material of the present invention is more than 3.00 ⁇ m.
  • the minimum particle size of the carbonaceous material of the present invention is preferably 3.20 ⁇ m or more, more preferably 3.40 ⁇ m or more, still more preferably 3.60 ⁇ m or more, because the negative electrode has a higher density and the battery characteristics are better. 3.80 ⁇ m or more is particularly preferable, and 4.00 ⁇ m or more is most preferable.
  • the upper limit is not particularly limited, the minimum particle size of the carbonaceous material of the present invention is preferably 10.00 ⁇ m or less, more preferably 9.00 ⁇ m or less, further preferably 8.00 ⁇ m or less, and most preferably 4.80 ⁇ m or less. preferable.
  • Particle diameter D 50 of the carbonaceous material of the present invention is preferably at least 25.0 ⁇ m or less 5.00, more preferably at least 20.0 ⁇ m or less 10.0 [mu] m, more preferably more than 18.0 ⁇ m or less 10.0 [mu] m, 12. Most preferably, it is 9 ⁇ m or more and 17.5 ⁇ m or less.
  • the particle size D 50 is a particle size at which the cumulative frequency of the particle size distribution is 50% by volume.
  • the circularity of the carbonaceous material of the present invention is 0.82 or more, preferably 0.83 or more, and more preferably 0.84 or more. The closer the circularity is to 1, the more spherical the shape of the carbonaceous material becomes, and the higher the density of the negative electrode becomes. On the other hand, considering the cost of actually setting the circularity to 1, the circularity of the carbonaceous material of the present invention is 0.94 or less, preferably 0.93 or less, more preferably 0.92 or less, and further. It is preferably 0.91 or less, and most preferably less than 0.88.
  • the aspect ratio of the carbonaceous material of the present invention is 1.65 or less, preferably 1.60 or less, and more preferably 1.55 or less. The closer the aspect ratio is to 1, the more spherical the shape of the carbonaceous material becomes, and the higher the density of the negative electrode becomes. On the other hand, considering the cost of actually setting the aspect ratio to 1, the aspect ratio of the carbonaceous material of the present invention is 1.48 or more, preferably 1.49 or more, and more preferably 1.50 or more.
  • the particle size of the carbonaceous material is determined by measuring with a laser particle size distribution measuring device (manufactured by Seishin Enterprise Co., Ltd., LMS-200e) under the condition that ion-exchanged water is used as a dispersion medium and the amount of sample solution is 40 mL. The value.
  • the circularity and aspect ratio of the carbonaceous material were measured using a particle shape measuring device (PITA-1, manufactured by Seishin Enterprise Co., Ltd.) under the condition that ion-exchanged water was used as a dispersion medium and the amount of sample solution was 1.25 ⁇ L. It is a value that can be obtained.
  • the Raman R value of the carbonaceous material of the present invention is more than 0.40. If the Raman R value is too low, there are too few edges involved in the insertion or desorption of lithium ions, resulting in insufficient battery characteristics.
  • the Raman R value of the carbonaceous material of the present invention is preferably 0.45 or more, more preferably 0.50 or more, still more preferably more than 0.50, because the battery characteristics are more excellent.
  • the upper limit is not particularly limited, but a high Raman R value means that the amount of amorphous carbon on the surface of the carbonaceous material is large. Therefore, when the Raman R value is high, the influence of the irreversible capacity of the amorphous carbon becomes large, and the battery capacity may decrease. From such a viewpoint, the Raman R value of the carbonaceous material of the present invention is preferably 1.20 or less, more preferably 1.10 or less, and even more preferably 0.80 or less.
  • the Raman R value of the carbonaceous material is calculated as follows. Using a Raman spectroscopic measuring device (LabRAM ARAMIS, manufactured by HORIBA, Ltd.), microscopic Raman analysis is performed 100 times at a wavelength of 532 nm to obtain a Raman spectrum. The ratio of the resulting Raman spectrum, the intensity I D of (peak present in the region of 1350 ⁇ 1370cm -1) D band, the intensity I G of the G band (peak present in the region of 1570 ⁇ 1630 cm -1) Is calculated as the Raman R value ( ID / IG).
  • the specific surface area of the carbonaceous material of the present invention is not particularly limited, but is preferably 1.0 ⁇ 5.0m 2 / g, more preferably 1.2 ⁇ 3.0m 2 / g, 1.3 ⁇ 2.6m 2 / g is more preferable.
  • the specific surface area of the carbonaceous material is determined by the BET 1-point method by adsorbing nitrogen gas using a powder analyzer (Monosorb, manufactured by Kantachrome).
  • the method for producing a carbonaceous material of the present invention (hereinafter, also simply referred to as “the production method of the present invention”) is the above-mentioned method for producing a carbonaceous material of the present invention, in which coke as a raw material is crushed and graphite is used. The fine powder is removed before or after the graphitization by applying shearing force and compressive force.
  • Coke is used as a raw material.
  • Examples of coke include coal coke and petroleum coke.
  • Coal coke is a gray-black porous solid with a metallic luster, which is obtained by carbonizing coal at a high temperature (about 1000 to 1100 ° C.).
  • Petroleum coke is coke obtained by thermally decomposing a heavy fraction of petroleum at a high temperature.
  • the coke may be uncalcinated coke (raw coke) or calcined coke (calcinated coke).
  • Coke baking is performed at a temperature of about 900 to 1500 ° C. using, for example, a rotary kiln. It is preferable to use coal coke, and it is more preferable to use unbaked coal coke, because the negative electrode has a higher density and the battery characteristics are better.
  • the raw material coke is crushed to obtain a crushed product.
  • the coke is pulverized so that the average particle size is, for example, 5.00 to 15.00 ⁇ m.
  • the device used for crushing is not particularly limited, and is, for example, a coarse crusher such as a shear mill, a jaw crusher, an impact crusher, or a cone crusher; an intermediate crusher such as a roll crusher or a hammer mill; a mechanical crusher, an air stream. Fine crushers such as a type crusher and a swirl flow type crusher; and the like.
  • coke (raw coke) before calcination is used as a raw material, it may be dried at, for example, 100 to 200 ° C. before pulverization.
  • the crushed coke product is graphitized by heating to obtain a graphitized product.
  • the heating temperature (graphitization temperature) at the time of graphitization is preferably 2500 ° C. or higher, more preferably 2800 ° C. or higher.
  • the graphitization temperature is preferably 4000 ° C. or lower, more preferably 3500 ° C. or lower. When the graphitization temperature is within this range, the crystallinity of the graphitized product is good.
  • Fine powder is removed before or after graphitizing the ground product. That is, fine powder having a particle size of 3.00 ⁇ m or less is removed. As a result, a carbonaceous material having a minimum particle size of more than 3.00 ⁇ m can be obtained.
  • the fine powder before graphitization the fine powder of the crushed product is removed.
  • the fine powder after graphitization the fine powder of the graphitized product is removed.
  • the method for removing fine powder is not particularly limited, and examples thereof include a dry classification method using a wind power classifier or the like.
  • a method of the wind classifier for example, a forced centrifugal separation method in which centrifugal force is generated by an internal rotor and only fine powder is sucked by an external blower to classify; Relative density sorting type; a gravity inertia separation type that puts the object to be processed into the pipe in the airflow and classifies it according to the difference in the flight trajectory of the object to be processed by using the inertia and the resistance of the airflow; You can choose.
  • a shear compression processing apparatus such as hybridization (manufactured by Nara Kikai Seisakusho Co., Ltd.), mechanomicros (manufactured by Nara Kikai Seisakusho Co., Ltd.), mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.) is preferably mentioned. Be done.
  • the negative electrode for a lithium ion secondary battery of the present invention is a negative electrode for a lithium ion secondary battery containing the carbonaceous material of the present invention.
  • the negative electrode for a lithium ion secondary battery is also simply referred to as a "negative electrode”.
  • the negative electrode of the present invention is manufactured according to a normal negative electrode.
  • a negative electrode mixture prepared in advance by adding a binder to the carbonaceous material of the present invention.
  • the negative electrode mixture may contain an active material or a conductive material other than the carbonaceous-coated graphite particles of the present invention.
  • the binder is preferably one that is chemically and electrochemically stable with respect to the electrolyte, and is, for example, a fluororesin such as polytetrafluoroethylene or polyvinylidene fluoride; polyethylene, polyvinyl alcohol, styrene butadiene rubber, or the like. Resin; carboxymethyl cellulose; etc. are used, and two or more of these can be used in combination.
  • the binder is usually used in a proportion of about 1 to 20% by mass in the total amount of the negative electrode mixture.
  • the carbonaceous material of the present invention is optionally adjusted to a desired particle size by classification or the like. Then, the carbonaceous material of the present invention is mixed with a binder, and the obtained mixture is dispersed in a solvent to prepare a paste-like negative electrode mixture.
  • the solvent include water, isopyrpillar alcohol, N-methylpyrrolidone, dimethylformamide and the like.
  • a known stirrer, mixer, kneader, kneader or the like is used for mixing and dispersion.
  • the prepared paste is applied to one or both sides of the current collector and dried. In this way, a negative electrode mixture layer (negative electrode) that is uniformly and firmly adhered to the current collector can be obtained.
  • the thickness of the negative electrode mixture layer is preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m. After forming the negative electrode mixture layer, crimping such as press pressure can further increase the adhesion strength between the negative electrode mixture layer (negative electrode) and the current collector.
  • the shape of the current collector is not particularly limited, but is, for example, a foil shape, a mesh shape, a mesh shape such as an expanded metal, or the like. As the material of the current collector, copper, stainless steel, nickel and the like are preferable.
  • the thickness of the current collector is preferably about 5 to 20 ⁇ m in the case of a foil.
  • the lithium ion secondary battery of the present invention is a lithium ion secondary battery having the negative electrode of the present invention.
  • the lithium ion secondary battery of the present invention further includes a positive electrode, a non-aqueous electrolyte, and the like, in addition to the negative electrode of the present invention.
  • the lithium ion secondary battery of the present invention is configured by, for example, laminating a negative electrode, a non-aqueous electrolyte, and a positive electrode in this order and accommodating them in the exterior material of the battery.
  • the lithium ion secondary battery of the present invention can be arbitrarily selected from a cylindrical type, a square type, a coin type, a button type, and the like according to an application, an on-board device, a required charge / discharge capacity, and the like.
  • ⁇ Positive electrode> It is preferable to select a material for the positive electrode (positive electrode active material) that can occlude / release a sufficient amount of lithium.
  • the positive electrode active material in addition to lithium, for example, lithium-containing transition metal oxides, transition metal chalcogenides, lithium-containing compounds such as vanadium oxides and lithium compounds thereof; formula M X Mo 6 S 8-Y (wherein M is at least one kind of transition metal element, X is a numerical value in the range of 0 ⁇ X ⁇ 4, Y is a numerical value in the range of 0 ⁇ Y ⁇ 1). Be done.
  • Vanadium oxides are represented by V 2 O 5 , V 6 O 13 , V 2 O 4 , and V 3 O 8 .
  • the lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more kinds of transition metals.
  • the composite oxide may be used alone or in combination of two or more.
  • Lithium-containing transition metal oxide specifically, LiM 1 1-X M 2 X O 2 (wherein M 1, M 2 is a transition metal element of at least one, X is the range of 0 ⁇ X ⁇ 1 is a numerical value), or, LiM 1 1-Y M 2 Y O 4 (wherein M 1, M 2 is a transition metal element of at least one, Y is a number in the range 0 ⁇ Y ⁇ 1) Indicated by.
  • the transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn and the like, and preferably Co, Fe, Mn, Ti and Cr. , V, Al, etc.
  • Preferred specific examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 , and the like.
  • the lithium-containing transition metal oxide uses, for example, lithium, transition metal oxides, hydroxides, salts, etc. as starting materials, and these starting materials are mixed according to the desired composition of the metal oxide, and 600 under an oxygen atmosphere. It can be obtained by firing at a temperature of about 1000 ° C.
  • the above-mentioned compounds may be used alone or in combination of two or more.
  • a carbon salt such as lithium carbonate can be added to the positive electrode.
  • various additives such as conventionally known conductive agents and binders can be appropriately used.
  • a positive electrode mixture composed of a positive electrode active material, a binder, and a conductive agent for imparting conductivity to the positive electrode is applied to both sides of the current collector to form a positive electrode mixture layer.
  • the binder a binder used for producing a negative electrode can be used.
  • the conductive agent a known conductive agent such as graphitized product or carbon black is used.
  • the shape of the current collector is not particularly limited, and examples thereof include a foil shape and a net shape.
  • the material of the current collector is aluminum, stainless steel, nickel, or the like.
  • the thickness of the current collector is preferably 10 to 40 ⁇ m.
  • a paste-like positive electrode mixture may be applied to the current collector, dried, and then crimped by press pressure or the like.
  • the non-aqueous electrolyte may be a liquid non-aqueous electrolyte (non-aqueous electrolyte liquid), or may be a polymer electrolyte such as a solid electrolyte or a gel electrolyte.
  • the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery.
  • the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte battery and a polymer gel electrolyte battery.
  • an electrolyte salt used in the conventional non-aqueous electrolyte solution LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3, LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF) 2 CH 2 OSO 2 ) 2 , LiN ((CF 3 ) 2 CHOSO 2 ) 2 , LiB [ ⁇ C 6 H 3 (CF 3 ) 2 ⁇ ] 4 , LiAlCl 4 , LiSiF 6 and other lithium salts are used.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte solution is preferably 0.1 to 5.0 mol / L, more preferably 0.5 to 3.0 mol / L.
  • Solvents for preparing the non-aqueous electrolyte solution include, for example, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate; 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, Ethers such as tetrahydrofuran, 2-methyl tetrahydrofuran, ⁇ -butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether; thioethers such as sulfolane and methyl sulfolane; acetonitrile, chloronitrile, propio Nitriles such as nitriles; trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bro
  • the non-aqueous electrolyte is a polymer electrolyte such as a solid electrolyte or a gel electrolyte
  • a polymer gelled with a plastic agent non-aqueous electrolyte solution
  • the polymer constituting the matrix include polyethylene oxide, an ether-based polymer compound such as a crosslinked product thereof; a poly (meth) acrylate-based polymer compound; polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and the like. Fluoropolymer compounds; etc. are preferably used.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte solution which is a plasticizer, is preferably 0.1 to 5.0 mol / L, more preferably 0.5 to 2.0 mol / L.
  • the proportion of the plasticizer is preferably 10 to 90% by mass, more preferably 30 to 80% by mass.
  • a separator can also be used.
  • the material of the separator is not particularly limited, but for example, a woven fabric, a non-woven fabric, a microporous membrane made of synthetic resin, or the like is used.
  • synthetic resin microporous membranes are preferable, and among them, polyolefin-based microporous membranes are more preferable in terms of thickness, membrane strength, and membrane resistance.
  • the polyolefin-based microporous membrane include a polyethylene microporous membrane, a polypropylene microporous membrane, and a composite microporous membrane thereof.
  • Example 1 ⁇ Production of carbonaceous materials >> Coal coke before calcination (manufactured by Hobu Coal Materials Technology Co., Ltd., No. 1 for negative electrode) (corresponding to raw coke) was dried at 200 ° C. using a rotary kiln to obtain a dried product. The dried product was pulverized using an air flow crusher (NSTJ-200 manufactured by Seishin Enterprise Co., Ltd.) so that the average particle size was 10 ⁇ m to obtain a pulverized product. The crushed product was graphitized by heating at 3000 ° C. at Tokai Carbon Co., Ltd. in a state of being sealed in a graphite crucible to obtain a graphitized product.
  • NSTJ-200 manufactured by Seishin Enterprise Co., Ltd.
  • the graphitized product fine powder was removed using a wind power classifier (Donna Celec, manufactured by Donaldson of Japan). Then, the graphitized product was subjected to mechanochemical treatment using a dry powder compounding apparatus (Mechanofusion system AMS-MINI manufactured by Hosokawa Micron Co., Ltd.). More specifically, the shearing force and the compressive force of the graphitized product from which the fine powder has been removed are under the conditions of the rotation speed of the rotating drum: 5000 rpm, the processing time: 15 minutes, and the distance between the rotating drum and the internal member: 1 mm. And were repeatedly given. In this way, the carbonaceous material of Example 1 was obtained.
  • FIG. 1 shows an SEM photograph of the carbonaceous material of Example 1. Further, with respect to the carbonaceous material of Example 1, the minimum particle size (D min ), the particle size D 10 , the particle size D 50 , the particle size D 90 , the maximum particle size (D max ), the specific surface area, The circularity, aspect ratio, and Raman R value were determined.
  • the particle size D 10 is a particle size at which the cumulative frequency of the particle size distribution is 10% by volume.
  • the particle size D 90 is a particle size at which the cumulative frequency of the particle size distribution is 90% by volume. The results are shown in Table 1 below.
  • a negative electrode mixture paste is prepared by adding 98 parts by mass of a carbonaceous material (negative electrode material), 1 part by mass of carboxymethyl cellulose (binder), and 1 part by mass of styrene butadiene rubber (binder) to water and stirring. did.
  • the prepared negative electrode mixture paste was applied to a copper foil to a uniform thickness and dried in vacuum at 90 ° C. to form a negative electrode mixture layer.
  • the negative electrode mixture layer was pressed by a roll press at a pressure of 250 MPa.
  • the copper foil and the negative electrode mixture layer were punched into a cylinder having a diameter of 15.5 mm. In this way, a negative electrode in close contact with the current collector made of copper foil was produced.
  • the density of the negative electrode (unit: g / cm 3 ) was determined from the mass and size of the negative electrode. The results are shown in Table 1 below.
  • FIG. 2 is a cross-sectional view showing a button type secondary battery.
  • the peripheral edges of the outer cup 1 and the outer can 3 are crimped via an insulating gasket 6 to form a sealed structure.
  • a current collector 7a, a positive electrode 4, a separator 5, a negative electrode 2, and a current collector 7b are laminated in this order from the inner surface of the outer can 3 toward the inner surface of the outer cup 1.
  • the button-type secondary battery shown in FIG. 2 was manufactured as follows. First, a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate (33% by volume) and methyl ethyl carbonate (67% by volume). A polypropylene porous body (thickness: 20 ⁇ m) was impregnated with the obtained non-aqueous electrolyte solution to prepare a separator 5 impregnated with the non-aqueous electrolyte solution. Next, the produced separator 5 was sandwiched between the negative electrode 2 in close contact with the current collector 7b made of copper foil and the positive electrode 4 in close contact with the current collector 7a made of nickel net, and laminated.
  • the current collector 7b and the negative electrode 2 were housed inside the outer cup 1
  • the current collector 7a and the positive electrode 4 were housed inside the outer can 3
  • the outer cup 1 and the outer can 3 were combined. Further, the peripheral edge portion between the outer cup 1 and the outer can 3 is caulked and sealed with an insulating gasket 6 interposed therebetween. In this way, a button-type secondary battery was manufactured.
  • the initial charge / discharge efficiency was calculated from the following formula (1). It can be evaluated that the larger the value of the initial charge / discharge efficiency is, the better the initial charge / discharge efficiency is.
  • Initial charge / discharge efficiency [%] 100 ⁇ ⁇ (charge capacity of the first cycle-discharge capacity of the first cycle) / discharge capacity of the first cycle ⁇ ... (1)
  • Electrode peel strength test The test piece used is shown in FIG. A negative electrode mixture paste was prepared, and a part of the active material side was attached to an aluminum plate 12 with double-sided tape 11 in a state where the negative electrode material 10 was not pressed. The test piece was subjected to a tensile test in the 180 ° direction (arrow direction 13) by grasping a part of the negative electrode material 10 using a tensile tester (autograph manufactured by Shimadzu Corporation), and the average tensile test stress was taken as the peel strength.
  • a tensile tester autograph manufactured by Shimadzu Corporation
  • Example 2 In Example 1, the evaluation was carried out in the same manner as in Example 1 except that the graphitizing maker was carried out in the commercial city ⁇ county ⁇ Shubishin ⁇ charcoal ⁇ material technology ⁇ departure ⁇ exhibition company. The evaluation results are shown in Table 1.
  • Example 3 In Example 2, the evaluation was carried out in the same manner as in Example 2 except that the mechanochemical treatment time was 30 minutes. The evaluation results are shown in Table 1.
  • Example 4 In Example 2, the evaluation was carried out in the same manner as in Example 2 except that the classification conditions were adjusted so that the minimum particle size Dmin was 4.76 ⁇ m. The evaluation results are shown in Table 1.
  • Example 5 the mechanochemical treatment was evaluated in the same manner as in Example 1 except that the treatment time was 120 minutes using a large-scale dry powder compounding device (Mechanofusion System AMS-30F manufactured by Hosokawa Micron Co., Ltd.). did.
  • the conditions for the mechanochemical treatment were the rotation speed of the rotating drum: 1450 rpm, the processing time: 120 minutes, and the distance between the rotating drum and the internal member: 10 mm.
  • the evaluation results are shown in Table 1.
  • Example 6 In Example 2, the evaluation was carried out in the same manner as in Example 2 except that the classification conditions were adjusted so that the minimum particle size Dmin was 3.01 ⁇ m. The evaluation results are shown in Table 1.
  • ⁇ Comparative example 3> The calcinated petroleum coke (HNP, manufactured by Phillips66) was pulverized using an airflow crusher (NSTJ-200, manufactured by Seishin Enterprise) so that the average particle size was 10 ⁇ m to obtain a pulverized product.
  • a petroleum-based pitch (softening point: 250 ° C.) is added to the crushed product at a mass ratio of 90/10 (crushed product / pitch) and kneaded at 600 ° C. for 10 hours to obtain a granulated body having an average particle size of about 20 ⁇ m. Obtained.
  • the granulated body was graphitized by heating at 3000 ° C.
  • Comparative Example 6 In Comparative Example 6, petroleum coke before calcination was used as a raw material, shearing force and compressive force were applied before graphitization, and fine powder was not removed. The points other than these were evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
  • Example 7 ⁇ Comparative Example 7>
  • the evaluation was carried out in the same manner as in Example 2 except that the classification conditions were adjusted so that the minimum particle size Dmin was 2.23 ⁇ m.
  • the evaluation results are shown in Table 1.
  • Example 2 the evaluation was carried out in the same manner as in Example 2 except that the mechanochemical treatment was not carried out after removing the fine powder. The evaluation results are shown in Table 1.

Abstract

The present invention provides a carbonaceous material which enables the achievement of excellent battery characteristics if used as a negative electrode material of a lithium ion secondary battery. A carbonaceous material according to the present invention has a minimum particle diameter of more than 3.00 μm, a circularity of from 0.82 to 0.94, an aspect ratio of from 1.48 to 1.65, and a Raman R value of more than 0.40.

Description

炭素質材料、炭素質材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池Carbonaceous material, manufacturing method of carbonaceous material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
 本発明は、炭素質材料、炭素質材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関する。 The present invention relates to a carbonaceous material, a method for producing a carbonaceous material, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
 リチウムイオン二次電池の負極材料として、コークスを原料とする炭素質材料が使用される場合がある。この場合、粉砕したコークスを黒鉛化することが一般的であり、更に、造粒や表面改質を組み合わせることも提案されている(特許文献1)。 A carbonaceous material made from coke may be used as the negative electrode material for lithium-ion secondary batteries. In this case, it is common to graphitize the crushed coke, and it has also been proposed to combine granulation and surface modification (Patent Document 1).
特開2012-94505号公報Japanese Unexamined Patent Publication No. 2012-94505
 コークスを原料とする炭素質材料を、リチウムイオン二次電池の負極材料として用いたときに、放電容量や初回充放電効率などの電池特性や電極剥離強度などの負極特性が不十分である場合があった。
 そこで、本発明は、リチウムイオン二次電池の負極材料として用いた場合に電池特性が優れる炭素質材料を提供することを目的とする。
When a carbonaceous material made from coke is used as a negative electrode material for a lithium ion secondary battery, battery characteristics such as discharge capacity and initial charge / discharge efficiency and negative electrode characteristics such as electrode peeling strength may be insufficient. there were.
Therefore, an object of the present invention is to provide a carbonaceous material having excellent battery characteristics when used as a negative electrode material for a lithium ion secondary battery.
 本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。 As a result of diligent studies, the present inventors have found that the above object can be achieved by adopting the following configuration, and have completed the present invention.
 すなわち、本発明は、以下の[1]~[5]を提供する。
 [1]最小粒子径が3.00μm超、円形度が0.82以上0.94以下、アスペクト比が1.48以上1.65以下、かつ、ラマンR値が0.40超である、炭素質材料。
 [2]上記炭素質材料が石炭コークスの黒鉛化物である、上記[1]に記載の炭素質材料。
 [3]上記[1]または[2]に記載の炭素質材料を製造する方法であって、原料であるコークスを粉砕し、黒鉛化し、せん断力および圧縮力を付与し、上記黒鉛化の前または後に、微粉を除去する、炭素質材料の製造方法。
 [4]上記コークスが石炭コークスである、上記[3]に記載の炭素質材料の製造方法。
 [5]上記[1]または[2]に記載の炭素質材料を含有する、リチウムイオン二次電池用負極。
 [6]上記[5]に記載の負極を有する、リチウムイオン二次電池。
That is, the present invention provides the following [1] to [5].
[1] Carbon having a minimum particle size of more than 3.00 μm, a circularity of 0.82 or more and 0.94 or less, an aspect ratio of 1.48 or more and 1.65 or less, and a Raman R value of more than 0.40. Quality material.
[2] The carbonaceous material according to the above [1], wherein the carbonaceous material is a graphitized product of coal coke.
[3] The method for producing a carbonaceous material according to the above [1] or [2], in which coke as a raw material is crushed and graphitized, and shearing force and compressive force are applied before the graphitization. Or later, a method for producing a carbonaceous material that removes fine powder.
[4] The method for producing a carbonaceous material according to the above [3], wherein the coke is coal coke.
[5] A negative electrode for a lithium ion secondary battery containing the carbonaceous material according to the above [1] or [2].
[6] A lithium ion secondary battery having the negative electrode according to the above [5].
 本発明によれば、リチウムイオン二次電池の負極材料として用いた場合に電池特性や負極特性が優れる。 According to the present invention, the battery characteristics and the negative electrode characteristics are excellent when used as a negative electrode material for a lithium ion secondary battery.
実施例1の炭素質材料を示すSEM写真である。It is an SEM photograph which shows the carbonaceous material of Example 1. 実施例および比較例において電池特性を評価するために作製した評価電池の断面図である。It is sectional drawing of the evaluation battery produced for evaluating the battery characteristic in an Example and a comparative example. 電極剥離強度試験に用いる試験片の図である。It is a figure of the test piece used for the electrode peeling strength test.
 本発明において、範囲を「~」を用いて表示した場合、その範囲には「~」の両端を含むものとする。例えば、A~Bという範囲には、AおよびBを含む。 In the present invention, when the range is indicated by using "~", the range shall include both ends of "~". For example, the range A to B includes A and B.
[炭素質材料]
 本発明の炭素質材料は、最小粒子径が3.00μm超、円形度が0.82以上0.94以下、アスペクト比が1.48以上1.65以下、かつ、ラマンR値が0.40超である。
 本発明の炭素質材料を用いて得られるリチウムイオン二次電池用負極(負極)は、高密度である。これは、本発明の炭素質材料においては、最小粒子径が3.00μm超であり、すなわち、粒子径が3.00μm以下の微粉を除去されているためと推測される。
 このような負極を用いたリチウムイオン二次電池は、放電容量や初回充放電効率などの電池特性に優れる。
[Carbonate material]
The carbonaceous material of the present invention has a minimum particle size of more than 3.00 μm, a circularity of 0.82 or more and 0.94 or less, an aspect ratio of 1.48 or more and 1.65 or less, and a Raman R value of 0.40. It's super.
The negative electrode (negative electrode) for a lithium ion secondary battery obtained by using the carbonaceous material of the present invention has a high density. It is presumed that this is because the carbonaceous material of the present invention has a minimum particle size of more than 3.00 μm, that is, fine particles having a particle size of 3.00 μm or less are removed.
A lithium ion secondary battery using such a negative electrode is excellent in battery characteristics such as discharge capacity and initial charge / discharge efficiency.
 〈粒子径〉
 本発明の炭素質材料の最小粒子径は、3.00μm超である。
 負極がより高密度化し、電池特性がより優れるという理由から、本発明の炭素質材料の最小粒子径は、3.20μm以上が好ましく、3.40μm以上がより好ましく、3.60μm以上が更に好ましく、3.80μm以上が特に好ましく、4.00μm以上が最も好ましい。
 一方、上限は特に限定されないが、本発明の炭素質材料の最小粒子径は、10.00μm以下が好ましく、9.00μm以下がより好ましく、8.00μm以下が更に好ましく、4.80μm以下が最も好ましい。
<Particle size>
The minimum particle size of the carbonaceous material of the present invention is more than 3.00 μm.
The minimum particle size of the carbonaceous material of the present invention is preferably 3.20 μm or more, more preferably 3.40 μm or more, still more preferably 3.60 μm or more, because the negative electrode has a higher density and the battery characteristics are better. 3.80 μm or more is particularly preferable, and 4.00 μm or more is most preferable.
On the other hand, although the upper limit is not particularly limited, the minimum particle size of the carbonaceous material of the present invention is preferably 10.00 μm or less, more preferably 9.00 μm or less, further preferably 8.00 μm or less, and most preferably 4.80 μm or less. preferable.
 本発明の炭素質材料の粒子径D50は、5.00μm以上25.0μm以下が好ましく、10.0μm以上20.0μm以下がより好ましく、10.0μm以上18.0μm以下が更に好ましく、12.9μm以上17.5μm以下が最も好ましい。
 粒子径D50は、粒度分布の累積度数が体積百分率で50%となる粒子径である。
Particle diameter D 50 of the carbonaceous material of the present invention is preferably at least 25.0μm or less 5.00, more preferably at least 20.0μm or less 10.0 [mu] m, more preferably more than 18.0μm or less 10.0 [mu] m, 12. Most preferably, it is 9 μm or more and 17.5 μm or less.
The particle size D 50 is a particle size at which the cumulative frequency of the particle size distribution is 50% by volume.
 〈円形度〉
 本発明の炭素質材料の円形度は、0.82以上であり、0.83以上が好ましく、0.84以上がより好ましい。円形度が1に近いほど炭素質材料の形状は球形となり、負極がより高密度化する。
 一方、実際に円形度を1にするコスト等を考慮すると、本発明の炭素質材料の円形度は、0.94以下であり、0.93以下が好ましく、0.92以下がより好ましく、さらに好ましくは0.91以下であり、最も好ましくは0.88未満である。
<Circularity>
The circularity of the carbonaceous material of the present invention is 0.82 or more, preferably 0.83 or more, and more preferably 0.84 or more. The closer the circularity is to 1, the more spherical the shape of the carbonaceous material becomes, and the higher the density of the negative electrode becomes.
On the other hand, considering the cost of actually setting the circularity to 1, the circularity of the carbonaceous material of the present invention is 0.94 or less, preferably 0.93 or less, more preferably 0.92 or less, and further. It is preferably 0.91 or less, and most preferably less than 0.88.
 〈アスペクト比〉
 本発明の炭素質材料のアスペクト比は、1.65以下であり、1.60以下が好ましく、1.55以下がより好ましい。アスペクト比が1に近いほど炭素質材料の形状は球形となり、負極がより高密度化する。
 一方、実際にアスペクト比を1にするコスト等を考慮すると、本発明の炭素質材料のアスペクト比は、1.48以上であり、1.49以上が好ましく、1.50以上がより好ましい。
<aspect ratio>
The aspect ratio of the carbonaceous material of the present invention is 1.65 or less, preferably 1.60 or less, and more preferably 1.55 or less. The closer the aspect ratio is to 1, the more spherical the shape of the carbonaceous material becomes, and the higher the density of the negative electrode becomes.
On the other hand, considering the cost of actually setting the aspect ratio to 1, the aspect ratio of the carbonaceous material of the present invention is 1.48 or more, preferably 1.49 or more, and more preferably 1.50 or more.
 炭素質材料の粒子径は、レーザー式粒度分布測定装置(セイシン企業社製、LMS-200e)を用い、イオン交換水を分散媒とし、サンプル液の量を40mLとした条件で測定して求められる値である。
 炭素質材料の円形度およびアスペクト比は、粒子形状測定装置(セイシン企業社製、PITA-1)を用い、イオン交換水を分散媒とし、サンプル液の量を1.25μLとした条件で測定して求められる値である。
The particle size of the carbonaceous material is determined by measuring with a laser particle size distribution measuring device (manufactured by Seishin Enterprise Co., Ltd., LMS-200e) under the condition that ion-exchanged water is used as a dispersion medium and the amount of sample solution is 40 mL. The value.
The circularity and aspect ratio of the carbonaceous material were measured using a particle shape measuring device (PITA-1, manufactured by Seishin Enterprise Co., Ltd.) under the condition that ion-exchanged water was used as a dispersion medium and the amount of sample solution was 1.25 μL. It is a value that can be obtained.
 〈ラマンR値〉
 本発明の炭素質材料のラマンR値は、0.40超である。ラマンR値が低すぎると、リチウムイオンの挿入または脱離に関わるエッジが少なすぎ、電池特性が不十分となる。
 電池特性がより優れるという理由から、本発明の炭素質材料のラマンR値は、0.45以上が好ましく、0.50以上がより好ましく、さらに好ましくは0.50超である。
<Raman R value>
The Raman R value of the carbonaceous material of the present invention is more than 0.40. If the Raman R value is too low, there are too few edges involved in the insertion or desorption of lithium ions, resulting in insufficient battery characteristics.
The Raman R value of the carbonaceous material of the present invention is preferably 0.45 or more, more preferably 0.50 or more, still more preferably more than 0.50, because the battery characteristics are more excellent.
 一方、上限は特に限定されないが、ラマンR値が高いことは、炭素質材料の表面の非晶質炭素量が多いことを意味する。このため、ラマンR値が高いと、非晶質炭素の持つ不可逆容量の影響が大きくなり、電池容量が低下する場合がある。このような観点からは、本発明の炭素質材料のラマンR値は、1.20以下が好ましく、1.10以下がより好ましく、0.80以下が更に好ましい。 On the other hand, the upper limit is not particularly limited, but a high Raman R value means that the amount of amorphous carbon on the surface of the carbonaceous material is large. Therefore, when the Raman R value is high, the influence of the irreversible capacity of the amorphous carbon becomes large, and the battery capacity may decrease. From such a viewpoint, the Raman R value of the carbonaceous material of the present invention is preferably 1.20 or less, more preferably 1.10 or less, and even more preferably 0.80 or less.
 炭素質材料のラマンR値は、次のように求める。
 ラマン分光測定装置(堀場製作所社製、LabRAM ARAMIS)を用い、波長532nmで顕微ラマン分析を100回行ない、ラマンスペクトルを得る。得られたラマンスペクトルにおける、Dバンド(1350~1370cm-1の領域に存在するピーク)の強度Iと、Gバンド(1570~1630cm-1の領域に存在するピーク)の強度Iとの比を、ラマンR値(I/I)として算出する。
The Raman R value of the carbonaceous material is calculated as follows.
Using a Raman spectroscopic measuring device (LabRAM ARAMIS, manufactured by HORIBA, Ltd.), microscopic Raman analysis is performed 100 times at a wavelength of 532 nm to obtain a Raman spectrum. The ratio of the resulting Raman spectrum, the intensity I D of (peak present in the region of 1350 ~ 1370cm -1) D band, the intensity I G of the G band (peak present in the region of 1570 ~ 1630 cm -1) Is calculated as the Raman R value ( ID / IG).
 〈比表面積〉
 本発明の炭素質材料の比表面積は、特に限定されないが、1.0~5.0m/gが好ましく、1.2~3.0m/gがより好ましく、1.3~2.6m/gがさらに好ましい。
 炭素質材料の比表面積は、粉体分析装置(カンタクローム社製、Monosorb)を用いて、窒素ガス吸着によるBET1点法により求める。
<Specific surface area>
The specific surface area of the carbonaceous material of the present invention is not particularly limited, but is preferably 1.0 ~ 5.0m 2 / g, more preferably 1.2 ~ 3.0m 2 / g, 1.3 ~ 2.6m 2 / g is more preferable.
The specific surface area of the carbonaceous material is determined by the BET 1-point method by adsorbing nitrogen gas using a powder analyzer (Monosorb, manufactured by Kantachrome).
[炭素質材料の製造方法]
 本発明の炭素質材料の製造方法(以下、単に「本発明の製造方法」ともいう)は、上述した本発明の炭素質材料を製造する方法であって、原料であるコークスを粉砕し、黒鉛化し、せん断力および圧縮力を付与し、上記黒鉛化の前または後に、微粉を除去する。
[Manufacturing method of carbonaceous material]
The method for producing a carbonaceous material of the present invention (hereinafter, also simply referred to as “the production method of the present invention”) is the above-mentioned method for producing a carbonaceous material of the present invention, in which coke as a raw material is crushed and graphite is used. The fine powder is removed before or after the graphitization by applying shearing force and compressive force.
 〈コークス〉
 原料として、コークスを用いる。コークスとしては、例えば、石炭コークス、石油コークスが挙げられる。石炭コークスは、石炭を高温(約1000~1100℃)で乾留して得られる、金属性光沢のある灰黒色の多孔質固体である。石油コークスは、石油の重質留分を高温で熱分解して得られるコークスである。
 コークスは、か焼前のコークス(生コークス)であってもよく、か焼されたコークス(カルサインコークス)であってもよい。コークスのか焼は、例えば、ローターリーキルンなどを用いて、約900~1500℃の温度で行なわれる。
 負極がより高密度化し、電池特性がより優れるという理由から、石炭コークスを用いることが好ましく、か焼前の石炭コークスを用いることがより好ましい。
<Coke>
Coke is used as a raw material. Examples of coke include coal coke and petroleum coke. Coal coke is a gray-black porous solid with a metallic luster, which is obtained by carbonizing coal at a high temperature (about 1000 to 1100 ° C.). Petroleum coke is coke obtained by thermally decomposing a heavy fraction of petroleum at a high temperature.
The coke may be uncalcinated coke (raw coke) or calcined coke (calcinated coke). Coke baking is performed at a temperature of about 900 to 1500 ° C. using, for example, a rotary kiln.
It is preferable to use coal coke, and it is more preferable to use unbaked coal coke, because the negative electrode has a higher density and the battery characteristics are better.
 〈粉砕〉
 原料であるコークスを粉砕して、粉砕品を得る。
 このとき、コークスを、平均粒子径が例えば5.00~15.00μmとなるように粉砕する。
 粉砕に用いる装置としては、特に限定されず、例えば、せん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャーなどの粗粉砕機;ロールクラッシャー、ハンマーミルなどの中間粉砕機;機械式粉砕機、気流式粉砕機、旋回流式粉砕機などの微粉砕機;等が挙げられる。
 なお、か焼前のコークス(生コークス)を原料として用いる場合は、粉砕前に、例えば100~200℃で乾燥してもよい。
<Crushing>
The raw material coke is crushed to obtain a crushed product.
At this time, the coke is pulverized so that the average particle size is, for example, 5.00 to 15.00 μm.
The device used for crushing is not particularly limited, and is, for example, a coarse crusher such as a shear mill, a jaw crusher, an impact crusher, or a cone crusher; an intermediate crusher such as a roll crusher or a hammer mill; a mechanical crusher, an air stream. Fine crushers such as a type crusher and a swirl flow type crusher; and the like.
When coke (raw coke) before calcination is used as a raw material, it may be dried at, for example, 100 to 200 ° C. before pulverization.
 〈黒鉛化〉
 コークスの粉砕品を加熱することにより黒鉛化し、黒鉛化品を得る。
 黒鉛化する際の加熱温度(黒鉛化温度)は、2500℃以上が好ましく、2800℃以上がより好ましい。一方、黒鉛化温度は、4000℃以下が好ましく、3500℃以下がより好ましい。黒鉛化温度がこの範囲であれば、黒鉛化品の結晶性などが良好となる。
<Graphitization>
The crushed coke product is graphitized by heating to obtain a graphitized product.
The heating temperature (graphitization temperature) at the time of graphitization is preferably 2500 ° C. or higher, more preferably 2800 ° C. or higher. On the other hand, the graphitization temperature is preferably 4000 ° C. or lower, more preferably 3500 ° C. or lower. When the graphitization temperature is within this range, the crystallinity of the graphitized product is good.
 〈微粉の除去〉
 粉砕品を黒鉛化する前または後に、微粉を除去する。すなわち、粒子径が3.00μm以下の微粉を除去する。これにより、最小粒子径が3.00μm超の炭素質材料が得られる。
 黒鉛化の前に微粉を除去する場合は、粉砕品の微粉を除去する。一方、黒鉛化の後に微粉を除去する場合は、黒鉛化品の微粉を除去する。
<Removal of fine powder>
Fine powder is removed before or after graphitizing the ground product. That is, fine powder having a particle size of 3.00 μm or less is removed. As a result, a carbonaceous material having a minimum particle size of more than 3.00 μm can be obtained.
When removing the fine powder before graphitization, the fine powder of the crushed product is removed. On the other hand, when the fine powder is removed after graphitization, the fine powder of the graphitized product is removed.
 微粉除去の方法としては、特に限定されないが、例えば、風力分級機などを用いて乾式で分級する方法が挙げられる。
 風力分級機の方式としては、例えば、内部ロータにより遠心力を発生させ、微粉のみ外部ブロアにより吸引させて分級する強制遠心分離式;内部ロータにより風を循環させ、被処理物の比重差によって分級する比重選別式;被処理物を気流に乗せて管内に投入し、慣性と気流の抵抗を利用して、被処理物の飛行軌跡の違いにより分級する重力慣性分離式;等が挙げられ、適宜選択できる。
The method for removing fine powder is not particularly limited, and examples thereof include a dry classification method using a wind power classifier or the like.
As a method of the wind classifier, for example, a forced centrifugal separation method in which centrifugal force is generated by an internal rotor and only fine powder is sucked by an external blower to classify; Relative density sorting type; a gravity inertia separation type that puts the object to be processed into the pipe in the airflow and classifies it according to the difference in the flight trajectory of the object to be processed by using the inertia and the resistance of the airflow; You can choose.
 〈せん断力および圧縮力の付与〉
 微粉が除去された黒鉛化品に、せん断力および圧縮力を付与する。こうして、本発明の炭素質材料が得られる。
 具体的には、黒鉛化品に、いわゆるメカノケミカル処理を施す。このとき、円形度、アスペクト比およびラマンR値が上述した範囲を満たすように、メカノケミカル処理により付与されるせん断力や圧縮力などの強度を、適宜調整する。
 メカノケミカル処理に用いる装置としては、例えば、ハイブリダイゼーション(奈良機械製作所社製)、メカノマイクロス(奈良機械製作所社製)、メカノフュージョンシステム(ホソカワミクロン社製)等のせん断圧縮加工装置が好適に挙げられる。
<Giving shearing force and compressive force>
Shear force and compressive force are applied to the graphitized product from which fine powder has been removed. In this way, the carbonaceous material of the present invention is obtained.
Specifically, the graphitized product is subjected to so-called mechanochemical treatment. At this time, the strengths such as the shearing force and the compressive force applied by the mechanochemical treatment are appropriately adjusted so that the circularity, the aspect ratio and the Raman R value satisfy the above-mentioned ranges.
As an apparatus used for mechanochemical treatment, for example, a shear compression processing apparatus such as hybridization (manufactured by Nara Kikai Seisakusho Co., Ltd.), mechanomicros (manufactured by Nara Kikai Seisakusho Co., Ltd.), mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.) is preferably mentioned. Be done.
[リチウムイオン二次電池用負極(負極)]
 本発明のリチウムイオン二次電池用負極は、本発明の炭素質材料を含有するリチウムイオン二次電池用負極である。リチウムイオン二次電池用負極を単に「負極」ともいう。
[Negative electrode for lithium ion secondary battery (negative electrode)]
The negative electrode for a lithium ion secondary battery of the present invention is a negative electrode for a lithium ion secondary battery containing the carbonaceous material of the present invention. The negative electrode for a lithium ion secondary battery is also simply referred to as a "negative electrode".
 本発明の負極は、通常の負極に準じて作製される。
 負極の作製時には、本発明の炭素質材料に結合剤を加えて予め調製した負極合剤を用いることが好ましい。負極合剤には、本発明の炭素質被覆黒鉛粒子以外の活物質や導電材が含まれていてもよい。
 結合剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂;ポリエチレン、ポリビニルアルコール、スチレンブタジエンゴムなどの樹脂;カルボキシメチルセルロース;等が用いられ、これらを2種以上併用することもできる。
 結合剤は、通常、負極合剤の全量中の1~20質量%程度の割合で用いられる。
The negative electrode of the present invention is manufactured according to a normal negative electrode.
When producing the negative electrode, it is preferable to use a negative electrode mixture prepared in advance by adding a binder to the carbonaceous material of the present invention. The negative electrode mixture may contain an active material or a conductive material other than the carbonaceous-coated graphite particles of the present invention.
The binder is preferably one that is chemically and electrochemically stable with respect to the electrolyte, and is, for example, a fluororesin such as polytetrafluoroethylene or polyvinylidene fluoride; polyethylene, polyvinyl alcohol, styrene butadiene rubber, or the like. Resin; carboxymethyl cellulose; etc. are used, and two or more of these can be used in combination.
The binder is usually used in a proportion of about 1 to 20% by mass in the total amount of the negative electrode mixture.
 より具体的には、まず、任意で、本発明の炭素質材料を分級などにより所望の粒度に調整する。その後、本発明の炭素質材料を結合剤と混合し、得られた混合物を溶剤に分散させて、ペースト状の負極合剤を調製する。溶剤としては、水、イソピロピルアルコール、N-メチルピロリドン、ジメチルホルムアミドなどが挙げられる。混合や分散には、公知の攪拌機、混合機、混練機、ニーダーなどが用いられる。 More specifically, first, the carbonaceous material of the present invention is optionally adjusted to a desired particle size by classification or the like. Then, the carbonaceous material of the present invention is mixed with a binder, and the obtained mixture is dispersed in a solvent to prepare a paste-like negative electrode mixture. Examples of the solvent include water, isopyrpillar alcohol, N-methylpyrrolidone, dimethylformamide and the like. A known stirrer, mixer, kneader, kneader or the like is used for mixing and dispersion.
 調製したペーストを、集電体の片面または両面に塗布し、乾燥する。こうして、集電体に均一かつ強固に密着した負極合剤層(負極)が得られる。負極合剤層の厚さは、10~200μmが好ましく、20~100μmがより好ましい。
 負極合剤層を形成した後、プレス加圧などの圧着を行なうことにより、負極合剤層(負極)と集電体との密着強度をより高めることができる。
 集電体の形状は、特に限定されないが、例えば、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電体の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電体の厚さは、箔状の場合で5~20μm程度が好ましい。
The prepared paste is applied to one or both sides of the current collector and dried. In this way, a negative electrode mixture layer (negative electrode) that is uniformly and firmly adhered to the current collector can be obtained. The thickness of the negative electrode mixture layer is preferably 10 to 200 μm, more preferably 20 to 100 μm.
After forming the negative electrode mixture layer, crimping such as press pressure can further increase the adhesion strength between the negative electrode mixture layer (negative electrode) and the current collector.
The shape of the current collector is not particularly limited, but is, for example, a foil shape, a mesh shape, a mesh shape such as an expanded metal, or the like. As the material of the current collector, copper, stainless steel, nickel and the like are preferable. The thickness of the current collector is preferably about 5 to 20 μm in the case of a foil.
[リチウムイオン二次電池]
 本発明のリチウムイオン二次電池は、本発明の負極を有するリチウムイオン二次電池である。
 本発明のリチウムイオン二次電池は、本発明の負極のほかに、更に、正極および非水電解質などを有する。本発明のリチウムイオン二次電池は、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することにより構成される。
 本発明のリチウムイオン二次電池は、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択できる。
[Lithium-ion secondary battery]
The lithium ion secondary battery of the present invention is a lithium ion secondary battery having the negative electrode of the present invention.
The lithium ion secondary battery of the present invention further includes a positive electrode, a non-aqueous electrolyte, and the like, in addition to the negative electrode of the present invention. The lithium ion secondary battery of the present invention is configured by, for example, laminating a negative electrode, a non-aqueous electrolyte, and a positive electrode in this order and accommodating them in the exterior material of the battery.
The lithium ion secondary battery of the present invention can be arbitrarily selected from a cylindrical type, a square type, a coin type, a button type, and the like according to an application, an on-board device, a required charge / discharge capacity, and the like.
 〈正極〉
 正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましい。正極活物質としては、リチウムのほか、例えば、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物;一般式MMo8-Y(式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値である)で表されるシェブレル相化合物;活性炭;活性炭素繊維;等が挙げられる。バナジウム酸化物は、V、V13、V、Vで示される。
<Positive electrode>
It is preferable to select a material for the positive electrode (positive electrode active material) that can occlude / release a sufficient amount of lithium. As the positive electrode active material, in addition to lithium, for example, lithium-containing transition metal oxides, transition metal chalcogenides, lithium-containing compounds such as vanadium oxides and lithium compounds thereof; formula M X Mo 6 S 8-Y ( wherein M is at least one kind of transition metal element, X is a numerical value in the range of 0 ≦ X ≦ 4, Y is a numerical value in the range of 0 ≦ Y ≦ 1). Be done. Vanadium oxides are represented by V 2 O 5 , V 6 O 13 , V 2 O 4 , and V 3 O 8 .
 リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属とを固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組み合わせて使用してもよい。
 リチウム含有遷移金属酸化物は、具体的には、LiM 1-X (式中M、Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数値である)、または、LiM 1-Y (式中M、Mは少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数値である)で示される。
 M、Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。好ましい具体例は、LiCoO、LiNiO、LiMnO、LiNi0.9Co0.1、LiNi0.5Co0.5などである。
 リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600~1000℃の温度で焼成することにより得ることができる。
The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more kinds of transition metals. The composite oxide may be used alone or in combination of two or more.
Lithium-containing transition metal oxide, specifically, LiM 1 1-X M 2 X O 2 ( wherein M 1, M 2 is a transition metal element of at least one, X is the range of 0 ≦ X ≦ 1 is a numerical value), or, LiM 1 1-Y M 2 Y O 4 ( wherein M 1, M 2 is a transition metal element of at least one, Y is a number in the range 0 ≦ Y ≦ 1) Indicated by.
The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn and the like, and preferably Co, Fe, Mn, Ti and Cr. , V, Al, etc. Preferred specific examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 , and the like.
The lithium-containing transition metal oxide uses, for example, lithium, transition metal oxides, hydroxides, salts, etc. as starting materials, and these starting materials are mixed according to the desired composition of the metal oxide, and 600 under an oxygen atmosphere. It can be obtained by firing at a temperature of about 1000 ° C.
 正極活物質は、上述した化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭素塩を添加できる。正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用できる。 As the positive electrode active material, the above-mentioned compounds may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. When forming the positive electrode, various additives such as conventionally known conductive agents and binders can be appropriately used.
 正極は、例えば、正極活物質と、結合剤と、正極に導電性を付与するための導電剤とからなる正極合剤を、集電体の両面に塗布して正極合剤層を形成して作製される。
 結合剤としては、負極の作製に使用される結合剤を使用できる。
 導電剤としては、黒鉛化物、カーボンブラックなどの公知の導電剤が使用される。
 集電体の形状は特に限定されないが、箔状または網状等が挙げられる。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。集電体の厚さは、10~40μmが好ましい。
 正極も、負極と同様に、ペースト状の正極合剤を、集電体に塗布、乾燥し、その後、プレス加圧等の圧着を行なってもよい。
For the positive electrode, for example, a positive electrode mixture composed of a positive electrode active material, a binder, and a conductive agent for imparting conductivity to the positive electrode is applied to both sides of the current collector to form a positive electrode mixture layer. It is made.
As the binder, a binder used for producing a negative electrode can be used.
As the conductive agent, a known conductive agent such as graphitized product or carbon black is used.
The shape of the current collector is not particularly limited, and examples thereof include a foil shape and a net shape. The material of the current collector is aluminum, stainless steel, nickel, or the like. The thickness of the current collector is preferably 10 to 40 μm.
As for the positive electrode, similarly to the negative electrode, a paste-like positive electrode mixture may be applied to the current collector, dried, and then crimped by press pressure or the like.
 〈非水電解質〉
 非水電解質は液状の非水電解質(非水電解質液)としてもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。
 前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成される。後者の場合、非水電解質電池は、高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。
<Non-aqueous electrolyte>
The non-aqueous electrolyte may be a liquid non-aqueous electrolyte (non-aqueous electrolyte liquid), or may be a polymer electrolyte such as a solid electrolyte or a gel electrolyte.
In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion secondary battery. In the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte battery and a polymer gel electrolyte battery.
 非水電解質としては、通常の非水電解質液に使用される電解質塩である、LiPF、LiBF、LiAsF、LiClO、LiB(C)、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN((CFCHOSO、LiB[{C(CF}]、LiAlCl、LiSiFなどのリチウム塩が用いられる。酸化安定性の点からは、LiPF、LiBFが好ましい。
 非水電解質液中の電解質塩の濃度は、0.1~5.0mol/Lが好ましく、0.5~3.0mol/Lがより好ましい。
As the non-aqueous electrolyte, an electrolyte salt used in the conventional non-aqueous electrolyte solution, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3, LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF) 2 CH 2 OSO 2 ) 2 , LiN ((CF 3 ) 2 CHOSO 2 ) 2 , LiB [{C 6 H 3 (CF 3 ) 2 }] 4 , LiAlCl 4 , LiSiF 6 and other lithium salts are used. From the viewpoint of oxidative stability, LiPF 6 and LiBF 4 are preferable.
The concentration of the electrolyte salt in the non-aqueous electrolyte solution is preferably 0.1 to 5.0 mol / L, more preferably 0.5 to 3.0 mol / L.
 非水電解質液を調製するための溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート;1、1-または1、2-ジメトキシエタン、1、2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、1、3-ジオキソラン、4-メチル-1、3-ジオキソラン、アニソール、ジエチルエーテルなどのエーテル;スルホラン、メチルスルホランなどのチオエーテル;アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル;ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒;等が挙げられる。 Solvents for preparing the non-aqueous electrolyte solution include, for example, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate; 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, Ethers such as tetrahydrofuran, 2-methyl tetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether; thioethers such as sulfolane and methyl sulfolane; acetonitrile, chloronitrile, propio Nitriles such as nitriles; trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl -Aprotic organic solvents such as 2-oxazolidone, ethylene glycol and dimethyl sulfoxide; and the like.
 非水電解質を、固体電解質またはゲル電解質などの高分子電解質とする場合、マトリクスとして可塑剤(非水電解質液)でゲル化された高分子を用いることが好ましい。
 マトリクスを構成する高分子としては、ポリエチレンオキサイド、その架橋体などのエーテル系高分子化合物;ポリ(メタ)アクリレート系高分子化合物;ポリビニリデンフルオライド、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物;等が好適に用いられる。
 可塑剤である非水電解質液中の電解質塩の濃度は、0.1~5.0mol/Lが好ましく、0.5~2.0mol/Lがより好ましい。
 高分子電解質において、可塑剤の割合は、10~90質量%が好ましく、30~80質量%がより好ましい。
When the non-aqueous electrolyte is a polymer electrolyte such as a solid electrolyte or a gel electrolyte, it is preferable to use a polymer gelled with a plastic agent (non-aqueous electrolyte solution) as a matrix.
Examples of the polymer constituting the matrix include polyethylene oxide, an ether-based polymer compound such as a crosslinked product thereof; a poly (meth) acrylate-based polymer compound; polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and the like. Fluoropolymer compounds; etc. are preferably used.
The concentration of the electrolyte salt in the non-aqueous electrolyte solution, which is a plasticizer, is preferably 0.1 to 5.0 mol / L, more preferably 0.5 to 2.0 mol / L.
In the polymer electrolyte, the proportion of the plasticizer is preferably 10 to 90% by mass, more preferably 30 to 80% by mass.
 〈セパレータ〉
 本発明のリチウムイオン二次電池においては、セパレータも使用できる。
 セパレータは、その材質は特に限定されないが、例えば、織布、不織布、合成樹脂製微多孔膜などが用いられる。これらのうち、合成樹脂製微多孔膜が好ましく、なかでも、ポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面でより好ましい。ポリオレフィン系微多孔膜としては、ポリエチレン製微多孔膜、ポリプロピレン製微多孔膜、これらを複合した微多孔膜などが好適に挙げられる。
<Separator>
In the lithium ion secondary battery of the present invention, a separator can also be used.
The material of the separator is not particularly limited, but for example, a woven fabric, a non-woven fabric, a microporous membrane made of synthetic resin, or the like is used. Of these, synthetic resin microporous membranes are preferable, and among them, polyolefin-based microporous membranes are more preferable in terms of thickness, membrane strength, and membrane resistance. Preferable examples of the polyolefin-based microporous membrane include a polyethylene microporous membrane, a polypropylene microporous membrane, and a composite microporous membrane thereof.
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples described below.
 〈実施例1〉
 《炭素質材料の作製》
 か焼前の石炭コークス(宝武炭材料科技有限公司製、負極用焦1号)(生コークスに該当)を、回転式キルンを用いて200℃で乾燥し、乾燥品を得た。乾燥品を、気流式粉砕機(セイシン企業社製、NSTJ-200)を用いて平均粒子径が10μmとなるように粉砕し、粉砕品を得た。
 粉砕品を、黒鉛ルツボに封入した状態で、東海カーボン株式会社にて3000℃で加熱することにより黒鉛化し、黒鉛化品を得た。
 黒鉛化品について、風力分級機(日本ドナルドソン社製、ドナセレック)を用いて、微粉を除去した。
 その後、黒鉛化品に、乾式粉体複合化装置(ホソカワミクロン社製、メカノフュージョンシステムAMS-MINI)を用いて、メカノケミカル処理を施した。より詳細には、微粉が除去された黒鉛化品に対して、回転ドラムの回転数:5000rpm、処理時間:15分、回転ドラムと内部部材との距離:1mmの条件で、せん断力と圧縮力とを繰り返し付与した。
 こうして、実施例1の炭素質材料を得た。
<Example 1>
<< Production of carbonaceous materials >>
Coal coke before calcination (manufactured by Hobu Coal Materials Technology Co., Ltd., No. 1 for negative electrode) (corresponding to raw coke) was dried at 200 ° C. using a rotary kiln to obtain a dried product. The dried product was pulverized using an air flow crusher (NSTJ-200 manufactured by Seishin Enterprise Co., Ltd.) so that the average particle size was 10 μm to obtain a pulverized product.
The crushed product was graphitized by heating at 3000 ° C. at Tokai Carbon Co., Ltd. in a state of being sealed in a graphite crucible to obtain a graphitized product.
For the graphitized product, fine powder was removed using a wind power classifier (Donna Celec, manufactured by Donaldson of Japan).
Then, the graphitized product was subjected to mechanochemical treatment using a dry powder compounding apparatus (Mechanofusion system AMS-MINI manufactured by Hosokawa Micron Co., Ltd.). More specifically, the shearing force and the compressive force of the graphitized product from which the fine powder has been removed are under the conditions of the rotation speed of the rotating drum: 5000 rpm, the processing time: 15 minutes, and the distance between the rotating drum and the internal member: 1 mm. And were repeatedly given.
In this way, the carbonaceous material of Example 1 was obtained.
 《炭素質材料の物性》
 実施例1の炭素質材料を、走査型電子顕微鏡(SEM)を用いて観察した。図1に、実施例1の炭素質材料のSEM写真を示す。
 更に、実施例1の炭素質材料について、上述した方法により、最小粒子径(Dmin)、粒子径D10、粒子径D50、粒子径D90、最大粒子径(Dmax)、比表面積、円形度、アスペクト比、および、ラマンR値を求めた。
 粒子径D10は、粒度分布の累積度数が体積百分率で10%となる粒子径である。
 粒子径D90は、粒度分布の累積度数が体積百分率で90%となる粒子径である。
 結果を下記表1に示す。
《Physical characteristics of carbonaceous materials》
The carbonaceous material of Example 1 was observed using a scanning electron microscope (SEM). FIG. 1 shows an SEM photograph of the carbonaceous material of Example 1.
Further, with respect to the carbonaceous material of Example 1, the minimum particle size (D min ), the particle size D 10 , the particle size D 50 , the particle size D 90 , the maximum particle size (D max ), the specific surface area, The circularity, aspect ratio, and Raman R value were determined.
The particle size D 10 is a particle size at which the cumulative frequency of the particle size distribution is 10% by volume.
The particle size D 90 is a particle size at which the cumulative frequency of the particle size distribution is 90% by volume.
The results are shown in Table 1 below.
 《負極の作製》
 炭素質材料(負極材料)98質量部、カルボキシメチルセルロース(結合剤)1質量部、および、スチレンブタジエンゴム(結合剤)1質量部を、水に入れ、攪拌することにより、負極合剤ペーストを調製した。
 調製した負極合剤ペーストを、銅箔に均一な厚さで塗布し、真空中90℃で乾燥し、負極合剤層を形成した。次いで、この負極合剤層を、ロールプレスによって250MPaの圧力で加圧した。その後、銅箔および負極合剤層を、直径15.5mmの円柱状に打ち抜いた。こうして、銅箔からなる集電体に密着した負極を作製した。
 負極の質量およびサイズから、負極の密度(単位:g/cm)を求めた。結果を下記表1に示す。
<< Fabrication of negative electrode >>
A negative electrode mixture paste is prepared by adding 98 parts by mass of a carbonaceous material (negative electrode material), 1 part by mass of carboxymethyl cellulose (binder), and 1 part by mass of styrene butadiene rubber (binder) to water and stirring. did.
The prepared negative electrode mixture paste was applied to a copper foil to a uniform thickness and dried in vacuum at 90 ° C. to form a negative electrode mixture layer. Next, the negative electrode mixture layer was pressed by a roll press at a pressure of 250 MPa. Then, the copper foil and the negative electrode mixture layer were punched into a cylinder having a diameter of 15.5 mm. In this way, a negative electrode in close contact with the current collector made of copper foil was produced.
The density of the negative electrode (unit: g / cm 3 ) was determined from the mass and size of the negative electrode. The results are shown in Table 1 below.
 《正極の作製》
 リチウム金属箔をニッケルネットに押し付け、直径15.5mmの円形状に打ち抜いた。これにより、ニッケルネットからなる集電体に密着したリチウム金属箔(厚さ:0.5mm)からなる正極を作製した。
<< Preparation of positive electrode >>
The lithium metal leaf was pressed against the nickel net and punched into a circular shape with a diameter of 15.5 mm. As a result, a positive electrode made of a lithium metal foil (thickness: 0.5 mm) in close contact with a current collector made of a nickel net was produced.
 《評価電池の作製》
 評価電池として、図2に示すボタン型二次電池を作製した。
 図2は、ボタン型二次電池を示す断面図である。図2に示すボタン型二次電池は、外装カップ1と外装缶3との周縁部が絶縁ガスケット6を介してかしめられ、密閉構造が形成されている。密閉構造の内部には、外装缶3の内面から外装カップ1の内面に向けて順に、集電体7a、正極4、セパレータ5、負極2、および、集電体7bが積層されている。
<< Production of evaluation battery >>
As the evaluation battery, the button type secondary battery shown in FIG. 2 was manufactured.
FIG. 2 is a cross-sectional view showing a button type secondary battery. In the button-type secondary battery shown in FIG. 2, the peripheral edges of the outer cup 1 and the outer can 3 are crimped via an insulating gasket 6 to form a sealed structure. Inside the sealed structure, a current collector 7a, a positive electrode 4, a separator 5, a negative electrode 2, and a current collector 7b are laminated in this order from the inner surface of the outer can 3 toward the inner surface of the outer cup 1.
 図2に示すボタン型二次電池を、次のように作製した。
 まず、エチレンカーボネート(33体積%)とメチルエチルカーボネート(67体積%)との混合溶媒に、LiPFを1mol/Lとなる濃度で溶解させることにより、非水電解質液を調製した。得られた非水電解質液を、ポリプロピレン多孔質体(厚さ:20μm)に含浸させることにより、非水電解質液が含浸したセパレータ5を作製した。
 次に、作製したセパレータ5を、銅箔からなる集電体7bに密着した負極2と、ニッケルネットからなる集電体7aに密着した正極4との間に挟んで積層した。その後、集電体7bおよび負極2を外装カップ1の内部に収容し、集電体7aおよび正極4を外装缶3の内部に収容し、外装カップ1と外装缶3とを合わせた。更に、外装カップ1と外装缶3との周縁部を、絶縁ガスケット6を介在させて、かしめて密閉した。このようにして、ボタン型二次電池を作製した。
The button-type secondary battery shown in FIG. 2 was manufactured as follows.
First, a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate (33% by volume) and methyl ethyl carbonate (67% by volume). A polypropylene porous body (thickness: 20 μm) was impregnated with the obtained non-aqueous electrolyte solution to prepare a separator 5 impregnated with the non-aqueous electrolyte solution.
Next, the produced separator 5 was sandwiched between the negative electrode 2 in close contact with the current collector 7b made of copper foil and the positive electrode 4 in close contact with the current collector 7a made of nickel net, and laminated. After that, the current collector 7b and the negative electrode 2 were housed inside the outer cup 1, the current collector 7a and the positive electrode 4 were housed inside the outer can 3, and the outer cup 1 and the outer can 3 were combined. Further, the peripheral edge portion between the outer cup 1 and the outer can 3 is caulked and sealed with an insulating gasket 6 interposed therebetween. In this way, a button-type secondary battery was manufactured.
 作製したボタン型二次電池(評価電池)を用いて、以下に説明する充放電試験により、電池特性を評価した。結果を下記表1に示す。
 以下の充放電試験においては、リチウムイオンを負極材料に吸蔵する過程を充電とし、負極材料からリチウムイオンが脱離する過程を放電とした。
Using the produced button-type secondary battery (evaluation battery), the battery characteristics were evaluated by the charge / discharge test described below. The results are shown in Table 1 below.
In the following charge / discharge test, the process of occluding lithium ions in the negative electrode material was defined as charging, and the process of desorbing lithium ions from the negative electrode material was defined as discharging.
 《充放電試験》
 まず、0.9mAの電流値で、回路電圧が1mVに達するまで定電流充電を行なった。回路電圧が1mVに達した時点で定電圧充電に切替え、電流値が20μAになるまで充電を続けた。この間の通電量から、充電容量(単位:mAh/g)を求めた。その後、10分間休止した。次に、0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行なった。この間の通電量から、放電容量(単位:mAh/g)を求めた。これを第1サイクルとした。
《Charge / discharge test》
First, constant current charging was performed with a current value of 0.9 mA until the circuit voltage reached 1 mV. When the circuit voltage reached 1 mV, the charging was switched to constant voltage charging, and charging was continued until the current value reached 20 μA. The charge capacity (unit: mAh / g) was determined from the amount of electricity supplied during this period. Then, it rested for 10 minutes. Next, a constant current discharge was performed with a current value of 0.9 mA until the circuit voltage reached 1.5 V. The discharge capacity (unit: mAh / g) was determined from the amount of energization during this period. This was designated as the first cycle.
 初回充放電効率は、下記式(1)から求めた。初回充放電効率の値が大きいほど、初回充放電効率が良好であると評価できる。
 初回充放電効率[%]=100×{(第1サイクルの充電容量-第1サイクルの放電容量)/第1サイクルの放電容量}・・・(1)
The initial charge / discharge efficiency was calculated from the following formula (1). It can be evaluated that the larger the value of the initial charge / discharge efficiency is, the better the initial charge / discharge efficiency is.
Initial charge / discharge efficiency [%] = 100 × {(charge capacity of the first cycle-discharge capacity of the first cycle) / discharge capacity of the first cycle} ... (1)
[電極剥離強度試験]
  用いる試験片を図3に示す。負極合剤ペーストを作製し、負極材10をプレスしていない状態で活物質側の一部を両面テープ11でアルミ板12に貼り付け作製した。試験片は、引張試験機(島津製作所製オートグラフ)を用いて負極材10の一部をつかみ180°方向(矢印方向13)に引張試験を行い、平均引張試験応力を剥離強度とした。
[Electrode peel strength test]
The test piece used is shown in FIG. A negative electrode mixture paste was prepared, and a part of the active material side was attached to an aluminum plate 12 with double-sided tape 11 in a state where the negative electrode material 10 was not pressed. The test piece was subjected to a tensile test in the 180 ° direction (arrow direction 13) by grasping a part of the negative electrode material 10 using a tensile tester (autograph manufactured by Shimadzu Corporation), and the average tensile test stress was taken as the peel strength.
 〈実施例2〉
 実施例1において、黒鉛化メーカーを商都▲郡▼集美新▲炭▼材科技▲発▼展有限公司で行う以外は、実施例1と同様にして評価した。評価結果を表1に示した。
<Example 2>
In Example 1, the evaluation was carried out in the same manner as in Example 1 except that the graphitizing maker was carried out in the commercial city ▲ county ▼ Shubishin ▲ charcoal ▼ material technology ▲ departure ▼ exhibition company. The evaluation results are shown in Table 1.
 〈実施例3〉
 実施例2において、メカノケミカル処理時間を30分とする以外は、実施例2と同様にして評価した。評価結果を表1に示した。
<Example 3>
In Example 2, the evaluation was carried out in the same manner as in Example 2 except that the mechanochemical treatment time was 30 minutes. The evaluation results are shown in Table 1.
 〈実施例4〉
 実施例2において、分級条件を調整して最小粒子径Dminを4.76μmとする以外は、実施例2と同様にして評価した。評価結果を表1に示した。
<Example 4>
In Example 2, the evaluation was carried out in the same manner as in Example 2 except that the classification conditions were adjusted so that the minimum particle size Dmin was 4.76 μm. The evaluation results are shown in Table 1.
 〈実施例5〉
 実施例2において、メカノケミカル処理を大型乾式粉体複合化装置(ホソカワミクロン社製、メカノフュージョンシステムAMS-30F)を用いて処理時間を120分で実施した以外は、実施例1と同様にして評価した。
 メカノケミカル処理の条件は、回転ドラムの回転数:1450rpm、処理時間:120分、回転ドラムと内部部材との距離:10mmとした。評価結果を表1に示した。
<Example 5>
In Example 2, the mechanochemical treatment was evaluated in the same manner as in Example 1 except that the treatment time was 120 minutes using a large-scale dry powder compounding device (Mechanofusion System AMS-30F manufactured by Hosokawa Micron Co., Ltd.). did.
The conditions for the mechanochemical treatment were the rotation speed of the rotating drum: 1450 rpm, the processing time: 120 minutes, and the distance between the rotating drum and the internal member: 10 mm. The evaluation results are shown in Table 1.
 〈実施例6〉
 実施例2において、分級条件を調整して最小粒子径Dminを3.01μmとする以外は、実施例2と同様にして評価した。評価結果を表1に示した。
<Example 6>
In Example 2, the evaluation was carried out in the same manner as in Example 2 except that the classification conditions were adjusted so that the minimum particle size Dmin was 3.01 μm. The evaluation results are shown in Table 1.
 〈比較例1〉
 比較例1では、微粉を除去しなかった。
 それ以外の点は、実施例1と同様にして、評価を行なった。結果を下記表1に示す。
<Comparative example 1>
In Comparative Example 1, the fine powder was not removed.
Other points were evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
 〈比較例2〉
 比較例2では、か焼された石炭コークスを原料として使用し、かつ、微粉を除去しなかった。
 それら以外の点は、実施例1と同様にして、評価を行なった。結果を下記表1に示す。
<Comparative example 2>
In Comparative Example 2, calcined coal coke was used as a raw material, and fine powder was not removed.
The points other than these were evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
 〈比較例3〉
 か焼された石油コークス(Phillips66社製、HNP)を、気流式粉砕機(セイシン企業社製、NSTJ-200)を用いて平均粒子径が10μmとなるように粉砕し、粉砕品を得た。粉砕品に石油系ピッチ(軟化点:250℃)を90/10の質量比(粉砕品/ピッチ)で加え、600℃で10時間混錬して、平均粒子径が20μm程度の造粒体を得た。造粒体を、黒鉛ルツボに封入した状態で、3000℃で加熱することにより黒鉛化し、黒鉛化品を得た。得られた黒鉛化品を、比較例3の炭素質材料とした。
 比較例3の炭素質材料を用いて、実施例1と同様にして、評価を行なった。結果を下記表1に示す。
<Comparative example 3>
The calcinated petroleum coke (HNP, manufactured by Phillips66) was pulverized using an airflow crusher (NSTJ-200, manufactured by Seishin Enterprise) so that the average particle size was 10 μm to obtain a pulverized product. A petroleum-based pitch (softening point: 250 ° C.) is added to the crushed product at a mass ratio of 90/10 (crushed product / pitch) and kneaded at 600 ° C. for 10 hours to obtain a granulated body having an average particle size of about 20 μm. Obtained. The granulated body was graphitized by heating at 3000 ° C. in a state of being sealed in a graphite crucible to obtain a graphitized product. The obtained graphitized product was used as a carbonaceous material of Comparative Example 3.
The evaluation was carried out in the same manner as in Example 1 using the carbonaceous material of Comparative Example 3. The results are shown in Table 1 below.
 〈比較例4〉
 か焼前の石油コークス(Phillips66社製、GHNP)を原料として用いた点以外は、比較例3と同様にして、黒鉛化品を得た。得られた黒鉛化品を、比較例4の炭素質材料とした。
 比較例4の炭素質材料を用いて、実施例1と同様にして、評価を行なった。結果を下記表1に示す。
<Comparative Example 4>
A graphitized product was obtained in the same manner as in Comparative Example 3 except that petroleum coke before calcination (GHNP manufactured by Phillips 66) was used as a raw material. The obtained graphitized product was used as the carbonaceous material of Comparative Example 4.
The evaluation was carried out in the same manner as in Example 1 using the carbonaceous material of Comparative Example 4. The results are shown in Table 1 below.
 〈比較例5〉
 比較例5では、微粉を除去せず、かつ、せん断力および圧縮力を付与しなかった。
 それら以外の点は、実施例1と同様にして、評価を行なった。結果を下記表1に示す。
<Comparative Example 5>
In Comparative Example 5, fine powder was not removed, and neither shearing force nor compressive force was applied.
The points other than these were evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
 〈比較例6〉
 比較例6では、か焼前の石油コークスを原料として用い、黒鉛化前にせん断力および圧縮力を付与し、かつ、微粉を除去しなかった。
 それら以外の点は、実施例1と同様にして、評価を行なった。結果を下記表1に示す。
<Comparative Example 6>
In Comparative Example 6, petroleum coke before calcination was used as a raw material, shearing force and compressive force were applied before graphitization, and fine powder was not removed.
The points other than these were evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
 〈比較例7〉
 実施例2において、分級条件を調整して最小粒子径Dminを2.23μmとする以外は、実施例2と同様にして評価した。評価結果を表1に示した。
<Comparative Example 7>
In Example 2, the evaluation was carried out in the same manner as in Example 2 except that the classification conditions were adjusted so that the minimum particle size Dmin was 2.23 μm. The evaluation results are shown in Table 1.
 〈比較例8〉
 実施例2において、微粉除去後にメカノケミカル処理を実施しなかった以外は、実施例2と同様にして評価した。評価結果を表1に示した。
<Comparative Example 8>
In Example 2, the evaluation was carried out in the same manner as in Example 2 except that the mechanochemical treatment was not carried out after removing the fine powder. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〈評価結果まとめ〉
 上記表1に示すように、炭素質材料の最小粒子径が3.00μm超である実施例1~6は、これを満たさない比較例1~8と比較して、負極が高密度であり、放電容量と初回充放電効率の電池特性のバランスがとれ、電極剥離強度も高かった。
<Summary of evaluation results>
As shown in Table 1 above, in Examples 1 to 6 in which the minimum particle size of the carbonaceous material is more than 3.00 μm, the negative electrode has a higher density than in Comparative Examples 1 to 8 which do not satisfy this. The battery characteristics of discharge capacity and initial charge / discharge efficiency were well-balanced, and the electrode peeling strength was also high.
1:外装カップ
2:負極
3:外装缶
4:正極
5:セパレータ
6:絶縁ガスケット
7a:集電体
7b:集電体
10:負極材
11:両面テープ
12:アルミ板
13:矢印方向
1: Exterior cup 2: Negative electrode 3: Exterior can 4: Positive electrode 5: Separator 6: Insulation gasket 7a: Current collector 7b: Current collector 10: Negative electrode material 11: Double-sided tape 12: Aluminum plate 13: Arrow direction

Claims (6)

  1.  最小粒子径が3.00μm超、円形度が0.82以上0.94以下、アスペクト比が1.48以上1.65以下、かつ、ラマンR値が0.40超である、炭素質材料。 A carbonaceous material having a minimum particle size of more than 3.00 μm, a circularity of 0.82 or more and 0.94 or less, an aspect ratio of 1.48 or more and 1.65 or less, and a Raman R value of more than 0.40.
  2.  前記炭素質材料が石炭コークスの黒鉛化物である、請求項1に記載の炭素質材料。 The carbonaceous material according to claim 1, wherein the carbonaceous material is a graphitized product of coal coke.
  3.  請求項1または2に記載の炭素質材料を製造する方法であって、
     原料であるコークスを粉砕し、黒鉛化し、せん断力および圧縮力を付与し、
     前記黒鉛化の前または後に、微粉を除去する、炭素質材料の製造方法。
    The method for producing a carbonaceous material according to claim 1 or 2.
    Coke, which is the raw material, is crushed, graphitized, and subjected to shearing force and compressive force.
    A method for producing a carbonaceous material, which removes fine powder before or after the graphitization.
  4.  前記コークスが石炭コークスである、請求項3に記載の炭素質材料の製造方法。 The method for producing a carbonaceous material according to claim 3, wherein the coke is coal coke.
  5.  請求項1または2に記載の炭素質材料を含有する、リチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery containing the carbonaceous material according to claim 1 or 2.
  6.  請求項5に記載の負極を有する、リチウムイオン二次電池。 A lithium ion secondary battery having the negative electrode according to claim 5.
PCT/JP2020/047268 2020-01-28 2020-12-17 Carbonaceous material, method for producing carbonaceous material, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery WO2021153080A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217014304A KR102632742B1 (en) 2020-01-28 2020-12-17 Carbonaceous material, method for producing carbonaceous material, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN202080006722.1A CN113195405A (en) 2020-01-28 2020-12-17 Carbonaceous material, method for producing carbonaceous material, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2021521446A JP6911221B1 (en) 2020-01-28 2020-12-17 Carbonaceous material, manufacturing method of carbonaceous material, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020011361 2020-01-28
JP2020-011361 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021153080A1 true WO2021153080A1 (en) 2021-08-05

Family

ID=77078083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047268 WO2021153080A1 (en) 2020-01-28 2020-12-17 Carbonaceous material, method for producing carbonaceous material, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Country Status (3)

Country Link
KR (1) KR102632742B1 (en)
TW (1) TWI767490B (en)
WO (1) WO2021153080A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132889A (en) * 2001-08-10 2003-05-09 Kawasaki Steel Corp Anode material for lithium ion secondary battery and its manufacturing method
JP2012227151A (en) * 2001-08-10 2012-11-15 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode lithium ion secondary battery, and lithium ion secondary battery
JP2013201125A (en) * 2012-02-24 2013-10-03 Mitsubishi Chemicals Corp Nonaqueous secondary battery bilayer structure carbon material and nonaqueous secondary battery anode and nonaqueous secondary battery using the same
WO2017002959A1 (en) * 2015-07-02 2017-01-05 昭和電工株式会社 Negative electrode material for lithium-ion batteries and use therefor
WO2018047939A1 (en) * 2016-09-09 2018-03-15 昭和電工株式会社 Negative electrode material for lithium ion secondary cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2413403B1 (en) * 2009-03-27 2018-03-07 Mitsubishi Chemical Corporation Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP5678414B2 (en) * 2009-06-17 2015-03-04 三菱化学株式会社 Graphite negative electrode material, method for producing the same, and negative electrode for lithium secondary battery and lithium secondary battery using the same
WO2012043666A1 (en) 2010-09-29 2012-04-05 三菱化学株式会社 Carbon material for negative electrode of nonaqueous electrolyte secondary battery, method for producing same, negative electrode of nonaqueous secondary battery using same, and nonaqueous electrolyte secondary battery
JP6252025B2 (en) 2013-08-08 2017-12-27 三菱ケミカル株式会社 Method for producing composite graphite particles for non-aqueous secondary battery negative electrode, and composite graphite particles for non-aqueous secondary battery negative electrode produced by the production method, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132889A (en) * 2001-08-10 2003-05-09 Kawasaki Steel Corp Anode material for lithium ion secondary battery and its manufacturing method
JP2012227151A (en) * 2001-08-10 2012-11-15 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode lithium ion secondary battery, and lithium ion secondary battery
JP2013201125A (en) * 2012-02-24 2013-10-03 Mitsubishi Chemicals Corp Nonaqueous secondary battery bilayer structure carbon material and nonaqueous secondary battery anode and nonaqueous secondary battery using the same
WO2017002959A1 (en) * 2015-07-02 2017-01-05 昭和電工株式会社 Negative electrode material for lithium-ion batteries and use therefor
WO2018047939A1 (en) * 2016-09-09 2018-03-15 昭和電工株式会社 Negative electrode material for lithium ion secondary cell

Also Published As

Publication number Publication date
TW202146330A (en) 2021-12-16
KR20210098965A (en) 2021-08-11
TWI767490B (en) 2022-06-11
KR102632742B1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
KR101661050B1 (en) Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2003132889A (en) Anode material for lithium ion secondary battery and its manufacturing method
JP2018133340A (en) Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019019048A (en) Manufacturing method of carbonaceous coated graphite particle, carbonaceous coated graphite particle, anode for lithium ion secondary battery, and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP6944082B1 (en) Carbonated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3503688B2 (en) Lithium secondary battery
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
JP4050072B2 (en) Method for producing graphitic particles and negative electrode material for lithium ion secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP4870419B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6911221B1 (en) Carbonaceous material, manufacturing method of carbonaceous material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2021153080A1 (en) Carbonaceous material, method for producing carbonaceous material, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP5053541B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2017075091A (en) Free carbon graphite particle and production method therefor, lithium ion secondary cattery anode and lithium ion secondary cattery
JP4643165B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2024058623A (en) Carbonaceous material and method for producing the same
WO2021260964A1 (en) Method for producing graphite particles coated with carbonaceous film
JP2002075377A (en) Negative electrode for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021521446

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916980

Country of ref document: EP

Kind code of ref document: A1