WO2021139507A1 - 图腾柱无桥pfc电路、控制方法、电子设备及介质 - Google Patents

图腾柱无桥pfc电路、控制方法、电子设备及介质 Download PDF

Info

Publication number
WO2021139507A1
WO2021139507A1 PCT/CN2020/137522 CN2020137522W WO2021139507A1 WO 2021139507 A1 WO2021139507 A1 WO 2021139507A1 CN 2020137522 W CN2020137522 W CN 2020137522W WO 2021139507 A1 WO2021139507 A1 WO 2021139507A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
time
switching tube
switch
power frequency
Prior art date
Application number
PCT/CN2020/137522
Other languages
English (en)
French (fr)
Inventor
杨燕
金辉
赵大春
郑益群
杨圣别
余学芳
方能杰
Original Assignee
杭州中恒电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州中恒电气股份有限公司 filed Critical 杭州中恒电气股份有限公司
Publication of WO2021139507A1 publication Critical patent/WO2021139507A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the technical field of switching power supplies, in particular to a totem pole bridgeless PFC circuit and a control method.
  • PFC power factor correction, power factor correction
  • one of the objectives of the present invention is to provide a totem pole bridgeless PFC circuit, which has the advantages of improving the efficiency of the product and reducing the waste of resources.
  • a totem pole bridgeless PFC circuit including inductor L1, inductor L2, switching tube S1, switching tube S2, switching tube S3, switching tube S4, power frequency tube S5, power frequency tube S6 and load modules,
  • the switch tube S1, switch tube S3, and the reverse end of the power frequency tube S5 are connected to the first end of the load module;
  • the switch tube S2, switch tube S4, and the forward end of the switch tube S6 are connected to the second end of the load module ;
  • the first end of the inductor L1 and the first end of the inductor L2 are connected and recorded as the first input end, the second end of the inductor L1 is connected to the forward end of the switch S1 and the reverse end of the switch S2;
  • the second end is connected to the forward end of the switching tube S3 and the reverse end of the switching tube S4;
  • the forward end of the power frequency tube S5 and the reverse end of the power frequency tube S6 are connected and recorded as the second input terminal;
  • the voltage difference between the first input terminal and the second input terminal is denoted as the input voltage Vin.
  • the curve formed by the input voltage Vin in a period of time is divided into a positive half period and a negative half period.
  • the switching tube S2 and the switching tube S4 are controlled by the loop output and they emit 180 degrees interleaved.
  • the power frequency tube S6, the switching tube S1 and the switching tube S3 are turned on after meeting the preset conditions; in the negative half cycle At this time, the switching tube S1 and the switching tube S3 are controlled by the loop output and emit waves at an interleaved 180 degrees.
  • the power frequency tube S5, the switching tube S2 and the switching tube S4 are turned on after meeting the preset conditions.
  • the duty ratio of the switching tube S1 and the switching tube S2 is in the range of 0.9 to 1
  • the duty ratio of the switching tube S3 and the switching tube S4 is in the range of 0.9 to 1.
  • the switching tube S1, the switching tube S2, the switching tube S3, the switching tube S4, the power frequency tube S5, and the power frequency tube S6 are any one of a MOSFET tube, an IGBT tube, a GaN tube, a triode, a thyristor, and a relay.
  • a MOSFET tube an IGBT tube, a GaN tube, a triode, a thyristor, and a relay.
  • inductor L1 and the inductor L2 are wound on the same magnetic core with opposite winding directions.
  • the second object of the present invention is to provide a control method, which has the advantages of improving product efficiency and reducing resource waste.
  • a control method for controlling the above-mentioned totem pole bridgeless PFC circuit which includes the following steps:
  • the switch S2 and the switch S4 are recorded as the main control transistors, and the switch S1 and the switch S3 are recorded as complementary transistors.
  • the switching tube S1 and the switching tube S3 are recorded as the main control tube, and the switching tube S2 and the switching tube S4 are recorded as the complementary tube;
  • the preset time period T1 is from the turn-on time t3 to the turn-off time t4, where the time t4 and the time t3 is in the same half period, and (t3-t1) are all less than half period;
  • the preset time period T2 is from the turn-on time t5 to the turn-off time t6, wherein the time t5 and the time t6 In the same half cycle, and (t5-t1) are all less than half cycle.
  • the voltage value corresponding to the turn-on time t3 is greater than the voltage value corresponding to the turn-off time t4; the turn-on time t3 is greater than or equal to the turn-on time t5, and the voltage value corresponding to the turn-on time t3 is greater than or It is equal to the voltage value at the turn-on time t5.
  • the input voltage Vin curve that was collected and processed before the time t1 is acquired, and the starting time of the collected and processed input voltage Vin curve is recorded as t0, and the half cycle corresponding to the time t0 is recorded as Soft start half cycle;
  • obtaining the duty cycle of the main control tube includes the following steps:
  • the first duty cycle feedforward is obtained
  • the first duty cycle feedforward is used as the current duty cycle feedforward, if not, the first duty cycle feedforward is used as the current duty cycle feedforward ;
  • the third object of the present invention is to provide an electronic device that implements the second object of the invention, which includes a processor, a storage medium, and a computer program.
  • the computer program is stored in the storage medium. Control Method.
  • the fourth object of the present invention is to provide a computer-readable storage medium storing the second object of the present invention, on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned control method is realized.
  • the beneficial effects of the present invention are: the bridgeless topology is used instead of the traditional bridged topology, and the loss caused by the bridge stack is removed; the switching tube is used as a power frequency tube to make the entire loop run in Under CCM mode, it has the advantages of improving product efficiency and reducing waste of resources.
  • FIG. 1 is a circuit diagram of the totem pole bridgeless PFC circuit shown in the first embodiment
  • Figure 2 is a flow chart of the control method shown in the second embodiment
  • step S60 is a flowchart of step S60 in the control method shown in the second embodiment
  • FIG. 4 is a flowchart of step S20 in FIG. 2;
  • Fig. 5 is a structural block diagram of the electronic device of the fourth embodiment.
  • the totem pole bridgeless PFC circuit includes an inductor L1, an inductor L2, a switch tube S1, a switch tube S2, a switch tube S3, a switch tube S4, a power frequency tube S5, a power frequency tube S6, and a load module.
  • the reverse ends of the switching tube S1, the switching tube S3, and the power frequency tube S5 are connected to the first end of the load module; the forward ends of the switching tube S2, the switching tube S4, and the switching tube S6 are connected to the second end of the load module.
  • the first end of the inductor L1 and the first end of the inductor L2 are connected and recorded as the first input end, the second end of the inductor L1 is connected to the forward end of the switch S1 and the reverse end of the switch S2; the inductor L2
  • the second end of is connected to the forward end of the switching tube S3 and the reverse end of the switching tube S4; the forward end of the power frequency tube S5 and the reverse end of the power frequency tube S6 are connected and recorded as the second input terminal.
  • the voltage difference between the first terminal and the second terminal of the load module is recorded as the output voltage Vo.
  • the curve formed by the input voltage Vin in a period of time is divided into a positive half period and a negative half period.
  • the switching tube S2 and the switching tube S4 is controlled by the loop output and emits 180 degrees interleaved, and the power frequency tube S6, the switching tube S1 and the switching tube S3 are turned on after meeting the preset conditions; in the negative half cycle, the switching tube S1 and the switching tube S3 are switched by the ring Channel output control and 180-degree staggered wave generation, and the power frequency tube S5, switch tube S2, and switch tube S4 are turned on after meeting the preset conditions.
  • loop control means that the conduction of the corresponding switch tube is related to parameters such as current, voltage, and resistivity in the circuit.
  • the bridgeless topology is used instead of the traditional bridge topology to remove the loss caused by the bridge stack;
  • the switch tube is used as the power frequency tube to make the entire loop run in CCM mode, which has the advantage of improving the product.
  • the load module includes a capacitor C and a load R.
  • the two ends of the capacitor C are connected in series with the two ends of the load R, and the first end of the capacitor C is connected to the first end of the load module.
  • the terminal is connected with the second terminal of the load module, which has the advantages of simple structure and reduced circuit oscillation. It should be understood that the load module is not limited to the above-mentioned types.
  • the duty ratio of the switching tube S1 and the switching tube S2 is in the range of 0.9 to 1
  • the duty ratio of the switching tube S3 and the switching tube S4 is in the range of 0.9 to 1. Therefore, when the main control tube stops sending waves, the corresponding complementary tubes start sending waves, so that there is a corresponding waveform output in one wave sending cycle.
  • the switching tube S1, the switching tube S2, the switching tube S3, the switching tube S4, the power frequency tube S5, and the power frequency tube S6 are all MOS tubes, IGBT tubes, GaN tubes, triodes, thyristors and relays.
  • MOS tubes IGBT tubes
  • GaN tubes GaN tubes
  • triodes thyristors and relays.
  • the switching tube S1, the switching tube S2, the switching tube S3, the switching tube S4, the power frequency tube S5, and the power frequency tube S6 are not limited to the above-mentioned types, but are preferably GaN tubes, which have less driving loss and Miller The advantages of low effect, low switching loss, low dead time, and small reverse recovery.
  • the switching tube S1, the switching tube S2, the switching tube S3, the switching tube S4, the power frequency tube S5 and the power frequency tube S6 are all NMOS tubes, taking the switching tube S1 as an example, the forward end of the switching tube 1 corresponds to the source The pole (s), the reverse end of the switch tube 1 corresponds to the drain (d). It is understandable that when the switching tube S1, the switching tube S2, the switching tube S3, the switching tube S4, the power frequency tube S5, and the power frequency tube S6 use any one of IGBT tube, GaN tube, triode, thyristor and relay, The corresponding current direction should be the same as the current direction when using an NMOS tube.
  • the inductor L1 and the inductor L2 are wound on the same magnetic core with opposite winding directions, so that the magnetic induction of the middle magnetic core cancels each other out, effectively reducing the magnetic flux loss.
  • the inductor L1 and the inductor L2 are further set to have the same number of turns and the same spacing, so as to better reduce the magnetic flux loss.
  • This embodiment provides a control method for controlling the totem pole bridgeless PFC circuit shown in the first embodiment, which has the advantages of improving the efficiency of the product and reducing the waste of resources.
  • control method includes the following steps.
  • Step S10 Obtain the input voltage Vin. It is worth noting that when the input voltage Vin is in the positive half cycle, the switch S2 and S4 are recorded as the main control tube, the switch S1 and the switch S3 are marked as complementary tubes, and the power frequency tube that is turned on is the work Frequency tube S6; when the input voltage Vin is in the negative half cycle, the switching tube S1 and the switching tube S3 are recorded as the main control tube, the switching tube S2 and the switching tube S4 are recorded as the complementary tube, and the corresponding power frequency tube that is turned on is the power frequency Pipe S5.
  • Step S20 Obtain the duty cycle of each main control tube, and respectively determine whether the duty cycle of each main control tube reaches the preset range, if so, turn on the corresponding main control tube; if not, execute the next step.
  • the main control tube is controlled by the loop output, that is, the duty cycle of each main control tube is related to the current, voltage, and conductivity of the circuit. It is necessary to obtain the corresponding parameters of the circuit first, and then calculate the main control The duty cycle of the tube, then judge and turn on the corresponding main control tube.
  • the two main control pipes are preferably turned on simultaneously, and the preset range is 3%-95%.
  • Step S30 Query the time corresponding to the input voltage Vin and record it as t1.
  • Step S40 It is judged whether the time t1 is within the preset time period T1 corresponding to the half cycle, if it is, the corresponding power frequency tube is turned on; if not, the next step is executed. Since the input voltage Vin appears periodically, the period of occurrence is recorded as T0, so that the periods of the positive half period and the negative half period are both (T0/2). It is worth noting that each half period has a period of time T1.
  • the preset time period T1 is from the turn-on time t3 to the turn-off time t4. Time t3 and time t4 in the preset time period T1 corresponding to the input voltage Vin are within the same half cycle and meet the following requirements: (t3-t1) ⁇ (T0/2), and (t4-t3) ⁇ (T0 /2).
  • the preset time terminal T1 is the turn-on time t3 and the turn-off time t4. Since the input is alternating current, the difference between the turn-off time t4-turn-on time t3 of each half cycle is equal, and the turn-on time t3-n* The difference of (T0/2) is equal.
  • n is a positive integer and represents the number of half cycles before the input voltage Vin.
  • Step S50 It is judged whether the time t1 is within the preset time period T2 corresponding to the half cycle, if so, the corresponding complementary tube is turned on; if not, no processing is performed.
  • each half cycle has a time period T2, and the preset time period T2 is from the turn-on time t5 to the turn-off time t6.
  • Time t5 and time t6 in the preset time period T2 corresponding to the input voltage Vin are within the same half cycle and meet the following requirements: (t5-t1) ⁇ (T0/2), and (t6-t5) ⁇ (T0 /2).
  • the turn-off time t6 is preferably the end time of the cycle.
  • Step S40 and step S50 may be executed independently, or step S40 may be executed first and then step S50 may be executed, or step S50 may be executed first and then step S40 may be executed.
  • the main control tube is turned on by controlling the duty cycle through loop control, and the power frequency tube and the complementary tube are turned on by first adjusting the duty cycle according to the on time, and the switching tube is used as the power frequency tube.
  • the preset time period T1 is from the turn-on time t3 to the turn-off time t4, and the voltage value corresponding to the turn-on time t3 is greater than the voltage value corresponding to the turn-off time t4 to prevent current backflow.
  • the preset time period T2 is from the turn-on time t5 to the turn-off time t6, the turn-on time t3 is greater than or equal to the turn-on time t5, and the voltage value corresponding to the turn-on time t3 is greater than or equal to the voltage value of the turn-on time t5.
  • the opening time t3 is the same as the opening time t5, so that only the number of judgments is reduced to improve the overall efficiency.
  • the duty cycle of the main control tube needs to increase from 0 to meet the trigger condition.
  • a timer can be used to accumulate, and when the timer accumulates to When a certain set value is reached, the release of the duty cycle ends.
  • the preset value should be less than the voltage value corresponding to t3, if yes, turn on the complementary tube; if not, disable the main control and complementary
  • the tube is activated until the input voltage Vin rises to greater than the preset value and then the prohibition command is cancelled, thereby playing a protective role. If the time when the main control tube completes the release of the duty cycle is recorded as t2, it is preferable that t2 and t3 are equal, so that the power frequency tube S and the complementary tube are turned on synchronously.
  • control method further includes step S60, and step S60 can be executed after step 40 or step S50.
  • Step S601 Obtain the input voltage Vin curve to be collected and processed before time t1, record the start time of the input voltage Vin curve to be collected and processed as t0, and record the half cycle corresponding to the time t0 as the soft start half cycle. The time when the duty cycle of the main control is released is recorded as t2.
  • each point on the curve of the input voltage Vin to be collected and processed is controlled by the control method, that is, if the control method is run in the form of software, the starting point of the curve of the input voltage Vin to be collected and processed is the software startup Point, that is, the time t0 corresponds to the software startup point.
  • Step S602 Determine whether the time t0 is greater than the time t3 corresponding to the soft-start half-cycle. If yes, perform step S603, prohibit the complementary tube and the power frequency tube from starting during the soft-start half-cycle and before the soft-start half-cycle, and at time t0 The master control was previously prohibited from starting. It can be understood that in the soft start half cycle, the corresponding time t3 meets the following requirements: (t3-t0) ⁇ (T0/2).
  • the soft start half cycle when the time t0 is greater than the time t3, it indicates that the power frequency tube turning on condition is no longer satisfied in the half cycle, and it will not be able to turn on.
  • the obtaining of the duty cycle of the main control tube in step S20 includes step S201 to step S2010.
  • Step S201 Obtain the voltage between the first terminal and the second terminal of the load module, and record it as the output voltage Vo.
  • Step S202 Obtain the current at the first input terminal or the second input terminal and record it as the input current Iin.
  • the direction of the input current Iin is preferably the same as the direction of the input voltage Vin.
  • Step S203 Obtain the current loop output based on the input voltage Vin, the output voltage Vo, and the input current Iin, and use it as a duty cycle component.
  • Step S204 based on the input voltage Vin, the output voltage Vo, and the CCM formula, obtain a first duty cycle feedforward.
  • Step S205 based on the first duty ratio feedforward and the DCM formula, obtain the second duty ratio feedforward.
  • the DCM formula is: L is the inductance, T is the period, and Ge is the conductance.
  • Step S206 Determine whether the time t0 is greater than the time t3 of the soft start half cycle, and if so, perform step S207, which is the smallest of the first duty ratio feedforward and the second duty ratio feedforward within the soft start half cycle Value as the current duty ratio feedforward, and the first duty ratio feedforward is used as the current duty ratio feedforward after the soft-start half cycle; if not, step S208 is executed, and the first duty ratio feedforward is used as the current Duty cycle feed forward. It can be understood that in the soft start half cycle, time t3 meets the following requirements: (t3-t0) ⁇ (T0/2).
  • Step S209 Obtain the duty ratio of the main control tube based on the duty ratio component and the current ratio feedforward. Specifically, the duty cycle feedforward is superimposed with the current duty cycle feedforward, that is, the duty cycle of the master control tube.
  • the current duty cycle feedforward in this half cycle can only be min (the first duty cycle feedforward, the second duty cycle feedforward) to ensure the efficient operation of the circuit.
  • the electronic device 1 can be a desktop computer, a notebook computer, a server (physical server or cloud server), etc., or even a mobile phone or tablet computer, etc.,
  • the electronic device 1 includes a processor 11, a memory 12, an input device 13, and an output device 14; the processor 11 in the computer device The number can be one or more.
  • one processor 11 is taken as an example; the processor 11, the memory 12, the input device 13, and the output device 14 in the electronic device 1 can be connected by a bus or other means, as shown in Figure 5 Take the bus connection as an example.
  • the memory 12 can be used to store software programs, computer-executable programs, and modules.
  • the memory 12 may mainly include a program storage area and a data storage area, where the program storage area can store an operating system and an application program required by at least one function; the data storage area can store data created according to the use of the terminal, and the like.
  • the memory 12 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 12 may be further configured to include memories remotely provided with respect to the processor 11, and these remote memories may be connected to the electronic device 1 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 13 can be used to receive data such as the input voltage Vin.
  • the output device 14 may include a display device such as a document or a display screen. Specifically, when the output device is a document, the corresponding information can be recorded in the document according to a specific format, which realizes data storage while also realizing data integration; when the output device is a display device such as a display screen, it directly corresponds to The information is placed on the display screen and other devices for users to view in real time.
  • the embodiment also provides a computer-readable storage medium containing computer-executable instructions, which are used to execute the above-mentioned control method when executed by a computer processor, and the method is used to control the above-mentioned totem pole bridgeless PFC Circuit, which includes the following steps:
  • the switch S2 and the switch S4 are recorded as the main control transistors, and the switch S1 and the switch S3 are recorded as complementary transistors.
  • the switching tube S1 and the switching tube S3 are recorded as the main control tube, and the switching tube S2 and the switching tube S4 are recorded as the complementary tube;
  • the present invention can be implemented by software and necessary general-purpose hardware, of course, it can also be implemented by hardware, but in many cases the former is a better implementation. .
  • the technical solution of the present invention essentially or the part that contributes to the prior art can be embodied in the form of a software product.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • FlASH Flash memory
  • hard disk or optical disk etc., including several instructions to make an electronic device (which can be a mobile phone, A personal computer, a server, or a network device, etc.) execute the control method in the second embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开一种图腾柱无桥PFC电路,涉及开关电源技术领域,用于解决现有PFC电路效率低的问题,其包括电感L1、电感L2、开关管S1、开关管S2、开关管S3、开关管S4、工频管S5、工频管S6及负载模块,输入电压Vin在一个时间周期内所形成的曲线被分为正半周期和负半周期,在正半周期内时,开关管S2和开关管S4由环路输出控制且交错180度发波,且工频管S6、开关管S1及开关管S3在符合预设条件后开启;在负半周期内时,开关管S1和开关管S3由环路输出控制且交错180度发波,且工频管S5、开关管S2及开关管S4在符合预设条件后开启。本发明还公开了一种控制方法、电子设备及计算机可读介质。

Description

图腾柱无桥PFC电路、控制方法、电子设备及介质 技术领域
本发明涉及开关电源技术领域,尤其涉及一种图腾柱无桥PFC电路及控制方法。
背景技术
随着开关电源技术的发展,由于输入谐波电流限制,PFC(powerfactorcorrection,功率因数校正)电路成为开关电源中不可缺少的一个部分。但由于现今对开关电源的体积要求越来越小,效率要求也越来越高,使得现有的PFC电路已经逐渐无法达到使用要求,从而需要一种更为高效的PFC电路。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种图腾柱无桥PFC电路,其具有提升产品的效率和减少资源浪费的优点。
本发明的目的之一采用如下技术方案实现:
一种图腾柱无桥PFC电路,包括电感L1、电感L2、开关管S1、开关管S2、开关管S3、开关管S4、工频管S5、工频管S6及负载模块,
其中,开关管S1、开关管S3及工频管S5的反向端连接于负载模块的第一端;开关管S2、开关管S4及开关管S6的正向端连接于负载模块的第二端;电感L1的第一端和电感L2的第一端连接并记为第一输入端,电感L1的第二端与开关管S1的正向端、开关管S2的反向端连接;电感L2的第二端与开关管S3的正向端、开关管S4的反向端连接;工频管S5的正向端、工频 管S6的反向端连接并记为第二输入端;
第一输入端和第二输入端之间的电压差记为输入电压Vin,所述输入电压Vin在一个时间周期内所形成的曲线被分为正半周期和负半周期,在所述正半周期内时,开关管S2和开关管S4由环路输出控制且交错180度发波,工频管S6、开关管S1及开关管S3在符合预设条件后开启;在所述负半周期内时,开关管S1和开关管S3由环路输出控制且交错180度发波,工频管S5、开关管S2及开关管S4在符合预设条件后开启。
进一步地,所述开关管S1和所述开关管S2的占空比范围为0.9至1,所述开关管S3和所述开关管S4占空比范围为0.9至1。
进一步地,所述开关管S1、开关管S2、开关管S3、开关管S4、工频管S5、工频管S6均为MOSFET管、IGBT管、GaN管、三极管、晶闸管和继电器中的任一种。
进一步地,所述电感L1和所述电感L2缠绕于同一磁芯上且绕向相反。
本发明的目的之二在于提供一种控制方法,其具有提升产品的效率和减少资源浪费的优点。
本发明的目的之二采用如下技术方案实现:
一种控制方法,用于控制上述的图腾柱无桥PFC电路,其包括以下步骤:
获取输入电压Vin,当所述输入电压Vin在正半周期内时,将开关管S2、开关管S4记为主控管,开关管S1和开关管S3记为互补管,当所述输入电压Vin在负半周期内时,将开关管S1和开关管S3记为主控管,开关管S2和开关管S4记为互补管;
获取所述主控管的占空比,并判断所述主控管的占空比是否达到预设范围,若是,则对应开启;
查询与所述输入电压Vin对应的时刻并记为t1;
判断所述时刻t1是否在对应半周期的预设时间段T1内,若是,则开启对应的工频管,所述预设时间段T1为开启时刻t3至关断时刻t4,其中时刻t4和时刻t3位于同一半周期内,且(t3-t1)均小于半周期;
判断所述时刻t1是否在对应半周期的预设时间段T2内,若是,则开启对应的互补管,所述预设时间段T2为开启时刻t5至关断时刻t6,其中时刻t5和时刻t6位于同一半周期内,且(t5-t1)均小于半周期。
进一步地,所述开启时刻t3对应的电压值大于所述关断时刻t4对应的电压值;所述开启时刻t3大于或等于所述开启时刻t5,且所述开启时刻t3对应的电压值大于或等于所述开启时刻t5的电压值。
进一步地,获取在所述时刻t1之前被采集处理的输入电压Vin曲线,并将所述被采集处理的输入电压Vin曲线的起始时刻记为t0,将所述时刻t0对应的半周期记为软启半周期;
判断所述时刻t0是否大于与所述软启半周期对应的时刻t3,若是,则在所述软启半周期内、所述软启半周期之前禁止所述互补管和所述工频管启动,并在所述时刻t0之前禁止所述主控管启动。
进一步地,获取所述主控管的占空比,包括以下步骤:
获取所述负载模块第一端和第二端之间的电压,并记为输出电压Vo;
获取所述第一输入端或所述第二输入端的电流,并记为输入电流Iin;
基于所述输入电压Vin、所述输出电压Vo及所述输入电流Iin,得到电流环输出,并作为占空比分量;
基于输入电压Vin、输出电压Vo及CCM公式,得到第一占空比前馈;
基于所述第一占空比前馈和DCM公式,得到第二占空比前馈;
判断所述时刻t0是否大于与所述软启半周期的时刻t3,若是,则在所述软启半周期内将第一占空比前馈和第二占空比前馈之中的最小值作为当前占空比前馈,并在软启半周期之后将第一占空比前馈作为当前占空比前馈,若否,则将第一占空比前馈作为当前占空比前馈;
基于所述占空比分量和所述当前空比前馈,得到所述主控管的占空比。
本发明的目的之三在于提供执行发明目的之二的电子设备,其包括处理器、存储介质以及计算机程序,所述计算机程序存储于存储介质中,所述计算机程序被处理器执行时实现上述的控制方法。
本发明的目的之四在于提供存储发明目的之二的计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的控制方法。
相比现有技术,本发明的有益效果在于:采用无桥拓扑代替传统的有桥拓扑,去除了桥堆所带来的损耗;采用开关管作为工频管使用,以使环路整个运行在CCM模式下,具有提升产品的效率和减少资源浪费的优点。
附图说明
图1为实施例一所示图腾柱无桥PFC电路的电路图;
图2为实施例二所示控制方法的流程图;
图3为实施例二所示控制方法中步骤S60的流程图;
图4为图2中步骤S20的流程图;
图5为实施例四电子设备的结构框图。
图中:1、电子设备;11、处理器;12、存储器;13、输入装置;14、输出装置。
具体实施方式
以下将结合附图,对本发明进行更为详细的描述,需要说明的是,以下参照附图对本发明进行的描述仅是示意性的,而非限制性的。各个不同实施例之间可以进行相互组合,以构成未在以下描述中示出的其他实施例。
实施例一
本实施例提供了一种图腾柱无桥PFC电路,旨在解决现有PFC电路效率低的问题。参照图1所示,该图腾柱无桥PFC电路包括电感L1、电感L2、开关管S1、开关管S2、开关管S3、开关管S4、工频管S5、工频管S6及负载模块。
具体地,开关管S1、开关管S3及工频管S5的反向端连接于负载模块的第一端;开关管S2、开关管S4及开关管S6的正向端连接于负载模块的第二端;电感L1的第一端和电感L2的第一端连接并记为第一输入端,电感L1的第二端与开关管S1的正向端、开关管S2的反向端连接;电感L2的第二端与开关管S3的正向端、开关管S4的反向端连接;工频管S5的正向端、工频管S6的反向端连接并记为第二输入端。
第一输入端和第二输入端之间的电压差记为输入电压Vin,即输入电压Vin=第一输入端的电压-第二输入端的电压。负载模块的第一端和第二端之间的电压差记为输出电压Vo。
值得说明的是,由于输入该电路的为交流电,从而输入电压Vin在一个时间周期内所形成的曲线被分为正半周期和负半周期,在正半周期内时,开关管S2和开关管S4由环路输出控制且交错180度发波,且工频管S6、开关管S1及开关管S3在符合预设条件后开启;在负半周期内时,开关管S1和开关管S3由环路输出控制且交错180度发波,且工频管S5、开关管S2及开 关管S4在符合预设条件后开启。
值得说明的是,该环路控制表示对应的开关管的导通与该电路中的电流、电压及电阻率等参数相关。
综上所示,采用无桥拓扑代替传统的有桥拓扑,去除了桥堆所带来的损耗;采用开关管作为工频管使用,以使环路整个运行在CCM模式下,具有提升产品的效率和减少资源浪费的优点。
作为优选的技术方案,负载模块包括电容C和负载R,该电容C的两端与负载R的两端串联,且电容C的第一端与负载模块的第一端连接,电容C的第二端与负载模块的第二端连接,从而具有结构简单、减少电路振荡的优点。应当理解,该负载模块不限于上述类型。
作为优选的技术方案,开关管S1和开关管S2的占空比范围为0.9至1,开关管S3和开关管S4占空比范围为0.9至1。从而在主控管停止发波时,对应的互补管开启发波,从而在一个发波周期内,均有相应的波形输出。
作为优选的技术方案,开关管S1、开关管S2、开关管S3、开关管S4、工频管S5、工频管S6均为MOS管、IGBT管、GaN管、三极管、晶闸管和继电器中的任一种。可以理解的是,开关管S1、开关管S2、开关管S3、开关管S4、工频管S5、工频管S6均不限于上述类型,但优选为GaN管,其具有驱动损耗少、米勒效应低、开关损耗少、死区时间少、反向恢复小等优点。
其中,当开关管S1、开关管S2、开关管S3、开关管S4、工频管S5及工频管S6均采用NMOS管时,以开关管S1为例,开关管1的正向端对应源极(s),开关管1的反向端对应漏极(d)。可以理解的是,当开关管S1、开关管S2、开关管S3、开关管S4、工频管S5及工频管S6采用IGBT管、 GaN管、三极管、晶闸管和继电器中的任一种时,对应的电流方向应当与采用NMOS管时的电流方向相同。
作为优选的技术方案,电感L1和电感L2缠绕于同一磁芯上且绕向相反,从而使得中间磁芯的磁感应量两路相互抵消,有效地减少磁通损耗。在该技术方案上,电感L1和电感L2进一步设置为匝数相同、间距相同,以更好地减少磁通损耗。
实施例二
本实施例提供一种控制方法,其用于控制实施例一所示的图腾柱无桥PFC电路,具有提升产品的效率和减少资源浪费的优点。
具体地,参照图1和图2所示,该控制方法包括以下步骤。
步骤S10、获取输入电压Vin。值得说明的是,当输入电压Vin在正半周期内时,将开关管S2、开关管S4记为主控管,开关管S1和开关管S3记为互补管,对应开启的工频管为工频管S6;当输入电压Vin在负半周期内时,将开关管S1和开关管S3记为主控管,开关管S2和开关管S4记为互补管,对应开启的工频管为工频管S5。
步骤S20、获取各个主控管的占空比,并分别判断各个主控管的占空比是否达到预设范围,若是,则开启对应的主控管;若否,则执行下一步骤。具体地,由于主控管是由环路输出控制,即各个主控管的占空比与该电路的电流、电压及电导率等参数相关,即需要先获取电路的对应参数,然后计算主控管的占空比,然后判断并开启相应主控管。值得说明的是,两个主控管优选为同步开启,且该预设范围为3%~95%。
步骤S30、查询与输入电压Vin对应的时刻并记为t1。
步骤S40、判断时刻t1是否在对应半周期的预设时间段T1内,若是, 则开启对应的工频管;若否,则执行下一步骤。由于输入电压Vin呈周期性出现,则将出现周期记为T0,从而正半周期和负半周期的周期均为(T0/2),值得说明的是,各个半周期均具有时间段T1,该预设时间段T1为开启时刻t3至关断时刻t4。与输入电压Vin对应的预设时间段T1中的时刻t3、时刻t4位于同一半周期内,且符合以下要求:(t3-t1)<(T0/2),且(t4-t3)<(T0/2)。
值得说明的是,该预设时间端T1为开启时刻t3关断时刻t4,由于输入为交流电,从而各个半周期的关断时刻t4-开启时刻t3的差值相等,且开启时刻t3-n*(T0/2)的差值相等。其中n为正整数且表示输入电压Vin之前的半周期的个数。
步骤S50、判断时刻t1是否在对应半周期的预设时间段T2内,若是,则开启对应的互补管;若否,则不做处理。
值得说明的是,各个半周期均具有时间段T2,该预设时间段T2为开启时刻t5至关断时刻t6。与输入电压Vin对应的预设时间段T2中的时刻t5、时刻t6位于同一半周期内,且符合以下要求:(t5-t1)<(T0/2),且(t6-t5)<(T0/2)。该关断时刻t6优选为所在周期的结束时刻。
步骤S40和步骤S50可以独立执行,也可以先执行步骤S40后执行步骤S50,也可以先执行步骤S50后执行步骤S40。
综上,该主控管通过环路控制控制占空比而相应导通,而工频管和互补管通过先根据导通时间调节占空比以相应导通,并采用开关管作为工频管使用,以使环路整个运行在CCM模式下,具有提升产品的效率和减少资源浪费的优点。
值得说明的是,预设时间段T1为开启时刻t3至关断时刻t4,开启时刻t3 对应的电压值大于关断时刻t4对应的电压值,以防止电流倒灌。预设时间段T2为开启时刻t5至关断时刻t6,开启时刻t3大于或等于开启时刻t5,且开启时刻t3对应的电压值大于或等于开启时刻t5的电压值。优选开启时刻t3与开启时刻t5相同,从而仅减少判断次数,以提高整体效率。
其中,在输入电压Vin所形成曲线的软启半周期内,该主控管的占空比需要从0开始增大至符合触发条件,具体地,可以采用计时器累加,当该计时器累加至某一设定值时,即为占空比放开结束。通常在占空比放开结束后,需要判定输入电压Vin是否小于预设值,且该预设值应当小于t3对应的电压值,若是,开启互补管;若否,则禁止主控管和互补管启动,直至输入电压Vin提升至大于该预设值后取消该禁止指令,从而起到保护作用。若将主控管完成占空比放开的时刻记为t2,则优选为t2与t3相等,以使得工频管S和互补管同步开启。
作为优选的技术方案,参照图2和图3所示,该控制方法还包括步骤S60,该步骤S60可以在步骤40或步骤S50之后执行。
步骤S601、获取在时刻t1之前被采集处理输入电压Vin曲线,并将被采集处理输入电压Vin曲线的起始时刻记为t0,将该时刻t0对应的半周期记为软启半周期。将主控管占空比的放开结束时刻记为t2。
值得说明的是,该被采集处理输入电压Vin曲线上的各个点均经由该控制方法控制,即若将该控制方法以软件的形式运行,则被采集处理输入电压Vin曲线的起始点为软件启动点,即时刻t0对应软件启动点。
步骤S602、判断时刻t0是否大于与软启半周期对应的时刻t3,若是,则执行步骤S603、在软启半周期内、软启半周期之前禁止互补管和工频管启动,并在时刻t0之前禁止主控管启动。可以理解的是,在软启半周期内,对 应的时刻t3符合以下要求:(t3-t0)<(T0/2)。
具体地,在该软启半周期内,当时刻t0大于时刻t3时,表明在该半周期内,工频管开启条件已不再满足,其将无法开启。
作为优选的技术方案,参照图2和图4所示,在步骤S20中的获取主控管的占空比,包括步骤S201至步骤S2010。
步骤S201、获取负载模块第一端和第二端之间的电压,并记为输出电压Vo。
步骤S202、获取第一输入端或第二输入端的电流,并记为输入电流Iin。该输入电流Iin的方向优选为与输入电压Vin的方向相同。
步骤S203、基于输入电压Vin、输出电压Vo及输入电流Iin,得到电流环输出,并作为占空比分量。
具体地,先基于输入电压Vin和输出电压Vo,得到电压环输出H;基于电压环输出H得到电流环给定F,电流环给定F=H*|sin(2*π*f*t)|,其中,π是常数为3.1415926……,f代表工频频率,t代表具体时间流经;然后基于电流环给定F和输入电流Iin得到电流环输出,即得到占空比分量。
步骤S204、基于输入电压Vin、输出电压Vo及CCM公式,得到第一占空比前馈。其中CCM公式为:第一占空比前馈=(1-|VIN/VO|)。
步骤S205、基于第一占空比前馈和DCM公式,得到第二占空比前馈。其中DCM公式为:
Figure PCTCN2020137522-appb-000001
L为电感量,T为周期,Ge为电导量。
步骤S206、判断时刻t0是否大于与软启半周期的时刻t3,若是,则执行步骤S207、在软启半周期内将第一占空比前馈和第二占空比前馈之中的最小值作为当前占空比前馈,并在软启半周期之后将第一占空比前馈作为当前占空 比前馈;若否,则执行步骤S208、将第一占空比前馈作为当前占空比前馈。可以理解的是,在软启半周期内,时刻t3符合以下要求:(t3-t0)<(T0/2)。
步骤S209、基于占空比分量和当前空比前馈,得到主控管的占空比。具体地,将占空比前馈与当前占空比前馈叠加,即为主控管的占空比。
值得说明的是,当输入电压Vin位于软启半周期内且时刻t0大于时刻t3,即工频管无法开启时,若仍以CCM计算公式为占空比前馈,起机后电流会产生过冲,故该半周期内的当前占空比前馈只能为min(第一占空比前馈,第二占空比前馈),以保证电路的高效运行。
实施例四
电子设备1可以是台式计算机、笔记本电脑、服务器(实体服务器或云服务器)等,甚至也可以是手机或平板电脑等,
图5为本发明输入电流Iin提供的一种电子设备的结构示意图,参照图5所示,该电子设备1包括处理器11、存储器12、输入装置13和输出装置14;计算机设备中处理器11的数量可以是一个或多个,图5中以一个处理器11为例;电子设备1中的处理器11、存储器12、输入装置13和输出装置14可以通过总线或其他方式连接,图5中以通过总线连接为例。
存储器12作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块。存储器12可主要包括存储程序区和存储数据区,其中存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器12可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。存储器12还可以进一步设置为包括相对于处理器11远程设置的存储器,这些远程存储器可以通过网络连接至电子 设备1。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
值得说明的是,输入装置13可以用于接输入电压Vin等数据。输出装置14可以包括文档或显示屏等显示设备。具体地,当输出装置为文档时,可以将对应信息按照特定的格式记录于文档内,在实现数据保存的同时,还实现了数据的整合;当输出装置为显示屏等显示设备时,直接对应信息投放于显示屏等设备上,以便于用户实时查看。
实施例五
实施例还提供一种计算机可读存储介质,其包含计算机可执行指令,计算机可执行指令在由计算机处理器执行时用于执行上述的控制方法,该方法用于控制上述的图腾柱无桥PFC电路,其包括以下步骤:
获取输入电压Vin,当所述输入电压Vin在正半周期内时,将开关管S2、开关管S4记为主控管,开关管S1和开关管S3记为互补管,当所述输入电压Vin在负半周期内时,将开关管S1和开关管S3记为主控管,开关管S2和开关管S4记为互补管;
获取所述主控管的占空比,并判断所述主控管的占空比是否达到预设范围,若是,则对应开启;
查询与所述输入电压Vin对应的时刻并记为t1;
判断所述时刻t1是否在预设时间段T1内,若是,则开启对应的工频管S;
判断所述时刻t1是否在预设时间段T2内,若是,则开启对应的互补管。
当然,本发明实施例所提供的一种计算机可读存储介质,其计算机可执行指令不限于如上的方法操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FlASH)、硬盘或光盘等,包括若干指令用以使得一台电子设备(可以是手机,个人计算机,服务器,或者网络设备等)执行本发明中实施例二中的控制方法。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种图腾柱无桥PFC电路,其特征在于,包括电感L1、电感L2、开关管S1、开关管S2、开关管S3、开关管S4、工频管S5、工频管S6及负载模块,
    其中,开关管S1、开关管S3及工频管S5的反向端连接于负载模块的第一端;开关管S2、开关管S4及开关管S6的正向端连接于负载模块的第二端;电感L1的第一端和电感L2的第一端连接并记为第一输入端,电感L1的第二端与开关管S1的正向端、开关管S2的反向端连接;电感L2的第二端与开关管S3的正向端、开关管S4的反向端连接;工频管S5的正向端、工频管S6的反向端连接并记为第二输入端;
    第一输入端和第二输入端之间的电压差记为输入电压Vin,所述输入电压Vin在一个时间周期内所形成的曲线被分为正半周期和负半周期,在所述正半周期内时,开关管S2和开关管S4由环路输出控制且交错180度发波,工频管S6、开关管S1及开关管S3在符合预设条件后开启;在所述负半周期内时,开关管S1和开关管S3由环路输出控制且交错180度发波,工频管S5、开关管S2及开关管S4在符合预设条件后开启。
  2. 根据权利要求1所述的图腾柱无桥PFC电路,其特征在于,所述开关管S1和所述开关管S2的占空比之和范围为0.9至1,所述开关管S3和所述开关管S4占空比范围为0.9至1。
  3. 根据权利要求1所述的图腾柱无桥PFC电路,其特征在于,所述开关管S1、开关管S2、开关管S3、开关管S4、工频管S5、工频管S6均为MOSFET管、IGBT管、GaN管、三极管、晶闸管和继电器中的任一种。
  4. 根据权利要求1至3任意一项所述的图腾柱无桥PFC电路,其特征在于,所述电感L1和所述电感L2缠绕于同一磁芯上且绕向相反。
  5. 一种控制方法,其特征在于,用于控制如权利要求1至4任意一项所述的图腾柱无桥PFC电路,其包括以下步骤:
    获取输入电压Vin,当所述输入电压Vin在正半周期内时,将开关管S2、开关管S4记为主控管,开关管S1和开关管S3记为互补管,当所述输入电压Vin在负半周期内时,将开关管S1和开关管S3记为主控管,开关管S2和开关管S4记为互补管;
    获取所述主控管的占空比,并判断所述主控管的占空比是否达到预设范围,若是,则对应开启;
    查询与所述输入电压Vin对应的时刻并记为t1;
    判断所述时刻t1是否在对应半周期的预设时间段T1内,若是,则开启对应的工频管,所述预设时间段T1为开启时刻t3至关断时刻t4,其中时刻t4和时刻t3位于同一半周期内,且(t3-t1)均小于半周期;
    判断所述时刻t1是否在对应半周期的预设时间段T2内,若是,则开启对应的互补管,所述预设时间段T2为开启时刻t5至关断时刻t6,其中时刻t5和时刻t6位于同一半周期内,且(t5-t1)均小于半周期。
  6. 根据权利要求5所述的控制方法,其特征在于,所述开启时刻t3对应的电压值大于所述关断时刻t4对应的电压值;所述开启时刻t3大于或等于所述开启时刻t5,且所述开启时刻t3对应的电压值大于或等于所述开启时刻t5的电压值。
  7. 根据权利要求6所述的控制方法,其特征在于,还包括以下步骤:
    获取在所述时刻t1之前被采集处理的输入电压Vin曲线,并将所述被采集处理的输入电压Vin曲线的起始时刻记为t0,将所述时刻t0对应的半周期记为软启半周期;
    判断所述时刻t0是否大于与所述软启半周期对应的时刻t3,若是,则在所述软启半周期内、所述软启半周期之前禁止所述互补管和所述工频管启动,并在所述时刻t0之前禁止所述主控管启动。
  8. 根据权利要求7所述的控制方法,其特征在于,获取所述主控管的占空比,包括以下步骤:
    获取所述负载模块第一端和第二端之间的电压,并记为输出电压Vo;
    获取所述第一输入端或所述第二输入端的电流,并记为输入电流Iin;
    基于所述输入电压Vin、所述输出电压Vo及所述输入电流Iin,得到电流环输出,并作为占空比分量;
    基于输入电压Vin、输出电压Vo及CCM公式,得到第一占空比前馈;
    基于所述第一占空比前馈和DCM公式,得到第二占空比前馈;
    判断所述时刻t0是否大于与所述软启半周期的时刻t3,若是,则在所述软启半周期内将第一占空比前馈和第二占空比前馈之中的最小值作为当前占空比前馈,并在软启半周期之后将第一占空比前馈作为当前占空比前馈,若否,则将第一占空比前馈作为当前占空比前馈;
    基于所述占空比分量和所述当前空比前馈,得到所述主控管的占空比。
  9. 一种电子设备,其包括处理器、存储介质以及计算机程序,所述计算机程序存储于存储介质中,其特征在于,所述计算机程序被处理器执行时实现权利要求5至8任意一项所述的控制方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求5至8任意一项所述的控制方法。
PCT/CN2020/137522 2020-01-09 2020-12-18 图腾柱无桥pfc电路、控制方法、电子设备及介质 WO2021139507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010023240.9A CN111030443B (zh) 2020-01-09 2020-01-09 图腾柱无桥pfc电路、控制方法、电子设备及介质
CN202010023240.9 2020-01-09

Publications (1)

Publication Number Publication Date
WO2021139507A1 true WO2021139507A1 (zh) 2021-07-15

Family

ID=70202716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137522 WO2021139507A1 (zh) 2020-01-09 2020-12-18 图腾柱无桥pfc电路、控制方法、电子设备及介质

Country Status (2)

Country Link
CN (1) CN111030443B (zh)
WO (1) WO2021139507A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030443B (zh) * 2020-01-09 2020-11-10 杭州中恒电气股份有限公司 图腾柱无桥pfc电路、控制方法、电子设备及介质
CN111669044B (zh) * 2020-06-23 2021-09-07 湖南大学 一种级联交错图腾柱无桥pfc电路及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035364A (zh) * 2010-12-02 2011-04-27 成都芯源***有限公司 无桥功率因数校正变换器及其控制方法
CN104518656A (zh) * 2013-10-08 2015-04-15 中兴通讯股份有限公司 图腾柱无桥功率因数校正软开关控制装置和方法
CN205725447U (zh) * 2016-06-29 2016-11-23 南京舜唐科技有限公司 基于gan的交错图腾柱式无桥pfc电路
CN106849692A (zh) * 2015-12-04 2017-06-13 艾默生网络能源***北美公司 一种多态开关图腾柱电路的控制方法及装置
CN107276387A (zh) * 2017-07-03 2017-10-20 杭州中恒电气股份有限公司 一种新型交错图腾柱功率因数校正变换器
CN110112903A (zh) * 2019-06-21 2019-08-09 青岛大学 一种功率因数校正电路、方法、充电器及电动汽车
CN110401365A (zh) * 2019-08-12 2019-11-01 无锡派微科技有限公司 用于大功率充电机的GaN无桥PFC电源模块
CN111030443A (zh) * 2020-01-09 2020-04-17 杭州中恒电气股份有限公司 图腾柱无桥pfc电路、控制方法、电子设备及介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1864319A (zh) * 2003-10-01 2006-11-15 国际整流器公司 单周控制的无桥路升压(blb)功率因数校正电路结构
CN108075635B (zh) * 2016-11-18 2020-03-31 沃尔缇夫能源***公司 一种pfc电路的控制方法
US10224809B1 (en) * 2017-10-05 2019-03-05 Cree, Inc. Totem pole PFC converter and system
CN107863880B (zh) * 2017-11-28 2019-05-14 华中科技大学 一种图腾柱pfc的全数字控制方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035364A (zh) * 2010-12-02 2011-04-27 成都芯源***有限公司 无桥功率因数校正变换器及其控制方法
CN104518656A (zh) * 2013-10-08 2015-04-15 中兴通讯股份有限公司 图腾柱无桥功率因数校正软开关控制装置和方法
CN106849692A (zh) * 2015-12-04 2017-06-13 艾默生网络能源***北美公司 一种多态开关图腾柱电路的控制方法及装置
CN205725447U (zh) * 2016-06-29 2016-11-23 南京舜唐科技有限公司 基于gan的交错图腾柱式无桥pfc电路
CN107276387A (zh) * 2017-07-03 2017-10-20 杭州中恒电气股份有限公司 一种新型交错图腾柱功率因数校正变换器
CN110112903A (zh) * 2019-06-21 2019-08-09 青岛大学 一种功率因数校正电路、方法、充电器及电动汽车
CN110401365A (zh) * 2019-08-12 2019-11-01 无锡派微科技有限公司 用于大功率充电机的GaN无桥PFC电源模块
CN111030443A (zh) * 2020-01-09 2020-04-17 杭州中恒电气股份有限公司 图腾柱无桥pfc电路、控制方法、电子设备及介质

Also Published As

Publication number Publication date
CN111030443B (zh) 2020-11-10
CN111030443A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021139507A1 (zh) 图腾柱无桥pfc电路、控制方法、电子设备及介质
EP2632037A2 (en) Control circuit for power converter, conversion system and controlling method thereof
US9214856B2 (en) Power factor correction device
CN108667307B (zh) Llc同步整流装置及其控制方法、电子设备、存储介质
Liu et al. Operation analysis of digital control based MHz totem-pole PFC with GaN device
CN110661427A (zh) 基于氮化镓器件有源箝位反激式ac-dc变换器的数字控制装置
TW548892B (en) Synchronous rectification circuit
WO2018214948A1 (zh) 开关电源的放电方法和装置
WO2020098463A1 (zh) 一种升降压电路
CN115021544A (zh) 一种钳位模块及开关电源
JP5849820B2 (ja) スイッチング電源
US11108332B2 (en) Half-bridge converter including rectifier structure using coupling inductor
TWI530074B (zh) 具功因修正之轉換器電路
TWI454038B (zh) 三相電源轉換電路及其軟式切換電路
CN108712082B (zh) 一种抑制移相全桥次级侧电压振荡的控制电路
WO2020007108A1 (zh) 一种开关变换器
Vaz et al. In‐depth analysis of an RCD snubber applied to a DC‐DC boost converter
WO2022105449A1 (zh) 一种高动态响应的开关电源和服务器
WO2022016784A1 (zh) 主动钳位返驰式转换装置、其控制器与输出电流调制方法
JP2016185045A (ja) 電力変換装置
CN209948960U (zh) 电感辅助关断及环流抑制的移相全桥软开关电路
CN103516192B (zh) 功率因数校正电路和开关电源模块、功率因数校正方法
WO2021017388A1 (zh) Dcdc环流控制装置、控制方法、电子设备以及介质
WO2015131364A1 (zh) 一种应用于开关电源中的尖峰电压处理电路
CN201910739U (zh) 一种全桥移相软开关电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911574

Country of ref document: EP

Kind code of ref document: A1