WO2022016784A1 - 主动钳位返驰式转换装置、其控制器与输出电流调制方法 - Google Patents

主动钳位返驰式转换装置、其控制器与输出电流调制方法 Download PDF

Info

Publication number
WO2022016784A1
WO2022016784A1 PCT/CN2020/135489 CN2020135489W WO2022016784A1 WO 2022016784 A1 WO2022016784 A1 WO 2022016784A1 CN 2020135489 W CN2020135489 W CN 2020135489W WO 2022016784 A1 WO2022016784 A1 WO 2022016784A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
control switch
information
clamp
timing information
Prior art date
Application number
PCT/CN2020/135489
Other languages
English (en)
French (fr)
Inventor
邱治维
张程龙
Original Assignee
华源智信半导体(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华源智信半导体(深圳)有限公司 filed Critical 华源智信半导体(深圳)有限公司
Publication of WO2022016784A1 publication Critical patent/WO2022016784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a flyback conversion device, in particular to an active clamp flyback conversion device, its controller and an output current modulation method.
  • an input voltage can be converted into an output voltage
  • an active clamp branch can be formed for the primary winding of the transformer
  • the active clamp branch can include a clamp A control switch
  • the clamp control switch can be connected to the primary winding through a capacitor and an inductor.
  • the primary winding can be connected in series with the power control switch.
  • Both the clamp control switch and the power control switch can be controlled by the controller. The switching of the power control switch and the clamp control switch is substantially inverse to each other.
  • the output current waveform output by the secondary winding through the output diode is relatively stable, and it is difficult to match and take into account various demands.
  • the present invention provides an active clamp flyback conversion device, its controller and an output current modulation method, so as to solve the problem that the existing output current waveform is relatively stable and difficult to match and take into account various demands.
  • an output current modulation method of an active clamp flyback conversion device wherein the conversion device includes a transformer, a clamping branch, a controller, and an output diode; the transformer includes an original The side winding and the secondary side winding, the clamping branch includes a clamping control switch, one end of the clamping control switch is connected to the first end of the primary winding through a capacitor and an inductance, and the other end of the clamping control switch is connected. One end is connected to the second end of the primary winding; the control end of the clamping control switch is connected to the controller, and the output diode is connected to the secondary winding;
  • the output current modulation method, applied to the controller includes:
  • the conduction timing information of the clamp control switch in the current cycle represents at least one of the following:
  • the conduction timing information of the current cycle is matched with the output current waveform currently required by the active clamp flyback conversion device, and the output current waveform is a secondary signal of the active clamp flyback conversion device.
  • the clamp control switch After the clamp control switch is turned off, the clamp control switch is controlled according to the turn-on timing information of the current cycle to obtain the current required output current waveform.
  • the conduction timing information of the current cycle is determined according to the conduction duration information required by the clamp control switch in the current cycle, and the conduction duration information represents the clamp control switch.
  • the required conduction duration information is selected and determined from N candidate conduction duration information, wherein the N candidate conduction duration information corresponds to the N output current waveforms one-to-one, where N is greater than or equal to 2 the integer.
  • the conduction timing information is specifically determined according to the required conduction duration information and the actual conduction duration of the secondary winding in the previous cycle.
  • determining the turn-on timing information of the clamp control switch in the current cycle including:
  • the load information represents the load size of the active clamp flyback conversion device
  • the primary current reverse timing represents the first time the primary winding changes from the forward flow direction to the reverse flow direction within the secondary conduction time of a single cycle.
  • the conduction timing information of the current cycle is determined to be the first conduction timing information, and the first conduction timing information represents so that the clamp control switch is not turned on in the current cycle.
  • determine the conduction timing information of the clamp control switch in the current cycle including:
  • the current load information is within the value range of the pre-calibrated light load, select one of the first conduction timing information and the second conduction timing information as the current conduction timing information, and make: In a plurality of consecutive cycles including the current cycle, the first conduction timing information is selected as the conduction timing information of the corresponding cycle in part of the cycle, and the second conduction timing information is selected as the conduction timing information of the corresponding cycle in part of the cycle;
  • the first conduction timing information represents that the clamp control switch is not conducting in the current cycle
  • the conduction timing represented by the second conduction timing information is in the reverse direction of the primary current After the timing, and after the voltage of the primary winding resonates.
  • determine the conduction timing information of the clamp control switch in the current cycle including:
  • one of the third on-time information and the fourth on-time information is selected as the on-time information of the current cycle
  • the turn-on timing represented by the third turn-on timing information is before the primary-side current reversal timing
  • the turn-on timing represented by the fourth turn-on timing information is at the primary-side current reversal timing After that, and before the voltage of the primary winding resonates.
  • the primary-side current reversal timing is determined according to the time when the current of the clamp control switch changes in the direction of the current in the previous cycle.
  • the output current modulation method of the active clamp flyback conversion device further includes:
  • target voltage information represents the voltage input by the primary winding to the corresponding power control switch
  • the clamp control switch After the clamp control switch is controlled to be turned on, if it is detected that the target voltage information is less than or equal to a set value, the clamp control switch is controlled to be turned off.
  • the active clamp flyback conversion device further includes an auxiliary winding connected in series with the secondary winding, and the target voltage information is obtained by sampling the output voltage of the auxiliary winding.
  • a controller of an active clamp flyback conversion device comprising a storage unit and a processing unit,
  • the storage unit for storing codes
  • the processing unit is configured to execute the code in the storage unit to implement the method of any one of claims 1 to 10.
  • an active clamp flyback conversion device including a transformer, a clamp branch, a controller, and an output diode;
  • the transformer includes a primary winding and a secondary winding, and the
  • the clamping branch includes a clamping control switch, one end of the clamping control switch is connected to the first end of the primary winding through a capacitor and an inductance, and the other end of the clamping control switch is connected to the first end of the primary winding.
  • two terminals; the control terminal of the clamp control switch is connected to the controller, and the output diode is connected to the secondary winding;
  • the controller is used for:
  • the conduction timing information of the clamp control switch in the current cycle represents at least one of the following:
  • the conduction timing information of the current cycle is matched with the output current waveform currently required by the active clamp flyback conversion device, and the output current waveform is a secondary signal of the active clamp flyback conversion device.
  • the clamp control switch After the clamp control switch is turned off, the clamp control switch is controlled according to the turn-on timing information to obtain the currently required output current waveform.
  • the active clamp flyback conversion device, its controller and the output current modulation method provided by the present invention are formed based on the research of the output current waveform. It is found through research that the output current waveform is related to the excitation current and leakage inductance in the transformer (with the The resonant capacitor resonance) is related to the distribution of the resonant current, and further, the change of the output current waveform can affect the resonance generated by the switch parasitic capacitance, transformer magnetizing inductance and leakage inductance in the transformer, and further, the suppression of EMI harmonic peaks can also be related to this. output current waveform associated. In addition, changes in the output current waveform can also affect the efficiency of the transformer.
  • the present invention creatively finds the requirement that the output current waveform needs to be modulated.
  • the present invention further considers to first determine the conduction timing information that matches the currently required output current waveform, and then according to the conduction timing information information, control the clamp control switch, and further, realize the controllability of the output current waveform, thus providing an achievable means for the modulation of the output current waveform, which can help to make the output current waveform match and take into account various needs (For example, different output current waveforms can be modulated under different situations and requirements).
  • FIG. 1 is a partial structural schematic diagram 1 of an active clamp flyback conversion device according to an embodiment of the present invention
  • FIG. 2 is a second partial structural schematic diagram of an active clamp flyback conversion device according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart 1 of an output current modulation method of an active clamp flyback conversion device according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of step S21 in an embodiment of the present invention.
  • FIG. 5 is a second schematic flowchart of a method for modulating an output current of an active clamp flyback converter according to an embodiment of the present invention
  • Fig. 6 is a kind of signal comparison schematic diagram
  • FIG. 7 is a schematic diagram of a working waveform
  • FIG. 8 is a schematic structural diagram of a controller in an embodiment of the present invention.
  • FIG. 1 is a schematic diagram 1 of a partial structure of an active clamp flyback conversion device in an embodiment of the present invention
  • FIG. 2 is a schematic diagram 2 of a part of the structure of an active clamp flyback conversion device in an embodiment of the present invention.
  • the active clamp flyback conversion device applicable to the embodiment of the present invention includes a transformer T1, a clamp branch, a controller 11, and an output diode D1;
  • the transformer T1 includes a primary winding Np and a secondary winding Ns
  • the clamping branch includes a clamping control switch S2, one end of the clamping control switch S2 is connected to the first end of the primary winding Np through the capacitor Cc and the inductance Lr; at the same time, the two ends of the primary winding Np
  • An inductance Lm can also be connected in parallel, wherein the inductance Lm can be understood as the excitation inductance of the transformer, and the inductance Lm can be understood as the leakage inductance of the transformer; the other end of the clamp control switch S2 is connected to the first winding of the primary winding Np.
  • Two terminals; the control terminal of the clamp control switch S2 is connected to the controller 11 , and the output diode D1 is connected to the secondary winding Ns.
  • the clamp control switch S2 has a parasitic capacitance Coss2, and the current output by the output diode D1 can also be recorded as Is, which is the current generated by the secondary winding Ns.
  • the voltage of the primary winding can be represented as Vp
  • the voltage of the secondary winding can be represented as Vs
  • the signal used by the controller 11 to control the control terminal of the clamp control switch S2 can be represented as Vg2
  • the voltage delivered to the primary winding can be represented as for Vin.
  • the active clamp flyback conversion device may further include a power control switch S1, the control end of the power control switch S1 is connected to the controller 11, one end of the power control switch S1 can be connected to the primary winding Np, and the power control switch The other end of S1 is grounded, and the power control switch S1 may have a parasitic capacitance Coss1 therein.
  • the resonant frequency generated by the parasitic capacitance Coss1, the transformer magnetizing inductance (ie the inductance Lm) and the leakage inductance (ie the inductance Lr) in the power control switch S1 can be, for example:
  • DCM specifically Discontinuous Conduction Mode
  • DCM can be understood as discontinuous conduction mode.
  • the output current waveform is related to the distribution of the excitation current and leakage inductance (resonant with the resonant capacitor) resonant current in the transformer, and further, the change of the output current waveform can affect the switching parasitic capacitance in the transformer, transformer excitation inductance and leakage inductance.
  • the resonant frequency in turn, suppression of EMI harmonic peaks can also be associated with this output current waveform.
  • changes in the output current waveform can also affect the efficiency of the transformer.
  • an embodiment of the present invention provides an output current modulation method of an active clamp flyback conversion device, which can be understood as a processing flow to be implemented by the controller, that is: the output of the active clamp flyback conversion device A current modulation method is applied to the controller.
  • FIG. 3 is a schematic flow chart 1 of an output current modulation method of an active clamp flyback converter according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of step S21 in an embodiment of the present invention
  • FIG. 5 is an embodiment of the present invention Schematic flow diagram 2 of the output current modulation method of the active clamp flyback conversion device
  • FIG. 6 is a schematic diagram of a signal comparison
  • FIG. 7 is a schematic diagram of a working waveform.
  • the output current modulation method applied to the controller, includes:
  • the turn-on timing information represents at least one of the following:
  • the clamp controls the turn-on timing of the switch in the current cycle.
  • the turn-on timing information matches the output current waveform currently required by the active clamp flyback conversion device.
  • the output current waveform is the waveform of the current output by the secondary winding of the active clamp flyback conversion device through the output diode.
  • the turn-on timing information may be directly determined by the currently required output current waveform (for example, the turn-on timing information corresponding to a certain waveform can be specified manually, no matter whether the specified turn-on timing information or the waveform is specified). It can be regarded as the specification of the conduction timing information of the current cycle).
  • the conduction timing information can also refer to other information (such as load situation) is determined.
  • the above scheme realizes the controllability of the output current waveform based on the correlation between the output current waveform and the clamp control switch, thereby providing an achievable means for the modulation of the output current waveform, which can help make the output current waveform
  • the waveform can be matched to take into account various needs.
  • the frequency modulation of the resonant frequency involved above can be achieved by modulating the output current waveform, and further, through appropriate modulation, EMI can be suppressed under some waveforms The effect of harmonic peaking.
  • the conduction timing information is determined according to the conduction duration information required by the clamp control switch in the current cycle.
  • the on-duration information represents the ratio or range of the on-duration of the clamp control switch in the corresponding cycle; for example, the on-duration information required in the current cycle represents the ratio of the on-duration of the clamp control switch in the current cycle Controls the ratio or range of the on-time duration of the switch in the current cycle.
  • the on-time information can be represented by the ratio of the on-time of the clamp control switch to the on-time of the secondary coil, for example, it can be: 100%, 90%, 80%... 20%, 10 %etc.
  • the required conduction duration information may be selected and determined from N candidate conduction duration information (for example, it may be selected from 100%, 90%, 80%... 20%, 10%) ), wherein some of the candidate on-time duration information may correspond to the same current waveform, or may correspond to different current waveforms, wherein N is an integer greater than or equal to 2.
  • the conduction timing information is specifically determined according to the required conduction duration information and the actual conduction duration of the secondary winding in the previous cycle.
  • the actual on-time duration of the secondary winding can be understood as the duration of 1-D, and correspondingly, the actual on-time duration of the primary winding is D.
  • D and 1-D in the current cycle are the same as the previous cycle, and the clamp control switch should be turned off at the end of 1-D, then the required on-time duration and the overall time of the cycle
  • the corresponding turn-on timing can be uniquely determined.
  • the higher the proportion represented by the on-time information the earlier the corresponding on-time.
  • the selection of the required on-time information ie, the selection of the output current waveform
  • the selection of the output current waveform can be realized automatically, manually, or manually and automatically.
  • the currently required output current waveform is associated with current load information of the active clamp flyback conversion device, and the load information can be understood as representing the active clamp flyback
  • the load size of the active-clamp flyback conversion device can specifically represent the ratio of the load of the active-clamp flyback conversion device to the load at full load; the conduction timing information is based on the current of the active-clamp flyback conversion device.
  • the load information is determined.
  • the conduction timing information is (controller and/or manual) first from the candidate conduction duration according to the current load information of the active clamp flyback conversion device After the required conduction duration information is selected in the information, it is determined according to the required conduction duration information.
  • the role of the load information may be to directly determine the required on-time information based on the load information, or it may be to screen the candidate on-time information based on the load information, and then manually or by other means. Then select the required on-time information.
  • the data represented by the load information is a quantifiable ratio, which can be expressed by the ratio value itself. For example, if the load information at full load is 1, that is, 100%, the load information can be, for example, other percentage values less than 100%. .
  • the embodiments of the present invention also do not exclude means for representing load information in other manners.
  • step S21 may include:
  • the conduction timing information of the clamp control switch in the current cycle is determined.
  • the load information can be understood with reference to the foregoing description, and the primary current reverse timing represents the first time the primary winding changes from the forward flow direction to the reverse flow direction within the secondary conduction time of a single cycle .
  • the correspondence can be understood with reference to the timing of the first reversal of Ip in FIG. 7 , where Ip can be understood as the current of the primary winding Na.
  • step S21 may include:
  • step S212 may be implemented: determining that the conduction timing information is the first conduction timing information, and the first conduction timing information represents that the clamp control switch is in the current state cycle does not conduct.
  • step S212 the clamp control switch S2 can be controlled to be kept off. In this way, the switching loss can be reduced and the efficiency can be improved.
  • the numerical ranges can be different numerical ranges corresponding to, for example, no load, light load, full load, etc.
  • the different numerical ranges can be completely different numerical ranges, and thus have no intersection. At this time, for the current load information, you can Uniquely identifies a range of values.
  • Each numerical range corresponding to the above load information (or can be understood as an evaluation standard for the load situation) can be delimited based on any basis such as experiments, experience, theoretical calculations, etc., existing standards can be used, or improvements can be used. standard. No matter how it is defined, and no matter how many numerical ranges are defined, it will not deviate from the scope of the embodiments of the present invention.
  • step S21 may include:
  • step S214 may be implemented: selecting one of the first conduction timing information and the second conduction timing information as the current conduction timing information.
  • Step S214 can also be used to simultaneously make: in a plurality of consecutive cycles including the current cycle, the first conduction timing information is selected as the conduction timing information of the corresponding cycle in part of the cycle, and the second conduction timing information is selected in part of the cycle As the turn-on timing information of the corresponding period.
  • the conduction timing represented by the second conduction timing information is after the reverse timing of the primary current and after the voltage of the primary winding resonates, and the second conduction timing information modulates the The waveform of , for example, the waveform of this interval shown in Figure 6.
  • the conduction timing information of the current cycle when selecting the conduction timing information of the current cycle, for example, it can be judged by combining the conduction timing information in one or more previous cycles, or a certain probability information can be configured to select the first conduction timing.
  • the information is still the second conduction timing information, so as to ensure that the first conduction timing information can sometimes be used and the second conduction timing information can be used in multiple cycles.
  • it can be understood as: 7This interval, sometimes work in 8 this interval.
  • the energy of the leakage inductance (that is, the inductance Lr) can still be recovered.
  • the voltage Vx forms part of the parasitic capacitance Coss1, the transformer magnetizing inductance (that is, the inductance Lm) and the leakage inductance (that is, the inductance Lr). generated resonance.
  • the signal Vg2 at the control end of the clamp control switch S2 controls the clamp control switch S2 after the Ip current is negative, and before S1 is turned on, it is turned on for a short time, such as interval 7, Vx generates part of the power control switch
  • the conversion device will work in a traditional flyback mode.
  • Vg2 is turned on, the energy of the leakage inductance Lr can still be recovered;
  • Vx When the DCM is lightly loaded, when the signal Vg2 at the control terminal of the clamp control switch S2 controls the clamp control switch S2 to not turn on all the time, it can be used to reduce the switching loss of the clamp control switch S2, such as interval 8, that is, the whole cycle works in the traditional flyback mode. (Traditional Flyback), Vx generates the resonance generated by the parasitic capacitance Coss1 of the power control switch S1, the transformer magnetizing inductance Lm and the leakage inductance Lr.
  • the above scheme can effectively take into account the realization of the resonance under the traditional flyback type and the active clamp flyback type at light load, change the resonance waveform on Vx, and then change the resonance frequency to reduce EMI.
  • step S21 may include:
  • step S216 may be implemented: selecting one of the third on-timing information and the fourth on-timing information as the current on-timing information.
  • the third conduction timing information is before the primary current reversal timing
  • the third conduction timing information is after the primary current reverse timing
  • the voltage of the primary winding is generated before resonance.
  • the waveform modulated by the third conduction timing information can be, for example, the interval 123 shown in FIG. 6 ;
  • the converter works in the active clamp flyback mode at this time.
  • the body diode of the clamp control switch S2 will have a constant current, so the current waveform on the output diode D1 is no different from that in the interval 1.
  • the waveform modulated by the fourth conduction timing information can be, for example, the interval 456 shown in FIG. 6 ;
  • the conversion device will first work in a traditional flyback type (Traditional Flyback), the energy of the leakage inductance Lr can still be recovered after it is turned on.
  • the processing logic of steps S212, S214, and S216 can select the conduction duration information of the current cycle from the multiple candidate conduction duration information.
  • the conduction timing represented by the third conduction timing information can be modulated correspondingly.
  • the process of determining the third turn-on timing information can be, for example, to find a turn-on time in the candidate turn-on time lengths that can make the turn-on time before the primary current reversal time.
  • Candidate conduction duration information if multiple candidate conduction duration information can be satisfied, the conduction duration information of the current cycle of a seat can be selected in combination with other information, randomly or according to other preset rules).
  • the turn-on timing information can be further determined in combination with the soft-start requirement of the smooth over-clamp control switch S2 being turned on and off.
  • step S11 is not limited to the example in FIG. 4 . No matter how the changes are made, they will not depart from the scope of the embodiments of the present invention.
  • the waveform of the voltage Vx corresponding to the interval 8 reflects the oscillation generated by the traditional Quasi-Resonant resonance, and further, if it enters the waveform of the interval 7 or the interval 6, The frequency of its oscillation can be changed, and then the influence of its harmonics on EMI can be changed.
  • the embodiments of the present invention provide achievable means for implementing this solution.
  • the method further includes:
  • step S25 may be implemented: controlling the clamp control switch to be turned off.
  • the active clamp flyback conversion device further includes an auxiliary winding Na connected in series with the secondary winding, the voltage of which may be Va, for example, and the target voltage information is to sample the auxiliary winding
  • the output voltage of Na is obtained, that is, the voltage Vx is represented by the voltage Vx_sense obtained by sampling the voltage Va.
  • the use of the voltage Va may be realized by the sampling circuit 121 , and the sampling circuit 121 and the auxiliary winding Na and other devices may form the auxiliary circuit 12 .
  • An embodiment of the present invention also provides an active clamp flyback conversion device, including a transformer, a clamp branch, a controller, and an output diode;
  • the transformer includes a primary winding and a secondary winding, and the clamping branch
  • the circuit includes a clamp control switch, one end of the clamp control switch is connected to the first end of the primary winding through a capacitor and an inductance, and the other end of the clamp control switch is connected to the second end of the primary winding;
  • the control end of the clamp control switch is connected to the controller, and the output diode is connected to the secondary winding;
  • the controller is used for:
  • the conduction timing information represents at least one of the following:
  • the conduction timing information of the current cycle is matched with the output current waveform currently required by the active clamp flyback conversion device, and the output current waveform is a secondary signal of the active clamp flyback conversion device.
  • the clamp control switch After the clamp control switch is turned off, the clamp control switch is controlled according to the turn-on timing information of the current cycle to obtain the current required output current waveform.
  • controller can also be understood as implementing the aforementioned methods. Therefore, the relevant contents of the method embodiments can be used to describe and explain the controller, and repeated contents will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a controller in an embodiment of the present invention.
  • the embodiment of the present invention also provides a controller 30 of an active clamp flyback conversion device, including a storage unit 32 and a processing unit 31,
  • the storage unit 32 is used to store codes
  • the processing unit 31 is configured to execute the code in the storage unit to implement the method involved in the above optional solution.
  • the storage unit 32 and the processing unit 31 may be connected through a bus 33 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种主动钳位返驰式转换装置、其控制器与输出电流调制方法,其中的输出电流调制方法包括:确定钳位控制开关在当前周期的导通时机信息(S21);所述导通时机信息表征了以下至少之一:所述钳位控制开关在所述当前周期中是否导通;所述钳位控制开关在所述当前周期中的导通时机;其中,所述导通时机信息与所述主动钳位返驰式转换装置当前所需的输出电流波形相匹配,所述输出电流波形为所述主动钳位返驰式转换装置的副边绕组经输出二极管所输出的电流的波形;在所述钳位控制开关关断后,根据所述导通时机信息,控制所述钳位控制开关,以得到当前所需的输出电流波形(S22)。

Description

主动钳位返驰式转换装置、其控制器与输出电流调制方法 技术领域
本发明涉及返驰式转换装置,尤其涉及一种主动钳位返驰式转换装置、其控制器与输出电流调制方法。
背景技术
主动箝位的返驰式转换装置中,可将一输入电压转换为一输出电压,针对于其中变压器的原边绕组,可形成主动钳位支路,该主动钳位支路中可包含钳位控制开关,该钳位控制开关可经电容与电感连接至原边绕组。同时,原边绕组可与电源控制开关串联。钳位控制开关与电源控制开关均可利用控制器进行控制。电源控制开关与钳位控制开关的切换大致上是互为反相的。
现有的相关技术中,副边绕组经输出二极管所输出的输出电流波形是相对稳定的,难以匹配兼顾多样的需求。
发明内容
本发明提供一种主动钳位返驰式转换装置、其控制器与输出电流调制方法,以解决现有的输出电流波形是相对稳定的,难以匹配兼顾多样的需求的问题。
根据本发明的第一方面,提供了一种主动钳位返驰式转换装置的输出电流调制方法,其中的转换装置包括变压器、钳位支路、控制器,以及输出二极管;所述变压器包括原边绕组与副边绕组,所述钳位支路包括钳位控制开关,所述钳位控制开关的一端经电容与电感连接所述原边绕组的第一端,所述钳位控制开关的另一端连接所述原边绕组的第二端;所述钳位控制开关的控制端连接所述控制器,所述输出二极管连接所述副边绕组;
所述的输出电流调制方法,应用于所述控制器,包括:
确定所述钳位控制开关在当前周期的导通时机信息;所述当前周期的导通时机信息表征了以下至少之一:
所述钳位控制开关在所述当前周期中是否导通;
所述钳位控制开关在所述当前周期中的导通时机;
其中,所述当前周期的导通时机信息与所述主动钳位返驰式转换装置当前所需的输出电流波形相匹配,所述输出电流波形为所述主动钳位返驰式转换装置的副边绕组经输出二极管所输出的电流的波形;
在所述钳位控制开关关断后,根据所述当前周期的导通时机信息,控制所述钳位控制开关,以得到当前所需的输出电流波形。
可选的,所述当前周期的导通时机信息是根据所述钳位控制开关在所述当前周期中所需的导通时长信息确定的,所述导通时长信息表征了所述钳位控制开关的导通时长在对应周期中的占比或占比范围;
所述所需的导通时长信息是自N个候选导通时长信息中选择确定的,其中,N个候选导通时长信息与N个输出电流波形一一对应,其中的N为大于或等于2的整数。
可选的,所述导通时机信息具体是根据所述所需的导通时长信息以及上一个周期中所述副边绕组的实际导通时长确定的。
可选的,确定所述钳位控制开关在当前周期的导通时机信息,包括:
根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关在当前周期的导通时机信息;所述负载信息表征了所述主动钳位返驰式转换装置的负载大小,所述原边电流反向时机表征了所述原边绕组在单个周期的副边导通时间内第一次自正向流向变化为反向流向的时机。
可选的,根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关在当前周期的导通时机信息,确定所述钳位控制开关在当前周期的导通时机信息,包括:
若所述当前的负载信息所表征的比例处于预先标定的无载的数值范围内,则确定所述当前周期的导通时机信息为第一导通时机信息,所述第一导通时机信息表征了所述钳位控制开关在所述当前周期中不导通。
可选的,根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关在当前周期的导通时机信息,包括:
若所述当前的负载信息处于预先标定的轻载的数值范围内,则选择第一导通时机信息与第二导通时机信息中之一作为所述当前的导通时机信息,并 使得:在包含所述当前周期的连续多个周期中,部分周期中选择第一导通时机信息作为对应周期的导通时机信息,部分周期中选择第二导通时机信息作为对应周期的导通时机信息;
其中,所述第一导通时机信息表征了所述钳位控制开关在所述当前周期中不导通,所述第二导通时机信息所表征的导通时机处于所述原边电流反向时机之后,且处于所述原边绕组的电压产生谐振之后。
可选的,
根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关在当前周期的导通时机信息,包括:
若所述当前的负载信息处于预先标定的满载的数值范围内,则选择第三导通时机信息与第四导通时间信息之一作为所述当前周期的导通时间信息;
其中,所述第三导通时机信息所表征的导通时机处于所述原边电流反向时机之前,所述第四导通时机信息所表征的导通时机处于所述原边电流反向时机之后,且处于所述原边绕组的电压产生谐振之前。
可选的,所述原边电流反向时机是根据上一个周期中所述钳位控制开关的电流发生流向变化的时间确定的。
可选的,所述的主动钳位返驰式转换装置的输出电流调制方法,还包括:
获取目标电压信息,所述目标电压信息表征了所述原边绕组输入至对应的电源控制开关的电压;
在所述钳位控制开关受控导通之后,若检测到所述目标电压信息小于或等于设定值,则控制所述钳位控制开关关断。
可选的,所述主动钳位返驰式转换装置还包括与所述副边绕组串联的辅助绕组,所述目标电压信息是采样所述辅助绕组的输出电压而得到的。
根据本发明的第二方面,提供了一种主动钳位返驰式转换装置的控制器,包括存储单元与处理单元,
所述存储单元,用于存储代码;
所述处理单元,用于执行所述存储单元中的代码用以实现权利要求1至10任一项所述的方法。
根据本发明的第三方面,提供了一种主动钳位返驰式转换装置,包括变 压器、钳位支路、控制器,以及输出二极管;所述变压器包括原边绕组与副边绕组,所述钳位支路包括钳位控制开关,所述钳位控制开关的一端经电容与电感连接所述原边绕组的第一端,所述钳位控制开关的另一端连接所述原边绕组的第二端;所述钳位控制开关的控制端连接所述控制器,所述输出二极管连接所述副边绕组;
所述控制器,用于:
确定所述钳位控制开关在当前周期的导通时机信息;所述当前周期的导通时机信息表征了以下至少之一:
所述钳位控制开关在所述当前周期中是否导通;
所述钳位控制开关在所述当前周期中的导通时机;
其中,所述当前周期的导通时机信息与所述主动钳位返驰式转换装置当前所需的输出电流波形相匹配,所述输出电流波形为所述主动钳位返驰式转换装置的副边绕组经输出二极管所输出的电流的波形;
在所述钳位控制开关关断后,根据所述导通时机信息,控制所述钳位控制开关,以得到当前所需的输出电流波形。
本发明提供的主动钳位返驰式转换装置、其控制器与输出电流调制方法,是基于输出电流波形的研究而形成的,经研究发现,输出电流波形与变压器中激磁电流和漏电感(与谐振电容谐振)谐振电流的分配方式相关联,进而,输出电流波形的变化可影响变压器中开关寄生电容、变压器激磁电感和漏电感所产生的谐振,进而,EMI谐波峰值的抑制也可与该输出电流波形相关联。此外,输出电流波形的变化还可影响变压器的效率。
基于此,本发明创造性地发现了输出电流波形需要被调制的这种需求。
在此基础上,本发明基于输出电流波形与钳位控制开关之间的关联性,进一步想到了先确定与当前所需的输出电流波形相匹配的导通时机信息,再根据所述导通时机信息,控制所述钳位控制开关,进而,实现了输出电流波形的可控,从而为输出电流波形的调制提供了可实现的手段,其可有助于使得输出电流波形能匹配兼顾多样的需求(例如可在不同情形、需求下调制出不同的输出电流波形)。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中主动钳位返驰式转换装置的部分构造示意图一;
图2是本发明一实施例中主动钳位返驰式转换装置的部分构造示意图二;
图3是本发明一实施例中主动钳位返驰式转换装置的输出电流调制方法的流程示意图一;
图4是本发明一实施例中步骤S21的流程示意图;
图5是本发明一实施例中主动钳位返驰式转换装置的输出电流调制方法的流程示意图二;
图6是一种信号比对示意图;
图7是一种工作波形的示意图;
图8是本发明一实施例中控制器的构造示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤 或单元。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1是本发明一实施例中主动钳位返驰式转换装置的部分构造示意图一;图2是本发明一实施例中主动钳位返驰式转换装置的部分构造示意图二。
在本发明实施例所适用的主动钳位返驰式转换装置中,包括变压器T1、钳位支路、控制器11,以及输出二极管D1;所述变压器T1包括原边绕组Np与副边绕组Ns,所述钳位支路包括钳位控制开关S2,所述钳位控制开关S2的一端经电容Cc与电感Lr连接所述原边绕组Np的第一端;同时,原边绕组Np的两端也可并联有电感Lm,其中的电感Lm可理解为变压器的激励电感,其中的电感Lm可理解为变压器的漏电感;所述钳位控制开关S2的另一端连接所述原边绕组Np的第二端;所述钳位控制开关S2的控制端连接所述控制器11,所述输出二极管D1连接所述副边绕组Ns。
在图1和图2所示的电路中,钳位控制开关S2中具有寄生电容Coss2,经输出二极管D1输出的电流也可记录为Is,即为副边绕组Ns产生的电流。同时,原边绕组的电压可表征为Vp,副边绕组的电压可表征为Vs,控制器11用于控制钳位控制开关S2控制端的信号可表征为Vg2,输送至原边绕组的电压可表征为Vin。
进一步方案中,主动钳位返驰式转换装置中,还可包括电源控制开关S1,电源控制开关S1的控制端连接控制器11,电源控制开关S1的一端可连接原边绕组Np,电源控制开关S1的另一端接地,其中的电源控制开关S1中可具有寄生电容Coss1。
在DCM模式中,对电源控制开关S1中的寄生电容Coss1、变压器激磁电感(即电感Lm)和漏电感(即电感Lr)所产生的谐振频率可例如为:
Figure PCTCN2020135489-appb-000001
其中的DCM,具体为Discontinuous Conduction Mode,可理解为非连续导通模式。
通过对该谐振频率进行频率调制,可有利于抑制EMI谐波峰值。
可见,输出电流波形与变压器中激磁电流和漏电感(与谐振电容谐振)谐振电流的分配方式相关联,进而,输出电流波形的变化可影响变压器中开关寄生电容、变压器激磁电感和漏电感所产生的谐振频率,进而,EMI谐波峰值的抑制也可与该输出电流波形相关联。此外,输出电流波形的变化还可影响变压器的效率。
基于此,本发明实施例提供了一种主动钳位返驰式转换装置的输出电流调制方法,其可理解为控制器所需实现的处理流程,即:主动钳位返驰式转换装置的输出电流调制方法,应用于所述控制器。
图3是本发明一实施例中主动钳位返驰式转换装置的输出电流调制方法的流程示意图一;图4是本发明一实施例中步骤S21的流程示意图;图5是本发明一实施例中主动钳位返驰式转换装置的输出电流调制方法的流程示意图二;图6是一种信号比对示意图;图7是一种工作波形的示意图。
请参考图3,所述的输出电流调制方法,应用于所述控制器,包括:
S21:确定所述钳位控制开关在当前周期的导通时机信息;
S22:在所述钳位控制开关关断后,根据所述当前周期的导通时机信息,控制所述钳位控制开关,以得到当前所需的输出电流波形。
所述导通时机信息表征了以下至少之一:
所述钳位控制开关在所述当前周期中是否导通;
所述钳位控制开关在所述当前周期中的导通时机。
其中,所述导通时机信息与所述主动钳位返驰式转换装置当前所需的输出电流波形相匹配。所述输出电流波形为所述主动钳位返驰式转换装置的副边绕组经输出二极管所输出的电流的波形。
进而,部分举例中,导通时机信息可以是当前所需的输出电流波形而直接确定的(例如可人为指定某种波形所对应的导通时机信息,不论是指定导通时机信息还是波形,均可视作是对当前周期的导通时机信息的指定),另部分举例中,由于输出电流波形与其他信息存在一定的关联性,进而,导通时机信息也可以是参考于其他信息(例如负载情况)而确定的。
可见,不论基于何种方式确定导通时机信息,只要其最终能够使得步骤S22中对钳位控制开关的控制可以调制出当前所需的输出电流波形,就不脱离本发明实施例的范围。
可见,以上方案基于输出电流波形与钳位控制开关之间的关联性,实现了输出电流波形的可控,从而为输出电流波形的调制提供了可实现的手段,其可有助于使得输出电流波形能匹配兼顾多样的需求。
例如,在采用本发明实施例所涉及的方案时,通过对输出电流波形的调制,可以实现以上所涉及的谐振频率的频率调制,进而,通过适当的调制,可在部分波形下起到抑制EMI谐波峰值的效果。
此外,在现有相关技术中,均仅涉及对钳位控制开关的关断时机进行控制的方案,且其目的大多是通过提早或延迟钳位控制开关S2的关断时机,以达到电源控制开关S1零电压切换的目的。
而本发明实施例则是基于对输出电流波形的调制需求而想到对钳位控制开关S2进行控制,其中,发现钳位控制开关S2与输出电流波形的这种关联性、发现输出电流波形的调制需求,以及想到利用钳位控制开关S2来调制输出电流波形等等,均是本发明实施例的创造性贡献。
其中一种实施方式中,所述导通时机信息是根据所述钳位控制开关在所述当前周期中所需的导通时长信息确定的。
其中的导通时长信息表征了所述钳位控制开关的导通时长在对应周期中的占比或占比范围;例如当前周期所需的导通时长信息即表征了当前周期中所述钳位控制开关的导通时长在当前周期中的占比或占比范围。
进一步的,可利用所述钳位控制开关的导通时长与副边线圈导通时长的比值来表征导通时长信息,例如可以为:100%、90%、80%...20%、10%等等。
其中,所述所需的导通时长信息可以是自N个候选导通时长信息中选择确定的(例如可以是自100%、90%、80%...20%、10%中选定的),其中,部分候选导通时长信息可能对应于相同的电流波形,也可能对应于不同的电流波形,其中的N为大于或等于2的整数。
进一步举例中,在选定所需的导通时长信息之后,还需结合单个周期的时长来计算究竟在哪个时机控制钳位控制开关S2导通,故而,此时可参照于上一个周期中副边绕组的实际导通时长来确定,即:所述导通时机信息具体是根据所述所需的导通时长信息以及上一个周期中所述副边绕组的实际导通时长确定的。
以图6所示为例,所述副边绕组的实际导通时长,可理解为1-D的时长, 对应的,原边绕组的实际导通时长即为D。此时,可假定当前周期中的D、1-D与上一个周期是相同的,且钳位控制开关应在1-D结束时关断,那么,所需的导通时长、周期的整体时间等已被确定的情况下,可唯一确定出相应的导通时机。此时,导通时长信息所表征的占比越高,对应的导通时机就越早。
其中,对所需的导通时长信息的选定(即对输出电流波形的选定)可以是自动实现的,也可以是人工手动实现的,还可以是人工与自动相结合而选定的。
其中一种实施方式中,所述当前所需的输出电流波形与所述主动钳位返驰式转换装置当前的负载信息相关联,所述负载信息可理解为表征了所述主动钳位返驰式转换装置的负载大小,具体可表征所述主动钳位返驰式转换装置的负载相较于满载时负载的比例;所述导通时机信息是根据所述主动钳位返驰式转换装置当前的负载信息确定的。
若结合前文所涉及的候选导通时长信息,则:所述导通时机信息是(控制器和/或人工)先根据所述主动钳位返驰式转换装置当前的负载信息自候选导通时长信息中选定所需的导通时长信息之后,再根据所需的导通时长信息确定的。其中,负载信息在其中所起到的作用可能是基于负载信息直接确定出所需的导通时长信息,也可能是基于负载信息对候选导通时长信息进行筛选,然后再由人工或其他方式从中再选择出所需的导通时长信息。
其中的负载信息所表征的数据是可量化的比例,其可用比例数值本身来表达,例如:假定满载时的负载信息为1,即100%,则负载信息可例如是小于100%的其他百分比数值。本发明实施例也不排除采用其他方式来表征负载信息的手段。
可见,在图3所示的举例中,步骤S21可以包括:
根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关在当前周期的导通时机信息。
其中的负载信息可参照前文的描述理解,所述原边电流反向时机表征了所述原边绕组在单个周期的副边导通时间内第一次自正向流向变化为反向流向的时机。对应可参照于图7中Ip第一次反向的时机理解,其中的Ip可理解为原边绕组Na的电流。
请参考图4,一种进一步的举例中,步骤S21可以包括:
S211:所述当前的负载信息是否处于预先标定的无载的数值范围内;
若步骤S211的判断结果为是,则可实施步骤S212:确定所述导通时机信息为第一导通时机信息,所述第一导通时机信息表征了所述钳位控制开关在所述当前周期中不导通。
在该方案中,通过步骤S212,可以控制钳位控制开关S2保持关断,该方式下,可有利于减低开关损耗,提高效率。
具体来说,当钳位控制开关S2始终不开启时,其对应的波形如图7所示的区间⑧,此时,整个周期都工作在传统返驰式(Traditional Flyback),原边绕组所输出的电压Vx产生电源控制开关S1中寄生电容Coss1、变压器中激磁电感(Lm)和漏电感(Lr)所产生的谐振。
其中的数值范围可例如无载、轻载、满载等等所对应的不同的数值范围,不同数值范围可以是完全不同的数值范围,进而不具有交集,此时,针对于当前的负载信息,可唯一确定一个数值范围。
以上负载信息所对应的各数值范围(或可理解为对负载情况的评价标准),可以是基于实验、经验、理论计算等任意依据来划定的,可以采用已有的标准,也可以采用改进标准。不论如何划定,也不论划定了多少种数值范围,均不脱离本发明实施例的范围。
请参考图4,一种进一步的举例中,步骤S21可以包括:
S213:所述当前的负载信息是否处于预先标定的轻载的数值范围内。
若步骤S213的判断结果为是,则可实施步骤S214:选择第一导通时机信息与第二导通时机信息中之一作为所述当前的导通时机信息。
通过步骤S214还可同时使得:在包含所述当前周期的连续多个周期中,部分周期中选择第一导通时机信息作为对应周期的导通时机信息,部分周期中选择第二导通时机信息作为对应周期的导通时机信息。
其中,所述第二导通时机信息所表征的导通时机处于所述原边电流反向时机之后,且处于所述原边绕组的电压产生谐振之后,该第二导通时机信息所调制出的波形可例如图6所示的⑦这个区间的波形。
可见,在该举例中,在选择当前周期的导通时机信息时,例如可结合之前一个或多个周期中的导通时机信息来判断,也可配置一定的概率信息来选 择第一导通时机信息还是第二导通时机信息,从而保障多个周期中可有时采用第一导通时机信息有时采用第二导通时机信息,在具体举例中,可理解为:有时工作在图6所示的⑦这个区间,有时工作在⑧这个区间。
当钳位控制开关开启后仍能回收漏电感(即电感Lr)的能量,区间⑦中,电压Vx形成了部分寄生电容Coss1、变压器激磁电感(即电感Lm)和漏电感(即电感Lr)所产生的谐振。
进而:
轻载DCM时,钳位控制开关S2控制端的信号Vg2控制钳位控制开关S2在Ip电流负向后,并在S1开启前,短时间的开启一下,如区间⑦,Vx产生了部分电源控制开关S1的寄生电容Coss1、变压器激磁电感Lm和漏电感Lr所产生的谐振,此时转换装置会先工作在一段传统返驰式(Traditional Flyback),当Vg2开启后仍能回收漏电感Lr的能量;
轻载DCM时,当钳位控制开关S2控制端的信号Vg2控制钳位控制开关S2始终不开启,可用以减少钳位控制开关S2开关损耗,如区间⑧,即整个周期都工作在传统返驰式(Traditional Flyback),Vx产生电源控制开关S1的寄生电容Coss1、变压器激磁电感Lm和漏电感Lr所产生的谐振。
可见,以上方案可在轻载时有效兼顾传统返驰式下的谐振与主动钳位返驰式的实现,改变Vx上的谐振波形,进而改变谐振频率,降低EMI。
请参考图4,一种进一步的举例中,步骤S21可以包括:
S215:所述当前的负载信息是否处于预先标定的满载的数值范围内。
若步骤S215的判断结果为是,则可实施步骤S216:选择第三导通时机信息与第四导通时机信息中之一作为所述当前的导通时机信息。
其中,所述第三导通时机信息处于所述原边电流反向时机之前,所述第三导通时机信息处于所述原边电流反向时机之后,且处于所述原边绕组的电压产生谐振之前。
其中第三导通时机信息所调制出的波形可例如图6所示的区间①②③;
具体地,满载时,当钳位控制开关S2控制端的信号Vg2控制钳位控制开关S2在Ip电流正向时开启,如①②③区间,此时转换器工作在主动箝位返驰式(Active Clamp Flyback),区间②~③,钳位控制开关S2的体二级管会恒流,所以输出二极管D1上的电流波形与区间①相比无差异。
其中的第四导通时机信息所调制出的波形可例如图6所示的区间④⑤⑥;
具体地,满载时,当钳位控制开关S2控制端的信号Vg2控制钳位控制开关S2在Ip电流负向后才开启,如④⑤⑥区间,在开启前,转换装置会先工作在一段传统返驰式(Traditional Flyback),在开启后仍能回收漏电感Lr的能量。
若将以上步骤S212、步骤S214、步骤S216所确定的第二导通时机信息、第三导通时机信息与第四导通时机信息与前文所提及的导通时长信息、候选导通时长信息结合,则可以步骤S212、步骤S214、步骤S216的处理逻辑在多个候选导通时长信息中选择当前周期的导通时长信息,例如:第三导通时机信息所表征的导通时机可对应调制出①②③区间这三种可能性的波形,那么,确定第三导通时机信息的过程可例如是在候选导通时长中找出能够使得导通时机处于所述原边电流反向时机之前的一个候选导通时长信息(若有多个候选导通时长信息都能满足,则可结合其他信息、随机又或者根据其他预设规则从中选择出一个座位当前周期的导通时长信息)。
此外,还可进一步结合平滑过度钳位控制开关S2开启与不开启的软启动需求来确定导通时机信息。
随着考量的因素的增加,用于确定导通时机信息(或者说导通时长信息)的信息也会越来越多样,可见,步骤S11的实现方式不限于图4的举例。不论如何变化,均不脱离本发明实施例的范围。
针对于图7所示的各种波形,区间⑧所对应的电压Vx的波形体现了传统准谐振(Quasi-Resonant)共振所产生的震荡,进而,若使其进入区间⑦或区间⑥的波形,即可改变其震荡的频率,进而改变其谐波对EMI的影响。本发明实施例为这种方案的实现提供了可实现的手段。
其中一种实施方式中,请参考图5,所述的方法还包括:
S23:获取目标电压信息,所述目标电压信息表征了所述原边绕组输入至对应的电源控制开关的电压;
S24:在所述钳位控制开关受控导通之后,是否检测到所述目标电压信息小于或等于设定值;
若步骤S24的结果为是,则可实施步骤S25:控制所述钳位控制开关关断。
请结合图2与图5,所述主动钳位返驰式转换装置还包括与所述副边绕组串联的辅助绕组Na,其电压可例如是Va,所述目标电压信息是采样所述辅助绕组Na的输出电压而得到的,即利用对电压Va采样得到的电压Vx_sense来表征电压Vx。
其中,对电压Va的采用可以是通过采样电路121来实现的,采样电路121与辅助绕组Na等器件可形成辅助电路12。
本发明实施例还提供了一种主动钳位返驰式转换装置,包括变压器、钳位支路、控制器,以及输出二极管;所述变压器包括原边绕组与副边绕组,所述钳位支路包括钳位控制开关,所述钳位控制开关的一端经电容与电感连接所述原边绕组的第一端,所述钳位控制开关的另一端连接所述原边绕组的第二端;所述钳位控制开关的控制端连接所述控制器,所述输出二极管连接所述副边绕组;
所述控制器,用于:
确定所述钳位控制开关在当前周期的导通时机信息;所述导通时机信息表征了以下至少之一:
所述钳位控制开关在所述当前周期中是否导通;
所述钳位控制开关在所述当前周期中的导通时机;
其中,所述当前周期的导通时机信息与所述主动钳位返驰式转换装置当前所需的输出电流波形相匹配,所述输出电流波形为所述主动钳位返驰式转换装置的副边绕组经输出二极管所输出的电流的波形;
在所述钳位控制开关关断后,根据所述当前周期的导通时机信息,控制所述钳位控制开关,以得到当前所需的输出电流波形。
其中控制器的功能,也可理解为是实现前文所涉及的方法,故而,方法实施例的相关内容均可用于描述和解释控制器,对于重复的内容,在此不再累述。
图8是本发明一实施例中控制器的构造示意图。
本发明实施例还提供了一种主动钳位返驰式转换装置的控制器30,包括存储单元32与处理单元31,
所述存储单元32,用于存储代码;
所述处理单元31,用于执行所述存储单元中的代码用以实现以上可选方 案所涉及的方法。
其中,存储单元32与处理单元31之间可通过总线33连接。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种主动钳位返驰式转换装置的输出电流调制方法,其中的转换装置包括变压器、钳位支路、控制器,以及输出二极管;所述变压器包括原边绕组与副边绕组,所述钳位支路包括钳位控制开关,所述钳位控制开关的一端经电容与电感连接所述原边绕组的第一端,所述钳位控制开关的另一端连接所述原边绕组的第二端;所述钳位控制开关的控制端连接所述控制器,所述输出二极管连接所述副边绕组;
    所述的输出电流调制方法,应用于所述控制器,包括:
    确定所述钳位控制开关在当前周期的导通时机信息;所述当前周期的导通时机信息表征了以下至少之一:
    所述钳位控制开关在所述当前周期中是否导通;
    所述钳位控制开关在所述当前周期中的导通时机;
    其中,所述当前周期的导通时机信息与所述主动钳位返驰式转换装置当前所需的输出电流波形相匹配,所述输出电流波形为所述主动钳位返驰式转换装置的副边绕组经输出二极管所输出的电流的波形;
    在所述钳位控制开关关断后,根据所述当前周期的导通时机信息,控制所述钳位控制开关,以得到当前所需的输出电流波形。
  2. 根据权利要求1所述的主动钳位返驰式转换装置的输出电流调制方法,其特征在于,所述当前周期的导通时机信息是根据所述钳位控制开关在所述当前周期中所需的导通时长信息确定的,所述导通时长信息表征了所述钳位控制开关的导通时长在对应周期中的占比或占比范围;
    所述所需的导通时长信息是自N个候选导通时长信息中选择确定的,其中的N为大于或等于2的整数。
  3. 根据权利要求2所述的主动钳位返驰式转换装置的输出电流调制方法,其特征在于,所述导通时机信息具体是根据所述所需的导通时长信息以及上一个周期中所述副边绕组的实际导通时长确定的。
  4. 根据权利要求1至3任一项所述的主动钳位返驰式转换装置的输出电流调制方法,其特征在于,确定所述钳位控制开关在当前周期的导通时机信息,包括:
    根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关 在当前周期的导通时机信息;所述负载信息表征了所述主动钳位返驰式转换装置的负载大小,所述原边电流反向时机表征了所述原边绕组在单个周期的副边导通时间内第一次自正向流向变化为反向流向的时机。
  5. 根据权利要求4所述的主动钳位返驰式转换装置的输出电流调制方法,其特征在于,根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关在当前周期的导通时机信息,确定所述钳位控制开关在当前周期的导通时机信息,包括:
    若所述当前的负载信息处于预先标定的无载的数值范围内,则确定所述当前周期的导通时机信息为第一导通时机信息,所述第一导通时机信息表征了所述钳位控制开关在所述当前周期中不导通。
  6. 根据权利要求4所述的动钳位返驰式转换装置的输出电流调制方法,其特征在于,根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关在当前周期的导通时机信息,包括:
    若所述当前的负载信息处于预先标定的轻载的数值范围内,则选择第一导通时机信息与第二导通时机信息中之一作为所述当前的导通时机信息,并使得:在包含所述当前周期的连续多个周期中,部分周期中选择第一导通时机信息作为对应周期的导通时机信息,部分周期中选择第二导通时机信息作为对应周期的导通时机信息;
    其中:所述第一导通时机信息表征了所述钳位控制开关在所述当前周期中不导通,所述第二导通时机信息所表征的导通时机处于所述原边电流反向时机之后,且处于所述原边绕组的电压产生谐振之后。
  7. 根据权利要求4所述的主动钳位返驰式转换装置的输出电流调制方法,其特征在于,
    根据所述当前的负载信息与原边电流反向时机,确定所述钳位控制开关在当前周期的导通时机信息,包括:
    若所述当前的负载信息处于预先标定的满载的数值范围内,则选择第三导通时机信息与第四导通时间信息之一作为所述当前周期的导通时间信息;
    其中,所述第三导通时机信息所表征的导通时机处于所述原边电流反向时机之前,所述第四导通时机信息所表征的导通时机处于所述原边电流反向时机之后,且处于所述原边绕组的电压产生谐振之前。
  8. 根据权利要求4所述的主动钳位返驰式转换装置的输出电流调制方法,其特征在于,所述原边电流反向时机是根据上一个周期中所述钳位控制开关的电流发生流向变化的时间确定的。
  9. 根据权利要求1至3任一项所述的主动钳位返驰式转换装置的输出电流调制方法,其特征在于,还包括:
    获取目标电压信息,所述目标电压信息表征了所述原边绕组输入至对应的电源控制开关的电压;
    在所述钳位控制开关受控导通之后,若检测到所述目标电压信息小于或等于设定值,则控制所述钳位控制开关关断。
  10. 根据权利要求9所述的主动钳位返驰式转换装置的输出电流调制方法,其特征在于,所述主动钳位返驰式转换装置还包括与所述副边绕组串联的辅助绕组,所述目标电压信息是采样所述辅助绕组的输出电压而得到的。
  11. 一种主动钳位返驰式转换装置的控制器,其特征在于,包括存储单元与处理单元,
    所述存储单元,用于存储代码;
    所述处理单元,用于执行所述存储单元中的代码用以实现权利要求1至10任一项所述的方法。
  12. 一种主动钳位返驰式转换装置,包括变压器、钳位支路、控制器,以及输出二极管;所述变压器包括原边绕组与副边绕组,所述钳位支路包括钳位控制开关,所述钳位控制开关的一端经电容与电感连接所述原边绕组的第一端,所述钳位控制开关的另一端连接所述原边绕组的第二端;所述钳位控制开关的控制端连接所述控制器,所述输出二极管连接所述副边绕组;
    所述控制器,用于:
    确定所述钳位控制开关在当前周期的导通时机信息;所述当前周期的导通时机信息表征了以下至少之一:
    所述钳位控制开关在所述当前周期中是否导通;
    所述钳位控制开关在所述当前周期中的导通时机;
    其中,所述当前周期的导通时机信息与所述主动钳位返驰式转换装置当前所需的输出电流波形相匹配,所述输出电流波形为所述主动钳位返驰式转换装置的副边绕组经输出二极管所输出的电流的波形;
    在所述钳位控制开关关断后,根据所述导通时机信息,控制所述钳位控制开关,以得到当前所需的输出电流波形。
PCT/CN2020/135489 2020-07-21 2020-12-10 主动钳位返驰式转换装置、其控制器与输出电流调制方法 WO2022016784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010705372.XA CN111817573B (zh) 2020-07-21 2020-07-21 主动钳位返驰式转换装置、其控制器与输出电流调制方法
CN202010705372.X 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022016784A1 true WO2022016784A1 (zh) 2022-01-27

Family

ID=72861779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135489 WO2022016784A1 (zh) 2020-07-21 2020-12-10 主动钳位返驰式转换装置、其控制器与输出电流调制方法

Country Status (2)

Country Link
CN (1) CN111817573B (zh)
WO (1) WO2022016784A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111817573B (zh) * 2020-07-21 2021-04-02 华源智信半导体(深圳)有限公司 主动钳位返驰式转换装置、其控制器与输出电流调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430633A (en) * 1993-09-14 1995-07-04 Astec International, Ltd. Multi-resonant clamped flyback converter
CN104300795A (zh) * 2014-10-11 2015-01-21 广州金升阳科技有限公司 一种反激变换器及其控制方法
CN110460239A (zh) * 2019-08-14 2019-11-15 广州金升阳科技有限公司 一种有源钳位反激变换器
CN110649817A (zh) * 2019-09-25 2020-01-03 广州金升阳科技有限公司 一种有源钳位反激变换器的多模式控制方法
CN111817573A (zh) * 2020-07-21 2020-10-23 华源智信半导体(深圳)有限公司 主动钳位返驰式转换装置、其控制器与输出电流调制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224170A (ja) * 2000-02-09 2001-08-17 Sony Corp スイッチング電源回路
CN106059313B (zh) * 2016-07-19 2018-05-29 深圳南云微电子有限公司 有源钳位的反激电路及其控制方法
CN205960954U (zh) * 2016-08-05 2017-02-15 广州金升阳科技有限公司 反激控制电路
CN106100352B (zh) * 2016-08-05 2019-02-05 广州金升阳科技有限公司 反激控制电路及控制方法
CN108933533B (zh) * 2018-07-27 2019-08-23 深圳南云微电子有限公司 非互补有源钳位反激变换器的控制器
CN110661427B (zh) * 2019-09-27 2020-07-24 浙江大学 基于氮化镓器件有源箝位反激式ac-dc变换器的数字控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430633A (en) * 1993-09-14 1995-07-04 Astec International, Ltd. Multi-resonant clamped flyback converter
CN104300795A (zh) * 2014-10-11 2015-01-21 广州金升阳科技有限公司 一种反激变换器及其控制方法
CN110460239A (zh) * 2019-08-14 2019-11-15 广州金升阳科技有限公司 一种有源钳位反激变换器
CN110649817A (zh) * 2019-09-25 2020-01-03 广州金升阳科技有限公司 一种有源钳位反激变换器的多模式控制方法
CN111817573A (zh) * 2020-07-21 2020-10-23 华源智信半导体(深圳)有限公司 主动钳位返驰式转换装置、其控制器与输出电流调制方法

Also Published As

Publication number Publication date
CN111817573A (zh) 2020-10-23
CN111817573B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN108352787B (zh) 反激变换器
TWI653810B (zh) 控制裝置及控制方法
TWI664801B (zh) 開關電源、控制裝置及控制方法
CN108667307B (zh) Llc同步整流装置及其控制方法、电子设备、存储介质
JP2002101655A (ja) スイッチング電源装置
KR102600908B1 (ko) 컨버터 및 파워 어댑터
CN114301297B (zh) 一种功率变换器、增大逆向增益范围的方法、装置、介质
CN110247553A (zh) 变换器及其控制方法
WO2022016784A1 (zh) 主动钳位返驰式转换装置、其控制器与输出电流调制方法
TWI650925B (zh) 開關電源、控制裝置及控制方法
CN111628657B (zh) 移相全桥模块的副边箝位方法、控制装置及存储介质
JP2003180075A (ja) Dc−dcコンバータ制御方法
CN100369371C (zh) 一种抑制二极管反向尖峰电压的电路
CN114710043B (zh) 双向谐振变换器及其控制方法、装置、电源设备
KR101721321B1 (ko) 하이브리드 방식 led 전원장치
CN217824740U (zh) 带辅助绕组的反激零电压软开关电路
CN113315384B (zh) 一种互补有源钳位软开关推挽变换器及其调制方法
US20220069697A1 (en) Converter including active clamp switch and secondary side rectifier and controlling method thereof
CN118041085B (zh) 一种移相全桥变换器及其控制方法、装置、介质
TWI814062B (zh) 改良型llc諧振轉換裝置
KR101050733B1 (ko) 히스테리시스 제어 직류전원 공급장치
CN115021577A (zh) 一种控制方法、控制装置及反激变换器
KR20160085224A (ko) 하이브리드 방식 led 전원장치
KR20220163168A (ko) 교류-직류 컨버터 및 이를 이용한 전력 변환 방법
KR20220152066A (ko) 마이크로컨트롤러를 이용한 공진형 플라이백 전력 변환 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946358

Country of ref document: EP

Kind code of ref document: A1