WO2021124810A1 - パッシベーション膜の製造方法 - Google Patents

パッシベーション膜の製造方法 Download PDF

Info

Publication number
WO2021124810A1
WO2021124810A1 PCT/JP2020/043674 JP2020043674W WO2021124810A1 WO 2021124810 A1 WO2021124810 A1 WO 2021124810A1 JP 2020043674 W JP2020043674 W JP 2020043674W WO 2021124810 A1 WO2021124810 A1 WO 2021124810A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation
gas
oxygen
substrate
film
Prior art date
Application number
PCT/JP2020/043674
Other languages
English (en)
French (fr)
Inventor
陽祐 谷本
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2021565407A priority Critical patent/JPWO2021124810A1/ja
Priority to EP20902992.5A priority patent/EP4080549A4/en
Priority to US17/612,783 priority patent/US20220246447A1/en
Priority to CN202080036949.0A priority patent/CN113840941A/zh
Priority to KR1020227009094A priority patent/KR20220046675A/ko
Publication of WO2021124810A1 publication Critical patent/WO2021124810A1/ja
Priority to IL290573A priority patent/IL290573A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation

Definitions

  • the present invention relates to a method for producing a passivation film.
  • semiconductor materials containing elements other than silicon have been attracting attention.
  • the semiconductor material containing an element other than silicon include a semiconductor material containing a group III-V element such as germanium (Ge) and indium gallium arsenide (InGaAs), and molybdenum sulfide (IV) (MoS 2 ).
  • Examples thereof include semiconductor materials containing metal chalcogenides.
  • Patent literature method for forming a passivation film is proposed using a hydrogen sulfide (H 2 S) gas on a substrate such as molybdenum 1).
  • a method for forming a metal chalcogenide a method of treating a molybdenum oxide layer and a tungsten oxide layer with hydrogen sulfide gas to form a molybdenum sulfide layer and a tungsten sulfide layer has been proposed (see, for example, Patent Document 2). ).
  • An object of the present invention is to provide a method for producing a passivation film capable of producing a passivation film having a low concentration of oxygen atoms with good reproducibility.
  • one aspect of the present invention is as follows [1] to [5].
  • a substrate having at least one of germanium and molybdenum on the surface is treated with a passion gas containing an oxygen-containing compound which is a compound having an oxygen atom in the molecule and hydrogen sulfide, and a passion film containing a sulfur atom.
  • a passivation step of forming on the surface of the substrate is provided with a passivation step of forming on the surface of the substrate.
  • a method for producing a passivation film in which the concentration of the oxygen-containing compound in the passivation gas is 0.001 molppm or more and less than 75 molppm.
  • [2] The method for producing a passivation film according to [1], wherein the concentration of the oxygen-containing compound in the passivation gas is 0.5 mol ppm or more and 65 mol ppm or less.
  • [3] The method for producing a passivation film according to [1] or [2], wherein the oxygen-containing compound is at least one of oxygen gas and water.
  • [4] The method for producing a passivation film according to any one of [1] to [3], wherein the substrate has a film containing at least one of germanium and molybdenum on its surface.
  • a substrate having at least one of germanium and molybdenum on the surface is treated with a passivation gas containing an oxygen-containing compound which is a compound having an oxygen atom in the molecule and hydrogen sulfide. Therefore, a passivation step of forming a passivation film containing a sulfur atom on the surface of the substrate is provided.
  • the concentration of the oxygen-containing compound in the passivation gas is 0.001 molppm or more and less than 75 molppm.
  • a stable sulfide film can be produced while suppressing the formation of an unintended oxide film, so that a passivation film having a low oxygen atom concentration can be produced with good reproducibility. It is possible.
  • the concentration of the oxygen-containing compound in the passivation gas is 0.001 molppm or more and 75 molppm or more.
  • the upper limit is preferably 65 mol ppm or less, more preferably 40 mol ppm or less, further preferably 5 mol ppm or less, and the lower limit is 0.5 mol ppm. It may be the above.
  • oxygen-containing compound is not particularly limited, but for example, oxygen gas (O 2 ), water (H 2 O), carbon monoxide (CO), carbon dioxide (CO 2 ), carbonyl sulfide (COS). , And sulfur dioxide (SO 2 ).
  • oxygen gas O 2
  • water H 2 O
  • CO carbon monoxide
  • CO 2 carbon dioxide
  • COS carbonyl sulfide
  • SO 2 sulfur dioxide
  • the substrate treated with the passivation gas is a substrate having at least one of germanium and molybdenum on the surface, but the form in which the surface of the substrate has at least one of germanium and molybdenum is not particularly limited.
  • the substrate may have a film on its surface containing at least one of germanium and molybdenum.
  • the substrate having a film containing at least one of germanium and molybdenum on the surface may be any substrate as long as the film contains at least one of germanium and molybdenum.
  • the substrate used for formation is suitable.
  • a single crystal silicon substrate in which a film containing at least one of germanium and molybdenum is deposited on the surface by physical vapor deposition (PVD) or chemical vapor deposition (CVD) is preferable.
  • the concentration of hydrogen sulfide in the passivation gas is not particularly limited as long as it is an amount sufficient for forming the passivation film, but it is preferably 1% by volume or more, and more preferably 2% by volume or more. It is preferably 10% by volume or more, more preferably 100% by volume or more.
  • the components other than the hydrogen sulfide and oxygen-containing compounds among the components contained in the passivation gas are not particularly limited, and examples thereof include inert gases such as nitrogen gas and argon gas.
  • the pressure when the substrate is treated with the passivation gas in the passivation step is not particularly limited, but is preferably 1 Pa or more and 101 kPa or less, and is preferably 10 Pa. It is more preferably 90 kPa or more, and further preferably 100 Pa or more and 80 kPa or less.
  • the temperature at which the substrate is treated with the passivation gas in the passivation step is not particularly limited, but the surface of the substrate surface treated with the passivation gas is highly in-plane. In order to obtain uniformity, it is preferably 20 ° C. or higher and 1500 ° C. or lower, more preferably 50 ° C. or higher and 1200 ° C. or lower, and further preferably 100 ° C. or higher and 1000 ° C. or lower.
  • the length of time for treating the substrate with the passivation gas in the passivation step is not particularly limited, but is preferably 120 minutes or less in consideration of the efficiency of the semiconductor device manufacturing process.
  • the time for treating the substrate with the passivation gas is the time required to supply the passivation gas to the chamber containing the substrate and then to finish the treatment of the surface of the substrate with the passivation gas by using a vacuum pump or the like. Refers to the time until exhaust.
  • the method for producing a passivation film according to the present embodiment can be suitably applied to a semiconductor film forming apparatus for forming a passivation film on the surface of a substrate.
  • the structure of this film forming apparatus is not particularly limited, and the positional relationship between the substrate housed in the chamber, which is the reaction vessel, and the piping connected to the chamber is not particularly limited.
  • Example 1 A passivation film was formed on the surface of the substrate using the film forming apparatus 1 shown in FIG.
  • the film forming apparatus 1 includes a chamber 10 for performing a passivation step and a temperature adjusting device (not shown) for adjusting the temperature inside the chamber 10. Inside the chamber 10, a stage 11 for supporting the sample 20 is provided.
  • a silicon oxide film having a thickness of 150 nm was formed on a silicon substrate, and a germanium film having a thickness of 80 nm was further formed on the silicon oxide film.
  • a passage gas air supply pipe 12 for supplying a passage gas containing an oxygen-containing compound and hydrogen sulfide to the chamber 10 and an inert gas supply pipe 12 for supplying an inert gas to the chamber 10 are provided.
  • the air pipe 13 is connected via valves 32 and 33, respectively.
  • an exhaust pipe 15 for discharging the gas in the chamber 10 to the outside is connected to the downstream side of the chamber 10, and a vacuum pump 38 is connected to the downstream side of the exhaust pipe 15 via a valve 35. It is connected.
  • the pressure inside the chamber 10 is controlled by the pressure controller 37 that controls the valve 35.
  • the passivation process was performed using such a film forming apparatus 1.
  • the sample 20 was placed on the stage 11, the pressure in the chamber 10 was reduced to less than 10 Pa, and then the temperature in the chamber 10 was raised to 800 ° C. After that, the valve 32 was opened, and the passivation gas was supplied into the chamber 10 from the passivation gas air supply pipe 12 at a pressure of 101 kPa.
  • This passivation gas is a mixed gas of oxygen gas and hydrogen sulfide gas, and the concentration of oxygen gas in the passivation gas is 60 mol ppm.
  • the flow rate of the passivation gas at this time was 100 sccm, and the pressure in the chamber 10 when the passivation film was formed on the surface of the sample 20 was 67 kPa.
  • sccm represents a flow rate (mL / min) at 0 ° C. and 101.3 kPa.
  • the passivation gas was introduced for 30 minutes, and the surface of the sample 20 was sulphurized under the conditions of a temperature of 800 ° C. and a pressure of 67 kPa to form a passivation film, and then the introduction of the passivation gas was stopped. Then, the inside of the chamber 10 was evacuated by the vacuum pump 38, and nitrogen gas, which is an inert gas, was supplied into the chamber 10 from the inert gas air supply pipe 13, and the inside of the chamber 10 was replaced with the nitrogen gas. Then, the temperature in the chamber 10 was lowered to room temperature, and the sample 20 on which the passivation film was formed was taken out from the chamber 10.
  • nitrogen gas which is an inert gas
  • Example 2 A passivation film was formed on the surface of the substrate in the same manner as in Example 1 except that the concentration of oxygen gas in the passivation gas was 30 mol ppm.
  • Example 3 A passivation film was formed on the surface of the substrate in the same manner as in Example 1 except that the concentration of oxygen gas in the passivation gas was 3.8 mol ppm.
  • Example 4 A passivation film was formed on the surface of the substrate in the same manner as in Example 1 except that the concentration of oxygen gas in the passivation gas was 0.75 mol ppm.
  • Example 1 A passivation film was formed on the surface of the substrate in the same manner as in Example 1 except that the concentration of oxygen gas in the passivation gas was 75 mol ppm.
  • Comparative Example 2 A passivation film was formed on the surface of the substrate in the same manner as in Example 1 except that the concentration of oxygen gas in the passivation gas was 150 mol ppm.
  • Example 5 As the sample 20, a substrate having a silicon oxide film having a thickness of 150 nm formed on the silicon substrate and a molybdenum film having a thickness of 80 nm formed on the silicon substrate was used in the same manner as in Example 1. A passivation film was formed on the surface of the silicon. (Example 6) A passivation film was formed on the surface of the substrate in the same manner as in Example 5 except that the concentration of oxygen gas in the passivation gas was 30 mol ppm.
  • Example 7 A passivation film was formed on the surface of the substrate in the same manner as in Example 5 except that the concentration of oxygen gas in the passivation gas was 3.8 mol ppm.
  • Example 8 A passivation film was formed on the surface of the substrate in the same manner as in Example 5 except that the concentration of oxygen gas in the passivation gas was 0.75 mol ppm.
  • Example 3 A passivation film was formed on the surface of the substrate in the same manner as in Example 5 except that the concentration of oxygen gas in the passivation gas was 75 mol ppm.
  • Comparative Example 4 A passivation film was formed on the surface of the substrate in the same manner as in Example 5 except that the concentration of oxygen gas in the passivation gas was 150 mol ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

酸素原子の濃度が低いパッシベーション膜を再現性良く製造することが可能なパッシベーション膜の製造方法を提供する。ゲルマニウム及びモリブデンの少なくとも一方を表面に有する基板を、分子中に酸素原子を有する化合物である酸素含有化合物と硫化水素とを含有するパッシベーションガスで処理して、硫黄原子を含有するパッシベーション膜を基板の表面上に形成するパッシベーション工程を備える方法により、パッシベーション膜を製造する。パッシベーションガス中の酸素含有化合物の濃度は、0.001モルppm以上75モルppm未満である。

Description

パッシベーション膜の製造方法
 本発明はパッシベーション膜の製造方法に関する。
 近年、半導体分野において、シリコン(Si)以外の元素を含有する半導体材料が注目されている。シリコン以外の元素を含有する半導体材料としては、例えば、ゲルマニウム(Ge)、インジウムガリウム砒素(InGaAs)等のIII-V族元素を含有する半導体材料や、硫化モリブデン(IV)(MoS2)等の金属カルコゲナイドを含有する半導体材料が挙げられる。
 これらの半導体材料は、シリコン材料と比較してモビリティ(移動度)が高いというメリットを有しているものの、成膜が困難である場合や、材料間の界面の欠陥密度が高いことによりモビリティが低下する場合があった。
 そこで、材料間の界面の欠陥密度を低くするために、ゲルマニウム、モリブデン等の基板の上に硫化水素(H2S)ガスを用いてパッシベーション膜を形成する方法が提案されている(例えば特許文献1を参照)。また、金属カルコゲナイドの成膜方法として、モリブデン酸化物層、タングステン酸化物層を硫化水素ガスで処理して硫化モリブデン層、硫化タングステン層を形成する方法が提案されている(例えば特許文献2を参照)。
日本国特許公開公報 2016年第207789号 日本国特許公開公報 2017年第61743号
 しかしながら、硫化水素ガスの品質によって、パッシベーション膜が含有する酸素原子の濃度が高くなり、パッシベーション膜の性能が低下する場合があった。
 本発明は、酸素原子の濃度が低いパッシベーション膜を再現性良く製造することが可能なパッシベーション膜の製造方法を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[5]の通りである。
[1] ゲルマニウム及びモリブデンの少なくとも一方を表面に有する基板を、分子中に酸素原子を有する化合物である酸素含有化合物と硫化水素とを含有するパッシベーションガスで処理して、硫黄原子を含有するパッシベーション膜を前記基板の表面上に形成するパッシベーション工程を備え、
 前記パッシベーションガス中の前記酸素含有化合物の濃度が0.001モルppm以上75モルppm未満であるパッシベーション膜の製造方法。
[2] 前記パッシベーションガス中の前記酸素含有化合物の濃度が0.5モルppm以上65モルppm以下である[1]に記載のパッシベーション膜の製造方法。
[3] 前記酸素含有化合物が酸素ガス及び水の少なくとも一方である[1]又は[2]に記載のパッシベーション膜の製造方法。
[4] 前記基板は、ゲルマニウム及びモリブデンの少なくとも一方を含有する膜を表面に有する[1]~[3]のいずれか一項に記載のパッシベーション膜の製造方法。
[5] 温度20℃以上1500℃以下、圧力1Pa以上101kPa以下の条件下で、前記基板を前記パッシベーションガスで処理する[1]~[4]のいずれか一項に記載のパッシベーション膜の製造方法。
 本発明によれば、酸素原子の濃度が低いパッシベーション膜を再現性良く製造することが可能である。
本発明に係るパッシベーション膜の製造方法の一実施形態を説明する成膜装置の概略図である。 パッシベーション膜が形成されたゲルマニウム膜の表面状態の分析結果を示すグラフである。 パッシベーション膜が形成されたモリブデン膜の表面状態の分析結果を示すグラフである。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本実施形態に係るパッシベーション膜の製造方法は、ゲルマニウム及びモリブデンの少なくとも一方を表面に有する基板を、分子中に酸素原子を有する化合物である酸素含有化合物と硫化水素とを含有するパッシベーションガスで処理して、硫黄原子を含有するパッシベーション膜を基板の表面上に形成するパッシベーション工程を備える。そして、パッシベーションガス中の酸素含有化合物の濃度は、0.001モルppm以上75モルppm未満である。
 本実施形態に係るパッシベーション膜の製造方法によれば、意図しない酸化膜の生成を抑制しつつ安定な硫化膜を生成することができるので、酸素原子の濃度が低いパッシベーション膜を再現性良く製造することが可能である。
 意図しない酸化膜の生成を十分に抑制して、酸素原子の濃度が低いパッシベーション膜を再現性良く製造するためには、パッシベーションガス中の酸素含有化合物の濃度は0.001モルppm以上75モルppm未満とする必要があるが、上限は、65モルppm以下とすることが好ましく、40モルppm以下とすることがより好ましく、5モルppm以下とすることがさらに好ましく、下限は0.5モルppm以上であってもよい。なお、パッシベーションガス中の酸素含有化合物の濃度は低いほど好ましいが、0.001モルppmよりも低い濃度は測定が困難である。
 酸素含有化合物の種類は特に限定されるものではないが、例えば、酸素ガス(O2)、水(H2O)、一酸化炭素(CO)、二酸化炭素(CO2)、硫化カルボニル(COS)、及び二酸化硫黄(SO2)が挙げられる。これらの酸素含有化合物の中では、酸素ガス及び水の少なくとも一方が好ましい。
 パッシベーションガスで処理される基板は、ゲルマニウム及びモリブデンの少なくとも一方を表面に有する基板であるが、基板の表面がゲルマニウム及びモリブデンの少なくとも一方をどのような形態で有しているかは、特に限定されない。例えば、基板は、ゲルマニウム及びモリブデンの少なくとも一方を含有する膜を表面に有していてもよい。
 また、ゲルマニウム及びモリブデンの少なくとも一方を含有する膜を表面に有する基板は、膜がゲルマニウム及びモリブデンの少なくとも一方を含有するならば、どのような基板であっても差し支えないが、例えば、半導体素子の形成に使用される基板が好適である。特に、ゲルマニウム及びモリブデンの少なくとも一方を含有する膜が物理蒸着(PVD)や化学蒸着(CVD)で表面に成膜された単結晶シリコン基板が好ましい。
 パッシベーションガス中の硫化水素の濃度は、パッシベーション膜の成膜に十分な量であれば特に限定されるものではないが、1体積%以上であることが好ましく、2体積%以上であることがより好ましく、10体積%以上であることがさらに好ましく、100体積%であることが特に好ましい。パッシベーションガスに含有される成分のうち硫化水素及び酸素含有化合物以外の成分は、特に限定されるものではないが、例えば、窒素ガス、アルゴンガス等の不活性ガスを挙げることができる。
 パッシベーション工程において基板をパッシベーションガスで処理する際の圧力(例えば、パッシベーションガスによる処理が行われるチャンバー内の圧力)は、特に限定されるものではないが、1Pa以上101kPa以下であることが好ましく、10Pa以上90kPa以下であることがより好ましく、100Pa以上80kPa以下であることがさらに好ましい。
 また、パッシベーション工程において基板をパッシベーションガスで処理する際の温度(例えば、チャンバー内に配された基板の温度)は、特に限定されるものではないが、パッシベーションガスによる基板表面の処理の高い面内均一性を得るためには、20℃以上1500℃以下であることが好ましく、50℃以上1200℃以下であることがより好ましく、100℃以上1000℃以下であることがさらに好ましい。
 さらに、パッシベーション工程において基板をパッシベーションガスで処理する時間の長さは、特に限定されるものではないが、半導体素子製造プロセスの効率を考慮すると、120分以内であることが好ましい。なお、基板をパッシベーションガスで処理する時間とは、基板が収容されたチャンバーにパッシベーションガスを供給してから、パッシベーションガスによる基板の表面の処理を終えるためにチャンバー内のパッシベーションガスを真空ポンプ等により排気するまでの時間を指す。
 本実施形態に係るパッシベーション膜の製造方法は、基板の表面にパッシベーション膜を成膜する半導体の成膜装置に対して好適に適用することができる。この成膜装置の構造は特に限定されるものではなく、反応容器であるチャンバー内に収容された基板と、チャンバーに接続された配管との位置関係も特に限定されない。
 以下に実施例及び比較例を示して、本発明をより詳細に説明する。
(実施例1)
 図1に示す成膜装置1を用いて、基板の表面にパッシベーション膜を成膜した。成膜装置1は、パッシベーション工程を行うチャンバー10と、チャンバー10の内部の温度を調整する温度調整装置(図示せず)と、を有する。チャンバー10の内部には、試料20を支持するステージ11が備えられている。試料20としては、シリコン基板上に厚さ150nmのシリコン酸化膜が形成され、さらにその上に厚さ80nmのゲルマニウム膜が形成されたものを使用した。
 チャンバー10には、その上流側に、酸素含有化合物と硫化水素とを含有するパッシベーションガスをチャンバー10に供給するパッシベーションガス給気用配管12と、不活性ガスをチャンバー10に供給する不活性ガス給気用配管13とが、それぞれバルブ32、33を介して接続されている。
 また、チャンバー10には、その下流側に、チャンバー10内のガスを外部に排出する排気用配管15が接続されており、排気用配管15の下流側にはバルブ35を介して真空ポンプ38が接続されている。チャンバー10の内部の圧力は、バルブ35を制御する圧力コントローラ37により制御される。
 このような成膜装置1を使用して、パッシベーション工程を行った。ステージ11上に試料20を設置し、チャンバー10内の圧力を10Pa未満まで減圧した後に、チャンバー10内の温度を800℃に昇温した。その後、バルブ32を開状態とし、パッシベーションガス給気用配管12からチャンバー10内にパッシベーションガスを101kPaの圧力で供給した。このパッシベーションガスは酸素ガスと硫化水素ガスの混合ガスであり、パッシベーションガス中の酸素ガスの濃度は60モルppmである。このときのパッシベーションガスの流量は100sccmとし、試料20の表面にパッシベーション膜を成膜する際のチャンバー10内の圧力は67kPaとした。なお、sccmは、0℃、101.3kPaにおける流量(mL/min)を表す。
 パッシベーションガスの導入を30分間行って、温度800℃、圧力67kPaの条件下で試料20の表面を硫化しパッシベーション膜を成膜したら、パッシベーションガスの導入を停止した。そして、チャンバー10の内部を真空ポンプ38で真空にし、不活性ガス給気用配管13からチャンバー10内に不活性ガスである窒素ガスを供給してチャンバー10の内部を窒素ガスで置換した。その後、チャンバー10内の温度を室温に下げて、パッシベーション膜を成膜した試料20をチャンバー10から取り出した。
(実施例2)
 パッシベーションガス中の酸素ガスの濃度を30モルppmとした点以外は、実施例1と同様にして、基板の表面にパッシベーション膜を成膜した。
(実施例3)
 パッシベーションガス中の酸素ガスの濃度を3.8モルppmとした点以外は、実施例1と同様にして、基板の表面にパッシベーション膜を成膜した。
(実施例4)
 パッシベーションガス中の酸素ガスの濃度を0.75モルppmとした点以外は、実施例1と同様にして、基板の表面にパッシベーション膜を成膜した。
(比較例1)
 パッシベーションガス中の酸素ガスの濃度を75モルppmとした点以外は、実施例1と同様にして、基板の表面にパッシベーション膜を成膜した。
(比較例2)
 パッシベーションガス中の酸素ガスの濃度を150モルppmとした点以外は、実施例1と同様にして、基板の表面にパッシベーション膜を成膜した。
(実施例5)
 試料20として、シリコン基板上に厚さ150nmのシリコン酸化膜が形成され、さらにその上に厚さ80nmのモリブデン膜が形成されたものを使用した点以外は、実施例1と同様にして、基板の表面にパッシベーション膜を成膜した。
(実施例6)
 パッシベーションガス中の酸素ガスの濃度を30モルppmとした点以外は、実施例5と同様にして、基板の表面にパッシベーション膜を成膜した。
(実施例7)
 パッシベーションガス中の酸素ガスの濃度を3.8モルppmとした点以外は、実施例5と同様にして、基板の表面にパッシベーション膜を成膜した。
(実施例8)
 パッシベーションガス中の酸素ガスの濃度を0.75モルppmとした点以外は、実施例5と同様にして、基板の表面にパッシベーション膜を成膜した。
(比較例3)
 パッシベーションガス中の酸素ガスの濃度を75モルppmとした点以外は、実施例5と同様にして、基板の表面にパッシベーション膜を成膜した。
(比較例4)
 パッシベーションガス中の酸素ガスの濃度を150モルppmとした点以外は、実施例5と同様にして、基板の表面にパッシベーション膜を成膜した。
 実施例1~8及び比較例1~4のパッシベーション膜を成膜した試料20に対して、飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)による分析を行い、パッシベーション膜が形成されたゲルマニウム膜又はモリブデン膜の表面状態を分析した。それぞれのパッシベーション膜中の酸化ゲルマニウム(GeOx)、硫化ゲルマニウム(GeSx)、酸化モリブデン(MoOx)、硫化モリブデン(MoSx)の量を表1、2及び図2、3のグラフに示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2及び図2、3のグラフから分かるように、パッシベーションガス中の酸素ガスの濃度が75モルppm以上である比較例1、2、3、4は、試料20のパッシベーション膜中の硫化物の量に対する酸化物の量の比率が大きかった。これに対して、パッシベーションガス中の酸素ガスの濃度が75モルppm未満である実施例1~8は、試料20のパッシベーション膜中の硫化物の量に対する酸化物の量の比率が、比較例に比べて顕著に小さく、実施例と比較例の間に臨界的条件が存在することを示す結果であった。このように、酸素ガスの濃度が低いパッシベーションガスを用いて処理することにより、酸化膜の生成を抑制しつつ硫化膜を成膜できることが示された。
   1・・・成膜装置
  10・・・チャンバー
  11・・・ステージ
  12・・・パッシベーションガス給気用配管
  13・・・不活性ガス給気用配管
  15・・・排気用配管
  20・・・試料

Claims (5)

  1.  ゲルマニウム及びモリブデンの少なくとも一方を表面に有する基板を、分子中に酸素原子を有する化合物である酸素含有化合物と硫化水素とを含有するパッシベーションガスで処理して、硫黄原子を含有するパッシベーション膜を前記基板の表面上に形成するパッシベーション工程を備え、
     前記パッシベーションガス中の前記酸素含有化合物の濃度が0.001モルppm以上75モルppm未満であるパッシベーション膜の製造方法。
  2.  前記パッシベーションガス中の前記酸素含有化合物の濃度が0.5モルppm以上65モルppm以下である請求項1に記載のパッシベーション膜の製造方法。
  3.  前記酸素含有化合物が酸素ガス及び水の少なくとも一方である請求項1又は請求項2に記載のパッシベーション膜の製造方法。
  4.  前記基板は、ゲルマニウム及びモリブデンの少なくとも一方を含有する膜を表面に有する請求項1~3のいずれか一項に記載のパッシベーション膜の製造方法。
  5.  温度20℃以上1500℃以下、圧力1Pa以上101kPa以下の条件下で、前記基板を前記パッシベーションガスで処理する請求項1~4のいずれか一項に記載のパッシベーション膜の製造方法。
PCT/JP2020/043674 2019-12-17 2020-11-24 パッシベーション膜の製造方法 WO2021124810A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021565407A JPWO2021124810A1 (ja) 2019-12-17 2020-11-24
EP20902992.5A EP4080549A4 (en) 2019-12-17 2020-11-24 PASSIVATION FILM MANUFACTURING PROCESS
US17/612,783 US20220246447A1 (en) 2019-12-17 2020-11-24 Method of manufacturing passivation film
CN202080036949.0A CN113840941A (zh) 2019-12-17 2020-11-24 钝化膜的制造方法
KR1020227009094A KR20220046675A (ko) 2019-12-17 2020-11-24 패시베이션 막의 제조 방법
IL290573A IL290573A (en) 2019-12-17 2022-02-13 A method for producing a passivation film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-227381 2019-12-17
JP2019227381 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021124810A1 true WO2021124810A1 (ja) 2021-06-24

Family

ID=76477281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043674 WO2021124810A1 (ja) 2019-12-17 2020-11-24 パッシベーション膜の製造方法

Country Status (8)

Country Link
US (1) US20220246447A1 (ja)
EP (1) EP4080549A4 (ja)
JP (1) JPWO2021124810A1 (ja)
KR (1) KR20220046675A (ja)
CN (1) CN113840941A (ja)
IL (1) IL290573A (ja)
TW (1) TWI804787B (ja)
WO (1) WO2021124810A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350996A (zh) * 2022-01-13 2022-04-15 郑州大学 一种镁锂合金表面钝化膜制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141406A (ja) * 1988-11-21 1990-05-30 Japan Pionics Co Ltd 硫化水素の精製方法
JPH0769782A (ja) * 1992-07-08 1995-03-14 Yeda Res & Dev Co Ltd 遷移金属カルコゲニドの配向多結晶質薄膜
JP2007123895A (ja) * 2005-10-26 2007-05-17 Internatl Business Mach Corp <Ibm> 方法および半導体構造(非酸素カルコゲン不活性化ステップを用いて製作されたGe系半導体構造)
WO2017221594A1 (ja) * 2016-06-22 2017-12-28 昭和電工株式会社 硫化水素混合物及びその製造方法並びに充填容器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958358A (en) * 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
KR100207789B1 (ko) 1997-01-22 1999-07-15 윤종용 폴리건미러의 압착력유지장치
US5958816A (en) * 1997-02-28 1999-09-28 Tricat, Inc. Method of presulfiding and passivating a hydrocarbon conversion catalyst
JP2004536227A (ja) * 2001-07-17 2004-12-02 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 安定性増低濃度ガス、これを含む製品及びその製造方法
CN102698794B (zh) * 2012-05-22 2014-07-16 韩钊武 一种煤焦油加氢复合催化剂的制备方法
US9558931B2 (en) * 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9373516B2 (en) * 2012-08-31 2016-06-21 Applied Materials, Inc. Method and apparatus for forming gate stack on Si, SiGe or Ge channels
US9673038B2 (en) * 2014-07-10 2017-06-06 Tokyo Electron Limited Gas phase oxide removal and passivation of germanium-containing semiconductors and compound semiconductors
US9412605B2 (en) * 2014-08-07 2016-08-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing oxide on semiconductor surface by layer of sulfur
CN104762588B (zh) * 2015-03-19 2018-03-13 中国石油化工股份有限公司青岛安全工程研究院 一种评估硫铁化合物钝化效果的方法
JP2016207789A (ja) * 2015-04-20 2016-12-08 東京エレクトロン株式会社 パッシベーション処理方法、半導体構造の形成方法及び半導体構造
US20170073812A1 (en) * 2015-09-15 2017-03-16 Ultratech, Inc. Laser-assisted atomic layer deposition of 2D metal chalcogenide films
US9982141B2 (en) * 2016-01-06 2018-05-29 King Fahd University Of Petroleum And Minerals Corrosion resistant coating composition of Ni and a phosphate corrosion inhibitor and an electrodeposition method for the manufacture thereof
US10727073B2 (en) * 2016-02-04 2020-07-28 Lam Research Corporation Atomic layer etching 3D structures: Si and SiGe and Ge smoothness on horizontal and vertical surfaces
US10410943B2 (en) * 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US11469079B2 (en) * 2017-03-14 2022-10-11 Lam Research Corporation Ultrahigh selective nitride etch to form FinFET devices
US11270887B2 (en) * 2017-09-27 2022-03-08 Intel Corporation Passivation layer for germanium substrate
US10510883B2 (en) * 2017-11-28 2019-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Asymmetric source and drain structures in semiconductor devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141406A (ja) * 1988-11-21 1990-05-30 Japan Pionics Co Ltd 硫化水素の精製方法
JPH0769782A (ja) * 1992-07-08 1995-03-14 Yeda Res & Dev Co Ltd 遷移金属カルコゲニドの配向多結晶質薄膜
JP2007123895A (ja) * 2005-10-26 2007-05-17 Internatl Business Mach Corp <Ibm> 方法および半導体構造(非酸素カルコゲン不活性化ステップを用いて製作されたGe系半導体構造)
WO2017221594A1 (ja) * 2016-06-22 2017-12-28 昭和電工株式会社 硫化水素混合物及びその製造方法並びに充填容器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350996A (zh) * 2022-01-13 2022-04-15 郑州大学 一种镁锂合金表面钝化膜制备方法
CN114350996B (zh) * 2022-01-13 2022-08-19 郑州大学 一种镁锂合金表面钝化膜制备方法

Also Published As

Publication number Publication date
JPWO2021124810A1 (ja) 2021-06-24
CN113840941A (zh) 2021-12-24
EP4080549A4 (en) 2023-07-26
IL290573A (en) 2022-04-01
KR20220046675A (ko) 2022-04-14
TW202136544A (zh) 2021-10-01
US20220246447A1 (en) 2022-08-04
EP4080549A1 (en) 2022-10-26
TWI804787B (zh) 2023-06-11

Similar Documents

Publication Publication Date Title
US11594415B2 (en) PECVD tungsten containing hardmask films and methods of making
US8658247B2 (en) Film deposition method
WO2021124810A1 (ja) パッシベーション膜の製造方法
WO2020137527A1 (ja) 付着物除去方法及び成膜方法
WO2021095608A1 (ja) 付着物除去方法及び成膜方法
JPH03218621A (ja) 薄膜の選択成長方法及び薄膜の選択成長装置
WO2023176535A1 (ja) 成膜方法及び成膜装置
CN113228235B (zh) 附着物除去方法和成膜方法
US20240124975A1 (en) Method of depositing a transition metal dichalcogenide
US20230148162A1 (en) Film-forming method
JP4845786B2 (ja) 真空排気装置、半導体製造装置及び真空処理方法
JP2004079753A (ja) 半導体装置の製造方法
JP2023550351A (ja) ケイ素及び酸素を含有する誘電体膜の誘電体への選択的堆積

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565407

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227009094

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020902992

Country of ref document: EP

Effective date: 20220718