WO2021109165A1 - 自动驾驶中车辆变道至目标车道前车之前的预测方法 - Google Patents

自动驾驶中车辆变道至目标车道前车之前的预测方法 Download PDF

Info

Publication number
WO2021109165A1
WO2021109165A1 PCT/CN2019/123928 CN2019123928W WO2021109165A1 WO 2021109165 A1 WO2021109165 A1 WO 2021109165A1 CN 2019123928 W CN2019123928 W CN 2019123928W WO 2021109165 A1 WO2021109165 A1 WO 2021109165A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
willingness
lane change
distance
Prior art date
Application number
PCT/CN2019/123928
Other languages
English (en)
French (fr)
Inventor
杜光辉
经建峰
袁雁城
张尧文
Original Assignee
格物汽车科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格物汽车科技(苏州)有限公司 filed Critical 格物汽车科技(苏州)有限公司
Publication of WO2021109165A1 publication Critical patent/WO2021109165A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed

Definitions

  • the present invention relates to the technical field of automatic driving, and in particular to a method for predicting a vehicle before a vehicle in front of a target lane when a vehicle changes lanes during automatic driving.
  • Autonomous driving includes four modules: prediction, decision-making, planning, and control.
  • the prediction module predicts whether the vehicle will change lanes in the future and the lane change trajectory in the case of lane changes based on the vehicle driving state data and lane environment data in each lane.
  • Lane change includes left lane change and right lane change.
  • Left and right lane changes include lane change before the vehicle in front of the target lane and lane change after the vehicle in front of the target lane.
  • the decision-making module calculates the next expected state of the vehicle based on the predicted output results of the prediction module, environmental information, navigation information, the driver's behavior module, the vehicle dynamics model, etc.; the planning module plans the current state and the next expected state Vehicle driving trajectory; the control module calculates the corresponding accelerator, braking and steering according to the planned driving trajectory.
  • the present invention provides a method for predicting before a vehicle changes lanes to a target lane in automatic driving, which combines the pre-lane change vehicle, the first vehicle in front of the lane where the pre-lane change vehicle is located, and the first vehicle in the target lane in front of the pre-change vehicle.
  • the driving state data of a car and the second car in front of the pre-changing vehicle in the target lane calculates the willingness of the pre-changing vehicle to change lanes to the target lane before the first car in front of the pre-changing vehicle , According to the degree of willingness, predict whether the pre-lane change vehicle will change lanes to the first vehicle in front of the target lane in the future, effectively eliminate the factors that interfere with the decision of the vehicle by surrounding vehicles, and improve the confidence of the decision of the vehicle; at the same time, it is effective Reduce the amount of data analysis and calculation of the prediction module in the automatic driving system, reduce the operating difficulty and operating cost of the automatic driving system, and effectively improve the lag time of decision-making.
  • the present invention provides a method for predicting a vehicle before it changes lanes to a target lane in automatic driving, which includes the following steps:
  • the vehicle one is the first vehicle in front of the lane where the pre-lane change vehicle is located; and the vehicle two is in the target lane The first car located in front of the pre-changing vehicle; said vehicle three is the second vehicle in front of the pre-changing vehicle in the target lane;
  • the willingness exceeds the willingness threshold it is predicted that the pre-lane change vehicle will change lanes before the second vehicle at a future time.
  • it further includes that when the lateral speed of the pre-lane change vehicle in the direction of the target lane is less than zero and maintains for a certain period of time, the willingness of the pre-lane change vehicle to change to the target lane is zero .
  • calculating the willingness ⁇ includes:
  • calculating the willingness ⁇ includes:
  • it further includes: calculating the willingness ⁇ 1 according to formula 1,
  • A represents the actual acceleration of the pre-lane change vehicle
  • k 1 represents the linear slope of the functional relationship between the actual acceleration of the pre-lane change vehicle and the willingness ⁇ 1;
  • a 1 represents a fixed acceleration value on the acceleration axis where the actual acceleration of the pre-lane change vehicle is located
  • represents the increase in willingness that the actual acceleration of the pre-lane change vehicle exceeds the acceleration threshold for a certain period of time.
  • A characterizes the distance that the pre-lane change vehicle needs to keep from the vehicle 1 when it is traveling at a driving speed of V2;
  • B represents the driving distance of the pre-lane change vehicle decelerating from the driving speed V1 to the driving speed V2 at a deceleration a x;
  • L1 is the initial distance between the pre-lane change vehicle and vehicle one
  • V1 is the traveling speed of the pre-lane change vehicle
  • S2 is the braking distance from braking to stop of the vehicle one
  • a represents the difference between the preset comfortable braking deceleration a Thres of the pre-lane change vehicle and the deceleration a x ;
  • k 3 represents the linear slope of the functional relationship between the relative speed of the pre-lane change vehicle and vehicle one and the willingness ⁇ 3;
  • X1 represents a fixed speed value on the speed axis where the relative speed of the pre-lane change vehicle and vehicle one is located.
  • V2 is the driving speed of vehicle one
  • S1 is the braking distance from pre-lane change vehicle braking to stop
  • S1 is the braking distance from pre-lane change vehicle braking to stop
  • L1 is the initial distance between the pre-lane change vehicle and vehicle one
  • ⁇ 2 represents a fixed distance value
  • Fig. 3a is a graph of calculating willingness ⁇ 1 in a preferred embodiment of the present invention.
  • Fig. 7 is a graph of calculating willingness ⁇ 6 in a preferred embodiment of the present invention.
  • a 1 represents a fixed acceleration value on the abscissa axis, for example, A 1 takes 0.1g.
  • a 1 is the standard amount that can be adjusted.
  • the duration of the vehicle 4’s actual acceleration exceeding the acceleration threshold is taken as the abscissa, and the willingness increment ⁇ is the ordinate axis to establish a coordinate system.
  • the actual acceleration of the vehicle 4 exceeds the acceleration threshold for the duration of time and The functional relationship between the willingness increment ⁇ is shown in Fig. 3(b).
  • A represents the distance that the vehicle 4 needs to keep from the vehicle 1 when it is running at the driving speed V2;
  • Table B The travel distance of vehicle 4 decelerating from travel speed V1 to travel speed V2 at a deceleration a x;
  • L1 is the initial distance between vehicle 4 and vehicle one
  • V1 is the traveling speed of vehicle 4.
  • V2 is the driving speed of vehicle one
  • S1 is the braking distance from vehicle 4 to stop
  • S2 is the braking distance from braking to stop of the vehicle one
  • T r is the reaction time of the braking of the vehicle 4.
  • D is the safe stopping distance between vehicle 4 and vehicle 1 when they both brake to a stop
  • the comfortable braking deceleration a Thres is preset according to the driver's characteristics. As shown in Figure 4, the difference between the deceleration a Thres and the deceleration a x is the abscissa, and the willingness ⁇ 2 is the ordinate to establish a coordinate system.
  • the functional relationship between ⁇ 2 and the difference between deceleration a Thres and deceleration a x is:
  • a represents the difference between the preset comfortable braking deceleration a Thres of the vehicle 4 and the deceleration a x ;
  • k 2 represents the linear slope of the functional relationship between the difference between the deceleration a Thres and the deceleration a x and the degree of willingness ⁇ 2;
  • a 1 represents a fixed deceleration value on the abscissa axis, for example, a 1 takes 0.5g. It is a standard amount that can be adjusted.
  • X represents the relative speed of vehicle 4 and vehicle one
  • k 3 represents the linear slope of the functional relationship between the relative speed of vehicle 4 and vehicle one and the degree of willingness ⁇ 3;
  • X1 represents a fixed speed value on the abscissa axis, for example, X1 takes V1, and V1 is the driving speed of the vehicle 4.
  • X1 is a variable that can be calibrated.
  • ⁇ 1 represents the degree of congestion in front of the lane where the pre-changing vehicle is located
  • ⁇ 2 represents the degree of congestion in front of the lane where the second vehicle is located.
  • the congestion level When calculating the congestion level here, it is characterized by the number of cars within a certain distance. For example, if there are 6 cars within 100mm ahead, the calculated congestion level is
  • the calculation of the willingness ⁇ 5 includes:
  • A characterizes the distance that the vehicle 4 needs to keep from the vehicle one when it is traveling at the driving speed V2;
  • V1 is the traveling speed of vehicle 4.
  • V2 is the driving speed of vehicle one
  • S1 is the braking distance from vehicle 4 to stop
  • S2 is the braking distance from braking to stop of the vehicle one
  • T r is the reaction time of the braking of the vehicle 4.
  • D is the safe stopping distance between vehicle 4 and vehicle 1 when they both brake to a stop
  • L1 is the initial distance between vehicle 4 and vehicle one
  • ⁇ 1 represents a fixed distance value, which is a standard amount that can be adjusted.
  • the degree of willingness ⁇ 5 is related to the distance along the lane line between vehicle 1 and vehicle 3.
  • the distance between vehicle 1 and vehicle 3 along the lane line is used as the abscissa, and the degree of willingness ⁇ 5 is the ordinate to establish the coordinates.
  • System the functional relationship between the willingness ⁇ 5 and the distance along the lane line between the vehicle one and the vehicle three is shown in Fig. 6,
  • E represents the distance along the lane line between vehicle one and vehicle three;
  • k 4 represents the linear slope of the functional relationship between the distance along the lane line between vehicle one and vehicle three and the degree of willingness ⁇ 5;
  • E1 and E2 represent two fixed distance values on the abscissa axis, E1 takes 2m, and E2 takes 0.5s*V1; E1 and E2 are both calibrated quantities that can be adjusted.
  • the calculation of the willingness ⁇ 6 includes:
  • A characterizes the distance that the vehicle 4 needs to keep from the vehicle one when it is traveling at the driving speed V2;
  • V1 is the traveling speed of vehicle 4.
  • V2 is the driving speed of vehicle one
  • S1 is the braking distance from vehicle 4 to stop
  • S2 is the braking distance from braking to stop of the vehicle one
  • T r is the reaction time of the braking of the vehicle 4.
  • D is the safe stopping distance between vehicle 4 and vehicle 1 when they both brake to a stop
  • L1 is the initial distance between vehicle 4 and vehicle one
  • ⁇ 2 represents a fixed distance value, which is a standard amount that can be adjusted.
  • the degree of willingness ⁇ 6 is related to the speed ratio F of vehicle three to vehicle one.
  • the speed ratio of vehicle three to vehicle one is used as the abscissa and the degree of willingness ⁇ 6 is used as the ordinate to establish a coordinate system.
  • the functional relationship between the willingness ⁇ 6 and the speed ratio F of vehicle three to vehicle one is:
  • F represents the ratio of the speed of the vehicle three to the speed of the vehicle one
  • F1 and F2 represent two fixed values on the abscissa. For example, F1 takes 1, and F2 takes 1.5. Here, both F1 and F2 are standard amounts that can be adjusted.
  • k 5 represents the linear slope of the functional relationship between the speed ratio of vehicle three to vehicle one and the degree of willingness ⁇ 6;
  • ⁇ * represents a fixed value greater than zero and less than or equal to 1, which is a standard amount that can be adjusted.
  • the first car in front of the lane where the pre-lane change vehicle is located the first car in the target lane in front of the pre-lane change vehicle, and the second car in the target lane in front of the pre-lane change vehicle.
  • the driving state data of the vehicle calculates the willingness of the pre-lane-changing vehicle to change lanes to the target lane before the first car in front of the pre-lane-changing vehicle, and predicts whether the pre-lane-changing vehicle will change lanes to the target in the future based on the willingness Before the first car in front of the lane, it effectively eliminates the factors that interfere with the decision of the vehicle by surrounding vehicles, and improves the confidence of the decision of the vehicle; at the same time, it effectively reduces the amount of data analysis and calculation of the prediction module in the automatic driving system, and reduces the operation of the automatic driving system. Difficulty and operating cost, effectively improving the lag in decision-making.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种自动驾驶中车辆变道至目标车道前车之前的预测方法,获取预变道车辆、车辆一、车辆二、车辆三当前采样周期的行驶状态数据;车辆一为预变道车辆所在车道前方第一辆车;车辆二和车辆三分别为目标车道内位于预变道车辆前方第一辆车、第二辆车;结合各车辆的行驶状态数据计算出预变道车辆变道至车辆二之前的意愿度;当意愿度超过意愿度阈值时,预测出预变道车辆将在未来时刻变道至车辆二之前。本发明车辆变道至目标车道前车之前的预测方法,有效排除周围车辆干扰本车决策的因素,提高本车决策的确信度,有效降低自动驾驶***中预测模块的数据分析计算量,降低自动驾驶***的运行难度和运行成本,有效改善决策的滞后延时。

Description

自动驾驶中车辆变道至目标车道前车之前的预测方法 技术领域
本发明涉及自动驾驶技术领域,具体涉及一种自动驾驶中车辆变道至目标车道前车之前的预测方法。
背景技术
自动驾驶包括预测、决策、规划和控制四大模块,预测模块根据各车道的车辆行驶状态数据和车道环境数据预测车辆在未来时刻是否会变道,以及变道情况下的变道轨迹。变道包括左变道、右变道,左、右变道又包括变道至目标车道前车之前和变道至目标车道前车之后。决策模块根据预测模块的预测输出结果、环境信息、导航信息、本车驾驶员行为模块、本车动力学模型等计算本车的下一个期望状态;规划模块根据当前状态以及下一个期望状态规划本车行驶轨迹;控制模块根据规划的行驶轨迹计算相应的油门、制动和转向。
目前,一些互联网企业和汽车厂商的自动驾驶***中,将预测出的所有感兴趣车辆(定义为可能对本车行驶带来干扰的周围车辆)均默认为在未来时刻会发生变道。这些车辆中不排除有部分车辆变道的意愿度较低的车辆,这里的意愿度为变道的意愿程度。这些变道意愿度较低的周围感兴趣车辆会干扰本车决策,还会增加本车对各车行驶状态时护具分析的计算量,增加自动驾驶***运行难度和运行成本。
发明内容
本发明提供一种自动驾驶中车辆变道至目标车道前车之前的预测方法,结合预变道车辆、预变道车辆所在车道的前方第一辆车、目标车道内位于预变道 车辆前方第一辆车和目标车道内位于预变道车辆前方第二辆车这四辆车的行驶状态数据计算出预变道车辆变道至目标车道位于预变道车辆前方第一辆车之前的意愿度,根据意愿度来预测预变道车辆在未来时刻是否会变道至目标车道位前方第一辆车之前,有效排除周围车辆干扰本车决策的因素,提高本车决策的确信度;同时,有效降低自动驾驶***中预测模块的数据分析计算量,降低自动驾驶***的运行难度和运行成本,有效改善决策的滞后延时。
为了解决上述技术问题,本发明提供了一种自动驾驶中车辆变道至目标车道前车之前的预测方法,包括以下步骤,
获取预变道车辆、车辆一、车辆二、车辆三当前采样周期的行驶状态数据;其中,所述车辆一为预变道车辆所在车道的前方第一辆车;所述车辆二为目标车道内位于预变道车辆前方的第一辆车;所述车辆三为目标车道内位于预变道车辆前方的第二辆车;
结合各车辆的所述行驶状态数据计算出所述预变道车辆变道至所述车辆二之前的意愿度λ,0≤λ≤1;
当所述意愿度超过意愿度阈值时,预测出所述预变道车辆将在未来时刻变道至所述车辆二之前。
本发明一个较佳实施例中,进一步包括,所述预变道车辆向目标车道方向的横向速度小于零、且维持一定时间时,所述预变道车辆变道至目标车道的意愿度为零。
本发明一个较佳实施例中,进一步包括,计算所述意愿度λ包括,
存在一个时间t∈[0,t Thres],t Thres为能够调整的标定量;
存在一个时间t 1,该时间内预变道车辆的行驶速度大于车辆一的行驶速度;
存在一个时间t 2,该时间内所述车辆三位于车辆一的前方;
存在一个时间t 3,该时间内所述车辆一位于车辆二的前方;
存在一个时间t 4,该时间内所述预变道车辆位于车辆二的前方;
当时间t 1、时间t 2、时间t 3和时间t 4四者在时间t内有交集、且预变道车辆的行驶速度大于车辆二的行驶速度时,计算所述意愿度λ考虑预变道车辆实际加速度、预变道车辆和车辆一之间沿车道线方向间隔距离和预变道车辆与车辆一之间相对速度的影响、车道拥堵程度的影响、车辆三和车辆一之间纵向距离的影响、车辆三与车辆一两者行驶速度比的影响;否则,所述意愿度λ为零。
本发明一个较佳实施例中,进一步包括,计算所述意愿度λ包括,
计算预变道车辆实际加速度影响下的意愿度λ1;
计算预变道车辆和车辆一之间沿车道线方向间隔距离影响下的意愿度λ2;
计算预变道车辆与车辆一之间相对速度影响下的意愿度λ3;
计算车道拥堵程度影响下的意愿度λ4;
计算车辆三和车辆一之间纵向距离的影响下的意愿度λ5;
计算车辆三与车辆一两者行驶速度比影响下的意愿度λ6;
λ=max{λ1,λ2,λ3,λ4,λ5,λ6}   (式一);
根据式一计算预变道车辆变道至车辆二之前的意愿度λ。
本发明一个较佳实施例中,进一步包括,根据公式一计算所述意愿度λ1,
Figure PCTCN2019123928-appb-000001
A表征预变道车辆的实际加速度;
k 1表征预变道车辆实际加速度与意愿度λ1之间函数关系的直线斜率;
A 1表征预变道车辆实际加速度所在加速度轴上的一个固定加速度值;
Δλ表征预变道车辆的实际加速度超出加速度阈值持续一定时间的意愿度增量。
本发明一个较佳实施例中,进一步包括,计算所述意愿度λ2包括,
计算L1=A+B、A=S1-S2+V1*T r+D;
A表征预变道车辆以行驶速度V2行驶时与车辆一需要保持的距离;
B表征预变道车辆以减速度a x从行驶速度V1减速至行驶速度V2的行驶距离;
L1为预变道车辆和车辆一之间的初始间距;
V1为预变道车辆的行驶速度;
V2为车辆一的行驶速度;
S1为预变道车辆制动至停止的制动距离;
S2为车辆一制动至停止的制动距离;
T r为预变道车辆的制动反应时间;
D为预变道车辆和车辆一均制动至停止时两者之间的安全停车距离;
当B=(L1-A)≤0时,意愿度λ2=1;
当B=(L1-A)>0,且V1≤V2时,意愿度λ2=0;
当B=(L1-A)>0,且V1>V2时,根据式二计算预变道车辆的减速度a x
Figure PCTCN2019123928-appb-000002
根据公式二计算所述意愿度λ2:
Figure PCTCN2019123928-appb-000003
其中,a表征预变道车辆的预设舒适制动减速度a Thres与减速度a x的差值;
k 2表征减速度a Thres与减速度a x的差值与意愿度λ2之间函数关系的直线斜率;
a 1表征减速度a Thres与减速度a x的差值所在减速度轴上的一个固定减速度值。
本发明一个较佳实施例中,进一步包括,根据公式三计算所述意愿度λ3,
Figure PCTCN2019123928-appb-000004
其中,X表征预变道车辆与车辆一的相对速度;
k 3表征预变道车辆与车辆一的相对速度与意愿度λ3之间函数关系的直线斜率;
X1表征预变道车辆与车辆一的相对速度所在速度轴上的一个固定速度值。
本发明一个较佳实施例中,进一步包括,根据公式四计算所述意愿度λ4,
Figure PCTCN2019123928-appb-000005
其中,ρ1表征预变道车辆所在车道前方拥堵程度;
ρ2表征车辆二所在车道前方拥堵程度。
本发明一个较佳实施例中,进一步包括,计算所述意愿度λ5包括,计算A=S1-S2+V1*T r+D
A表征预变道车辆以行驶速度V2行驶时需要与车辆一保持的距离;V1为预变道车辆的行驶速度;
V2为车辆一的行驶速度;
S1为预变道车辆制动至停止的制动距离;
S2为车辆一制动至停止的制动距离;
T r为预变道车辆的制动反应时间;
D为预变道车辆和车辆一均制动至停止时两者之间的安全停车距离;
L1为预变道车辆和车辆一之间的初始间距;
当L1>A+Δ1时,λ5=0;
当L1≤A+Δ1时,根据公式五计算所述意愿度λ5,
Figure PCTCN2019123928-appb-000006
其中,Δ1表征一个固定的距离值;
E表征车辆一与车辆三之间的沿车道线距离;
k 4表征车辆一与车辆三之间沿车道线距离与意愿度λ5之间函数关系的直线斜率;
E1和E2表征车辆一与车辆三之间沿车道线距离所在距离轴上的两个固定距离值。
本发明一个较佳实施例中,进一步包括,计算所述意愿度λ6包括,
计算A=S1-S2+V1*T r+D
A表征预变道车辆以行驶速度V2行驶时需要与车辆一保持的距离;
V1为预变道车辆的行驶速度;
V2为车辆一的行驶速度;
S1为预变道车辆制动至停止的制动距离;
S2为车辆一制动至停止的制动距离;
T r为预变道车辆的制动反应时间;
D为预变道车辆和车辆一均制动至停止时两者之间的安全停车距离;
L1为预变道车辆和车辆一之间的初始间距;
当L1>A+Δ2时,λ6=0;
当L1≤A+Δ2时,根据公式六计算所述意愿度λ6,
Figure PCTCN2019123928-appb-000007
其中,Δ2表征一个固定的距离值;
F表征车辆三行驶速度与车辆一行驶速度的比值;
F1和F2表征车辆三和车辆一两者行驶速度比所在轴上的两个固定值;
k 5表征车辆三与车辆一行驶速度比与意愿度λ6之间函数关系的直线斜率;
λ *表征大于零小于等于1的一个固定值。
本发明的有益效果:
本发明自动驾驶中车辆变道至目标车道前车之前的预测方法,结合预变道车辆、预变道车辆所在车道的前方第一辆车、目标车道内位于预变道车辆前方第一辆车和目标车道内位于预变道车辆前方第二辆车这四辆车的行驶状态数据计算出预变道车辆变道至目标车道位于预变道车辆前方第一辆车之前的意愿度,根据意愿度来预测预变道车辆在未来时刻是否会变道至目标车道位于预变道车辆前方第一辆车之前,有效排除周围车辆干扰本车决策的因素,提高本车决策的确信度;同时,有效降低自动驾驶***中预测模块的数据分析计算量,降低自动驾驶***的运行难度和运行成本,有效改善决策的滞后延时。
附图说明
图1是本发明优选实施例中预测方法的流程图;
图2是本发明优选实施例中计算被预测车辆变道至目标车道前方第一辆车之前的路况示意图;
图3a是本发明优选实施例中计算意愿度λ1的曲线图;
图3b是本发明优选实施例中计算意愿度增量Δλ的曲线图;
图4是本发明优选实施例中计算意愿度λ2的曲线图;
图5是本发明优选实施例中计算意愿度λ3的曲线图;
图6是本发明优选实施例中计算意愿度λ5的曲线图;
[根据细则91更正 14.04.2020] 
图7是本发明优选实施例中计算意愿度λ6的曲线图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一
本实施例公开一种自动驾驶中车辆变道至目标车道前车之前的预测方法,参照图1所示,其包括以下步骤,
获取预变道车辆、车辆一、车辆二、车辆三当前采样周期的行驶状态数据,其中,上述车辆一为预变道车辆所在车道的前方第一辆车;上述车辆二为目标车道内位于预变道车辆前方的第一辆车;上述车辆三为目标车道内位于预变道车辆前方的第二辆车。参照图2所示,车辆4表征预变道车辆,车辆1表征车辆一,车辆2表征车辆二,车辆3表征车辆三。各车的行驶状态数据包括行驶速度、横向速度、各车之间沿车道线方向的距离(或称“纵向距离”)、加速度、减速度、横向加减速度等。当图2中某辆车不存在时,认为与该车相关的距离为无穷远。
结合预变道车辆、车辆一、车辆二、车辆三的行驶状态数据计算出车辆4变道至车辆二之前的意愿度λ,0≤λ≤1;
当意愿度λ超过意愿度阈值时,预测出车辆4将在未来时刻变道至车辆二之前。此处,根据驾驶员特性预设意愿度阈值,比如,预设意愿度阈值为0.6,或者0.65,或者0.7等。
计算上述意愿度λ包括排除以下否定项:
否定项1:车辆4向目标车道方向的横向速度v y小于零、且维持一定时间时,车辆4变道至车辆二所在车道的意愿度为零。比如,车辆4向车辆二所在 车道方向的横向速度v y小于等于零、且持续2s时,车辆4变道至车辆二所在车道的意愿度为零。此处的持续时间为能够调整的标定量。需要说明的有:横向速度v y大于0,表征车辆4偏向目标车道;横向速度v y小于0,表征车辆4偏离目标车道。
否定项2:存在一个时间t∈[0,t Thres],t Thres为能够调整的时间标定量,比如,标定t Thres为20s,或者25s;
存在一个时间t 1,该时间内预变道车辆的行驶速度大于车辆一的行驶速度;
存在一个时间t 2,该时间内所述车辆三位于车辆一的前方;
存在一个时间t 3,该时间内所述车辆一位于车辆二的前方;
存在一个时间t 4,该时间内所述预变道车辆位于车辆二的前方;
上述时间t 1、时间t 2、时间t 3和时间t 4四者在时间t内有交集、且车辆4的行驶速度大于车辆二的行驶速度时,计算上述意愿度λ考虑车辆4实际加速度、车辆4和车辆一之间沿车道线方向间隔距离和车辆4与车辆一之间相对速度的影响、车道拥堵程度的影响、车辆三和车辆一之间纵向距离的影响、车辆三与车辆一两者行驶速度比的影响;否则,上述意愿度λ为零。
计算意愿度λ包括,
计算车辆4实际加速度影响下的意愿度λ1;
计算车辆4和车辆一之间沿车道线方向间隔距离影响下的意愿度λ2;
计算车辆4与车辆一之间相对速度影响下的意愿度λ3;
计算车道拥堵程度影响下的意愿度λ4;
计算车辆三和车辆一之间纵向距离的影响下的意愿度λ5;
计算车辆三与车辆一两者行驶速度比影响下的意愿度λ6;
λ=max{λ1,λ2,λ3,λ4,λ5,λ6}  (式一);
根据式一计算车辆4至车辆二之前的意愿度λ。
本实施例技术方案中,优选通过以下方式计算获得意愿度λ1、λ2、λ3、λ4、λ5和λ6:
(1)先根据车辆4当前的实际加速度A计算一个意愿度,然后根据加速度A持续的时间计算一个意愿度的增量Δλ,该增量随持续时间的增加变化,并且不同加速度A对应的增量曲线斜率不同,加速度A值越大,斜率越大,意愿度λ4为实际加速度A对应的意愿度和意愿度增量之和,但两者之和应与1取小。
以车辆4当前的实际加速度A为横坐标,意愿度λ1为纵坐标建立坐标系,意愿度λ1与车辆4当前实际加速度A的函数关系参照图3(a)所示,
Figure PCTCN2019123928-appb-000008
A表征车辆4的实际加速度;
k 1表征车辆4实际加速度与意愿度λ4之间函数关系的直线斜率;
A 1表征横坐标轴上的一个固定加速度值,比如,A 1取0.1g。此处A 1为能够调整的标定量。
Δλ表征车辆4的实际加速度超出加速度阈值持续一定时间的意愿度增量。
参照图3(b)所示,以车辆4的实际加速度超出加速度阈值持续的时间为横坐标,意愿度增量Δλ为纵坐标轴建立坐标系,车辆4的实际加速度超出加速度阈值持续的时间与意愿度增量Δλ之间的函数关系参照图3(b)所示。
图3(a)和图3(b)中,除纵轴坐标最大值为1外,直线的折点横坐标值、纵坐标值、直线斜率均为能够调整的标定参数。
(2)计算所述意愿度λ2包括,
计算L1=A+B、A=S1-S2+V1*T r+D;
A表征车辆4以行驶速度V2行驶时与车辆一需要保持的距离;
B表车辆4以减速度a x从行驶速度V1减速至行驶速度V2的行驶距离;
L1为车辆4和车辆一之间的初始间距;
V1为车辆4的行驶速度;
V2为车辆一的行驶速度;
S1为车辆4制动至停止的制动距离;
S2为车辆一制动至停止的制动距离;
T r为车辆4的制动反应时间;
D为车辆4和车辆一均制动至停止时两者之间的安全停车距离;
当B=(L1-A)≤0时,意愿度λ2=1;
当B=(L1-A)>0,且V1≤V2时,意愿度λ2=0;
当B=(L1-A)>0,且V1>V2时,根据式二计算预变道车辆的减速度a x
Figure PCTCN2019123928-appb-000009
根据驾驶员特性预设舒适制动的减速度a Thres,参照图4所示,以减速度a Thres 和减速度a x的差值为横坐标,意愿度λ2为纵坐标建立坐标系,意愿度λ2与减速度a Thres和减速度a x的差值之间的函数关系为:
Figure PCTCN2019123928-appb-000010
其中,a表征车辆4的预设舒适制动减速度a Thres与减速度a x的差值;
k 2表征减速度a Thres与减速度a x的差值与意愿度λ2之间函数关系的直线斜率;
a 1表征横坐标轴上的一个固定减速度值,比如,a 1取0.5g。其为能够调整的标定量。
图4中,除纵轴坐标最大值为1外,直线的折点横坐标值、纵坐标值、直线斜率均为能够调整的标定参数。
(3)以车辆4与车辆一的相对速度为横坐标,意愿度λ3为纵坐标建立坐标系,车辆4与车辆一的相对速度与λ3之间的函数关系参照图5所示,
Figure PCTCN2019123928-appb-000011
其中,X表征车辆4与车辆一的相对速度;
k 3表征车辆4与车辆一的相对速度与意愿度λ3之间函数关系的直线斜率;
X1表征横坐标轴上的一个固定速度值,比如,X1取V1,V1为车辆4的行驶速度。此处X1为能够标定的变量。
图5中,除纵轴坐标最大值为1外,直线的折点横坐标值、纵坐标值、直线斜率均为能够调整的标定参数。
(4)根据公式四计算所述意愿度λ4,
Figure PCTCN2019123928-appb-000012
其中,ρ1表征预变道车辆所在车道前方拥堵程度;
ρ2表征车辆二所在车道前方拥堵程度。
此处计算拥堵程度时,以一定距离内的车数量表征,比如,前方100mm内有6辆车,计算出来的拥堵程度为
Figure PCTCN2019123928-appb-000013
(5)计算所述意愿度λ5包括,
计算A=S1-S2+V1*T r+D
A表征车辆4以行驶速度V2行驶时需要与车辆一保持的距离;
V1为车辆4的行驶速度;
V2为车辆一的行驶速度;
S1为车辆4制动至停止的制动距离;
S2为车辆一制动至停止的制动距离;
T r为车辆4的制动反应时间;
D为车辆4和车辆一均制动至停止时两者之间的安全停车距离;
L1为车辆4和车辆一之间的初始间距;
当L1>A+Δ1时,λ5=0;此处,Δ1表征一个固定的距离值,其为能够调整的标定量。
当L1≤A+Δ1时,意愿度λ5与车辆一和车辆三之间的沿车道线距离相关,以车辆一和车辆三之间沿车道线距离为横坐标,意愿度λ5为纵坐标建立坐标系,意愿度λ5与车辆一和车辆三之间的沿车道线距离相关之间的函数关系参照图6所示,
Figure PCTCN2019123928-appb-000014
其中,E表征车辆一与车辆三之间的沿车道线距离;
k 4表征车辆一与车辆三之间沿车道线距离与意愿度λ5之间函数关系的直线斜率;
E1和E2表征横坐标轴上的两个固定距离值,E1取2m,E2取0.5s*V1;E1和E2均为能够能够调整的标定量。
图6中,除纵轴坐标最大值为1外,直线的折点横坐标值、纵坐标值、直线斜率均为能够调整的标定参数.
(6)计算所述意愿度λ6包括,
计算A=S1-S2+V1*T r+D
A表征车辆4以行驶速度V2行驶时需要与车辆一保持的距离;
V1为车辆4的行驶速度;
V2为车辆一的行驶速度;
S1为车辆4制动至停止的制动距离;
S2为车辆一制动至停止的制动距离;
T r为车辆4的制动反应时间;
D为车辆4和车辆一均制动至停止时两者之间的安全停车距离;
L1为车辆4和车辆一之间的初始间距;
当L1>A+Δ2时,λ6=0。此处,Δ2表征一个固定的距离值,其为能够调整的标定量。
当L1≤A+Δ2时,意愿度λ6与车辆三与车辆一的行驶速度比F相关,以车辆三与车辆一的行驶速度比为横坐标,意愿度λ6为纵坐标建立坐标系,参照图7所示,意愿度λ6与车辆三与车辆一的行驶速度比F的函数关系为:
Figure PCTCN2019123928-appb-000015
其中,F表征车辆三行驶速度与车辆一行驶速度的比值;
F1和F2表征横坐标上的两个固定值。比如,F1取1,F2取1.5。此处,F1和F2均为能够调整的标定量。
k 5表征车辆三与车辆一行驶速度比与意愿度λ6之间函数关系的直线斜率;
λ *表征大于零小于等于1的一个固定值,其为能够调整的标定量。
图6中,除纵轴坐标最大值为1外,直线的折点横坐标值、纵坐标值、直线斜率均为能够调整的标定参数。
以上,结合预变道车辆、预变道车辆所在车道的前方第一辆车、目标车道内位于预变道车辆前方第一辆车和目标车道内位于预变道车辆前方第二辆车这四辆车的行驶状态数据计算出预变道车辆变道至目标车道位于预变道车辆前方第一辆车之前的意愿度,根据意愿度来预测预变道车辆在未来时刻是否会变道 至目标车道位前方第一辆车之前,有效排除周围车辆干扰本车决策的因素,提高本车决策的确信度;同时,有效降低自动驾驶***中预测模块的数据分析计算量,降低自动驾驶***的运行难度和运行成本,有效改善决策的滞后延时。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:包括以下步骤,
    获取预变道车辆、车辆一、车辆二、车辆三当前采样周期的行驶状态数据;其中,所述车辆一为预变道车辆所在车道的前方第一辆车;所述车辆二为目标车道内位于预变道车辆前方的第一辆车;所述车辆三为目标车道内位于预变道车辆前方的第二辆车;
    结合各车辆的所述行驶状态数据计算出所述预变道车辆变道至所述车辆二之前的意愿度λ,0≤λ≤1;
    当所述意愿度超过意愿度阈值时,预测出所述预变道车辆将在未来时刻变道至所述车辆二之前。
  2. 如权利要求1所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:所述预变道车辆向目标车道方向的横向速度小于零、且维持一定时间时,所述预变道车辆变道至目标车道的意愿度为零。
  3. 如权利要求1所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:计算所述意愿度λ包括,
    存在一个时间t∈[0,t Thres],t Thres为能够调整的标定量;
    存在一个时间t 1,该时间内预变道车辆的行驶速度大于车辆一的行驶速度;
    存在一个时间t 2,该时间内所述车辆三位于车辆一的前方;
    存在一个时间t 3,该时间内所述车辆一位于车辆二的前方;
    存在一个时间t 4,该时间内所述预变道车辆位于车辆二的前方;
    当时间t 1、时间t 2、时间t 3和时间t 4四者在时间t内有交集、且预变道车辆的行驶速度大于车辆二的行驶速度时,计算所述意愿度λ考虑预变道车辆实际加速度、预变道车辆和车辆一之间沿车道线方向间隔距离和预变道车辆与车辆一之间相对速度的影响、车道拥堵程度的影响、车辆三和车辆一之间纵向距离的影响、车辆三与车辆一两者行驶速度比的影响;否则,所述意愿度λ为零。
  4. 如权利要求3所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:计算所述意愿度λ包括,
    计算预变道车辆实际加速度影响下的意愿度λ1;
    计算预变道车辆和车辆一之间沿车道线方向间隔距离影响下的意愿度λ2;
    计算预变道车辆与车辆一之间相对速度影响下的意愿度λ3;
    计算车道拥堵程度影响下的意愿度λ4;
    计算车辆三和车辆一之间纵向距离的影响下的意愿度λ5;
    计算车辆三与车辆一两者行驶速度比影响下的意愿度λ6;
    λ=max{λ1,λ2,λ3,λ4,λ5,λ6}  (式一);
    根据式一计算预变道车辆变道至车辆二之前的意愿度λ。
  5. 如权利要求4所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:根据公式一计算所述意愿度λ1,
    Figure PCTCN2019123928-appb-100001
    A表征预变道车辆的实际加速度;
    k 1表征预变道车辆实际加速度与意愿度λ1之间函数关系的直线斜率;
    A 1表征预变道车辆实际加速度所在加速度轴上的一个固定加速度值;
    Δλ表征预变道车辆的实际加速度超出加速度阈值持续一定时间的意愿度增量。
  6. 如权利要求4所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:计算所述意愿度λ2包括,
    计算L1=A+B、A=S1-S2+V1*T r+D;
    A表征预变道车辆以行驶速度V2行驶时与车辆一需要保持的距离;
    B表征预变道车辆以减速度a x从行驶速度V1减速至行驶速度V2的行驶距离;
    L1为预变道车辆和车辆一之间的初始间距;
    V1为预变道车辆的行驶速度;
    V2为车辆一的行驶速度;
    S1为预变道车辆制动至停止的制动距离;
    S2为车辆一制动至停止的制动距离;
    T r为预变道车辆的制动反应时间;
    D为预变道车辆和车辆一均制动至停止时两者之间的安全停车距离;
    当B=(L1-A)≤0时,意愿度λ2=1;
    当B=(L1-A)>0,且V1≤V2时,意愿度λ2=0;
    当B=(L1-A)>0,且V1>V2时,根据式二计算预变道车辆的减速度a x
    Figure PCTCN2019123928-appb-100002
    根据公式二计算所述意愿度λ2:
    Figure PCTCN2019123928-appb-100003
    其中,a表征预变道车辆的预设舒适制动减速度a Thres与减速度a x的差值;
    k 2表征减速度a Thres与减速度a x的差值与意愿度λ2之间函数关系的直线斜率;
    a 1表征减速度a Thres与减速度a x的差值所在减速度轴上的一个固定减速度值。
  7. 如权利要求4所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:根据公式三计算所述意愿度λ3,
    Figure PCTCN2019123928-appb-100004
    其中,X表征预变道车辆与车辆一的相对速度;
    k 3表征预变道车辆与车辆一的相对速度与意愿度λ3之间函数关系的直线斜率;
    X1表征预变道车辆与车辆一的相对速度所在速度轴上的一个固定速度值。
  8. 如权利要求4所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:根据公式四计算所述意愿度λ4,
    Figure PCTCN2019123928-appb-100005
    其中,ρ1表征预变道车辆所在车道前方拥堵程度;
    ρ2表征车辆二所在车道前方拥堵程度。
  9. 如权利要求4所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:计算所述意愿度λ5包括,
    计算A=S1-S2+V1*T r+D
    A表征预变道车辆以行驶速度V2行驶时需要与车辆一保持的距离;
    V1为预变道车辆的行驶速度;
    V2为车辆一的行驶速度;
    S1为预变道车辆制动至停止的制动距离;
    S2为车辆一制动至停止的制动距离;
    T r为预变道车辆的制动反应时间;
    D为预变道车辆和车辆一均制动至停止时两者之间的安全停车距离;
    L1为预变道车辆和车辆一之间的初始间距;
    当L1>A+Δ1时,λ5=0;
    当L1≤A+Δ1时,根据公式五计算所述意愿度λ5,
    Figure PCTCN2019123928-appb-100006
    其中,Δ1表征一个固定的距离值;
    E表征车辆一与车辆三之间的沿车道线距离;
    k 4表征车辆一与车辆三之间沿车道线距离与意愿度λ5之间函数关系的直线斜率;
    E1和E2表征车辆一与车辆三之间沿车道线距离所在距离轴上的两个固定距离值。
  10. 如权利要求4所述的自动驾驶中车辆变道至目标车道前车之前的预测方法,其特征在于:计算所述意愿度λ6包括,
    计算A=S1-S2+V1*T r+D
    A表征预变道车辆以行驶速度V2行驶时需要与车辆一保持的距离;
    V1为预变道车辆的行驶速度;
    V2为车辆一的行驶速度;
    S1为预变道车辆制动至停止的制动距离;
    S2为车辆一制动至停止的制动距离;
    T r为预变道车辆的制动反应时间;
    D为预变道车辆和车辆一均制动至停止时两者之间的安全停车距离;
    L1为预变道车辆和车辆一之间的初始间距;
    当L1>A+Δ2时,λ6=0;
    当L1≤A+Δ2时,根据公式六计算所述意愿度λ6,
    Figure PCTCN2019123928-appb-100007
    其中,Δ2表征一个固定的距离值;
    F表征车辆三行驶速度与车辆一行驶速度的比值;
    F1和F2表征车辆三和车辆一两者行驶速度比所在轴上的两个固定值;
    k 5表征车辆三与车辆一行驶速度比与意愿度λ6之间函数关系的直线斜率;
    λ *表征大于零小于等于1的一个固定值。
PCT/CN2019/123928 2019-12-06 2019-12-09 自动驾驶中车辆变道至目标车道前车之前的预测方法 WO2021109165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911242709.1A CN110920622B (zh) 2019-12-06 2019-12-06 自动驾驶中车辆变道至目标车道前车之前的预测方法
CN201911242709.1 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021109165A1 true WO2021109165A1 (zh) 2021-06-10

Family

ID=69857375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123928 WO2021109165A1 (zh) 2019-12-06 2019-12-09 自动驾驶中车辆变道至目标车道前车之前的预测方法

Country Status (2)

Country Link
CN (1) CN110920622B (zh)
WO (1) WO2021109165A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112046494B (zh) * 2020-09-11 2021-10-29 中国第一汽车股份有限公司 一种车辆控制方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005109A (ko) * 2011-07-05 2013-01-15 현대자동차주식회사 오경보 방지 기능을 가지는 추돌 경보 장치 및 그 방법
CN106874597A (zh) * 2017-02-16 2017-06-20 北理慧动(常熟)车辆科技有限公司 一种应用于自动驾驶车辆的高速公路超车行为决策方法
CN108919799A (zh) * 2018-06-10 2018-11-30 同济大学 一种网联智能车辆协作换道方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012216112A1 (de) * 2012-09-12 2014-03-13 Robert Bosch Gmbh Verfahren und Informationssystem zur Ermittlung eines vom Fahrer beabsichtigen oder nicht beabsichtigten Fahrspurwechsels bei einer Fahrt eines Fahrzeugs
US10077050B2 (en) * 2016-05-24 2018-09-18 GM Global Technology Operations LLC Automated driving system for evaluating lane cut-out and method of using the same
EP3291202B1 (en) * 2016-08-29 2019-04-17 Volvo Car Corporation Method of road vehicle trajectory planning
JP6494121B2 (ja) * 2017-03-01 2019-04-03 本田技研工業株式会社 車線変更推定装置、車線変更推定方法、およびプログラム
CN107919027B (zh) * 2017-10-24 2020-04-28 北京汽车集团有限公司 预测车辆变道的方法、装置和***
JP7029322B2 (ja) * 2018-03-15 2022-03-03 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
CN110533958A (zh) * 2018-05-24 2019-12-03 上海博泰悦臻电子设备制造有限公司 车辆变道提醒方法及***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005109A (ko) * 2011-07-05 2013-01-15 현대자동차주식회사 오경보 방지 기능을 가지는 추돌 경보 장치 및 그 방법
CN106874597A (zh) * 2017-02-16 2017-06-20 北理慧动(常熟)车辆科技有限公司 一种应用于自动驾驶车辆的高速公路超车行为决策方法
CN108919799A (zh) * 2018-06-10 2018-11-30 同济大学 一种网联智能车辆协作换道方法

Also Published As

Publication number Publication date
CN110920622A (zh) 2020-03-27
CN110920622B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN111867911B (zh) 车辆控制方法和设备
CN106926844B (zh) 一种基于实时环境信息的动态自动驾驶换道轨迹规划方法
US9428187B2 (en) Lane change path planning algorithm for autonomous driving vehicle
US9457807B2 (en) Unified motion planning algorithm for autonomous driving vehicle in obstacle avoidance maneuver
US20160221578A1 (en) System and method for optimizing fuel economy using predictive environment and driver behavior information
JP7151179B2 (ja) 車線変更推定装置および車線変更推定方法と、車両制御装置および車両制御方法
CN108919795A (zh) 一种自动驾驶汽车换道决策方法及装置
US10532736B2 (en) Vehicle travel control device
EP2440440B1 (en) Method and module for determining of reference values for a vehicle control system
CN110789524B (zh) 自适应巡航控制
US20200062255A1 (en) Vehicle velocity control
WO2015047174A1 (en) Method and system for managing obstacles for vehicle platoons
EP3053156A1 (en) Method and system for the organisation of vehicle platoons
JPWO2010084568A1 (ja) 隊列走行制御システム及び車両
US11618473B2 (en) Vehicle control system
JP7156238B2 (ja) 車両制御システム
CN113548050A (zh) 车辆行驶控制方法、装置、***和存储介质
JP2019127081A (ja) 車両の自動運転制御装置及び自動運転制御方法
Wang et al. Predictive safety control for road vehicles after a tire blowout
WO2021109164A1 (zh) 自动驾驶中车辆变道至目标车道前车之后的预测方法
US20220355792A1 (en) Method and device for trajectory planning for a vehicle
WO2021109165A1 (zh) 自动驾驶中车辆变道至目标车道前车之前的预测方法
CN113147766A (zh) 目标车辆的换道预测方法及设备
JP7356892B2 (ja) 車両の走行環境推定方法、及び、走行環境推定システム
WO2021089608A1 (en) Adaptive cruise control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954993

Country of ref document: EP

Kind code of ref document: A1