WO2021109165A1 - Procédé de prédiction dans une conduite automatique pour effectuer un changement de voie pour dépasser un véhicule de tête dans une voie cible - Google Patents

Procédé de prédiction dans une conduite automatique pour effectuer un changement de voie pour dépasser un véhicule de tête dans une voie cible Download PDF

Info

Publication number
WO2021109165A1
WO2021109165A1 PCT/CN2019/123928 CN2019123928W WO2021109165A1 WO 2021109165 A1 WO2021109165 A1 WO 2021109165A1 CN 2019123928 W CN2019123928 W CN 2019123928W WO 2021109165 A1 WO2021109165 A1 WO 2021109165A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
willingness
lane change
distance
Prior art date
Application number
PCT/CN2019/123928
Other languages
English (en)
Chinese (zh)
Inventor
杜光辉
经建峰
袁雁城
张尧文
Original Assignee
格物汽车科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格物汽车科技(苏州)有限公司 filed Critical 格物汽车科技(苏州)有限公司
Publication of WO2021109165A1 publication Critical patent/WO2021109165A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed

Definitions

  • the present invention relates to the technical field of automatic driving, and in particular to a method for predicting a vehicle before a vehicle in front of a target lane when a vehicle changes lanes during automatic driving.
  • Autonomous driving includes four modules: prediction, decision-making, planning, and control.
  • the prediction module predicts whether the vehicle will change lanes in the future and the lane change trajectory in the case of lane changes based on the vehicle driving state data and lane environment data in each lane.
  • Lane change includes left lane change and right lane change.
  • Left and right lane changes include lane change before the vehicle in front of the target lane and lane change after the vehicle in front of the target lane.
  • the decision-making module calculates the next expected state of the vehicle based on the predicted output results of the prediction module, environmental information, navigation information, the driver's behavior module, the vehicle dynamics model, etc.; the planning module plans the current state and the next expected state Vehicle driving trajectory; the control module calculates the corresponding accelerator, braking and steering according to the planned driving trajectory.
  • the present invention provides a method for predicting before a vehicle changes lanes to a target lane in automatic driving, which combines the pre-lane change vehicle, the first vehicle in front of the lane where the pre-lane change vehicle is located, and the first vehicle in the target lane in front of the pre-change vehicle.
  • the driving state data of a car and the second car in front of the pre-changing vehicle in the target lane calculates the willingness of the pre-changing vehicle to change lanes to the target lane before the first car in front of the pre-changing vehicle , According to the degree of willingness, predict whether the pre-lane change vehicle will change lanes to the first vehicle in front of the target lane in the future, effectively eliminate the factors that interfere with the decision of the vehicle by surrounding vehicles, and improve the confidence of the decision of the vehicle; at the same time, it is effective Reduce the amount of data analysis and calculation of the prediction module in the automatic driving system, reduce the operating difficulty and operating cost of the automatic driving system, and effectively improve the lag time of decision-making.
  • the present invention provides a method for predicting a vehicle before it changes lanes to a target lane in automatic driving, which includes the following steps:
  • the vehicle one is the first vehicle in front of the lane where the pre-lane change vehicle is located; and the vehicle two is in the target lane The first car located in front of the pre-changing vehicle; said vehicle three is the second vehicle in front of the pre-changing vehicle in the target lane;
  • the willingness exceeds the willingness threshold it is predicted that the pre-lane change vehicle will change lanes before the second vehicle at a future time.
  • it further includes that when the lateral speed of the pre-lane change vehicle in the direction of the target lane is less than zero and maintains for a certain period of time, the willingness of the pre-lane change vehicle to change to the target lane is zero .
  • calculating the willingness ⁇ includes:
  • calculating the willingness ⁇ includes:
  • it further includes: calculating the willingness ⁇ 1 according to formula 1,
  • A represents the actual acceleration of the pre-lane change vehicle
  • k 1 represents the linear slope of the functional relationship between the actual acceleration of the pre-lane change vehicle and the willingness ⁇ 1;
  • a 1 represents a fixed acceleration value on the acceleration axis where the actual acceleration of the pre-lane change vehicle is located
  • represents the increase in willingness that the actual acceleration of the pre-lane change vehicle exceeds the acceleration threshold for a certain period of time.
  • A characterizes the distance that the pre-lane change vehicle needs to keep from the vehicle 1 when it is traveling at a driving speed of V2;
  • B represents the driving distance of the pre-lane change vehicle decelerating from the driving speed V1 to the driving speed V2 at a deceleration a x;
  • L1 is the initial distance between the pre-lane change vehicle and vehicle one
  • V1 is the traveling speed of the pre-lane change vehicle
  • S2 is the braking distance from braking to stop of the vehicle one
  • a represents the difference between the preset comfortable braking deceleration a Thres of the pre-lane change vehicle and the deceleration a x ;
  • k 3 represents the linear slope of the functional relationship between the relative speed of the pre-lane change vehicle and vehicle one and the willingness ⁇ 3;
  • X1 represents a fixed speed value on the speed axis where the relative speed of the pre-lane change vehicle and vehicle one is located.
  • V2 is the driving speed of vehicle one
  • S1 is the braking distance from pre-lane change vehicle braking to stop
  • S1 is the braking distance from pre-lane change vehicle braking to stop
  • L1 is the initial distance between the pre-lane change vehicle and vehicle one
  • ⁇ 2 represents a fixed distance value
  • Fig. 3a is a graph of calculating willingness ⁇ 1 in a preferred embodiment of the present invention.
  • Fig. 7 is a graph of calculating willingness ⁇ 6 in a preferred embodiment of the present invention.
  • a 1 represents a fixed acceleration value on the abscissa axis, for example, A 1 takes 0.1g.
  • a 1 is the standard amount that can be adjusted.
  • the duration of the vehicle 4’s actual acceleration exceeding the acceleration threshold is taken as the abscissa, and the willingness increment ⁇ is the ordinate axis to establish a coordinate system.
  • the actual acceleration of the vehicle 4 exceeds the acceleration threshold for the duration of time and The functional relationship between the willingness increment ⁇ is shown in Fig. 3(b).
  • A represents the distance that the vehicle 4 needs to keep from the vehicle 1 when it is running at the driving speed V2;
  • Table B The travel distance of vehicle 4 decelerating from travel speed V1 to travel speed V2 at a deceleration a x;
  • L1 is the initial distance between vehicle 4 and vehicle one
  • V1 is the traveling speed of vehicle 4.
  • V2 is the driving speed of vehicle one
  • S1 is the braking distance from vehicle 4 to stop
  • S2 is the braking distance from braking to stop of the vehicle one
  • T r is the reaction time of the braking of the vehicle 4.
  • D is the safe stopping distance between vehicle 4 and vehicle 1 when they both brake to a stop
  • the comfortable braking deceleration a Thres is preset according to the driver's characteristics. As shown in Figure 4, the difference between the deceleration a Thres and the deceleration a x is the abscissa, and the willingness ⁇ 2 is the ordinate to establish a coordinate system.
  • the functional relationship between ⁇ 2 and the difference between deceleration a Thres and deceleration a x is:
  • a represents the difference between the preset comfortable braking deceleration a Thres of the vehicle 4 and the deceleration a x ;
  • k 2 represents the linear slope of the functional relationship between the difference between the deceleration a Thres and the deceleration a x and the degree of willingness ⁇ 2;
  • a 1 represents a fixed deceleration value on the abscissa axis, for example, a 1 takes 0.5g. It is a standard amount that can be adjusted.
  • X represents the relative speed of vehicle 4 and vehicle one
  • k 3 represents the linear slope of the functional relationship between the relative speed of vehicle 4 and vehicle one and the degree of willingness ⁇ 3;
  • X1 represents a fixed speed value on the abscissa axis, for example, X1 takes V1, and V1 is the driving speed of the vehicle 4.
  • X1 is a variable that can be calibrated.
  • ⁇ 1 represents the degree of congestion in front of the lane where the pre-changing vehicle is located
  • ⁇ 2 represents the degree of congestion in front of the lane where the second vehicle is located.
  • the congestion level When calculating the congestion level here, it is characterized by the number of cars within a certain distance. For example, if there are 6 cars within 100mm ahead, the calculated congestion level is
  • the calculation of the willingness ⁇ 5 includes:
  • A characterizes the distance that the vehicle 4 needs to keep from the vehicle one when it is traveling at the driving speed V2;
  • V1 is the traveling speed of vehicle 4.
  • V2 is the driving speed of vehicle one
  • S1 is the braking distance from vehicle 4 to stop
  • S2 is the braking distance from braking to stop of the vehicle one
  • T r is the reaction time of the braking of the vehicle 4.
  • D is the safe stopping distance between vehicle 4 and vehicle 1 when they both brake to a stop
  • L1 is the initial distance between vehicle 4 and vehicle one
  • ⁇ 1 represents a fixed distance value, which is a standard amount that can be adjusted.
  • the degree of willingness ⁇ 5 is related to the distance along the lane line between vehicle 1 and vehicle 3.
  • the distance between vehicle 1 and vehicle 3 along the lane line is used as the abscissa, and the degree of willingness ⁇ 5 is the ordinate to establish the coordinates.
  • System the functional relationship between the willingness ⁇ 5 and the distance along the lane line between the vehicle one and the vehicle three is shown in Fig. 6,
  • E represents the distance along the lane line between vehicle one and vehicle three;
  • k 4 represents the linear slope of the functional relationship between the distance along the lane line between vehicle one and vehicle three and the degree of willingness ⁇ 5;
  • E1 and E2 represent two fixed distance values on the abscissa axis, E1 takes 2m, and E2 takes 0.5s*V1; E1 and E2 are both calibrated quantities that can be adjusted.
  • the calculation of the willingness ⁇ 6 includes:
  • A characterizes the distance that the vehicle 4 needs to keep from the vehicle one when it is traveling at the driving speed V2;
  • V1 is the traveling speed of vehicle 4.
  • V2 is the driving speed of vehicle one
  • S1 is the braking distance from vehicle 4 to stop
  • S2 is the braking distance from braking to stop of the vehicle one
  • T r is the reaction time of the braking of the vehicle 4.
  • D is the safe stopping distance between vehicle 4 and vehicle 1 when they both brake to a stop
  • L1 is the initial distance between vehicle 4 and vehicle one
  • ⁇ 2 represents a fixed distance value, which is a standard amount that can be adjusted.
  • the degree of willingness ⁇ 6 is related to the speed ratio F of vehicle three to vehicle one.
  • the speed ratio of vehicle three to vehicle one is used as the abscissa and the degree of willingness ⁇ 6 is used as the ordinate to establish a coordinate system.
  • the functional relationship between the willingness ⁇ 6 and the speed ratio F of vehicle three to vehicle one is:
  • F represents the ratio of the speed of the vehicle three to the speed of the vehicle one
  • F1 and F2 represent two fixed values on the abscissa. For example, F1 takes 1, and F2 takes 1.5. Here, both F1 and F2 are standard amounts that can be adjusted.
  • k 5 represents the linear slope of the functional relationship between the speed ratio of vehicle three to vehicle one and the degree of willingness ⁇ 6;
  • ⁇ * represents a fixed value greater than zero and less than or equal to 1, which is a standard amount that can be adjusted.
  • the first car in front of the lane where the pre-lane change vehicle is located the first car in the target lane in front of the pre-lane change vehicle, and the second car in the target lane in front of the pre-lane change vehicle.
  • the driving state data of the vehicle calculates the willingness of the pre-lane-changing vehicle to change lanes to the target lane before the first car in front of the pre-lane-changing vehicle, and predicts whether the pre-lane-changing vehicle will change lanes to the target in the future based on the willingness Before the first car in front of the lane, it effectively eliminates the factors that interfere with the decision of the vehicle by surrounding vehicles, and improves the confidence of the decision of the vehicle; at the same time, it effectively reduces the amount of data analysis and calculation of the prediction module in the automatic driving system, and reduces the operation of the automatic driving system. Difficulty and operating cost, effectively improving the lag in decision-making.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

La présente invention concerne un procédé de prédiction dans une conduite automatique pour effectuer un changement de voie pour dépasser un véhicule de tête dans une voie cible. Ledit procédé comprend les étapes consistant à : acquérir des données d'état de conduite, dans une période d'échantillonnage actuel, d'un véhicule s'apprêtant à effectuer un changement de voie, un véhicule I, un véhicule II et un véhicule III, le véhicule I étant le véhicule juste devant le véhicule s'apprêtant à effectuer un changement de voie dans la voie actuelle du véhicule s'apprêtant à effectuer un changement de voie, et le véhicule II et le véhicule III étant respectivement le premier véhicule le plus proche et le second véhicule le plus proche devant le véhicule s'apprêtant à effectuer un changement de voie dans une voie cible; calculer, à l'aide des données d'état de conduite des véhicules, la volonté de réaliser un changement de voie du véhicule s'apprêtant à effectuer un changement de voie pour dépasser le véhicule II; et lorsque la volonté dépasse un seuil de volonté, prédire que le véhicule s'apprêtant à effectuer un changement de voie effectuera un changement de voie pour dépasser le véhicule II à un moment futur. Dans la présente invention, le procédé de prédiction dans une conduite automatique pour effectuer un changement de voie pour dépasser un véhicule de tête dans une voie cible exclut efficacement des facteurs de véhicules environnants interférant avec la prise de décision d'un véhicule, améliore la certitude de décision du véhicule, réduit efficacement l'analyse de données et la quantité de calcul d'un module de prédiction dans un système de conduite automatique, réduit la difficulté de fonctionnement et les coûts de fonctionnement du système de conduite automatique, et améliore efficacement le décalage et le retard de prise de décision.
PCT/CN2019/123928 2019-12-06 2019-12-09 Procédé de prédiction dans une conduite automatique pour effectuer un changement de voie pour dépasser un véhicule de tête dans une voie cible WO2021109165A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911242709.1A CN110920622B (zh) 2019-12-06 2019-12-06 自动驾驶中车辆变道至目标车道前车之前的预测方法
CN201911242709.1 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021109165A1 true WO2021109165A1 (fr) 2021-06-10

Family

ID=69857375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123928 WO2021109165A1 (fr) 2019-12-06 2019-12-09 Procédé de prédiction dans une conduite automatique pour effectuer un changement de voie pour dépasser un véhicule de tête dans une voie cible

Country Status (2)

Country Link
CN (1) CN110920622B (fr)
WO (1) WO2021109165A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112046494B (zh) * 2020-09-11 2021-10-29 中国第一汽车股份有限公司 一种车辆控制方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005109A (ko) * 2011-07-05 2013-01-15 현대자동차주식회사 오경보 방지 기능을 가지는 추돌 경보 장치 및 그 방법
CN106874597A (zh) * 2017-02-16 2017-06-20 北理慧动(常熟)车辆科技有限公司 一种应用于自动驾驶车辆的高速公路超车行为决策方法
CN108919799A (zh) * 2018-06-10 2018-11-30 同济大学 一种网联智能车辆协作换道方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012216112A1 (de) * 2012-09-12 2014-03-13 Robert Bosch Gmbh Verfahren und Informationssystem zur Ermittlung eines vom Fahrer beabsichtigen oder nicht beabsichtigten Fahrspurwechsels bei einer Fahrt eines Fahrzeugs
US10077050B2 (en) * 2016-05-24 2018-09-18 GM Global Technology Operations LLC Automated driving system for evaluating lane cut-out and method of using the same
EP3291202B1 (fr) * 2016-08-29 2019-04-17 Volvo Car Corporation Procede de planification de trajectoire de vehicule routier
JP6494121B2 (ja) * 2017-03-01 2019-04-03 本田技研工業株式会社 車線変更推定装置、車線変更推定方法、およびプログラム
CN107919027B (zh) * 2017-10-24 2020-04-28 北京汽车集团有限公司 预测车辆变道的方法、装置和***
JP7029322B2 (ja) * 2018-03-15 2022-03-03 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
CN110533958A (zh) * 2018-05-24 2019-12-03 上海博泰悦臻电子设备制造有限公司 车辆变道提醒方法及***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130005109A (ko) * 2011-07-05 2013-01-15 현대자동차주식회사 오경보 방지 기능을 가지는 추돌 경보 장치 및 그 방법
CN106874597A (zh) * 2017-02-16 2017-06-20 北理慧动(常熟)车辆科技有限公司 一种应用于自动驾驶车辆的高速公路超车行为决策方法
CN108919799A (zh) * 2018-06-10 2018-11-30 同济大学 一种网联智能车辆协作换道方法

Also Published As

Publication number Publication date
CN110920622A (zh) 2020-03-27
CN110920622B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN111867911B (zh) 车辆控制方法和设备
CN106926844B (zh) 一种基于实时环境信息的动态自动驾驶换道轨迹规划方法
US9428187B2 (en) Lane change path planning algorithm for autonomous driving vehicle
US9457807B2 (en) Unified motion planning algorithm for autonomous driving vehicle in obstacle avoidance maneuver
US20160221578A1 (en) System and method for optimizing fuel economy using predictive environment and driver behavior information
JP7151179B2 (ja) 車線変更推定装置および車線変更推定方法と、車両制御装置および車両制御方法
CN108919795A (zh) 一种自动驾驶汽车换道决策方法及装置
US10532736B2 (en) Vehicle travel control device
EP2440440B1 (fr) Procédé et module destinés à déterminer des valeurs de référence pour un système de commande de véhicule
CN110789524B (zh) 自适应巡航控制
US20200062255A1 (en) Vehicle velocity control
WO2015047174A1 (fr) Procédé et système permettant de gérer des obstacles pour des pelotons de véhicules
EP3053156A1 (fr) Procédé et système destinés à l'organisation de pelotons de véhicules
JPWO2010084568A1 (ja) 隊列走行制御システム及び車両
US11618473B2 (en) Vehicle control system
JP7156238B2 (ja) 車両制御システム
CN113548050A (zh) 车辆行驶控制方法、装置、***和存储介质
JP2019127081A (ja) 車両の自動運転制御装置及び自動運転制御方法
Wang et al. Predictive safety control for road vehicles after a tire blowout
WO2021109164A1 (fr) Procédé de prédiction pour le changement de voie d'un véhicule vers l'arrière d'un véhicule devant dans une voie cible en conduite automatique
US20220355792A1 (en) Method and device for trajectory planning for a vehicle
WO2021109165A1 (fr) Procédé de prédiction dans une conduite automatique pour effectuer un changement de voie pour dépasser un véhicule de tête dans une voie cible
CN113147766A (zh) 目标车辆的换道预测方法及设备
JP7356892B2 (ja) 車両の走行環境推定方法、及び、走行環境推定システム
WO2021089608A1 (fr) Régulateur de vitesse adaptatif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954993

Country of ref document: EP

Kind code of ref document: A1