WO2021106602A1 - 紫外分光法によるハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法 - Google Patents

紫外分光法によるハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法 Download PDF

Info

Publication number
WO2021106602A1
WO2021106602A1 PCT/JP2020/042275 JP2020042275W WO2021106602A1 WO 2021106602 A1 WO2021106602 A1 WO 2021106602A1 JP 2020042275 W JP2020042275 W JP 2020042275W WO 2021106602 A1 WO2021106602 A1 WO 2021106602A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ultraviolet light
halogen fluoride
wavelength
fluorine
Prior art date
Application number
PCT/JP2020/042275
Other languages
English (en)
French (fr)
Inventor
鈴木 淳
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to SG11202112241QA priority Critical patent/SG11202112241QA/en
Priority to JP2021561295A priority patent/JPWO2021106602A1/ja
Priority to EP20892100.7A priority patent/EP4067873A4/en
Priority to KR1020217038538A priority patent/KR20220005530A/ko
Priority to IL287814A priority patent/IL287814B2/en
Priority to CN202080032718.2A priority patent/CN113785190A/zh
Priority to US17/609,211 priority patent/US20220214323A1/en
Publication of WO2021106602A1 publication Critical patent/WO2021106602A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0052Gaseous halogens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Definitions

  • the present invention relates to a method for measuring the concentration of fluorine gas contained in a halogen fluoride-containing gas.
  • Halogen fluoride is used as an etching gas, cleaning gas, etc. in the semiconductor manufacturing process.
  • the miniaturization of semiconductors has progressed, and high-purity gases are required for etching gases and cleaning gases used in semiconductor manufacturing processes.
  • a method for accurately measuring the concentration of fluorine gas, which is an impurity contained in the etching gas and the cleaning gas is required.
  • Patent Document 1 describes the concentration of fluorine gas contained in a gas such as exhaust gas discharged from an electronic device manufacturing apparatus such as a semiconductor manufacturing apparatus by an ultraviolet spectrophotometer and Fourier transform red.
  • Patent Document 2 discloses a method of measuring the fluorine concentration in the exhaust gas discharged from a semiconductor process apparatus using sulfur hexafluoride using an ultraviolet spectrophotometer and a Fourier transform infrared spectrophotometer.
  • Patent Document 3 discloses a method for analyzing a halogen gas generated from a semiconductor manufacturing process by ultraviolet-visible absorption spectroscopy.
  • the halogen fluoride When the concentration of fluorine gas contained in a halogen fluoride-containing gas is measured by ultraviolet spectroscopy, the halogen fluoride mainly absorbs light having a wavelength of less than 250 nm, so that a part of the halogen fluoride is photodecomposed and fluorine molecules are formed. And fluorine radicals are generated. Therefore, when measuring the concentration of fluorine gas in halogen fluoride, there is a problem that a measurement error occurs due to fluorine and fluorine radicals generated by photolysis.
  • an object of the present invention is to reduce the measurement error caused by fluorine gas or the like caused by photodecomposition of halogen fluoride when measuring the concentration of fluorine gas contained in the halogen fluoride-containing gas using an ultraviolet spectrophotometer. It is to provide a highly accurate measurement method.
  • the present inventors when measuring the concentration of fluorine gas contained in the halogen fluoride-containing gas by irradiating with ultraviolet light, emits ultraviolet light having a wavelength of less than 250 nm.
  • the present invention includes the following [1] to [8].
  • the maximum value of the ultraviolet light intensity in the wavelength region of less than 250nm against ultraviolet light intensity of the wavelength of 285 nm (W F) ratio (W X) (W X / W F) is 1
  • a method for measuring a fluorine gas concentration which comprises irradiating ultraviolet light of / 10 or less and measuring the absorbance at a wavelength of 285 nm to obtain the concentration of fluorine gas contained in a halogen fluoride-containing gas.
  • the halogen fluoride is any one gas selected from the group consisting of chlorine trifluoride, bromine pentafluoride, iodine heptafluoride, bromine trifluoride, and iodine pentafluoride.
  • the halogen fluoride is bromine pentafluoride, and the maximum value (W X ) of the ultraviolet light intensity in the wavelength region of less than 250 nm is the maximum value of the ultraviolet light intensity in the wavelength region of less than 225 nm [1]. ] To [4], the method for measuring the fluorine gas concentration. [7] The halogen fluoride is chlorine trifluoride, and the maximum value (W X ) of the ultraviolet light intensity in the wavelength region of less than 250 nm is the maximum value of the ultraviolet light intensity in the wavelength region of less than 215 nm [1]. ] To [4], the method for measuring the fluorine gas concentration.
  • the present invention it is possible to measure the concentration of fluorine gas contained in the halogen fluoride-containing gas with high accuracy.
  • FIG. 1 is a schematic view of an example of an analyzer used for measuring the fluorine gas concentration of the present invention.
  • the analyzer used in the present invention is not limited to the analyzer shown in FIG.
  • the present invention is, with respect to the halogen fluoride-containing gas, the ratio of the maximum value of the ultraviolet light intensity in the wavelength region of less than 250nm against ultraviolet light intensity of the wavelength of 285nm (W F) (W X ) (W X / W F) is
  • the present invention relates to a method for measuring a fluorine gas concentration, which comprises irradiating ultraviolet light of 1/10 or less and measuring the absorbance at a wavelength of 285 nm to obtain the concentration of fluorine gas contained in the halogen fluoride-containing gas.
  • the halogen fluoride contained in the halogen fluoride-containing gas used in one embodiment of the present invention is a fluorine compound containing halogens such as chlorine, bromine and iodine as constituent elements.
  • Halogen fluorides include, for example, chlorine fluoride, chlorine trifluoride, bromine fluoride, bromine trifluoride, bromine pentafluoride, iodine fluoride, iodine trifluoride, iodine pentafluoride, and iodine heptafluoride. Can be mentioned.
  • chlorine trifluoride, bromine trifluoride, bromine pentafluoride, iodine pentafluoride, and iodine heptafluoride are preferable from the viewpoint of etching performance and cleaning performance, and chlorine trifluoride, iodine heptafluoride, and iodine pentafluoride are preferable.
  • Bromine pentafluoride is more preferred and can be applied to the present invention.
  • the halogen fluoride-containing gas may contain one type of halogen fluoride alone, or may contain a plurality of types.
  • the halogen fluoride-containing gas may contain a fluorine gas to be measured and an impurity gas other than the fluorine gas.
  • the impurity gas include helium, argon, oxygen gas (O 2 ), nitrogen gas (N 2 ), carbon dioxide and carbon tetrafluoride.
  • the halogen fluoride-containing gas may contain one kind or a plurality of kinds of impurity gases, and the content thereof is not particularly limited.
  • the halogen fluoride-containing gas may contain a diluting gas.
  • the diluting gas is a gas that is inactive against the halogen fluoride, the fluorine-containing gas, and the impurity gas.
  • Examples of the diluting gas include helium, argon, nitrogen gas (N 2 ), carbon dioxide, and carbon tetrafluoride.
  • the halogen fluoride-containing gas may contain one kind or a plurality of kinds of diluted gases, and the content thereof is not particularly limited.
  • the halogen fluoride-containing gas is introduced from the halogen fluoride-containing gas supply source 10 into the gas cell 22 described later via the valve 14.
  • the halogen fluoride-containing gas supply source 10 can supply the halogen fluoride-containing gas to the gas cell 22
  • the supply method, form, size, and the like are not particularly limited.
  • the halogen fluoride-containing gas may be supplied from the branch pipe branched from the halogen fluoride-containing gas supply pipe connected to the etching apparatus in the semiconductor manufacturing process to the gas cell 22 via the valve 14.
  • the gas cell 22 may be supplied from a container such as a gas cylinder in which the same halogen fluoride-containing gas as the gas supplied to the etching apparatus is stored.
  • the reference gas is not particularly limited as long as it does not contain a component that absorbs a wavelength in the vicinity of 285 nm.
  • Examples of the reference gas include nitrogen gas (N 2 ) and helium gas.
  • the reference gas is introduced into the gas cell 22 from the reference gas supply source 12 via the valve 16.
  • the reference gas supply source 12 can supply the reference gas to the gas cell 22, the supply method, form, size, and the like are not particularly limited.
  • the reference gas may be supplied to the gas cell 22 from a container such as a gas cylinder in which the reference gas is stored.
  • the light source 18 used in one embodiment of the present invention is used to irradiate the halogen fluoride-containing gas and the reference gas with ultraviolet light.
  • the light source 18 is not particularly limited as long as it emits ultraviolet light having a wavelength of 285 nm.
  • Etc., and a light beam having a wavelength of less than 250 nm and a small amount of light component may be used.
  • the filter 20 when using the means for suppressing the irradiation of ultraviolet light having a wavelength of less than 250 nm, it is efficient to irradiate the halogen fluoride with the ultraviolet light emitted from the light source 18 through the filter 20. It is preferable because it can suppress photodecomposition of halogen fluoride well.
  • the filter 20 is not particularly limited as long as it can sufficiently block ultraviolet light having a wavelength of less than 250 nm, but preferably 50% or more, more preferably 60% or more, still more preferably 70% or more. To do.
  • the filter 20 it is preferable to use a filter that sufficiently transmits ultraviolet light including a wavelength of 285 nm, which is the maximum absorption wavelength of fluorine, in that highly accurate measurement can be performed, and ultraviolet light having a wavelength of 280 to 290 nm is preferably 90. % Or more, more preferably 95% or more.
  • the filter 20 is not particularly limited as long as it has the above performance, but for example, a commercially available filter such as a short wavelength cut filter manufactured by Asahi Spectroscopy Co., Ltd. can be used.
  • the gas cell 22 is used to irradiate ultraviolet light by enclosing or circulating the halogen fluoride-containing gas and the reference gas.
  • the gas cell 22 is provided with a gas introduction port, a gas discharge port connected to the exhaust port 26, an incident window, an exit window, and the like in the gas cell main body.
  • the material of the gas cell 22 main body other than the entrance window and the exit window is not particularly limited as long as it exhibits corrosion resistance to the components contained in the halogen fluoride-containing gas and fluorine gas, and for example, stainless steel, nickel, Inconel, and Monel are used. Can be used.
  • the material of the incident window and the exit window is not particularly limited as long as it does not absorb light having a wavelength around 285 nm and exhibits corrosion resistance to halogen fluoride-containing gas and fluorine-containing gas. Calcium and barium fluoride can be used.
  • the spectroscope 24 measures the absorption spectrum of the wavelength of the ultraviolet light emitted from the exit window of the gas cell 22.
  • the spectroscope 24 is not particularly limited as long as it can measure the absorption spectrum of ultraviolet light, and for example, an ultraviolet spectrophotometer usually used in the field of the present invention can be used.
  • a lens or the like may be provided between the exit end of the light source 18 and the incident window of the gas cell 22.
  • the method for measuring the fluorine gas concentration of the present invention using the gas to be measured and the device or the like will be described.
  • (1) Measurement of Reference Gas In order to measure the concentration of fluorine gas contained in the halogen fluoride-containing gas of the present invention, it is preferable to measure the absorption spectrum of the reference gas in advance. In order to measure the absorption spectrum of the reference gas, the valve 14 is closed to prevent the halogen fluoride-containing gas from being supplied from the halogen fluoride-containing gas supply source 10, the valve 16 is opened, and the reference gas is supplied from the reference gas supply source 12 to the gas cell. Introduced in 22. When introducing the reference gas, the exhaust port 26 may be left open so that the reference gas flows through the gas cell 22, or the exhaust port 26 is closed and the reference gas is sealed in the gas cell 22. You may.
  • the reference gas in the gas cell 22 is irradiated with ultraviolet light emitted from the light source 18 from the incident window of the gas cell 22 preferably through the filter 20.
  • the ultraviolet light of the light source 18 may be applied to the incident window of the gas cell 22 via the optical fiber.
  • purge gas such as nitrogen may be flowed near the incident window, or oxygen and air etc. from the incident window and the exit window. It is preferable to have an airtight structure so that
  • the light source 18 of ultraviolet light applied to the reference gas and halogen fluoride-containing gas the maximum value of the ultraviolet light intensity in the wavelength region of less than 250nm against ultraviolet light intensity of the wavelength of 285 nm (W F) of (W X) the ratio (W X / W F) (hereinafter also referred to as "ultraviolet light intensity ratio".) is required to be less than 1/10.
  • the halogen fluoride is photodecomposed by irradiation with ultraviolet light having a wavelength of less than 250 nm, and the resulting decrease in measurement accuracy due to fluorine gas can be suppressed.
  • the ultraviolet light intensity ratio (W X / W F) is more preferably 1/15 or less.
  • the maximum value of the ultraviolet light intensity in the wavelength region of less than 250 nm is, in other words, the intensity of the ultraviolet light having the highest wavelength among the ultraviolet light having a wavelength of less than 250 nm. It said W F and W X can be measured by the spectroscope 24. The ultraviolet light intensity ratio can be adjusted by the light source 18 and the filter 20.
  • the ultraviolet light intensity ratio may be appropriately set according to the absorption wavelength of halogen fluoride as long as it is within the above range.
  • the maximum absorption wavelength of bromine pentafluoride is 217 nm, but the maximum absorption wavelength plus the maximum value of the ultraviolet light intensity in the wavelength region shorter than the wavelength of 7 to 9 nm, for example, the maximum value of the ultraviolet light intensity in the wavelength region less than 225 nm.
  • W X may be used for calculating the ultraviolet light intensity ratio.
  • the maximum absorption wavelength of chlorine trifluoride is 207 nm
  • the maximum value of the ultraviolet light intensity in the wavelength region of less than 215 nm may be set as W X and used for calculating the ultraviolet light intensity ratio.
  • the maximum absorption wavelength of iodine heptafluoride is 241 nm
  • the maximum value of the ultraviolet light intensity in the wavelength region of less than 250 nm may be set as W X and used for the calculation of the ultraviolet light intensity ratio.
  • the ultraviolet light emitted from the exit window of the gas cell 22 is measured with a spectroscope.
  • the ultraviolet light emitted from the exit window may be introduced into the spectroscope via an optical fiber.
  • a spectroscope for example, operate according to the manual attached to the product to measure the absorption spectrum of the reference gas.
  • a high-purity nitrogen gas is used as the reference gas and the reference gas is irradiated with ultraviolet light using a filter so as to be within the range of the ultraviolet light intensity ratio, nitrogen or halogen is generated in the wavelength region of less than 250 nm. Since the absorption of fluoride is eliminated, the absorption spectrum can be left blank.
  • the halogen fluoride-containing gas is introduced into the gas cell 22 from the halogen fluoride-containing gas supply source 10 by closing the valve 16 and opening the valve 14, and the above reference gas.
  • the absorption spectrum of the halogen fluoride-containing gas is measured in the same manner as in the above.
  • a halogen fluoride-containing gas diluted with a diluting gas such as helium, argon, nitrogen, carbon dioxide, and carbon tetrafluoride may be introduced into the gas cell 22. From the absorption spectrum, the absorbance at a wavelength of 285 nm, which is the maximum absorption wavelength of fluorine, is measured, and the fluorine gas concentration is obtained by absorptiometry.
  • the temperature inside the gas cell 22 when performing the above measurement is not particularly limited as long as it is equal to or higher than the temperature at which the halogen fluoride-containing gas and the reference gas are liquefied and solidified, but 20 to 150 ° C. is preferable, and 50 to 50 to 120 ° C. is more preferable. If the temperature is higher than this range, the reaction between the halogen fluoride and the gas cell and the incident window and the exit window may proceed, or the decomposition of the halogen fluoride may proceed, which is not preferable.
  • the pressure inside the gas cell 22 when the halogen fluoride-containing gas and the reference gas are sealed in the gas cell 22 for measurement is not particularly limited, but is preferably 0.01 to 0.2 MPaA, preferably 0.05 to 0. .15 MPaA is more preferable. If the pressure is lower than this range, the gas concentration may be lowered and the sensitivity may be lowered, and if the pressure is higher than this range, the device may be damaged.
  • Example 1 Bromine pentafluoride gas was used as the halogen fluoride-containing gas, and the concentration of fluorine gas contained in the bromine pentafluoride gas was measured according to the measurement method of the present invention using the analyzer shown in FIG.
  • the main body of the gas cell 22 was made of SUS316, and the entrance window and the exit window used a gas cell made of calcium fluoride.
  • nitrogen gas is used as the reference gas
  • nitrogen gas is introduced into the gas cell 22 from the high-purity nitrogen gas cylinder which is the reference gas supply source 12
  • a deuterium lamp product name: L10290, manufactured by Hamamatsu Photonics Co., Ltd.
  • the ultraviolet light of the above was irradiated to the nitrogen gas in the gas cell 22.
  • the absorption spectrum of the ultraviolet light emitted from the gas cell 22 was measured with a multi-channel spectroscope (product name: FLAME-S, manufactured by Ocean Optics) as a spectroscope 24.
  • the temperature in the gas cell was 50 ° C. and the pressure was 0.1 MPaA.
  • bromine pentafluoride gas is introduced into the gas cell 22 from the halogen fluoride-containing gas supply source 10 under the same temperature and pressure conditions as in the reference gas measurement.
  • the absorption spectrum of the ultraviolet light emitted from the gas cell 22 was measured by the above spectroscope.
  • the absorption spectrum of nitrogen gas was subtracted from the absorption spectrum of the obtained bromine pentafluoride gas to determine the concentration of fluorine gas contained in the bromine pentafluoride gas. As a result, the fluorine concentration was 2 parts by volume ppm.
  • the fluorine gas concentration in iodine heptafluoride gas was determined in the same manner as in Example 1 except that it was irradiated with ultraviolet light. As a result, the fluorine concentration was 3 parts by volume ppm.
  • Example 3 The same as in Example 1 except that chlorine trifluoride gas was used instead of bromine pentafluoride gas as the halogen fluoride-containing gas and the maximum value of the ultraviolet light intensity in the wavelength region of less than 215 nm was set to W X.
  • the concentration of fluorine gas in chlorine trifluoride gas was determined. As a result, the fluorine concentration was 5 parts by volume ppm.
  • Table 1 shows the conditions and results of Examples 1 to 3 and Comparative Examples 1 to 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明は、紫外分光光度計を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する際に、ハロゲンフッ化物の光分解によって生じるフッ素ガス等がもたらす測定誤差を減らし、精度の高い測定方法を提供することを目的とする。 本発明は、ハロゲンフッ化物含有ガスに対し、285nmの波長の紫外光強度(WF)に対する250nm未満の波長領域における紫外光強度の最大値(WX)の比(WX/WF)が1/10以下となる紫外光を照射し、285nmの波長の吸光度を測定しハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を得る、フッ素ガス濃度の測定方法である。

Description

紫外分光法によるハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法
 本発明は、ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法に関する。
 ハロゲンフッ化物は、半導体製造プロセスにおいてエッチングガスおよびクリーニングガスなどに使用されている。近年、半導体の微細化が進行しており、半導体製造プロセスで使用されるエッチングガスおよびクリーニングガスなどには高純度のガスが求められている。高純度のガスを調製するためには、エッチングガスおよびクリーニングガスなどに含まれる不純物であるフッ素ガス濃度を精度よく測定する方法が必要とされている。
 フッ素ガス濃度を測定する方法として、例えば、特許文献1は、半導体製造装置などの電子デバイス製造装置から排出される排ガスなどのガス中に含まれるフッ素ガス濃度を、紫外分光光度計とフーリエ変換赤外分光光度計とを用いて測定する方法を開示している。特許文献2は、六フッ化イオウを使用する半導体プロセス装置から排出された排ガス中のフッ素濃度を、紫外分光光度計とフーリエ変換赤外分光光度計とを用いて測定する方法を開示している。特許文献3は、半導体製造プロセスから生じるハロゲンガスを紫外-可視吸収分光法によって分析する方法を開示している。
特許第5221881号公報 特開2010-203855号公報 米国特許第6686594号明細書
 ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を紫外分光法によって測定する場合、ハロゲンフッ化物が主に250nm未満の波長の光を吸収するため、ハロゲンフッ化物の一部が光分解され、フッ素分子やフッ素ラジカルが生じる。そのため、ハロゲンフッ化物中のフッ素ガス濃度を測定する際に、光分解によって発生したフッ素やフッ素ラジカルによって測定誤差が生じてしまうという問題があった。
 従って、本発明の目的は、紫外分光光度計を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する際に、ハロゲンフッ化物の光分解によって生じるフッ素ガス等がもたらす測定誤差を減らし、精度の高い測定方法を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、紫外光を照射してハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する際に、250nm未満の波長の紫外光の照射を抑制することで、精度の高い測定ができることを見出し、本発明を完成させるに至った。すなわち、本発明は以下に示す[1]~[8]を含む。
 [1]ハロゲンフッ化物含有ガスに対し、285nmの波長の紫外光強度(WF)に対する250nm未満の波長領域における紫外光強度の最大値(WX)の比(WX/WF)が1/10以下となる紫外光を照射し、285nmの波長の吸光度を測定しハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を得る、フッ素ガス濃度の測定方法。
 [2]前記ハロゲンフッ化物含有ガスに対し、光源から250nm未満の波長の紫外光の照射を抑制する手段を用いて250nm以上の波長の紫外光を照射する、[1]に記載のフッ素ガス濃度の測定方法。
 [3]前記手段が前記光源からハロゲンフッ化物含有ガスに照射される紫外光を、250nm未満の波長の紫外光を50%以上遮断し、280~290nmの波長の紫外光を90%以上透過させるフィルターを介して照射することである、[1]または[2]に記載のフッ素ガス濃度の測定方法。
 [4]前記ハロゲンフッ化物が、三フッ化塩素、五フッ化臭素、七フッ化ヨウ素、三フッ化臭素、および五フッ化ヨウ素からなる群より選択されるいずれか1種のガスである、[1]~[3]のいずれかに記載のフッ素ガス濃度の測定方法。
 [5]前記ハロゲンフッ化物が七フッ化ヨウ素である、[1]~[4]のいずれかに記載のフッ素ガス濃度の測定方法。
 [6]前記ハロゲンフッ化物が五フッ化臭素であり、前記250nm未満の波長領域における紫外光強度の最大値(WX)が225nm未満の波長領域における紫外光強度の最大値である、[1]~[4]のいずれかに記載のフッ素ガス濃度の測定方法。
 [7]前記ハロゲンフッ化物が三フッ化塩素であり、前記250nm未満の波長領域における紫外光強度の最大値(WX)が215nm未満の波長領域における紫外光強度の最大値である、[1]~[4]のいずれかに記載のフッ素ガス濃度の測定方法。
 [8]前記ハロゲンフッ化物含有ガスに前記紫外光を照射して測定した吸収スペクトルから、リファレンスガスに前記紫外光を照射して測定した吸収スペクトルを差し引き、得られた吸収スペクトルの285nmの波長の吸光度からフッ素ガス濃度を得る、[1]~[7]のいずれかに記載のフッ素ガス濃度の測定方法。
 本発明によれば、ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度について、精度の高い測定をすることができる。
図1は、本発明のフッ素ガス濃度の測定に使用する分析装置の一例の概略図である。
 以下、本発明について、必要に応じて図1を参照しつつ詳細に説明する。なお、本発明で使用する分析装置は、図1に示す分析装置に限定されない。
 本発明は、ハロゲンフッ化物含有ガスに対し、285nmの波長の紫外光強度(WF)に対する250nm未満の波長領域における紫外光強度の最大値(WX)の比(WX/WF)が1/10以下となる紫外光を照射し、285nmの波長の吸光度を測定しハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を得る、フッ素ガス濃度の測定方法に関する。
 <フッ素ガス濃度の測定に使用する被測定ガスおよび機器等>
 (ハロゲンフッ化物含有ガス)
 本発明の一実施態様で使用するハロゲンフッ化物含有ガスに含まれるハロゲンフッ化物は、構成元素に塩素、臭素およびヨウ素等のハロゲンを含むフッ素化合物である。ハロゲンフッ化物としては、例えば、フッ化塩素、三フッ化塩素、フッ化臭素、三フッ化臭素、五フッ化臭素、フッ化ヨウ素、三フッ化ヨウ素、五フッ化ヨウ素、および七フッ化ヨウ素が挙げられる。このうち、エッチング性能やクリーニング性能の点から三フッ化塩素、三フッ化臭素、五フッ化臭素、五フッ化ヨウ素、七フッ化ヨウ素が好ましく、三フッ化塩素、七フッ化ヨウ素および五フッ化臭素がより好ましく本発明に適用できる。ハロゲンフッ化物含有ガスには、ハロゲンフッ化物が一種単独で含まれてもよいし、複数種が含まれてもよい。
 ハロゲンフッ化物含有ガスには、測定対象であるフッ素ガス、およびフッ素ガス以外の不純物ガスが含まれていてもよい。不純物ガスとしては、例えば、ヘリウム、アルゴン、酸素ガス(O2)、窒素ガス(N2)、二酸化炭素および四フッ化炭素が挙げられる。ハロゲンフッ化物含有ガスには一種単独または複数種の不純物ガスが含まれていてもよく、その含有量は特に制限されない。
 また、ハロゲンフッ化物含有ガスには、希釈ガスが含まれていてもよい。希釈ガスは、上記ハロゲンフッ化物、フッ素含有ガスおよび不純物ガスに対して不活性なガスである。希釈ガスとしては、例えば、ヘリウム、アルゴン、窒素ガス(N2)、二酸化炭素、四フッ化炭素が挙げられる。ハロゲンフッ化物含有ガスには一種単独または複数種の希釈ガスが含まれていてもよく、その含有量は特に制限されない。
 ハロゲンフッ化物含有ガスは、ハロゲンフッ化物含有ガス供給源10からバルブ14を介して後述するガスセル22に導入される。ハロゲンフッ化物含有ガス供給源10は、ハロゲンフッ化物含有ガスをガスセル22に供給することできれば、供給方法、形態および大きさ等は特に制限されない。例えば、半導体製造プロセスにおけるエッチング装置に接続されているハロゲンフッ化物含有ガスの供給管から分岐している分岐管から、バルブ14を介してガスセル22へハロゲンフッ化物含有ガスを供給してもよいし、エッチング装置に供給するガスと同じハロゲンフッ化物含有ガスが貯留されたガスボンベ等の容器からガスセル22に供給してもよい。
 (リファレンスガス)
 上記ハロゲンフッ化物含有ガスに対し、後述する方法で紫外光を照射して吸収スペクトルを測定するに際し、リファレンスガスをブランクとして使用し、後述するガスセル22におけるリファレンスガスの吸収スペクトルを測定することが好ましい。リファレンスガスは、285nm付近の波長を吸収する成分が含まれていなければ特に制限されない。リファレンスガスとしては、例えば、窒素ガス(N)およびヘリウムガスが挙げられる。
 リファレンスガスは、リファレンスガス供給源12からバルブ16を介してガスセル22に導入される。リファレンスガス供給源12は、リファレンスガスをガスセル22に供給することができれば、供給方法、形態および大きさ等は特に制限されない。例えば、リファレンスガスが貯留されたガスボンベ等の容器からガスセル22にリファレンスガスを供給してもよい。
 (光源18)
 本発明の一実施態様で使用する光源18は、上記ハロゲンフッ化物含有ガスおよびリファレンスガスに紫外光を照射するために使用する。光源18は285nmの波長を含む紫外光を発するものであれば特に制限されず、例えば、重水素ランプ、キセノンランプ、水銀ランプ(低圧,高圧)、メタルハライドランプ、蛍光ランプ、ブラックライト(ブルーランプ)等を使用することができ、250nm未満の波長の光成分が少ない光線を用いてもよい。
 (フィルター20)
 本発明の一実施態様において、250nm未満の波長の紫外光の照射を抑制する手段を用いる際、上記光源18から照射される紫外光をフィルター20を介してハロゲンフッ化物に照射することが、効率よくハロゲンフッ化物の光分解を抑制できる点で好ましい。フィルター20としては、250nm未満の波長の紫外光を充分遮断できるフィルターであれば特に制限はされないが、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上遮断できるものを使用する。フィルター20を介して紫外光を照射することにより、250nm未満の波長領域に最大吸収波長を有するハロゲンフッ化物の光分解によって生じるフッ素ガス等による測定精度の低下を抑制することができる。
 フィルター20は、フッ素の最大吸収波長である285nmの波長を含む紫外光を充分透過させるフィルターを使用することが精度の高い測定ができる点で好ましく、280~290nmの波長の紫外光を好ましくは90%以上、より好ましくは95%以上透過させることが好ましい。フィルター20は、上記性能を有しているものであれば特に制限されないが、例えば、朝日分光株式会社製の短波長カットフィルターなどの市販品のものを使用することができる。
 (ガスセル22)
 ガスセル22は、上記ハロゲンフッ化物含有ガスおよびリファレンスガスを封入または流通させて紫外光を照射するために使用する。ガスセル22にはガスセル本体に、ガス導入口、排気口26に接続されたガス排出口、入射窓、出射窓などが備えられている。入射窓および出射窓以外のガスセル22本体の材質は、ハロゲンフッ化物含有ガスに含まれる成分およびフッ素ガスに対する耐食性を示すものであれば特に制限されず、例えば、ステンレス鋼、ニッケル、インコネル、モネルが使用できる。
 また、入射窓および出射窓の材質は、285nm付近の波長の光を吸収せず、ハロゲンフッ化物含有ガスおよびフッ素含有ガスに対して耐食性を示すものであれば特に制限されないが、例えば、フッ化カルシウム、フッ化バリウムが使用できる。
 (分光器24)
 分光器24は、上記ガスセル22の出射窓から出射した紫外光の波長の吸収スペクトルを測定する。分光器24は、紫外光の吸収スペクトルを測定することができれば特に制限されず、例えば、本発明の分野で通常使用されている紫外分光光度計を用いることができる。
 (その他)
 光源18からの光を効率よくガスセル22に取り込むため、光源18の出射端とガスセル22の入射窓との間に、レンズなどを設けてもよい。
 <フッ素ガス濃度の測定方法>
 以下、上記被測定ガスおよび機器等を用いた、本発明のフッ素ガス濃度の測定方法について説明する。
 (1)リファレンスガスの測定
 本発明のハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定するため、予めリファレンスガスの吸収スペクトルを測定することが好ましい。リファレンスガスの吸収スペクトルを測定するため、バルブ14を閉じて、ハロゲンフッ化物含有ガス供給源10からハロゲンフッ化物含有ガスが供給されないようにし、バルブ16を開きリファレンスガス供給源12からリファレンスガスをガスセル22に導入する。リファレンスガス導入の際、排気口26を開いたままにしてリファレンスガスがガスセル22を流通するようにして行ってもよいし、排気口26を閉じてリファレンスガスをガスセル22に封入するようにして行ってもよい。
 ガスセル22内のリファレンスガスに対し、光源18から出射される紫外光を、好適にはフィルター20を介してガスセル22の入射窓から照射する。このとき、光源18の紫外光を、光ファイバを介してガスセル22の入射窓に照射してもよい。また、短波長の紫外光によって空気中の酸素からオゾンが生じ測定に影響が出る可能性があるため、入射窓付近に窒素などのパージガスを流すこと、または入射窓および出射窓から酸素および空気等が入り込まないよう気密構造にすることが好ましい。
 また、光源18からリファレンスガスおよびハロゲンフッ化物含有ガスに照射される紫外光の、285nmの波長の紫外光強度(WF)に対する250nm未満の波長領域における紫外光強度の最大値(WX)の比(WX/WF)(以下「紫外光強度比」とも称する。)が1/10以下であることが必要である。これによって、250nm未満の波長の紫外光照射によってハロゲンフッ化物が光分解され、その結果生じるフッ素ガスによる測定精度の低下を抑制できる。前記紫外光強度比(WX/WF)は1/15以下であることがより好ましい。なお、250nm未満の波長領域における紫外光強度の最大値とは、換言すると、250nm未満の波長の紫外光の中で、最も強度が高い波長の紫外光の強度である。上記WFおよびWXは、上記の分光器24によって測定することができる。上記紫外光強度比は、光源18およびフィルター20によって調整することができる。
 上記紫外光強度比は、上記範囲内であればハロゲンフッ化物の吸収波長に合わせて適宜設定してもよい。例えば、五フッ化臭素の最大吸収波長は217nmであるが、この最大吸収波長プラス7~9nmの波長より短い波長領域の紫外光強度、例えば、225nm未満の波長領域の紫外光強度の最大値をWXとし、紫外光強度比の算出に供してもよい。
 同様に、三フッ化塩素の最大吸収波長は207nmであるので、例えば、215nm未満の波長領域の紫外光強度の最大値をWXとし、紫外光強度比の算出に供してもよい。また、七フッ化ヨウ素の最大吸収波長は241nmであるので、例えば、250nm未満の波長領域の紫外光強度の最大値をWXとし、紫外光強度比の算出に供してもよい。
 ガスセル22の出射窓から出射した紫外光を分光器で測定する。出射窓から出射した紫外光は光ファイバを介して分光器に導入してもよい。分光器を使用するときは、例えば、製品付属のマニュアルに従って操作して、リファレンスガスの吸収スペクトルを測定する。リファレンスガスとして、例えば、高純度の窒素ガスを使用し、上記紫外光強度比の範囲となるようにフィルターを用いてリファレンスガスに紫外光を照射すると、250nm未満の波長領域には、窒素やハロゲンフッ化物の吸収が無くなるため、吸収スペクトルをブランクとすることができる。
 (2)ハロゲンフッ化物含有ガスの285nmの波長の吸光度の測定
 バルブ16を閉じ、バルブ14を開けハロゲンフッ化物含有ガス供給源10から、ガスセル22にハロゲンフッ化物含有ガスを導入し、上記リファレンスガスと同様にしてハロゲンフッ化物含有ガスの吸収スペクトルを測定する。この際、ヘリウム、アルゴン、窒素、二酸化炭素、四フッ化炭素などの希釈ガスで希釈したハロゲンフッ化物含有ガスをガスセル22に導入してもよい。該吸収スペクトルから、フッ素の最大吸収波長である285nmの波長の吸光度を測定し、吸光光度法によりフッ素ガス濃度を得る。
 また、ハロゲンフッ化物含有ガスの吸収スペクトルから上記リファレンスガスの吸収スペクトルを差し引き、得られた吸収スペクトルから285nmの波長の吸光度を測定し、吸光光度法によりフッ素ガス濃度を得ることが、精度の高い測定ができる点で好ましい。
 (3)測定条件
 上記測定を行う際のガスセル22内の温度は、ハロゲンフッ化物含有ガスおよびリファレンスガスが液化および固化する温度以上であれば特に制限されないが、20~150℃が好ましく、50~120℃がさらに好ましい。この範囲より温度が高くなると、ハロゲンフッ化物とガスセル並びに入射窓および出射窓との反応が進行する場合や、ハロゲンフッ化物の分解が進行する場合があるので好ましくない。
 また、上記ハロゲンフッ化物含有ガスおよびリファレンスガスをガスセル22に封入して測定を行う際のガスセル22内の圧力は、特に制限されないが、0.01~0.2MPaAが好ましく、0.05~0.15MPaAがより好ましい。この範囲より圧力が低くなると上記ガス濃度が低くなり感度が低下する場合があり、またこの範囲より圧力が高くなると装置が損傷する場合がある。
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。
 [実施例1]
 ハロゲンフッ化物含有ガスとして五フッ化臭素ガスを使用し、図1に示した分析装置を使用して本発明の測定方法に従って五フッ化臭素ガスに含まれるフッ素ガス濃度を測定した。ガスセル22は本体がSUS316製で、入射窓および出射窓はフッ化カルシウムで構成されたガスセルを使用した。
 まず、リファレンスガスとして窒素ガスを使用し、リファレンスガス供給源12である高純度窒素ガスボンベからガスセル22に窒素ガスを導入し、光源18として重水素ランプ(製品名:L10290、浜松ホトニクス株式会社製)からフィルター20として短波長カットフィルター(製品名:LU0250、朝日分光株式会社製)を介して、225nm未満の波長領域の紫外光強度の最大値をWXとし、WX/WF=1/20の紫外光をガスセル22内の窒素ガスに照射した。ガスセル22から出射した紫外光の吸収スペクトルを分光器24としてマルチチャンネル分光器(製品名:FLAME-S、Ocean Optics社製)で測定した。ガスセル内の温度は50℃、圧力は0.1MPaAであった。
 次いで、ガスセル22中の窒素ガスを排気口26から排気した後、ハロゲンフッ化物含有ガス供給源10からガスセル22に五フッ化臭素ガスを導入し、リファレンスガス測定時と同一温度および同一圧力条件下で、光源から上記フィルターを介して、WX/WF=1/20の紫外光をガスセル22内の五フッ化臭素ガスに照射した。ここで、ガスセル22から出射した紫外光の吸収スペクトルを上記分光器で測定した。得られた五フッ化臭素ガスの吸収スペクトルから窒素ガスの吸収スペクトルを差し引いて、五フッ化臭素ガスに含まれるフッ素ガス濃度を求めた。その結果、フッ素濃度は2体積ppmであった。
 [実施例2]
 ハロゲンフッ化物含有ガスとして五フッ化臭素ガスの代わりに七フッ化ヨウ素ガスを使用し、250nm未満の波長領域の紫外光強度の最大値をWXとし、WX/WF=1/18の紫外光を照射したこと以外は、実施例1と同様にして七フッ化ヨウ素ガス中のフッ素ガス濃度を求めた。その結果、フッ素濃度は、3体積ppmであった。
 [実施例3]
 ハロゲンフッ化物含有ガスとして五フッ化臭素ガスの代わりに三フッ化塩素ガスを使用し、215nm未満の波長領域の紫外光強度の最大値をWXとしたこと以外は、実施例1と同様にして三フッ化塩素ガス中のフッ素ガス濃度を求めた。その結果、フッ素濃度は、5体積ppmであった。
 [比較例1]
 フィルターを用いず、WX/WF=1/5の紫外光を照射したこと以外は、実施例1と同様にして、五フッ化臭素ガスに含まれるフッ素ガス濃度を求めた。その結果、フッ素濃度は20体積ppmであり、五フッ化臭素の分解反応が進んだことが確認された。
 [比較例2]
 フィルターを用いず、WX/WF=1/5の紫外光を照射したこと以外は、実施例2と同様にして、七フッ化ヨウ素ガスに含まれるフッ素ガス濃度を求めた。その結果、フッ素濃度は24体積ppmであり、七フッ化ヨウ素の分解反応が進んだことが確認された。
 [比較例3]
 フィルターを用いず、WX/WF=1/5の紫外光を照射したこと以外は、実施例3と同様にして、三フッ化塩素ガスに含まれるフッ素ガス濃度を求めた。その結果、フッ素濃度は18体積ppmであり、三フッ化塩素の分解反応が進んだことが確認された。
 上記実施例1~3および比較例1~3の条件と結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 10・・・ハロゲンフッ化物含有ガス供給源
 12・・・リファレンスガス供給源
 14・・・バルブ
 16・・・バルブ
 18・・・光源
 20・・・フィルター
 22・・・ガスセル
 24・・・分光器
 26・・・排気口

Claims (8)

  1.  ハロゲンフッ化物含有ガスに対し、285nmの波長の紫外光強度(WF)に対する250nm未満の波長領域における紫外光強度の最大値(WX)の比(WX/WF)が1/10以下となる紫外光を照射し、285nmの波長の吸光度を測定しハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を得る、フッ素ガス濃度の測定方法。
  2.  前記ハロゲンフッ化物含有ガスに対して、光源から250nm未満の波長の紫外光の照射を抑制する手段を用いて250nm以上の波長の紫外光を照射する、請求項1に記載のフッ素ガス濃度の測定方法。
  3.  前記手段が前記光源からハロゲンフッ化物含有ガスに照射される紫外光を、250nm未満の波長の紫外光を50%以上遮断し、280~290nmの波長の紫外光を90%以上透過させるフィルターを介して照射することである、請求項1または2に記載のフッ素ガス濃度の測定方法。
  4.  前記ハロゲンフッ化物が、三フッ化塩素、五フッ化臭素、七フッ化ヨウ素、三フッ化臭素、および五フッ化ヨウ素からなる群より選択されるいずれか1種のガスである、請求項1~3のいずれか一項に記載のフッ素ガス濃度の測定方法。
  5.  前記ハロゲンフッ化物が七フッ化ヨウ素である、請求項1~4のいずれか一項に記載のフッ素ガス濃度の測定方法。
  6.  前記ハロゲンフッ化物が五フッ化臭素であり、前記250nm未満の波長領域における紫外光強度の最大値(WX)が225nm未満の波長領域における紫外光強度の最大値である、請求項1~4のいずれか一項に記載のフッ素ガス濃度の測定方法。
  7.  前記ハロゲンフッ化物が三フッ化塩素であり、前記250nm未満の波長領域における紫外光強度の最大値(WX)が215nm未満の波長領域における紫外光強度の最大値である、請求項1~4のいずれか一項に記載のフッ素ガス濃度の測定方法。
  8.  前記ハロゲンフッ化物含有ガスに前記紫外光を照射して測定した吸収スペクトルから、リファレンスガスに前記紫外光を照射して測定した吸収スペクトルを差し引き、得られた吸収スペクトルの285nmの波長の吸光度からフッ素ガス濃度を得る、請求項1~7のいずれか一項に記載のフッ素ガス濃度の測定方法。
PCT/JP2020/042275 2019-11-27 2020-11-12 紫外分光法によるハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法 WO2021106602A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202112241QA SG11202112241QA (en) 2019-11-27 2020-11-12 Method for measuring concentration of fluorine gas contained in halogen fluoride-containing gas by ultraviolet spectroscopy
JP2021561295A JPWO2021106602A1 (ja) 2019-11-27 2020-11-12
EP20892100.7A EP4067873A4 (en) 2019-11-27 2020-11-12 METHOD FOR MEASURING THE CONCENTRATION OF GASEOUS FLUORINE CONTAINED IN A GAS CONTAINING HALOGEN FLUORIDE BY ULTRAVIOLET SPECTROSCOPY
KR1020217038538A KR20220005530A (ko) 2019-11-27 2020-11-12 자외 분광법에 의한 할로겐불화물 함유 가스에 포함되는 불소 가스 농도의 측정 방법
IL287814A IL287814B2 (en) 2019-11-27 2020-11-12 A method for measuring the concentration of fluorine gas in a gas that includes hydrofluoric acid using ultraviolet spectroscopic devices
CN202080032718.2A CN113785190A (zh) 2019-11-27 2020-11-12 由紫外光谱法测定含卤素氟化物气体所含的氟气浓度的测定方法
US17/609,211 US20220214323A1 (en) 2019-11-27 2020-11-12 Method for measuring concentration of fluorine gas contained in halogen fluoride-containing gas by ultraviolet spectroscopy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-214261 2019-11-27
JP2019214261 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021106602A1 true WO2021106602A1 (ja) 2021-06-03

Family

ID=76130215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042275 WO2021106602A1 (ja) 2019-11-27 2020-11-12 紫外分光法によるハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法

Country Status (9)

Country Link
US (1) US20220214323A1 (ja)
EP (1) EP4067873A4 (ja)
JP (1) JPWO2021106602A1 (ja)
KR (1) KR20220005530A (ja)
CN (1) CN113785190A (ja)
IL (1) IL287814B2 (ja)
SG (1) SG11202112241QA (ja)
TW (1) TWI769591B (ja)
WO (1) WO2021106602A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221881B2 (ja) 1972-02-16 1977-06-14
JPH08107090A (ja) * 1994-08-18 1996-04-23 Fsi Internatl Inc 窒化シリコン膜の紫外線強化されたドライ・ストリッピング
US20030098419A1 (en) * 2001-10-29 2003-05-29 Bing Ji On-line UV-Visible light halogen gas analyzer for semiconductor processing effluent monitoring
JP2003236337A (ja) * 2002-02-14 2003-08-26 Showa Denko Kk 排ガスの処理方法および処理装置
US7192875B1 (en) * 2004-10-29 2007-03-20 Lam Research Corporation Processes for treating morphologically-modified silicon electrode surfaces using gas-phase interhalogens
JP2008196882A (ja) * 2007-02-09 2008-08-28 Taiyo Nippon Sanso Corp ガス分析装置
JP2010203855A (ja) 2009-03-02 2010-09-16 Taiyo Nippon Sanso Corp フッ素濃度測定方法
JP2013507629A (ja) * 2009-10-16 2013-03-04 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング 高純度フッ素ガス、その発生および使用、ならびにフッ素ガス中の不純物の監視方法
WO2016056300A1 (ja) * 2014-10-10 2016-04-14 関東電化工業株式会社 ケイ素化合物用エッチングガス組成物及びエッチング方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481322A (en) * 1987-09-24 1989-03-27 Masataka Murahara Etching by ultraviolet laser beam
EP0541286A1 (en) 1991-11-04 1993-05-12 Texaco Chemical Company Process for oligomerizing olefins using sulfate-activated catalysts
JPH05275399A (ja) * 1992-03-25 1993-10-22 Nec Corp ドライエッチング方法及びその装置
JPH07123116B2 (ja) * 1992-11-30 1995-12-25 日本電気株式会社 ドライエッチング装置
CN103575685B (zh) * 2013-11-11 2016-01-20 中国科学院青海盐湖研究所 一种同时测定溴离子和碘离子的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221881B2 (ja) 1972-02-16 1977-06-14
JPH08107090A (ja) * 1994-08-18 1996-04-23 Fsi Internatl Inc 窒化シリコン膜の紫外線強化されたドライ・ストリッピング
US20030098419A1 (en) * 2001-10-29 2003-05-29 Bing Ji On-line UV-Visible light halogen gas analyzer for semiconductor processing effluent monitoring
US6686594B2 (en) 2001-10-29 2004-02-03 Air Products And Chemicals, Inc. On-line UV-Visible light halogen gas analyzer for semiconductor processing effluent monitoring
JP2003236337A (ja) * 2002-02-14 2003-08-26 Showa Denko Kk 排ガスの処理方法および処理装置
US7192875B1 (en) * 2004-10-29 2007-03-20 Lam Research Corporation Processes for treating morphologically-modified silicon electrode surfaces using gas-phase interhalogens
JP2008196882A (ja) * 2007-02-09 2008-08-28 Taiyo Nippon Sanso Corp ガス分析装置
JP2010203855A (ja) 2009-03-02 2010-09-16 Taiyo Nippon Sanso Corp フッ素濃度測定方法
JP2013507629A (ja) * 2009-10-16 2013-03-04 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング 高純度フッ素ガス、その発生および使用、ならびにフッ素ガス中の不純物の監視方法
WO2016056300A1 (ja) * 2014-10-10 2016-04-14 関東電化工業株式会社 ケイ素化合物用エッチングガス組成物及びエッチング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067873A4

Also Published As

Publication number Publication date
IL287814B1 (en) 2023-08-01
EP4067873A1 (en) 2022-10-05
SG11202112241QA (en) 2021-12-30
EP4067873A4 (en) 2023-12-20
KR20220005530A (ko) 2022-01-13
TW202134630A (zh) 2021-09-16
JPWO2021106602A1 (ja) 2021-06-03
TWI769591B (zh) 2022-07-01
IL287814B2 (en) 2023-12-01
US20220214323A1 (en) 2022-07-07
CN113785190A (zh) 2021-12-10
IL287814A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
US6955801B2 (en) High-purity fluorine gas, production and use thereof, and method for analyzing trace impurities in high-purity fluorine gas
WO2016125338A1 (ja) ガス分析方法およびガス分析装置
WO2021106602A1 (ja) 紫外分光法によるハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法
Ottolenghi Electron ejection and fluorescence in aqueous β-naphthol solutions
KR102373962B1 (ko) 가스 관리 시스템
Zhang et al. Intensity of the second and third OH overtones of H2O2, HNO3, and HO2NO2
JP5221881B2 (ja) ガス分析装置
Gelernt et al. Quenching and radiative lifetimes for NH (b1Σ+, υ′= 0)
EP4253938A1 (en) Gas analyzing method
JP4211983B2 (ja) F2ガス濃度の測定方法並びに測定装置
JP2003014716A (ja) 高純度フッ素ガス中の微量不純物の分析方法
JP4642602B2 (ja) フッ素ガス中の含有ガス成分の定量分析方法およびこれに用いる装置
Singer et al. Measurement of the absorption cross-section of peroxynitric acid between 210 and 330 nm in the range 253–298 K
JP2001041877A (ja) 分光分析装置及びガス中の不純物の分析方法
CN104807542A (zh) 基于手套箱的真空紫外光源测试***
KR102015225B1 (ko) 히트란 밴드패스필터와 gfc가 결합된 가스분석기를 이용한 가스 농도 보정방법
JPH08159964A (ja) ガス中の水分の定量方法及び試料容器
WO2021106601A1 (ja) 質量分析計によるハロゲンフッ化物含有ガス中のフッ素ガス濃度の測定方法
Johnson et al. Photolytic spectroscopic quantification of residual chlorine in potable waters
CN113640239B (zh) 一种硝酸盐和亚硝酸盐的分光光度法检测方法
JP4078223B2 (ja) 全窒素測定方法
Yin et al. Establishment of a New Analysis Method for Trace Nitrogen Trifluoride in Helium detection by Gas Chromatography
Goly et al. Oscillator strengths of ultraviolet V (II) lines (2290–2530 Å) from emission measurements in a stabilized arc
CN111929355A (zh) 基于硝酸化学离子化飞行时间质谱仪的标定***和方法
Taylor et al. UV absorption spectrum and photochemistry of CF2ClBr

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561295

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217038538

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020892100

Country of ref document: EP

Effective date: 20220627