WO2021106601A1 - 質量分析計によるハロゲンフッ化物含有ガス中のフッ素ガス濃度の測定方法 - Google Patents

質量分析計によるハロゲンフッ化物含有ガス中のフッ素ガス濃度の測定方法 Download PDF

Info

Publication number
WO2021106601A1
WO2021106601A1 PCT/JP2020/042274 JP2020042274W WO2021106601A1 WO 2021106601 A1 WO2021106601 A1 WO 2021106601A1 JP 2020042274 W JP2020042274 W JP 2020042274W WO 2021106601 A1 WO2021106601 A1 WO 2021106601A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fluorine
containing gas
concentration
supply source
Prior art date
Application number
PCT/JP2020/042274
Other languages
English (en)
French (fr)
Inventor
鈴木 淳
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN202080032719.7A priority Critical patent/CN113767281A/zh
Priority to US17/608,527 priority patent/US11984308B2/en
Priority to EP20893561.9A priority patent/EP4067300A4/en
Priority to KR1020217035596A priority patent/KR20210146388A/ko
Priority to SG11202112025TA priority patent/SG11202112025TA/en
Priority to JP2021561294A priority patent/JPWO2021106601A1/ja
Publication of WO2021106601A1 publication Critical patent/WO2021106601A1/ja
Priority to IL287815A priority patent/IL287815A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/24Inter-halogen compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0018Sample conditioning by diluting a gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the present invention relates to a method for measuring the concentration of fluorine gas contained in a halogen fluoride-containing gas.
  • Halogen fluoride is used as an etching gas, cleaning gas, etc. in the semiconductor manufacturing process.
  • the miniaturization of semiconductors has progressed, and high-purity gases are required for etching gases and cleaning gases used in semiconductor manufacturing processes.
  • a method for accurately measuring the concentration of fluorine gas, which is an impurity contained in the etching gas and the cleaning gas is required.
  • Non-Patent Document 1 As a method for measuring the fluorine gas concentration, for example, in Non-Patent Document 1, a quadrupole mass analyzer is used to determine the concentrations of F 2 , NF 3, and Si F 4 generated when a semiconductor manufacturing process apparatus is cleaned with NF 3 gas. The measurement method used is disclosed.
  • Patent Document 1 discloses a method of analyzing a halogen gas generated from a semiconductor manufacturing process by ultraviolet-visible absorption spectroscopy. Among them, it is disclosed that a metal passivated with fluorine gas is used as a member constituting a sample cell into which a gas to be measured is introduced and irradiated with UV-visible light.
  • a metal passivated with fluorine gas is used as a member constituting a sample cell into which a gas to be measured is introduced and irradiated with UV-visible light.
  • mass spectrometer since the measurement of fluorine gas by mass spectrometer needs to be performed in a high vacuum environment, it is a matter of installation location and setup time of the vacuum pump to be used, and to components such as ion sources, detectors, and pumps. It suggests that it is not suitable to use a mass spectrometer to measure the concentration of fluorine gas, citing problems such as corrosion.
  • an object of the present invention is that when measuring the concentration of fluorine gas contained in a halogen fluoride-containing gas using a mass spectrometer, fluorine gas is reacted by reaction with metal members such as pipes and capillarys on a gas flow path and impurities. It is to reduce the measurement error caused by the consumption of fluorine and to provide a highly accurate measurement method.
  • the present inventors put the fluorine gas concentration in the halogen fluoride-containing gas on the gas flow path in the analyzer before measuring the fluorine gas concentration in the halogen fluoride-containing gas using a mass spectrometer.
  • high-precision measurement can be performed by preliminarily passivating existing pipes and capillaries with a fluorine-containing gas to form a passivation film with fluorine inside the pipes and capillaries and removing impurities inside. It came to be completed. That is, the present invention includes the following [1] to [9].
  • [5] The method for measuring a fluorine gas concentration according to any one of [1] to [4], wherein the concentration of the fluorine-containing gas in the passivation gas is 8 to 100% by volume.
  • the analyzer further has a dilution gas supply source, and the concentration of the fluorine-containing gas in the passion gas is adjusted by using the dilution gas supplied from the dilution gas supply source.
  • [5] ] The method for measuring the fluorine gas concentration.
  • [7] The fluorine gas concentration according to [5] or [6], wherein the diluted gas is at least one selected from helium, argon, nitrogen gas (N 2), carbon dioxide, and carbon tetrafluoride. Measurement method.
  • the halogen fluorides constituting the halogen fluoride-containing gas are chlorine fluoride, chlorine trifluoride, bromine trifluoride, bromine trifluoride, bromine pentafluoride, iodine fluoride, iodine trifluoride, and five.
  • the method for measuring a fluoride gas concentration according to any one of [1] to [7], which is at least one selected from the group consisting of iodine pentafluoride and iodine pentafluoride.
  • It has a halogen fluoride-containing gas supply source, a fluorine-containing gas supply source, a pipe, a capillary and a mass analyzer, and the pipe and the capillary include a fluorine-containing gas supplied from the fluorine-containing gas supply source.
  • a fluorine gas concentration measuring device that has been subjected to passivation treatment with a passivation gas.
  • the present invention it is possible to measure the concentration of fluorine gas contained in the halogen fluoride-containing gas with high accuracy.
  • FIG. 1 is a schematic view of an example of an analyzer used for measuring the fluorine gas concentration of the present invention.
  • the analyzer used in the present invention is not limited to the analyzer shown in FIG.
  • One embodiment of the present invention is included in a halogen fluoride-containing gas using an analyzer 10 having a halogen fluoride-containing gas supply source 16, a fluorine-containing gas supply source 14, a pipe 24, a capillary 28, and a mass analyzer 30.
  • This is a method of measuring the fluorine gas (F 2 ) concentration, and before measuring the fluorine gas concentration, the piping 24 and the capillary 28 (hereinafter, also referred to as “pipes, etc.”) are passed through using a fluorine-containing gas. Perform processing.
  • halogen Fluoride-Containing Gas Supply Source 16 The halogen fluoride-containing gas supply source 16 included in the analyzer 10 used in one embodiment of the present invention supplies a halogen fluoride-containing gas containing fluorine gas to be measured.
  • the halogen fluoride-containing gas supply source 16 is not particularly limited in supply method, form, size, etc. as long as the halogen fluoride-containing gas can be supplied to the piping or the like and the mass spectrometer 30, which will be described later.
  • the halogen fluoride-containing gas is supplied from the branch pipe branched from the halogen fluoride-containing gas supply pipe connected to the etching apparatus in the semiconductor manufacturing process to the pipe 24 described later via the valve 40.
  • it may be supplied to the pipe 24 from a container such as a gas cylinder in which the same halogen fluoride-containing gas as the gas supplied to the etching apparatus is stored.
  • the halogen fluoride-containing gas supply source 16 is connected to the pipe 24 via the flow control device (Mass Flow Controller; MFC) 20, and the flow rate of the halogen fluoride-containing gas from the halogen fluoride-containing gas supply source 16 Is preferable because the concentration of fluorine gas contained in the halogen fluoride-containing gas when measured with the mass analyzer 30 can be easily adjusted.
  • MFC Mass Flow Controller
  • the halogen fluoride contained in the halogen fluoride-containing gas is a fluorine compound containing halogens such as chlorine, bromine and iodine as constituent elements.
  • Halogen fluorides include, for example, chlorine fluoride, chlorine trifluoride, bromine fluoride, bromine trifluoride, bromine pentafluoride, iodine fluoride, iodine trifluoride, iodine pentafluoride, and iodine heptafluoride. Can be mentioned.
  • chlorine trifluoride, bromine trifluoride, bromine pentafluoride, iodine pentafluoride, and iodine heptafluoride are preferable from the viewpoint of frequency of use, and chlorine trifluoride, iodine heptafluoride, and bromine pentafluoride are preferable. More preferably, it can be applied to the present invention.
  • the halogen fluoride-containing gas may contain one type of halogen fluoride alone, or may contain a plurality of types.
  • the halogen fluoride-containing gas supplied from the halogen fluoride-containing gas supply source 16 may contain a fluorine gas to be measured and an impurity gas other than the fluorine gas.
  • the impurity gas include helium, argon, oxygen gas (O 2 ), nitrogen gas (N 2 ), carbon dioxide and carbon tetrafluoride.
  • the halogen fluoride-containing gas may contain one kind or a plurality of kinds of impurity gases, and the content thereof is not particularly limited.
  • the fluorine-containing gas supply source 14 included in the analyzer used in one embodiment of the present invention supplies the fluorine-containing gas used for the passivation treatment of the piping and the like described later.
  • the fluorine-containing gas supply source 14 is not particularly limited in terms of supply method, form, size, and the like as long as the fluorine-containing gas can be supplied to pipes and the like.
  • a passion gas containing a fluorine-containing gas in the pipe 24 by merging the two from a gas cylinder in which the fluorine-containing gas is stored or from a container such as a gas cylinder in which the fluorine-containing gas is stored and a gas cylinder in which the diluted gas is stored. May be supplied.
  • a fluorine generator can also be used as the fluorine-containing gas supply source 14.
  • the fluorine-containing gas is a gas containing a fluorine element as a constituent element, and is not particularly limited as long as the passivation treatment can be performed.
  • Fluorine-containing gases include, for example, F 2 , HF, NF 3 , SF 6 , and halogen fluoride. Of these, F 2 and halogen fluoride are preferable, and F 2 is more preferable, from the viewpoint of easiness of forming a passivation film.
  • the fluorine-containing gas may be used alone or in a plurality of types.
  • the fluorine-containing gas supply source 14 is connected to the pipe 24 via the flow rate control device 36 to adjust the flow rate of the fluorine-containing gas supplied from the fluorine-containing gas supply source 14, and the fluorine-containing gas during the passion treatment. It is preferable because it makes it easy to adjust the concentration of fluorine. It is preferable to provide a valve 22 between the fluorine-containing gas supply source 14 and the flow rate control device 36.
  • the analyzer 10 used in one embodiment of the present invention preferably has a diluent gas supply source 12.
  • the dilution gas supplied from the dilution gas supply source 12 is preferably used for diluting the fluorine-containing gas in the passivation gas and diluting the halogen fluoride-containing gas measured by the mass spectrometer 30.
  • the diluted gas supply source 12 can be supplied to the piping or the like and the mass spectrometer 30, the supply method, form, size, etc. are not particularly limited.
  • the diluted gas may be supplied to the pipe 24 from a container such as a gas cylinder in which the diluted gas is stored.
  • the diluting gas is a gas that is inactive against the halogen fluoride, the fluorine-containing gas, and the impurity gas.
  • the diluting gas include helium, argon, N 2 , carbon dioxide, and carbon tetrafluoride. Of these, helium and N 2 are preferable because they have a large difference in molecular weight from F 2 and the analysis accuracy is good, and N 2 is more preferable.
  • the dilution gas supply source 12 is connected to the pipe 24 via the flow control device 18 to adjust the flow rate of the dilution gas supplied from the dilution gas supply source 12, and is a halogen when measured by the mass analyzer 30. It is preferable because the concentration of the fluorine gas contained in the fluoride-containing gas and the concentration of the fluorine-containing gas during the passion treatment can be easily adjusted. It is preferable to provide a valve 38 between the dilution gas supply source 12 and the flow rate control device 18.
  • the pipe 24 included in the analyzer 10 used in one embodiment of the present invention is a series of gas supply sources of the halogen fluoride-containing gas supply source 16, the fluorine-containing gas supply source 14, and preferably the dilution gas supply source 12. It is a pipe for a gas flow path connecting the capillary 28 and the capillary 28 described later, and is used for introducing a halogen fluoride-containing gas, a fluorine-containing gas, preferably a diluting gas into the capillary 28.
  • the inner diameter of the pipe 24 can be appropriately set according to the flow rate of the gas, but is preferably 3 to 50 mm, more preferably 6 to 25 mm.
  • the halogen fluoride-containing gas supply source 16, the fluorine-containing gas supply source 14, and preferably the dilution gas supply source 12 are connected to the pipe 24.
  • the connection portion is not particularly limited, but it is preferable that the pipe 24 is connected so that the passivation process can be sufficiently performed.
  • the pipe 24 may have a valve 42 and an exhaust port 26 for exhausting the fluorine-containing gas or the like after the passivation treatment.
  • the capillary 28 included in the analyzer 10 used in one embodiment of the present invention is a pipe for a gas flow path connecting the pipe 24 and the mass spectrometer 30 described later, and mass spectrometrically analyzes a halogen fluoride-containing gas. It is used to adjust the amount introduced into a total of 30.
  • the cross-sectional area of the flow path of the capillary 28 is smaller than that of the pipe 24, and the inner diameter of the capillary 28 can be appropriately set according to the flow rate of the gas, but is preferably 0.1 to 5 mm, more preferably 1 to 2 mm.
  • the material of the piping and the capillary is not particularly limited as long as it has corrosion resistance to the halogen fluoride-containing gas and components contained in the fluorine-containing gas and heat resistance to heating during the passivation treatment.
  • Examples of materials for pipes and the like include stainless steel, nickel, Inconel, and Monel.
  • the mass spectrometer 30 included in the analyzer 10 used in one embodiment of the present invention is used to measure the concentration of fluorine gas contained in the halogen fluoride-containing gas.
  • the mass spectrometer 30 is not particularly limited as long as it can quantitatively analyze a mixed gas of a single or a plurality of trace components and a mixed gas of a single or a plurality of trace components and a single or a plurality of large components.
  • Examples of the mass spectrometer 30 include a quadrupole mass spectrometer, a double-focusing mass spectrometer, an ion trap mass spectrometer, a time-of-flight mass spectrometer, and an ion cyclotron mass spectrometer.
  • the mass spectrometer 30 may include a vacuum pump 32 and an exhaust port 34.
  • the passivation treatment refers to a treatment of forming a passivation film of fluorine on the inner surface of a pipe or the like by using the passivation gas containing the fluorine-containing gas, and at the same time, impurities such as water are removed. ..
  • the passing gas is a gas used for the passing treatment, which contains a fluorine-containing gas or a fluorine-containing gas (mixed gas) diluted with the diluted gas.
  • the passivation process may be performed in a state where the passivation gas is sealed inside the pipe or the like by closing a valve 26 arbitrarily provided in the pipe or the like, or the passivation gas may be used while the valve 26 is open. It may be distributed to pipes or the like.
  • the flow rate when the passivation gas is circulated can be appropriately set according to the time and temperature of the passivation process and the inner diameter of the pipe, etc.
  • the inner diameter of the pipe 24 is 3 to 8 mm and the inner diameter of the capillary 28.
  • the total flow rate of the fluorine-containing gas and the diluted gas is 40 to 60 mL / min.
  • Passivation processing does not need to be repeated unless processing that causes changes in the internal surface of piping, etc., such as opening the inside of piping, etc. to the outside air, but from the viewpoint of stable measurement. Then, it may be performed regularly, such as once a day, once a month, or once a year.
  • the temperature at which the passivation treatment is performed is preferably higher than the temperature at which the concentration of the fluorine gas contained in the halogen fluoride-containing gas is measured, and specifically 70 to 500 ° C. If the temperature at which the passivation treatment is performed is lower than the lower limit of the above range, the formation of a passivation film of fluorine will be insufficient, and fluorine in the halogen fluoride will be consumed in the piping, etc., resulting in a decrease in measurement accuracy. There is. Further, if the temperature at which the passivation treatment is performed is higher than the upper limit of the above range, the passivation film of fluorine may peel off and the metal surface of the pipe or the like may be corroded.
  • the temperature at which the passivation treatment is performed is more preferably 80 to 400 ° C, further preferably 100 to 300 ° C.
  • the passivation treatment is preferably performed for 1 to 5 hours. If the time for performing the passivation treatment is shorter than the lower limit of the above range, the formation of the passivation film becomes insufficient and the fluorine in the halogen fluoride is consumed in the piping or the like, so that the measurement accuracy may decrease. .. Further, if the passivation processing time is longer than the above range, the ratio of the effect to the processing time may be small.
  • the time for performing the passivation treatment is more preferably 2 to 4 hours.
  • the concentration of the fluorine-containing gas in the passivation gas when the passivation treatment is performed is preferably 8 to 100% by volume.
  • the gas other than the fluorine-containing gas in the passivation gas it is preferable to use the above-mentioned diluted gas.
  • concentration of the fluorine-containing gas is lower than the lower limit of the above range, the formation of a passivation film of fluorine is insufficient, and fluorine in the halogen fluoride is consumed in the piping or the like, so that the measurement accuracy is lowered. There is.
  • the concentration of the fluorine-containing gas in the passivation gas during the passivation treatment is more preferably 10 to 100% by volume, further preferably 30 to 100% by volume, and particularly preferably 50 to 100% by volume.
  • the fluorine-containing gas concentration at the time of performing the passivation treatment is preferably equal to or higher than the halogen fluoride concentration contained in the halogen fluoride-containing gas, and further, the fluorine gas concentration contained in the halogen fluoride-containing gas is adjusted. It is preferably higher than the fluorine gas concentration at the time of measurement.
  • the concentration of the fluorine-containing gas in the passivation gas may be adjusted by adjusting the flow rates of the gases supplied from the fluorine-containing gas supply source 14 and the dilution gas supply source 12. For example, when the fluorine-containing gas concentration in the passing gas is 70% by volume of the fluorine-containing gas concentration of the fluorine-containing gas supply source 14, the flow rate and dilution of the fluorine-containing gas supplied from the fluorine-containing gas supply source 14 The flow rate of each gas is adjusted so that the ratio of the flow rates of the diluted gases supplied from the gas supply source 12 is 7: 3 under the same pressure.
  • ⁇ Measurement of fluorine gas concentration> To measure the concentration of fluorine gas contained in the halogen fluoride-containing gas, first, the above passivation treatment is performed to sufficiently remove the fluorine-containing gas from the pipe 24, the capillary 28 and the mass spectrometer 30, and then the fluorine-containing gas supply source 14 Prevent the supply of fluorine-containing gas from. Next, the halogen fluoride-containing gas is supplied from the halogen fluoride-containing gas supply source 16 to a pipe or the like, diluted with a diluting gas if necessary, introduced into the mass analyzer 30, and the fluorine contained in the halogen fluoride-containing gas. Measure the gas concentration.
  • the halogen fluoride-containing gas as measured by the mass analyzer 30 is preferably diluted to 1 to 90% by volume, more preferably to 5 to 70% by volume, using a diluting gas. It is more preferably diluted to 10-50% by volume.
  • the halogen fluoride-containing gas is diluted by adjusting the flow rates of the gases supplied from the halogen fluoride gas supply source 16 and the dilution gas supply source 12. For example, when the halogen fluoride-containing gas is diluted to 40% by volume, the flow rate of the halogen fluoride gas supplied from the halogen fluoride gas supply source 16 and the flow rate of the dilution gas supplied from the dilution gas supply source 12 The flow rate of each gas is adjusted so that the ratio is 4: 6 under the same pressure, and a mixed gas of the halogen fluoride-containing gas and the diluting gas is prepared.
  • the halogen fluoride-containing gas supplied from the halogen fluoride-containing gas supply source 16 or the mixed gas of the halogen fluoride-containing gas and the diluted gas prepared as described above is subjected to a mass analyzer via the pipe 24 and the capillary 28. Introduce to 30.
  • the concentration of fluorine gas contained in the halogen fluoride-containing gas is measured according to the manual of the mass spectrometer 30 used.
  • Example 1 Chlorine trifluoride gas is used as the halogen fluoride-containing gas, F 2 is used as the fluorine-containing gas in the passivation gas, and chlorine trifluoride is used according to the measurement method of the present invention using the analyzer 10 shown in FIG.
  • the concentration of fluorine gas contained in the gas was measured.
  • the pipe 24 included in the analyzer 10 was made of SUS316 and had an inner diameter of 6 mm.
  • the capillary 28 made of SUS316 and having an inner diameter of 1 mm was used.
  • the mass spectrometer 30 used a quadrupole mass spectrometer (manufactured by Heiden Analytical Co., Ltd .: HPR-20) to measure the fluorine gas concentration according to the manual attached to the product.
  • F 2 gas cylinder is a fluorine-containing gas supply source 14 for the passivation process
  • the flow control device 36 (trade name: Digital mass flow controllers SEC-N100, HORIBA STEC Co.) F 2 obtained by adjusting the flow rate through the the 50 mL / min Was supplied to pipes, etc.
  • N 2 is used as the dilution gas, and the flow rate is adjusted to 50 mL / min from the N 2 cylinder, which is the dilution gas supply source 12, via the flow control device 18 (trade name: digital mass flow controller SEC-N100, manufactured by Horiba STEC). N 2 was supplied to pipes and the like.
  • the pipe 24 and the capillary 28 are heated at 200 ° C. for 3 hours, and the inside of the pipe or the like is provided with a mixed gas (1) of F 2 and N 2 which are passivation gases. Passivation processing was performed.
  • the gas supply from the F 2 cylinder and the N 2 cylinder to the piping, etc. was stopped to complete the passivation process.
  • the mixed gas (1) was exhausted from the pipe or the like by opening the exhaust port 26 and then replaced with N 2 , the exhaust port 26 was closed, and the passage gas in the pipe or the capillary was sufficiently exhausted by the vacuum pump 32.
  • the flow rate control device 20 (trade name: Digital Mass Flow Controller SEC-N100, manufactured by Horiba STEC Co., Ltd.) A mixed gas (2) of chlorine trifluoride gas and N 2 whose flow rate was adjusted to 50 mL / min, respectively, was supplied to a pipe or the like via and 18 and diluted to 50% by volume with N 2 under the condition of 25 ° C. The concentration of fluorine gas in chlorine trifluoride gas was measured with a mass analyzer 30.
  • the fluorine gas concentration after dilution with N 2 was 4 parts by volume ppm. Therefore, the concentration of fluorine gas contained in the chlorine trifluoride gas supplied from the chlorine trifluoride-containing gas supply source 16 before being diluted with N 2 was 8 volume ppm.
  • Example 2 The fluorine gas concentration was measured in the same manner as in Example 1 except that the halogen fluoride-containing gas was replaced with chlorine trifluoride gas and iodine heptafluoride gas was used. As a result, the concentration of fluorine gas contained in the iodine heptafluoride gas supplied from the halogen fluoride-containing gas supply source 16 was 6 volume ppm.
  • Example 3 The fluorine gas concentration was measured in the same manner as in Example 1 except that the halogen fluoride-containing gas was replaced with chlorine trifluoride gas to be bromine pentafluoride gas. As a result, the concentration of fluorine gas contained in the bromine pentafluoride gas supplied from the halogen fluoride-containing gas supply source 16 was 10 volume ppm.
  • Example 4 to 9 The concentration of fluorine gas contained in chlorine trifluoride gas was measured in the same manner as in Example 1 except that the temperature conditions during the passivation treatment were set to the temperatures shown in Table 1 below. Table 1 shows the results of the concentration of fluorine gas contained in the chlorine trifluoride gas supplied from the halogen fluoride-containing gas supply source 16.
  • Example 10 The concentration of fluorine gas contained in the chlorine trifluoride gas before dilution was obtained in the same manner as in Example 1 except that the concentration of F 2 used for the passivation treatment was set to the concentration shown in Table 2 below. The results are shown in Table 2. In Example 10, since F 2 was not diluted with N 2 during the passivation treatment, the measured values of the fluorine gas concentration are shown in Table 2 as they are.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本発明は、質量分析計を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する際に、ガス流路上の金属部材および不純物とフッ素ガスとの反応によって消費されることに起因するフッ素ガス濃度の測定誤差を減らし、精度の高い測定方法を提供することを目的とする。 本発明は、ハロゲンフッ化物含有ガス供給源(16)、フッ素含有ガス供給源(14)、配管(24)、キャピラリー(28)および質量分析計(30)を有する分析装置(10)を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス(F2)濃度を測定する方法であって、前記フッ素ガス濃度を測定する前に、前記配管および前記キャピラリーに対して、前記フッ素含有ガス供給源から供給されるフッ素含有ガスを含むパッシベーション用ガスによりパッシベーション処理を行うことを特徴とする、フッ素ガス濃度の測定方法を含む。

Description

質量分析計によるハロゲンフッ化物含有ガス中のフッ素ガス濃度の測定方法
 本発明は、ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法に関する。
 ハロゲンフッ化物は、半導体製造プロセスにおいてエッチングガスおよびクリーニングガスなどに使用されている。近年、半導体の微細化が進行しており、半導体製造プロセスで使用されるエッチングガスおよびクリーニングガスなどには高純度のガスが求められている。高純度のガスを調製するためには、エッチングガスおよびクリーニングガスなどに含まれる不純物であるフッ素ガス濃度を精度よく測定する方法が必要とされている。
 フッ素ガス濃度の測定方法として、例えば、非特許文献1では、半導体製造プロセス装置をNF3ガスでクリーニングした際に生じるF2、NF3およびSiF4の濃度を、四重極型質量分析計を用いた測定方法を開示している。
 また、特許文献1は、半導体製造プロセスから生じるハロゲンガスを紫外-可視吸収分光法によって分析する方法を開示している。その中で、測定対象のガスを導入しUV-可視光を照射するサンプルセルを構成する部材として、フッ素ガスで不動態処理した金属を用いることを開示している。一方、質量分析計によるフッ素ガス測定は、高真空環境で行う必要があるため、使用する真空ポンプの設置場所およびセットアップにかかる時間の問題、ならびにイオン源、検出器、およびポンプなどのコンポーネントへの腐食の問題などを挙げ、フッ素ガス濃度の測定に質量分析計を使用することが適さないことを示唆している。
米国特許第6686594号明細書
Electrochemical Society Proceeding Volume99-8,p40-51
 質量分析計を用いてフッ素ガス濃度を測定する際、フッ素ガス(F2)の反応性が非常に高いため、フッ素ガスがガス流路上の配管およびキャピラリー等の金属部材ならびに流路上の水などの微量不純物と反応する。そのため、ガス流路上のこうした反応により測定対象のフッ素ガスが消費され、フッ素ガス濃度を測定する際の測定誤差の原因となっている。
 従って、本発明の目的は、質量分析計を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する際に、ガス流路上の配管およびキャピラリー等の金属部材ならびに不純物との反応によってフッ素ガスが消費されることに起因する測定誤差を減らし、精度の高い測定方法を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、質量分析計を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する前に、分析装置内のガス流路上に存在する配管およびキャピラリーをフッ素含有ガスで予めパッシベーション処理し、配管およびキャピラリー内部にフッ素による不動態膜を形成させるとともに、内部の不純物を除去することで精度の高い測定ができることを見出し、本発明を完成させるに至った。すなわち、本発明は以下に示す[1]~[9]を含む。
 [1]ハロゲンフッ化物含有ガス供給源、フッ素含有ガス供給源、配管、キャピラリーおよび質量分析計を有する分析装置を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス(F2)濃度を測定する方法であって、前記フッ素ガス濃度を測定する前に、前記配管および前記キャピラリーに対して、前記フッ素含有ガス供給源から供給されるフッ素含有ガスを含むパッシベーション用ガスによりパッシベーション処理を行うことを特徴とする、フッ素ガス濃度の測定方法。
 [2]前記フッ素含有ガスが、F2、HF、NF3、SF6、およびハロゲンフッ化物からなる群より選択される少なくとも1種のガスである、[1]に記載のフッ素ガス濃度の測定方法。
 [3]前記パッシベーション処理を行う温度が70~500℃である、[1]または[2]に記載のフッ素ガス濃度の測定方法。
 [4]前記パッシベーション処理を行う時間が1~5時間である、[1]~[3]のいずれかに記載のフッ素ガス濃度の測定方法。
 [5]前記パッシベーション用ガス中のフッ素含有ガスの濃度が8~100体積%である、[1]~[4]のいずれかに記載のフッ素ガス濃度の測定方法。
 [6]前記分析装置がさらに希釈ガス供給源を有し、かつ、前記パッシベーション用ガス中のフッ素含有ガスの濃度を、前記希釈ガス供給源から供給される希釈ガスを用いて調整する、[5]に記載のフッ素ガス濃度の測定方法。
 [7]前記希釈ガスが、ヘリウム、アルゴン、窒素ガス(N2)、二酸化炭素、および四フッ化炭素から選択される少なくとも1種である、[5]または[6]に記載のフッ素ガス濃度の測定方法。
 [8]前記ハロゲンフッ化物含有ガスを構成するハロゲンフッ化物が、フッ化塩素、三フッ化塩素、フッ化臭素、三フッ化臭素、五フッ化臭素、フッ化ヨウ素、三フッ化ヨウ素、五フッ化ヨウ素および七フッ化ヨウ素からなる群より選択される少なくとも1種である、[1]~[7]のいずれかに記載のフッ素ガス濃度の測定方法。
 [9]ハロゲンフッ化物含有ガス供給源、フッ素含有ガス供給源、配管、キャピラリーおよび質量分析計を有し、前記配管および前記キャピラリーが、前記フッ素含有ガス供給源から供給されるフッ素含有ガスを含むパッシベーション用ガスによりパッシベーション処理された、フッ素ガス濃度の測定装置。
 本発明によれば、ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度について、精度の高い測定をすることができる。
図1は、本発明のフッ素ガス濃度の測定に使用する分析装置の一例の概略図である。
 以下、本発明の一実施態様について、図1を参照しつつ詳細に説明する。なお、本発明で使用する分析装置は、図1に示す分析装置に限定されない。本発明の一実施態様は、ハロゲンフッ化物含有ガス供給源16、フッ素含有ガス供給源14、配管24、キャピラリー28および質量分析計30を有する分析装置10を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス(F2)濃度を測定する方法であり、該フッ素ガス濃度を測定する前に、配管24およびキャピラリー28(以下「配管等」とも称する。)に対して、フッ素含有ガスを用いたパッシベーション処理を行う。
 <分析装置10>
 (ハロゲンフッ化物含有ガス供給源16)
 本発明の一実施態様に使用する分析装置10に含まれるハロゲンフッ化物含有ガス供給源16は、測定対象であるフッ素ガスを含むハロゲンフッ化物含有ガスを供給する。ハロゲンフッ化物含有ガス供給源16は、ハロゲンフッ化物含有ガスを後述する配管等および質量分析計30に供給することできれば、供給方法、形態および大きさ等は特に制限されない。例えば、半導体製造プロセスにおけるエッチング装置に接続されているハロゲンフッ化物含有ガスの供給管から分岐している分岐管から、バルブ40を介して後述する配管24へハロゲンフッ化物含有ガスを供給してもよいし、エッチング装置に供給するガスと同じハロゲンフッ化物含有ガスが貯留されたガスボンベ等の容器から配管24に供給してもよい。ハロゲンフッ化物含有ガス供給源16は、流量制御装置(Mass Flow Controller;MFC)20を介して配管24に接続されることが、ハロゲンフッ化物含有ガス供給源16からのハロゲンフッ化物含有ガスの流量を調節し、質量分析計30で測定する際のハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を調整しやすくなる点で好ましい。
 ハロゲンフッ化物含有ガスに含まれるハロゲンフッ化物は、構成元素に塩素、臭素およびヨウ素等のハロゲンを含むフッ素化合物である。ハロゲンフッ化物としては、例えば、フッ化塩素、三フッ化塩素、フッ化臭素、三フッ化臭素、五フッ化臭素、フッ化ヨウ素、三フッ化ヨウ素、五フッ化ヨウ素、および七フッ化ヨウ素が挙げられる。このうち、使用頻度の点から三フッ化塩素、三フッ化臭素、五フッ化臭素、五フッ化ヨウ素、七フッ化ヨウ素が好ましく、三フッ化塩素、七フッ化ヨウ素および五フッ化臭素がより好ましく本発明に適用できる。ハロゲンフッ化物含有ガスには、ハロゲンフッ化物が一種単独で含まれてもよいし、複数種が含まれてもよい。
 また、ハロゲンフッ化物含有ガス供給源16から供給されるハロゲンフッ化物含有ガスには、測定対象であるフッ素ガス、およびフッ素ガス以外の不純物ガスが含まれていてもよい。不純物ガスとしては、例えば、ヘリウム、アルゴン、酸素ガス(O2)、窒素ガス(N2)、二酸化炭素および四フッ化炭素が挙げられる。ハロゲンフッ化物含有ガスには一種単独または複数種の不純物ガスが含まれていてもよく、その含有量は特に制限されない。
 (フッ素含有ガス供給源14)
 本発明の一実施態様に使用する分析装置に含まれるフッ素含有ガス供給源14は、後述の配管等を後述するパッシベーション処理するために使用するフッ素含有ガスを供給する。フッ素含有ガス供給源14は、フッ素含有ガスを配管等に供給することができれば、供給方法、形態および大きさ等は特に制限されない。例えば、フッ素含有ガスが貯留されたガスボンベから、もしくはフッ素含有ガスが貯留されたガスボンベと希釈ガスが貯留されたガスボンベ等の容器から両者を合流させて、配管24にフッ素含有ガスを含むパッシベーション用ガスを供給してもよい。また、フッ素含有ガス供給源14としてフッ素発生装置を使用することもできる。
 フッ素含有ガスは、構成元素にフッ素元素を含むガスであり、パッシベーション処理を行うことができれば特に制限されない。フッ素含有ガスとしては、例えば、F2、HF、NF3、SF6、およびハロゲンフッ化物が挙げられる。このうち、不動態膜の形成の容易性の点からF2およびハロゲンフッ化物が好ましく、F2がより好ましい。フッ素含有ガスは一種単独で使用してもよいし複数種で使用してもよい。
 フッ素含有ガス供給源14は、流量制御装置36を介して配管24に接続されることが、フッ素含有ガス供給源14から供給されるフッ素含有ガスの流量を調節し、パッシベーション処理時のフッ素含有ガスの濃度を調整しやすくなる点で好ましい。フッ素含有ガス供給源14と流量制御装置36の間には、バルブ22を設けることが好ましい。
 (希釈ガス供給源12)
 本発明の一実施態様で使用する分析装置10は、希釈ガス供給源12を有することが好ましい。希釈ガス供給源12から供給される希釈ガスは、パッシベーション用ガス中のフッ素含有ガスの希釈および質量分析計30で測定されるハロゲンフッ化物含有ガスの希釈に使用されることが好ましい。希釈ガス供給源12は、配管等および質量分析計30に供給することができれば、供給方法、形態および大きさ等は特に制限されない。例えば、希釈ガスが貯留されたガスボンベ等の容器から配管24に希釈ガスを供給してもよい。
 希釈ガスは、上記ハロゲンフッ化物、フッ素含有ガスおよび不純物ガスに対して不活性なガスである。希釈ガスとしては、例えば、ヘリウム、アルゴン、N2、二酸化炭素、四フッ化炭素が挙げられる。このうち、ヘリウムおよびN2がF2との分子量の差異が大きく分析精度が良好である点から好ましく、N2がより好ましい。
 希釈ガス供給源12は、流量制御装置18を介して配管24に接続されることが、希釈ガス供給源12から供給される希釈ガスの流量を調節し、質量分析計30で測定する際のハロゲンフッ化物含有ガスに含まれるフッ素ガスの濃度、およびパッシベーション処理時のフッ素含有ガスの濃度を調整しやすくなる点で好ましい。希釈ガス供給源12と流量制御装置18の間に、バルブ38を設けることが好ましい。
 (配管24およびキャピラリー28)
 本発明の一実施態様に使用する分析装置10に含まれる配管24は、上記ハロゲンフッ化物含有ガス供給源16、フッ素含有ガス供給源14、好適には希釈ガス供給源12の一連のガス供給源と後述するキャピラリー28とを接続するガス流路用の管であり、ハロゲンフッ化物含有ガス、フッ素含有ガス、好適には希釈ガスをキャピラリー28へ導入するために使用される。配管24の内径は、ガスの流量に合わせて適宜設定することができるが、3~50mmが好ましく、6~25mmがより好ましい。
 配管24には上記ハロゲンフッ化物含有ガス供給源16、フッ素含有ガス供給源14、好適には希釈ガス供給源12が接続されている。接続部位は特に制限されないが、配管24に対してパッシベーション処理を充分行えるように接続されていることが好ましい。また、配管24はパッシベーション処理後のフッ素含有ガスなどを排気するためのバルブ42および排気口26を有してもよい。
 本発明の一実施態様に使用する分析装置10に含まれるキャピラリー28は、上記配管24と後述する質量分析計30とを接続するガス流路用の管であり、ハロゲンフッ化物含有ガスを質量分析計30へ導入する量を調整するために使用される。キャピラリー28の流路断面積は配管24よりも小さく、キャピラリー28の内径は、ガスの流量に合わせて適宜設定することができるが、0.1~5mmが好ましく、1~2mmがより好ましい。
 配管およびキャピラリーの材質は、ハロゲンフッ化物含有ガスおよびフッ素含有ガスに含まれる成分に対する耐食性、およびパッシベーション処理時の加熱に対して耐熱性を有するものであれば、特に制限されない。配管等の材質としては、例えば、ステンレス鋼、ニッケル、インコネル、およびモネルが挙げられる。
 (質量分析計30)
 本発明の一実施態様に使用する分析装置10に含まれる質量分析計30は、ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定するのに使用される。質量分析計30は、単一または複数の微量成分の混合ガス、および単一または複数の微量成分と単一または複数の多量成分との混合ガスについて、定量的な分析ができれば特に制限されない。質量分析計30としては、例えば、四重極型質量分析計、二重収束型質量分析計、イオントラップ型質量分析計、飛行時間型質量分析計およびイオンサイクロトロン型質量分析計が挙げられる。質量分析計30には真空ポンプ32および排気口34が含まれていてもよい。
 <パッシベーション処理>
 (処理方法)
 本発明の一実施態様においてパッシベーション処理は、上記フッ素含有ガスを含むパッシベーション用ガスを用いて配管等の内部表面にフッ素の不動態膜を形成させる処理をいい、同時に水などの不純物が除去される。パッシベーション用ガスは、フッ素含有ガスまたは上記希釈ガスによって希釈されたフッ素含有ガス(混合ガス)を含む、パッシベーション処理に使用されるガスである。パッシベーション処理は、配管等に任意に設けられたバルブ26を閉じることで、配管等の内部にパッシベーション用ガスを封入させた状態で行ってもよいし、バルブ26を開いたまま前記パッシベーション用ガスを配管等に流通させて行ってもよい。前記パッシベーション用ガスを流通させる場合の流量は、パッシベーション処理を行う時間および温度、配管等の内径に応じて適宜設定することができるが、例えば、配管24の内径が3~8mm、キャピラリー28の内径が0.5~1.5mmの場合、フッ素含有ガスおよび希釈ガスの合計流量は40~60mL/分である。パッシベーション処理は、配管等の内部を外気に開放するといったような、配管等の内部表面に変化をもたらすような処理さえ行わなければ繰り返して実施する必要はないが、安定的に測定を行うという観点では、1日に一度、1か月に一度、または1年に一度のように定期的に行ってもよい。
 (温度)
 パッシベーション処理を行う温度は、ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する際の温度より高いことが好ましく、具体的には70~500℃が好ましい。パッシベーション処理を行う温度が上記範囲の下限値より低い場合は、フッ素の不動態膜の形成が不十分となり、配管等においてハロゲンフッ化物中のフッ素が消費されてしまうため、測定精度が低下する場合がある。また、パッシベーション処理を行う温度が上記範囲の上限値より高いと、フッ素の不動態膜が剥離して配管等の金属表面が腐食されてしまう場合がある。パッシベーション処理を行うときの温度は、80~400℃がより好ましく、100~300℃がさらに好ましい。
 (時間)
 パッシベーション処理を行う時間は1~5時間が好ましい。パッシベーション処理を行う時間が上記範囲の下限値よりも短いと、不動態膜の形成が不十分となり、配管等においてハロゲンフッ化物中のフッ素が消費されてしまうため、測定精度が低下する場合がある。また、パッシベーション処理を行う時間が上記範囲よりも長いと処理時間に対する効果の割合が小さくなる場合がある。パッシベーション処理を行う時間は、2~4時間がより好ましい。
 (フッ素含有ガス濃度)
 パッシベーション処理を行う際のパッシベーション用ガス中のフッ素含有ガス濃度は8~100体積%が好ましい。パッシベーション用ガス中のフッ素含有ガス以外のガスとしては、前述の希釈ガスを用いることが好ましい。該フッ素含有ガス濃度が上記範囲の下限値よりも低い場合、フッ素の不動態膜の形成が不十分となり、配管等においてハロゲンフッ化物中のフッ素が消費されてしまうため、測定精度が低下する場合がある。パッシベーション処理を行う際のパッシベーション用ガス中のフッ素含有ガス濃度は10~100体積%がより好ましく、30~100体積%がさらに好ましく、50~100体積%が特に好ましい。また、パッシベーション処理を行う際のフッ素含有ガス濃度は、ハロゲンフッ化物含有ガスに含まれるハロゲンフッ化物濃度と比べ同等以上であることが好ましく、さらにはハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する際のフッ素ガス濃度よりも高いことが好ましい。
 パッシベーション用ガス中のフッ素含有ガスの濃度調整は、フッ素含有ガス供給源14および希釈ガス供給源12から供給される各ガスの流量を調整することで行ってもよい。例えば、パッシベーション用ガス中のフッ素含有ガス濃度を、フッ素含有ガス供給源14のフッ素含有ガス濃度の70体積%とする場合は、フッ素含有ガス供給源14から供給されるフッ素含有ガスの流量と希釈ガス供給源12から供給される希釈ガスの流量の比が同等圧力下で7:3になるように各ガスの流量を調節する。
 <フッ素ガス濃度の測定>
 ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定は、まず、上記パッシベーション処理を行い、配管24、キャピラリー28および質量分析計30から充分にフッ素含有ガスを除去したあと、フッ素含有ガス供給源14からフッ素含有ガスが供給されないようにする。次いで、ハロゲンフッ化物含有ガス供給源16からハロゲンフッ化物含有ガスを配管等に供給し、必要に応じて希釈ガスで希釈し、質量分析計30に導入してハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度を測定する。
 質量分析計30で測定する際のハロゲンフッ化物含有ガスは、希釈ガスを用いて1~90体積%に希釈されていることが好ましく、5~70体積%に希釈されていることがより好ましく、10~50体積%に希釈されていることがさらに好ましい。
 上記ハロゲンフッ化物含有ガスの希釈は、ハロゲンフッ化物ガス供給源16および希釈ガス供給源12からの供給される各ガスの流量を調整することで行う。例えば、ハロゲンフッ化物含有ガスを、40体積%に希釈する場合は、ハロゲンフッ化物ガス供給源16から供給されるハロゲンフッ化物ガスの流量と希釈ガス供給源12から供給される希釈ガスの流量の比が同等圧力下で4:6になるように各ガスの流量を調節し、ハロゲンフッ化物含有ガスと希釈ガスとの混合ガスを調製する。
 ハロゲンフッ化物含有ガス供給源16から供給されるハロゲンフッ化物含有ガス、または上記のようにして調整したハロゲンフッ化物含有ガスと希釈ガスとの混合ガスを、配管24およびキャピラリー28を経て質量分析計30に導入する。ハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度は、使用する質量分析計30のマニュアルに従って測定する。
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。
 [実施例1]
 ハロゲンフッ化物含有ガスとして三フッ化塩素ガスを用い、パッシベーション用ガス中のフッ素含有ガスとしてF2を用い、図1に示す分析装置10を用いて、本発明の測定方法に従って、三フッ化塩素ガスに含まれるフッ素ガスの濃度測定を行った。分析装置10に含まれる配管24はSUS316製で内径が6mmのものを使用した。また、キャピラリー28はSUS316製で内径が1mmのものを使用した。質量分析計30は、四重極型質量分析計(ハイデンアナリティカル社製:HPR-20)を使用し、製品付属のマニュアルに従ってフッ素ガス濃度を測定した。
 パッシベーション処理用のフッ素含有ガス供給源14であるF2ボンベから、流量制御装置36(商品名:デジタルマスフローコントローラSEC-N100、堀場エステック社製)を介して流量を50mL/分に調整したF2を配管等に供給した。また希釈ガスとしてN2を用い、希釈ガス供給源12であるN2ボンベから流量制御装置18(商品名:デジタルマスフローコントローラSEC-N100、堀場エステック社製)を介して流量を50mL/分に調整したN2を配管等に供給した。両ガスを上記流量で配管24に供給した状態で、配管24およびキャピラリー28を200℃で3時間加熱し、配管等の内部をパッシベーション用ガスであるF2およびN2の混合ガス(1)によってパッシベーション処理を行った。
 F2ボンベおよびN2ボンベからの配管等へのガス供給を停止してパッシベーション処理を終了させた。配管等から上記混合ガス(1)を、排気口26を開いて排気してからN2で置換し、排気口26を閉じて真空ポンプ32にて配管やキャピラリー中のパッシベーション用ガスを充分排気した後、ハロゲンフッ化物含有ガス供給源16である三フッ化塩素ガスボンベおよび希釈ガス供給源12であるN2ボンベから、流量制御装置20(商品名:デジタルマスフローコントローラSEC-N100、堀場エステック社製)および18を介して流量をそれぞれ50mL/分に調整した三フッ化塩素ガスおよびN2の混合ガス(2)を配管等に供給し、25℃の条件でN2で50体積%に希釈された三フッ化塩素ガス中のフッ素ガス濃度を質量分析計30で測定した。その結果、N2で希釈後のフッ素ガス濃度は4体積ppmであった。従って、N2で希釈される前の、三フッ化塩素含有ガス供給源16から供給される三フッ化塩素ガスに含まれるフッ素ガス濃度は8体積ppmであった。
 [実施例2]
 ハロゲンフッ化物含有ガスを三フッ化塩素ガスに代えて七フッ化ヨウ素ガスにした以外は、実施例1と同様にしてフッ素ガス濃度を測定した。その結果、ハロゲンフッ化物含有ガス供給源16から供給される七フッ化ヨウ素ガスに含まれるフッ素ガス濃度は6体積ppmであった。
 [実施例3]
 ハロゲンフッ化物含有ガスを三フッ化塩素ガスに代えて五フッ化臭素ガスにした以外は、実施例1と同様にしてフッ素ガス濃度を測定した。その結果、ハロゲンフッ化物含有ガス供給源16から供給される五フッ化臭素ガスに含まれるフッ素ガス濃度は10体積ppmであった。
[比較例1]
 パッシベーション処理を実施しないこと以外は実施例1と同様にして三フッ化塩素ガスに含まれるフッ素ガス濃度を測定したが、フッ素ガスは検出されなかった。
[実施例4~9]
 パッシベーション処理時の温度条件を、下記表1に記載の温度にしたこと以外は、実施例1と同様にして三フッ化塩素ガスに含まれるフッ素ガス濃度を測定した。ハロゲンフッ化物含有ガス供給源16から供給される三フッ化塩素ガスに含まれるフッ素ガス濃度の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例10~15]
 パッシベーション処理に用いるF2の濃度を、下記表2に示した濃度にしたこと以外は、実施例1と同様にして希釈される前の三フッ化塩素ガスに含まれるフッ素ガス濃度を得た。結果を表2に示す。なお、実施例10においては、パッシベーション処理時にN2によるF2の希釈を行わなかったため、フッ素ガス濃度の測定値をそのまま表2に示した。
Figure JPOXMLDOC01-appb-T000002
 10・・・分析装置
 12・・・希釈ガス供給源
 14・・・フッ素含有ガス供給源
 16・・・ハロゲンフッ化物含有ガス供給源
 18、20、36・・・流量制御装置
 22、38、40、44・・・バルブ
 24・・・配管
 26・・・排気口
 28・・・キャピラリー
 30・・・質量分析計
 32・・・真空ポンプ
 34・・・排気口

Claims (9)

  1.  ハロゲンフッ化物含有ガス供給源、フッ素含有ガス供給源、配管、キャピラリーおよび質量分析計を有する分析装置を用いてハロゲンフッ化物含有ガスに含まれるフッ素ガス(F2)濃度を測定する方法であって、前記フッ素ガス濃度を測定する前に、前記配管および前記キャピラリーに対して、前記フッ素含有ガス供給源から供給されるフッ素含有ガスを含むパッシベーション用ガスによりパッシベーション処理を行うことを特徴とする、フッ素ガス濃度の測定方法。
  2.  前記フッ素含有ガスが、F2、HF、NF3、SF6、およびハロゲンフッ化物からなる群より選択される少なくとも1種のガスである、請求項1に記載のフッ素ガス濃度の測定方法。
  3.  前記パッシベーション処理を行う温度が70~500℃である、請求項1または2に記載のフッ素ガス濃度の測定方法。
  4.  前記パッシベーション処理を行う時間が1~5時間である、請求項1~3のいずれか一項に記載のフッ素ガス濃度の測定方法。
  5.  前記パッシベーション用ガス中のフッ素含有ガスの濃度が8~100体積%である、請求項1~4のいずれか一項に記載のフッ素ガス濃度の測定方法。
  6.  前記分析装置がさらに希釈ガス供給源を有し、かつ、前記パッシベーション用ガス中のフッ素含有ガスの濃度を、前記希釈ガス供給源から供給される希釈ガスを用いて調整する、請求項5に記載のフッ素ガス濃度の測定方法。
  7.  前記希釈ガスが、ヘリウム、アルゴン、窒素ガス(N2)、二酸化炭素、および四フッ化炭素から選択される少なくとも1種である、請求項5または6に記載のフッ素ガス濃度の測定方法。
  8.  前記ハロゲンフッ化物含有ガスを構成するハロゲンフッ化物が、フッ化塩素、三フッ化塩素、フッ化臭素、三フッ化臭素、五フッ化臭素、フッ化ヨウ素、三フッ化ヨウ素、五フッ化ヨウ素および七フッ化ヨウ素からなる群より選択される少なくとも1種である、請求項1~7のいずれか一項に記載のフッ素ガス濃度の測定方法。
  9.  ハロゲンフッ化物含有ガス供給源、フッ素含有ガス供給源、配管、キャピラリーおよび質量分析計を有し、前記配管および前記キャピラリーが、前記フッ素含有ガス供給源から供給されるフッ素含有ガスを含むパッシベーション用ガスによりパッシベーション処理された、フッ素ガス濃度の測定装置。
PCT/JP2020/042274 2019-11-27 2020-11-12 質量分析計によるハロゲンフッ化物含有ガス中のフッ素ガス濃度の測定方法 WO2021106601A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202080032719.7A CN113767281A (zh) 2019-11-27 2020-11-12 由质谱仪测定含卤素氟化物气体中的氟气浓度的测定方法
US17/608,527 US11984308B2 (en) 2019-11-27 2020-11-12 Method for measuring concentration of fluorine gas in halogen fluoride-containing gas using mass spectrometer
EP20893561.9A EP4067300A4 (en) 2019-11-27 2020-11-12 METHOD FOR MEASURING THE FLUORINE GAS CONCENTRATION IN HALOGEN FLUORIDE CONTAINING GAS USING A MASS SPECTROMETER
KR1020217035596A KR20210146388A (ko) 2019-11-27 2020-11-12 질량 분석계에 의한 할로겐 불화물 함유 가스 중의 불소 가스 농도의 측정 방법
SG11202112025TA SG11202112025TA (en) 2019-11-27 2020-11-12 Method for measuring concentration of fluorine gas in halogen fluoride-containing gas using mass spectrometer
JP2021561294A JPWO2021106601A1 (ja) 2019-11-27 2020-11-12
IL287815A IL287815A (en) 2019-11-27 2021-11-03 A method for measuring the concentration of fluorine gas in a gas that includes hydrofluoric acid in mass spectrometer devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-214260 2019-11-27
JP2019214260 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021106601A1 true WO2021106601A1 (ja) 2021-06-03

Family

ID=76130185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042274 WO2021106601A1 (ja) 2019-11-27 2020-11-12 質量分析計によるハロゲンフッ化物含有ガス中のフッ素ガス濃度の測定方法

Country Status (9)

Country Link
US (1) US11984308B2 (ja)
EP (1) EP4067300A4 (ja)
JP (1) JPWO2021106601A1 (ja)
KR (1) KR20210146388A (ja)
CN (1) CN113767281A (ja)
IL (1) IL287815A (ja)
SG (1) SG11202112025TA (ja)
TW (1) TWI758968B (ja)
WO (1) WO2021106601A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353761A (ja) * 1991-05-30 1992-12-08 Tadahiro Omi 特殊ガス中の不純物量測定方法及びその測定装置
US6686594B2 (en) 2001-10-29 2004-02-03 Air Products And Chemicals, Inc. On-line UV-Visible light halogen gas analyzer for semiconductor processing effluent monitoring
WO2017175644A1 (ja) * 2016-04-05 2017-10-12 関東電化工業株式会社 フッ化塩素の供給方法
WO2017179458A1 (ja) * 2016-04-11 2017-10-19 セントラル硝子株式会社 フッ素化ハロゲン間化合物の精製方法
JP2018107438A (ja) * 2016-12-26 2018-07-05 セントラル硝子株式会社 金属部材の表面処理方法及び半導体素子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219410A (en) * 1962-05-23 1965-11-23 Hooker Chemical Corp Method for recovering hydrogen fluoride from waste gases
JPH07307301A (ja) * 1994-03-17 1995-11-21 Hitachi Ltd 半導体製造装置及び半導体製造方法
TW493069B (en) 2000-03-31 2002-07-01 Showa Denko Kk Measuring method for concentration of halogen and fluorine compound, measuring equipment thereof and manufacturing method of halogen compound
US7179653B2 (en) 2000-03-31 2007-02-20 Showa Denko K.K. Measuring method for concentration of halogen and fluorine compound, measuring equipment thereof and manufacturing method of halogen compound
JP4172938B2 (ja) * 2002-02-14 2008-10-29 昭和電工株式会社 排ガスの処理方法および処理装置
JP4211983B2 (ja) 2004-02-24 2009-01-21 セントラル硝子株式会社 F2ガス濃度の測定方法並びに測定装置
WO2007021814A2 (en) * 2005-08-11 2007-02-22 Eksigent Technologies, Llc Plastic surfaces and apparatuses for reduced adsorption of solutes and methods of preparing the same
CN102879492B (zh) * 2012-09-24 2014-05-14 中昊晨光化工研究院有限公司 一种定量检测六氟化硫气体中杂质的***和方法
CN107464735A (zh) * 2017-06-28 2017-12-12 中国地质科学院水文地质环境地质研究所 一种新型氯/溴同位素质谱仪及其分析方法
JP7491222B2 (ja) 2018-12-21 2024-05-28 株式会社レゾナック ハロゲンフッ化物の除去方法およびハロゲンフッ化物混合ガス中の含有ガス成分の定量分析方法、定量分析装置
CN109888599A (zh) * 2019-03-25 2019-06-14 北京科益虹源光电技术有限公司 一种适用于激光器放电腔的钝化方法和钝化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353761A (ja) * 1991-05-30 1992-12-08 Tadahiro Omi 特殊ガス中の不純物量測定方法及びその測定装置
US6686594B2 (en) 2001-10-29 2004-02-03 Air Products And Chemicals, Inc. On-line UV-Visible light halogen gas analyzer for semiconductor processing effluent monitoring
WO2017175644A1 (ja) * 2016-04-05 2017-10-12 関東電化工業株式会社 フッ化塩素の供給方法
WO2017179458A1 (ja) * 2016-04-11 2017-10-19 セントラル硝子株式会社 フッ素化ハロゲン間化合物の精製方法
JP2018107438A (ja) * 2016-12-26 2018-07-05 セントラル硝子株式会社 金属部材の表面処理方法及び半導体素子の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMICAL SOCIETY PROCEEDINGS, vol. 99-8, pages 40 - 51
See also references of EP4067300A4

Also Published As

Publication number Publication date
CN113767281A (zh) 2021-12-07
EP4067300A4 (en) 2024-01-03
TW202127023A (zh) 2021-07-16
TWI758968B (zh) 2022-03-21
US11984308B2 (en) 2024-05-14
EP4067300A1 (en) 2022-10-05
JPWO2021106601A1 (ja) 2021-06-03
KR20210146388A (ko) 2021-12-03
SG11202112025TA (en) 2021-12-30
IL287815A (en) 2022-01-01
US20220223397A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US6955801B2 (en) High-purity fluorine gas, production and use thereof, and method for analyzing trace impurities in high-purity fluorine gas
JP2918035B2 (ja) 低濃度校正用ガス混合物の発生装置
KR102165770B1 (ko) 보정된 입자 분석 장치 및 방법
KR20120098683A (ko) 고순도 불소가스, 그 제조 방법 및 용도, 및 불소가스 내의 불순물 모니터링 방법
US10031114B2 (en) Liquid-free sample traps and analytical method for measuring trace level acidic and basic AMC
WO2021106601A1 (ja) 質量分析計によるハロゲンフッ化物含有ガス中のフッ素ガス濃度の測定方法
JP4744017B2 (ja) 高純度フッ素ガス中の微量不純物の分析方法
JP5221881B2 (ja) ガス分析装置
US20090229995A1 (en) Analysis of fluoride at low concentrations in acidic processing solutions
JP4642602B2 (ja) フッ素ガス中の含有ガス成分の定量分析方法およびこれに用いる装置
CN114200039A (zh) 一种检测氟气中hf含量的方法
JP2001257197A (ja) 半導体デバイスの製造方法および製造装置
JP2005241249A (ja) F2ガス濃度の測定方法並びに測定装置
JP2004109072A (ja) 液中の金属不純物分析方法
JP2002148156A (ja) 金属不純物のサンプリング容器
JP2003240669A (ja) ガス供給設備及び漏洩検査方法並びにガス供給方法
JP3837523B2 (ja) 配管内面処理監視方法
CN111413291A (zh) 一种气体氟化物的红外光谱定量分析方法
US8455261B2 (en) Detection of halogens
WO2021106602A1 (ja) 紫外分光法によるハロゲンフッ化物含有ガスに含まれるフッ素ガス濃度の測定方法
JP2776441B2 (ja) プロセスガス供給装置及び供給方法
Yin et al. Establishment of a New Analysis Method for Trace Nitrogen Trifluoride in Helium detection by Gas Chromatography
TW202400291A (zh) 一種晶圓表面貴金屬元素的富集方法及分析方法
JP4125832B2 (ja) 試料ガスのサンプリング方法
CN115901919A (zh) 特种气体中金属杂质的定量分析方法以及基于其的检测***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561294

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217035596

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020893561

Country of ref document: EP

Effective date: 20220627