WO2021106470A1 - Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor - Google Patents

Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor Download PDF

Info

Publication number
WO2021106470A1
WO2021106470A1 PCT/JP2020/040305 JP2020040305W WO2021106470A1 WO 2021106470 A1 WO2021106470 A1 WO 2021106470A1 JP 2020040305 W JP2020040305 W JP 2020040305W WO 2021106470 A1 WO2021106470 A1 WO 2021106470A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
conductive paste
mass
gravure printing
less
Prior art date
Application number
PCT/JP2020/040305
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 尚史
純平 山田
祐伺 舘
安藤 徹
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN202080082831.1A priority Critical patent/CN114746967A/en
Priority to JP2021561235A priority patent/JPWO2021106470A1/ja
Priority to KR1020227008452A priority patent/KR20220106108A/en
Publication of WO2021106470A1 publication Critical patent/WO2021106470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a conductive paste for gravure printing, an electronic component, and a multilayer ceramic capacitor.
  • Multilayer ceramic capacitors have a structure in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately laminated, and by thinning these dielectric layers and internal electrode layers, miniaturization and high capacity can be achieved. Can be planned.
  • Multilayer ceramic capacitors are manufactured, for example, as follows. First, a conductive paste for an internal electrode is printed on the surface of a ceramic green sheet containing a dielectric powder such as barium titanate (BaTIO 3) and a binder resin in a predetermined electrode pattern, dried, and dried. Form a film. Next, the dry film and the ceramic green sheet are laminated so as to be alternately overlapped to obtain a laminated body. Next, the laminated body is heat-bonded and integrated to form a pressure-bonded body. The pressure-bonded body is cut, subjected to a deorganizing binder treatment in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain a fired chip. Next, pastes for external electrodes are applied to both ends of the fired chip, and after firing, the surface of the external electrodes is nickel-plated or the like to obtain a multilayer ceramic capacitor.
  • a conductive paste for an internal electrode is printed on the surface of a ceramic green sheet containing a dielectric powder such as barium titanate (
  • a screen printing method has been generally used as a printing method used when printing a conductive paste on a dielectric green sheet, but due to the demand for miniaturization, thinning, and productivity improvement of electronic devices. , It is required to print finer electrode patterns with high productivity.
  • gravure is a continuous printing method in which the concave portion provided in the plate making is filled with the conductive paste and pressed against the surface to be printed to transfer the conductive paste from the plate making.
  • a printing method has been proposed.
  • the gravure printing method has a high printing speed and is excellent in productivity.
  • it is necessary to appropriately select the binder resin, dispersant, solvent, etc. in the conductive paste and adjust the characteristics such as viscosity within a range suitable for gravure printing.
  • a conductive paste used for forming the internal conductor film in a laminated ceramic electronic component including a plurality of ceramic layers and an internal conductor film extending along a specific interface between the ceramic layers by gravure printing A solid component of 30 to 70% by weight containing a metal powder, an ethyl cellulose resin component having an ethoxy group content of 1 to 10% by weight of 49.6% or more, and a dispersant of 0.05 to 5% by weight. And the solvent component as the balance, the viscosity ⁇ 0.1 at a shear rate of 0.1 (s -1 ) is 1 Pa ⁇ s or more, and the viscosity at a shear rate of 0.02 (s -1). Described is a conductive paste that is a thixotropy fluid that satisfies the condition that ⁇ 0.02 is expressed by a specific formula.
  • Patent Document 2 a conductive paste used for forming by gravure printing as in Patent Document 1, wherein 30 to 70% by weight of a solid component containing a metal powder and 1 to 10% by weight of a solid component are used.
  • a thixotropy fluid containing a resin component, a dispersant of 0.05 to 5% by weight, and a solvent component as a balance, and having a viscosity of 1 Pa ⁇ s or more at a shear rate of 0.1 (s -1).
  • conductive pastes having a viscosity change rate of 50% or more at a shear rate of 10 (s -1 ), based on the viscosity at a shear rate of 0.1 (s -1).
  • these conductive pastes are thixotropy fluids having a viscosity of 1 Pa ⁇ s or more at a shear rate of 0.1 (s -1), and are stable at high speed in gravure printing. It is said that continuous printability can be obtained and laminated ceramic electronic components such as multilayer ceramic capacitors can be manufactured with good production efficiency.
  • Patent Document 3 describes conductivity for an internal electrode of a multilayer ceramic capacitor containing a conductive powder (A), an organic resin (B), an organic solvent (C), an additive (D), and a dielectric powder (E).
  • the organic resin (B) is a sex paste composed of polyvinyl butyral having a degree of polymerization of 10,000 or more and 50,000 or less and ethyl cellulose having a weight average molecular weight of 10,000 or more and 100,000 or less
  • the organic solvent (C) is propylene glycol monobutyl ether.
  • a conductive paste for gravure printing which comprises a composition containing a polycarboxylic acid polymer or a salt of polycarboxylic acid as an inhibitor, is described. According to Patent Document 3, this conductive paste has a viscosity suitable for gravure printing, the uniformity and stability of the paste are improved, and the drying property is good.
  • the conductive paste for gravure printing is required to have a low viscosity.
  • the waviness of the film surface tends to be large when the dry film is formed, as compared with the high-viscosity conductive paste for screen printing or the like.
  • the internal electrode layer of the monolithic ceramic capacitor is formed by using such a conductive paste, the thickness of the obtained internal electrode layer varies, and the reliability of the monolithic ceramic capacitor decreases.
  • an object of the present invention is to provide a conductive paste for gravure printing in which the surface waviness of the dry film is small.
  • the conductive paste for gravure printing contains a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent, wherein the organic solvent contains the first organic solvent and is the first.
  • the organic solvent of 1 a conductive paste for gravure printing, which is at least one terpene-based solvent selected from the group consisting of tarpineol, dihydroterpineol, and dihydroterpinyl acetate, is provided.
  • the conductive paste preferably further contains a dicarboxylic acid in an amount of 0.05% by mass or more and less than 3.0% by mass with respect to the entire conductive paste.
  • the first organic solvent is preferably contained in an amount of 10% by mass or more and 60% by mass or less with respect to the entire conductive paste.
  • the dispersant is preferably contained in an amount of 0.01% by mass or more and 3.0% by mass or less with respect to the entire conductive paste.
  • the dispersant preferably contains an acid-based dispersant.
  • the organic solvent further contains a second organic solvent, and the second organic solvent may be at least one selected from the group consisting of isobornyl acetate, methyl isobutyl ketone, and diisobutyl ketone. Further, the organic solvent further contains a third organic solvent, and the third organic solvent may be a petroleum-based hydrocarbon solvent.
  • the organic solvent further contains a third organic solvent and a fourth organic solvent
  • the third organic solvent is a petroleum-based hydrocarbon solvent
  • the fourth organic solvent is the first organic solvent
  • the HSP distance between the HSP value of the mixed solution calculated from the HSP value and the content volume ratio of each of the fourth organic solvent and the HSP value of the third organic solvent is the HSP value of the first organic solvent and the HSP value of the first organic solvent. It may be at least one selected from the group consisting of solvents having the same or shorter HSP distance from the HSP value of the organic solvent of 3.
  • the fourth organic solvent is preferably at least one selected from the group consisting of an acetate solvent, a ketone solvent, and an alicyclic hydrocarbon solvent. Further, the fourth organic solvent is preferably at least one selected from the group consisting of isobornyl acetate, methyl isobutyl ketone, and diisobutyl ketone.
  • the conductive powder preferably contains at least one metal powder selected from the group consisting of Ni, Pd, Pt, Au, Ag, Cu and alloys thereof. Further, the conductive powder preferably has an average particle size of 0.05 ⁇ m or more and 1.0 ⁇ m or less. Further, the ceramic powder preferably contains barium titanate. The ceramic powder preferably has an average particle size of 0.01 ⁇ m or more and 0.5 ⁇ m or less. Further, the ceramic powder is preferably contained in an amount of 1% by mass or more and 20% by mass or less with respect to the entire conductive paste. Moreover, it is preferable that the binder resin contains a cellulosic resin.
  • the conductive paste has a viscosity of 3 Pa ⁇ S or less at a shear rate of 100 sec-1 and a viscosity of 1 Pa ⁇ S or less at a shear rate of 10000 sec-1. Further, it is preferable that the average height (Wc) of the waviness curve element of the dry film obtained by gravure printing the conductive paste is 0.5 ⁇ m or less.
  • an electronic component formed by using the above conductive paste is provided.
  • the internal electrode layer is a laminated ceramic capacitor formed by using the above-mentioned conductive paste for gravure printing.
  • the conductive paste of the present invention can reduce the waviness of the surface of the dry film even when the dry film is formed by gravure printing. Further, the internal electrode layer formed by using the conductive paste of the present invention can produce a highly reliable multilayer ceramic capacitor with high productivity even when forming a thin-film electrode.
  • FIG. 1 is a perspective view and a cross-sectional view showing a multilayer ceramic capacitor according to an embodiment.
  • FIG. 2 is a diagram showing the relationship between the HSP distance of the organic solvent used in Examples and Comparative Examples and the average height (Wc) of the swell curve element of the dry film.
  • the conductive paste of this embodiment contains a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent.
  • a conductive powder a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent.
  • the conductive powder is not particularly limited, and a metal powder can be used.
  • Ni, Pd, Pt, Au, Ag, Cu, and one or more powders selected from these alloys can be used. ..
  • Ni or an alloy powder thereof (hereinafter, may be referred to as "Ni powder") is preferable from the viewpoint of conductivity, corrosion resistance and cost.
  • Ni alloy for example, an alloy of Ni with at least one element selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt and Pd can be used. it can.
  • the content of Ni in the Ni alloy is, for example, 50% by mass or more, preferably 80% by mass or more.
  • the Ni powder may contain an element S of about several hundred ppm in order to suppress abrupt gas generation due to partial thermal decomposition of the binder resin during the debinder treatment.
  • the average particle size of the conductive powder is preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the average particle size of the conductive powder is within the above range, it can be suitably used as a paste for an internal electrode of a thinned laminated ceramic capacitor (laminated ceramic component).
  • the smoothness of the dried film and the density of the dried film are high. improves.
  • the average particle size is a value obtained from observation with a scanning electron microscope (SEM), and is obtained by measuring the particle size of each of a plurality of particles from an image observed with an SEM at a magnification of 10,000 times. It is an average value (SEM average particle diameter) to be obtained.
  • the content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, and more preferably 40% by mass or more and 60% by mass or less with respect to the entire conductive paste. When the content of the conductive powder is within the above range, the conductivity and dispersibility are excellent.
  • the ceramic powder is not particularly limited, and for example, in the case of a paste for an internal electrode of a multilayer ceramic capacitor, a known ceramic powder is appropriately selected depending on the type of the laminated ceramic capacitor to be applied.
  • a perovskite-type oxide containing Ba and Ti can be used, and barium titanate (BaTIO 3 ) is preferably contained.
  • a ceramic powder containing barium titanate as a main component and an oxide as a sub component may be used.
  • the oxide include oxides of Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb and one or more rare earth elements.
  • a perovskite-type oxide ferroelectric ceramic powder in which the Ba atom or Ti atom of barium titanate (BaTIO 3 ) is replaced with another atom, for example, Sn, Pb, Zr or the like is used. You may.
  • the ceramic powder When used as a conductive paste for an internal electrode, the ceramic powder may be a powder having the same composition as the dielectric ceramic powder constituting the green sheet of a multilayer ceramic capacitor (electronic component). As a result, crack generation due to a shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer in the sintering process is suppressed.
  • such ceramic powders include, for example, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 , TIO 2 , Nd 2 O 3 and the like. Oxides can be mentioned.
  • the ceramic powder one type may be used, or two or more types may be used.
  • the average particle size of the ceramic powder is, for example, 0.01 ⁇ m or more and 0.5 ⁇ m or less, preferably 0.01 ⁇ m or more and 0.3 ⁇ m or less.
  • the average particle size is a value obtained from observation with a scanning electron microscope (SEM), and is obtained by measuring the particle size of each of a plurality of particles from an image observed with an SEM at a magnification of 50,000 times. It is an average value (SEM average particle diameter) to be obtained.
  • the content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, and more preferably 3% by mass or more and 15% by mass or less with respect to the entire conductive paste.
  • the content of the ceramic powder is in the above range, the dispersibility and sinterability are excellent.
  • the content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the binder resin is not particularly limited, and a known resin can be used.
  • the binder resin include cellulosic resins such as methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose and nitrocellulose, acrylic resins, butyral resins such as polyvinyl butyral and the like.
  • cellulosic resins such as methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose and nitrocellulose
  • acrylic resins butyral resins such as polyvinyl butyral and the like.
  • it is preferable to contain a cellulosic resin and more preferably ethyl cellulose is contained.
  • it When used as a paste for an internal electrode, it may contain a butyral resin or may be used alone from the viewpoint of improving the adhesive strength with the green sheet.
  • the binder resin contains an acetal resin
  • the viscosity can be easily adjusted to be suitable for gravure printing, and the adhesive strength with the green sheet can be further improved.
  • the binder resin may contain, for example, 20% by mass or more of the acetal resin or 30% by mass or more of the entire binder resin.
  • the degree of polymerization and weight average molecular weight of the binder resin can be appropriately adjusted within the above range according to the required viscosity of the conductive paste.
  • the content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 7% by mass or less with respect to the entire conductive paste.
  • the conductivity and dispersibility are excellent.
  • the content of the binder resin is preferably 1 part by mass or more and 20 parts by mass or less, and more preferably 1 part by mass or more and 14 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the conductive paste according to this embodiment contains an organic solvent.
  • the organic solvent contains, as the first organic solvent, at least one terpene-based solvent selected from the group consisting of tarpineol, dihydroterpineol, and dihydroterpinyl acetate, and preferably contains dihydroterpineol.
  • a terpene-based solvent selected from the group consisting of tarpineol, dihydroterpineol, and dihydroterpinyl acetate, and preferably contains dihydroterpineol.
  • the content of the terpene solvent may be 10% by mass or more and 60% by mass or less, preferably 10% by mass or more and 45% by mass or less, based on the total amount of the conductive paste. % Or more and 40% by mass or less are preferable, and 15% by mass or more and 40% by mass or less are more preferable.
  • the conductivity and dispersibility are excellent.
  • dihydroterpineol and dihydroterpinyl acetate when two or more kinds are contained as the first organic solvent, it is preferable to contain dihydroterpineol and dihydroterpinyl acetate.
  • dihydroterpineol and dihydroterpinyl acetate are contained, the waviness of the film surface when the dry film is formed can be further reduced, and the occurrence of whitening can be suppressed.
  • the content of dihydroterpineol is preferably 10% by mass or more and 60% by mass or less, preferably 10% by mass or more and 45% by mass or less, and 15% by mass or more and 40% by mass or less with respect to the total amount of the conductive paste. Is more preferable.
  • the content of dihydroterpinyl acetate is preferably 3% by mass or more and 20% by mass or less with respect to the total amount of the conductive paste. Moreover, the content of dihydroterpineol may be higher than the content of dihydroterpinyl acetate.
  • the organic solvent may contain an organic solvent other than the first organic solvent.
  • the organic solvent (other organic solvent) other than the first organic solvent is not particularly limited, and a known organic solvent capable of dissolving the above binder resin can be used.
  • Examples of the organic solvent other than the terpene solvent (first organic solvent) include glycol ether solvent, acetate solvent, acetate ester solvent, ketone solvent, and terpene solvent other than the first organic solvent. Examples include an aliphatic hydrocarbon solvent.
  • the organic solvent one type may be used, or two or more types may be used.
  • the organic solvent may contain, for example, the above-mentioned terpene-based solvent (first organic solvent) as the main solvent, and may contain an organic solvent other than the above-mentioned terpene-based solvent as the auxiliary solvent.
  • the terpene solvent may be contained in an amount of, for example, 30 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the auxiliary solvent may be contained in an amount of 20 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the organic solvent may include, for example, a first organic solvent and an organic solvent other than the first organic solvent.
  • the first organic solvent is, for example, 10 parts by mass or more and 120 parts by mass or less, preferably 15 parts by mass or more and 90 parts by mass or less, and more preferably 20 parts by mass with respect to 100 parts by mass of the conductive powder. More than 50 parts by mass or less are included.
  • the organic solvent other than the first organic solvent is, for example, 5 parts by mass or more and 100 parts by mass or less, preferably 15 parts by mass or more and 90 parts by mass or less, and more preferably 30 parts by mass with respect to 100 parts by mass of the conductive powder. More than 70 parts by mass or less.
  • Examples of the organic solvent other than the first organic solvent can include an acetate solvent, an aliphatic hydrocarbon solvent and the like.
  • Examples of the acetate solvent include isobornyl acetate (IBA), isobornyl propionate, isobornyl butyrate, isobornyl isobutylate, ethylene glycol monobutyl ether acetate, and dipropylene glycol methyl ether acetate.
  • examples thereof include glycol ether acetates such as 3-methoxy-3-methylbutyl acetate and 1-methoxypropyl-2-acetate, ethyl acetate, propyl acetate, isobutyl acetate and butyl acetate.
  • ketone solvent examples include methyl ethyl ketone and methyl isobutyl ketone (MIBK).
  • MIBK methyl isobutyl ketone
  • aliphatic hydrocarbon solvent examples include tridecane, nonane, cyclohexane and the like. It also preferably contains mineral spirit (MA).
  • the content of the organic solvent is preferably 20% by mass or more and 60% by mass or less, and more preferably 25% by mass or more and 45% by mass or less with respect to the total amount of the conductive paste.
  • the conductivity and dispersibility are excellent.
  • the lower limit of the content of the organic solvent is preferably 20 parts by mass or more, preferably 25 parts by mass or more, and more preferably 35 parts by mass or more with respect to 100 parts by mass of the conductive powder.
  • the upper limit of the content of the organic solvent is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, and further preferably 80 parts by mass or less with respect to 100 parts by mass of the conductive powder. preferable.
  • the content of the organic solvent may be, for example, 50 parts by mass or more and 130 parts by mass or less, or 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the conductive powder. When the content of the organic solvent is in the above range, the conductivity and dispersibility are excellent.
  • the combination of the first organic solvent and the organic solvent other than the first organic solvent is not limited to the following examples.
  • the organic solvent may contain a first organic solvent and a second organic solvent.
  • the second organic solvent is at least one selected from the group consisting of isobornyl acetate (IBA), methyl isobutyl ketone (MIBK), and diisobutyl ketone (DIBK), and is of isobornyl acetate and methyl isobutyl ketone.
  • IBA isobornyl acetate
  • MIBK methyl isobutyl ketone
  • DIBK diisobutyl ketone
  • One or both are preferable, and isobornyl acetate is more preferable.
  • the content of the second organic solvent is preferably 3% by mass or more and 20% by mass or less, and more preferably 4% by mass or more and 15% by mass or less, based on the total amount of the conductive paste. Further, the second organic solvent may be 5% or more, or 6% or more, based on the total amount of the conductive paste. When the content of the second organic solvent is large within the above range, the waviness of the surface of the dry film can be further reduced.
  • the organic solvent may contain a first organic solvent and a third organic solvent.
  • the third organic solvent is an aliphatic hydrocarbon solvent (petroleum hydrocarbon solvent), may contain tridecane, nonane, cyclohexane and the like, and is preferably mineral spirit (MA).
  • MA mineral spirit
  • the ratio of each organic solvent is in the above range, the smoothness of the surface of the dry film is further improved.
  • a fourth organic solvent is further added. It may contain a solvent.
  • the fourth organic solvent is the HSP distance between the HSP value of the mixed solution calculated from the HSP values and the volume ratio of each of the first organic solvent and the fourth organic solvent and the HSP value of the third organic solvent. Is at least one selected from the group consisting of solvents having the same or shorter HSP distance between the HSP value of the first organic solvent and the HSP value of the third organic solvent.
  • the conductive paste contains a fourth organic solvent in addition to the first organic solvent and the third organic solvent, the waviness of the surface of the dry film is made smaller, or the conductive paste is prepared. At that time, the white separation layer containing the ceramic powder can suppress the occurrence of whitening generated in the upper part.
  • the HSP distance between the HSP value of the mixed solution calculated from the HSP values and the content volume ratios of the first organic solvent and the fourth organic solvent and the HSP value of the third organic solvent is, for example, 6. It is preferably .2 or less, more preferably 6.0 or less, more preferably 5.6 or less, and even more preferably 5.0 or less. When the HSP distance is in the above range, the waviness of the surface of the dry film can be made smaller. Further, the HSP distance between the HSP value of the mixed solution of the first organic solvent and the fourth organic solvent and the third HSP value is the HSP value of the first organic solvent and the HSP value of the third organic solvent. It may be the same as the HSP distance with, but it is preferably shorter.
  • the HSP distance refers to the distance between the Hansen solubility parameters (HSP values) of each organic solvent.
  • the Hansen solubility parameter is one of the indexes indicating the solubility of a substance, and the solubility is represented by a three-dimensional vector.
  • This three-dimensional vector can be typically represented by a dispersion term ( ⁇ d ), a polarity term ( ⁇ p ), and a hydrogen bond term ( ⁇ h ). It can be evaluated that the closer the distance (HSP distance) of the Hansen solubility parameter is, the higher the compatibility.
  • the HSP distance in the present specification can be calculated using the HSP value of the organic solvent registered in the database of the Hansen solubility parameter software HSPiP (Hansen Solubility Parameter in Practice).
  • the value is used for the organic solvent registered in the HSPiP version 5 database, and the value estimated by the HSPiP version 5 is used for the solvent not registered in the database.
  • the HSP value is obtained by adding the mixed volume ratio to the HSP value (each component of the three-dimensional vector) of the mixed organic solvent alone and adding them. calculate.
  • the fourth organic solvent is not particularly limited as long as it is an organic solvent satisfying the above characteristics.
  • the fourth organic solvent is preferably at least one selected from the group consisting of, for example, an acetate solvent, a ketone solvent, and an alicyclic hydrocarbon solvent, and is preferably isobornyl acetate, methyl isobutyl ketone, and the like. More preferably, it is at least one selected from the group consisting of diisobutyl ketone and dihydroterpinyl acetate.
  • any solvent that satisfies the above HSP distance may be selected from the above-mentioned second organic solvents.
  • the content of the third organic solvent is 1% by mass or more and 20% by mass with respect to the total amount of the conductive paste. It is preferably 3% by mass or more and 15% by mass or less, and more preferably 5% by mass or more and 10% by mass or less.
  • the content of the fourth organic solvent is preferably 3% by mass or more and 35% by mass or less, more preferably 4% by mass or more and 25% by mass or less, based on the total amount of the conductive paste. More preferably, it is by mass% or more and 20% by mass or less.
  • the conductive paste according to this embodiment contains a dispersant as an additive.
  • a dispersant a known dispersant can be used.
  • an acid-based dispersant may be contained.
  • the acid-based dispersant may include an acid-based dispersant having a carboxyl group other than the dicarboxylic acid described later.
  • the dicarboxylic acid is defined separately from the dispersant, focusing on the effect of suppressing the separation of the conductive powder and the ceramic powder of the dicarboxylic acid.
  • the dispersibility of the conductive paste is improved by containing the comb-type carboxylic acid.
  • the dispersant one type may be used, or two or more types may be used.
  • the conductive paste according to the present embodiment has improved dispersibility by containing a dispersant.
  • an acid-based dispersant having a hydrocarbon group may be contained.
  • examples of such an acid-based dispersant include acid-based dispersants such as higher fatty acids and polymer surfactants, and phosphoric acid-based dispersants. These dispersants may be used alone or in combination of two or more.
  • the higher fatty acid may be an unsaturated carboxylic acid or a saturated carboxylic acid, and is not particularly limited, but has 11 or more carbon atoms such as stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, and linolenic acid. Can be mentioned. Of these, oleic acid or stearic acid is preferable.
  • the other acid-based dispersant is not particularly limited, and examples thereof include an alkyl monoamine salt type represented by a monoalkyl amine salt.
  • alkyl monoamine type for example, oleoyl zarcosin, which is a compound of glycine and oleic acid, or an amide compound using a higher fatty acid such as stearic acid or lauric acid instead of oleic acid is preferable.
  • the dispersant may contain a dispersant other than the acid-based dispersant.
  • examples of the dispersant other than the acid-based dispersant include a basic-based dispersant, a nonionic dispersant, and an amphoteric dispersant. These dispersants may be used alone or in combination of two or more.
  • the basic dispersant examples include aliphatic amines such as laurylamine, rosinamine, cetylamine, myristylamine, and stearylamine.
  • the conductive paste contains the above-mentioned acid-based dispersant and basic-based dispersion, it is more excellent in dispersibility and also excellent in viscosity stability over time.
  • the dispersant is preferably contained in an amount of 3% by mass or less based on the entire conductive paste.
  • the range including the upper limit of the content of the dispersant is preferably 2% by mass or less, and more preferably 1% by mass or less.
  • the range including the lower limit of the content of the dispersant is not particularly limited, but is, for example, 0.01% by mass or more, preferably 0.05% by mass or more.
  • the dispersant is preferably contained in an amount of 0.01 part by mass or more and 5 parts by mass or less, more preferably 0.05 part by mass or more and 3 parts by mass or less, more preferably, based on 100 parts by mass of the conductive powder. It is contained in an amount of 0.4 parts by mass or more and 3 parts by mass or less.
  • the content of the dispersant is within the above range, the dispersibility of the conductive powder or ceramic powder and the smoothness of the surface of the dry electrode after coating are excellent, and the viscosity of the conductive paste is adjusted to an appropriate range. In addition, deterioration of dryness after printing can be prevented, and sheet attack and poor peeling of the green sheet can be suppressed.
  • the conductive paste according to this embodiment may contain a dicarboxylic acid as an additive.
  • a dicarboxylic acid as an additive.
  • the effect of suppressing the separation of the conductive powder and the ceramic powder can be improved, and the occurrence of whitening when the conductive paste is produced can be suppressed. it can.
  • the coverage when the internal electrode layer is formed by using the conductive paste according to the present embodiment can be improved.
  • Dicarboxylic acid is a carboxylic acid-based additive having two carboxyl groups (COO-groups).
  • dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid and 2,6-naphthalenedicarboxylic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid and azelaic acid.
  • Dibasic acid hydrogenated dimeric acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, produced by dimerization of unsaturated fatty acids having 12 to 28 carbon atoms such as aliphatic dicarboxylic acid and dimer acid.
  • 1,2-Cyclohexanedicarboxylic acid 4-methylhexahydrohydride phthalic acid, 3-methylhexahydrohydride phthalic acid, 2-methylhexahydride phthalic acid, dicarboxyhydrogenated bisphenol A, dicarboxyhydrogenated bisphenol S, hydrogen Examples thereof include an alicyclic dicarboxylic acid such as an added naphthalenedicarboxylic acid and a tricyclodecanedicarboxylic acid.
  • the average molecular weight of the dicarboxylic acid is not particularly limited, but may be, for example, other than 1000, 500 or less, or 400 or less. When the average molecular weight of the dicarboxylic acid is in the above range, a high separation suppressing effect can be obtained.
  • the dicarboxylic acid is contained in an amount of 0.05% by mass or more and less than 3.0% by mass and 0.1% by mass or more and less than 3.0% by mass with respect to the entire conductive paste. It is preferably contained, and more preferably 0.1% by mass or more and 1.0% by mass or less. If the content of the dicarboxylic acid is too high, the drying will be insufficient in the printing and drying processes, the internal electrode layer will be in a soft state, the lamination will be misaligned in the subsequent lamination process, and the dicarboxylic acid remaining during firing will evaporate. , Internal stress may be generated by the vaporized gas component, or the structure of the laminated body may be destroyed.
  • the total content of the dispersant and the dicarboxylic acid is 0.05% by mass or more with respect to the entire conductive paste. It may be 3.0% by mass or less, 0.1% by mass or more and 2.0% by mass or less, or 0.1% by mass or more and 1.0% by mass or less.
  • the conductive paste of the present embodiment may contain other additives other than the above-mentioned components, if necessary.
  • additives for example, conventionally known additives such as defoaming agents, plasticizers, surfactants, and thickeners can be used.
  • the method for producing the conductive paste according to the present embodiment is not particularly limited, and conventionally known methods can be used.
  • the conductive paste can be produced, for example, by stirring and kneading each of the above components with a three-roll mill, a ball mill, a mixer or the like.
  • the dicarboxylic acid is preferably added by weighing it together with other materials when stirring and kneading with a mixer or the like, but it is added after stirring and kneading (dispersing) the other materials. By doing so, the effect of suppressing the separation of the conductive powder and the ceramic powder can be obtained.
  • the conductive paste has a viscosity of a shear rate of 100 sec -1 and is preferably 3 Pa ⁇ S or less.
  • the viscosity at a shear rate of 100 sec -1 is in the above range, it can be suitably used as a conductive paste for gravure printing. If it exceeds the above range, the viscosity may be too high to be suitable for gravure printing.
  • the lower limit of the viscosity at a shear rate of 100 sec -1 is not particularly limited, but is, for example, 0.2 Pa ⁇ S or more.
  • the conductive paste has a viscosity of 10000 sec -1 with a shear rate of preferably 1 Pa ⁇ S or less.
  • a shear rate of 10000 sec -1 When the viscosity at a shear rate of 10000 sec -1 is in the above range, it can be suitably used as a conductive paste for gravure printing. Even if it exceeds the above range, the viscosity may be too high to be suitable for gravure printing.
  • the lower limit of the viscosity at a shear rate of 10000 sec -1 is not particularly limited, but is, for example, 0.05 Pa ⁇ S or more.
  • the conductive paste can be suitably used for electronic parts such as multilayer ceramic capacitors.
  • the multilayer ceramic capacitor has a dielectric layer formed by using a dielectric green sheet and an internal electrode layer formed by using a conductive paste. This internal electrode layer can be obtained by drying a film on which the conductive paste is printed to obtain a dried film, and then firing the dried film.
  • the average height (Wc) of the elements is preferably 0.5 ⁇ m or less, more preferably 0.4 ⁇ m or less, and may be 0.35 ⁇ m or less.
  • the average height (Wc) of the curved elements is preferably 0.50 ⁇ m or less, more preferably 0.4 ⁇ m or less, and even more preferably 0.35 ⁇ m or less.
  • the average height (Wc) of the swell curve element can be measured in accordance with JIS B 0601: 2013.
  • the average height (Wc) of the swell curve element represents the average value of the height (Zti) of the swell curve element (contour curve element) at the reference length.
  • the contour curve element is a set of adjacent peaks and valleys, and the height of the contour curve element corresponds to the difference in height between the adjacent peaks and valleys.
  • the peaks (valleys) that make up the contour elements have a minimum height and a minimum length, and the height (depth) is 10% or less of the maximum height, or the length is the length of the calculation section. If it is 1% or less, it is regarded as noise and is a part of the valley (mountain) that continues before and after.
  • the multilayer ceramic capacitor 1 includes a ceramic laminate 10 in which a dielectric layer 12 and an internal electrode layer 11 are alternately laminated, and an external electrode 20.
  • a method for manufacturing a multilayer ceramic capacitor using the above conductive paste will be described.
  • a conductive paste is printed on a ceramic green sheet and dried to form a dry film.
  • a plurality of ceramic green sheets having the dry film on the upper surface are laminated by pressure bonding to obtain a laminate, and then the laminate is fired to be integrated, whereby the internal electrode layer 11 and the dielectric layer 12 alternate.
  • a ceramic laminate 10 laminated to the above is produced.
  • the multilayer ceramic capacitor 1 is manufactured by forming a pair of external electrodes at both ends of the ceramic laminate 10. It will be described in more detail below.
  • a ceramic green sheet which is an unfired ceramic sheet.
  • a paste for a dielectric layer obtained by adding an organic binder such as polyvinyl butyral and a solvent such as tarpineol to a predetermined ceramic raw material powder such as barium titanate is used as a PET film or the like.
  • examples thereof include those coated on a support film in the form of a sheet and dried to remove the solvent.
  • the thickness of the dielectric layer made of the ceramic green sheet is not particularly limited, but is preferably 0.05 ⁇ m or more and 3 ⁇ m or less from the viewpoint of requesting miniaturization of the multilayer ceramic capacitor.
  • a plurality of ceramic green sheets having a dry film formed on one side of the ceramic green sheet were prepared by printing and applying the above-mentioned conductive paste on one side of the ceramic green sheet using a gravure printing method. To do.
  • the thickness of the dry film formed from the conductive paste is preferably 1 ⁇ m or less after drying from the viewpoint of requesting thinning of the internal electrode layer 11.
  • the ceramic green sheet is peeled off from the support film, and the ceramic green sheet and the dry film formed on one side thereof are laminated so as to be alternately arranged, and then a laminated body is obtained by heat / pressure treatment.
  • a protective ceramic green sheet to which the conductive paste is not applied may be further arranged on both sides of the laminate.
  • the green chips are debindered and fired in a reducing atmosphere to produce a laminated ceramic fired body (ceramic laminate 10).
  • the atmosphere in the binder removal process is preferably in the air or N 2 gas atmosphere.
  • the temperature at which the debinder treatment is performed is, for example, 200 ° C. or higher and 400 ° C. or lower. Further, it is preferable that the holding time of the above temperature is 0.5 hours or more and 24 hours or less when the debinder treatment is performed.
  • the firing is performed in a reducing atmosphere in order to suppress the oxidation of the metal used for the internal electrode layer, and the temperature at which the laminated body is fired is, for example, 1000 ° C. or higher and 1350 ° C. or lower.
  • the temperature holding time is, for example, 0.5 hours or more and 8 hours or less.
  • the organic binder in the ceramic green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12. Further, the organic vehicle in the dry film is removed, and nickel powder or an alloy powder containing nickel as a main component is sintered, melted, and integrated to form an internal electrode layer 11, and the dielectric layer 12 and the internal electrode are formed.
  • a laminated ceramic fired body in which a plurality of layers 11 are alternately laminated is formed. From the viewpoint of incorporating oxygen into the dielectric layer to improve reliability and suppressing reoxidation of the internal electrodes, the laminated ceramic fired body after firing may be annealed.
  • the laminated ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 with respect to the produced laminated ceramic fired body.
  • the external electrode 20 includes an external electrode layer 21 and a plating layer 22.
  • the external electrode layer 21 is electrically connected to the internal electrode layer 11.
  • the material of the external electrode 20 for example, copper, nickel, or an alloy thereof can be preferably used.
  • the electronic component an electronic component other than the monolithic ceramic capacitor can also be used.
  • Viscosity of conductive paste The viscosity of the conductive paste after production was measured using a rheometer (manufactured by Anton Pearl Japan Co., Ltd .: rheometer MCR302). Viscosity, a cone angle of 1 °, by using a cone plate with a diameter of 25 mm, shear rate (shear rate) 100 sec -1, and, using the value measured under the conditions of 10000 sec -1.
  • Example 1A and Comparative Example 1A the swell was evaluated by the following method.
  • the conductive paste is printed on a dielectric sheet with a small gravure printing machine (GP-10TYPEII manufactured by Kurashiki Spinning Co., Ltd.) at a printing speed of 35 m / min and a conductive powder (Ni powder) at a ratio of 0.7 mg / cm 2.
  • a conductive powder Ni powder
  • the mixture was dried in a box-type dryer at 80 ° C. for 4 minutes and taken out to obtain a dry film for evaluation (width 2.5 mm ⁇ length 5 mm).
  • the film thickness of the dry film was 0.50 ⁇ m or more and 2 ⁇ m or less.
  • the swell was evaluated by the following method.
  • the conductive paste is printed on a dielectric sheet with a small gravure printing machine (GP-10TYPEII manufactured by Kurashiki Spinning Co., Ltd.) at a printing speed of 30 m / min and a conductive powder (Ni powder) at a ratio of 0.7 mg / cm 2.
  • a small gravure printing machine GP-10TYPEII manufactured by Kurashiki Spinning Co., Ltd.
  • Ni powder conductive powder
  • the mixture was dried in a box-type dryer at 80 ° C. for 4 minutes and taken out to obtain a dry film for evaluation (width 2.5 mm ⁇ length 5 mm).
  • the film thickness of the dry film was 0.50 ⁇ m or more and 2 ⁇ m or less.
  • Ceramic powder As the ceramic powder, barium titanate (BaTIO 3 ; SEM average particle size 0.10 ⁇ m) was used.
  • Binder resin As the binder resin, polyvinyl butyral resin and ethyl cellulose were used.
  • a dicarboxylic acid was used as an additive.
  • Dispersant As the dispersant, an acid-based dispersant and a base-based dispersant were used. Further, a mixed acid-based dispersant composed of a comb-shaped carboxylic acid and a phosphoric acid-based dispersant was used as the acid-based dispersant, and oleylamine was used as the basic dispersant.
  • organic solvent examples include dihydroterpineol (DHT), propylene glycol monobutyl ether (PNB), mineral spirit (MA), isobornyl acetate (IBA), methyl isobutyl ketone (MIBK), and diisobutyl ketone (DIBK) and propylene glycol.
  • DHT dihydroterpineol
  • PNB propylene glycol monobutyl ether
  • MA mineral spirit
  • IBA isobornyl acetate
  • MIBK methyl isobutyl ketone
  • DIBK diisobutyl ketone
  • propylene glycol examples include dihydroterpineol (DHT), propylene glycol monobutyl ether (PNB), mineral spirit (MA), isobornyl acetate (IBA), methyl isobutyl ketone (MIBK), and diisobutyl ketone (DIBK) and propylene glycol.
  • Example 1A A conductive paste was prepared and evaluated in the same manner as in Example 1 except that PNB was used instead of DHT. Table 1 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
  • Example 1C A conductive paste was prepared and evaluated in the same manner as in Example 1B except that DHTA 4.1% by mass, MA 12.0% by mass, and the DHT balance were added as the organic solvent. Table 2 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
  • Example 1D A conductive paste was prepared and evaluated in the same manner as in Example 1B except that MA13.8% by mass and the DHT balance were added as an organic solvent without adding a dicarboxylic acid.
  • Table 2 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
  • Example 1B A conductive paste was prepared and evaluated in the same manner as in Example 1B except that PNB was used instead of DHT.
  • Table 2 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
  • the conductive paste of Example 1C using DHT and DHTA as the first organic solvent has an average of the waviness curve elements in the dry film as compared with the conductive paste of Example 1B using DHT as the first organic solvent.
  • Example 1D in which a combination of only the first organic solvent and the third organic solvent was used as the organic solvent without adding the dicarboxylic acid, the dicarboxylic acid was added and the other compositions were similar. A Wc value almost the same as that of the conductive paste of Example 1B was obtained.
  • Example 2B to 7B, 5C, 8B to 10B As the organic solvent, a sample containing the first organic solvent and the second organic solvent was evaluated. That is, as shown in Table 3, in Examples 2B to 7B, as organic solvents, MIBK 4.1% by mass, MA12.0% by mass and DHT balance (Example 2B), DIBK 4.1% by mass, MA12.0% by mass.
  • Example 3B % And DHT Remaining
  • Example 4B DIBK 5.1% by Mass, MA 10.3% by Mass and DHT Remaining
  • Example 5B IBA 4.1% by Mass, MA 12.0% by Mass and DHT Remaining
  • a conductive paste was prepared in the same manner as in 1B and evaluated.
  • Example 5C the same as in Example 1B except that IBA 4.2% by mass, MA 12.0% by mass and DHT balance were added as organic solvents without adding dicarboxylic acid.
  • a conductive paste was prepared and evaluated.
  • Table 3 shows the evaluation results Wc of the content of the organic solvent and the average height of the waviness in the prepared conductive paste.
  • a conductive paste was prepared and evaluated in the same manner as in Example 2B, except that PMA (Example 8B), DPMA (Example 9B), and DEGME (Example 10B) were used instead of MIBK.
  • Table 3 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
  • Table 3 also shows the evaluation results Wc of the organic solvent content and the average height of the waviness of Example 1B and Comparative Example 1B described above.
  • the conductive pastes of Examples 2B to 7B containing the second organic solvent (MIBK, DIBK, IBA) in addition to the first organic solvent as the organic solvent are shown in the table in addition to the first organic solvent.
  • Example 5D the conductive paste of Example 5D to which no dicarboxylic acid was added was obtained with a Wc value almost the same as that of the conductive paste of Example 5B to which the dicarboxylic acid was added and the other compositions were similar.
  • Example 7B in order to adjust the paste viscosity, DIBK, which is a second organic solvent, is contained in a larger amount than in other examples (similar to the content of the first organic solvent).
  • Table 4 shows the first organic solvent, the fourth organic solvent, other organic solvents, or their respective in the evaluation conductive pastes of Examples 1B to 6B, 8B to 10B, and Comparative Example 1B. It is a table showing the relationship between the HSP distance (compatibility) between the mixed organic solvent and the third organic solvent, and the average height (Wc) of the swell when the dried film was prepared. Further, FIG. 2 is a diagram showing the relationship between the HSP distance to the third organic solvent and the average height (Wc) of the swell in the examples and comparative examples shown in Table 4 below.
  • the conductive paste of the present invention When the conductive paste of the present invention is used for forming the internal electrodes of a multilayer ceramic capacitor, a highly reliable multilayer ceramic capacitor can be obtained with high productivity. Therefore, the conductive paste of the present invention can be suitably used as a raw material for an internal electrode of a multilayer ceramic capacitor, which is a chip component of an electronic device such as a mobile phone or a digital device, which is becoming smaller and smaller, and is used for gravure printing. It can be suitably used as a conductive paste.
  • Multilayer ceramic capacitor 10 Ceramic laminate 11 Internal electrode layer 12 Dielectric layer 20 External electrode 21 External electrode layer 22 Plating layer

Abstract

Provided is an electroconductive paste for gravure printing with which it is possible to reduce the surface undulation of a dry film. An electroconductive paste for gravure printing that includes ceramic powder, a dispersant, a binder resin, and an organic solvent, wherein the organic solvent includes a first organic solvent, the first organic solvent being at least one terpene solvent selected from the group consisting of terpineol, dihydroterpineol, and dihydroterpinylacetate.

Description

グラビア印刷用導電性ペースト、電子部品、及び積層セラミックコンデンサConductive pastes for gravure printing, electronic components, and multilayer ceramic capacitors
 本発明は、グラビア印刷用導電性ペースト、電子部品、及び積層セラミックコンデンサに関する。 The present invention relates to a conductive paste for gravure printing, an electronic component, and a multilayer ceramic capacitor.
 携帯電話やデジタル機器などの電子機器の小型化および高性能化に伴い、積層セラミックコンデンサなどを含む電子部品についても小型化および高容量化が望まれている。積層セラミックコンデンサは、複数の誘電体層と複数の内部電極層とが交互に積層した構造を有し、これらの誘電体層及び内部電極層を薄膜化することにより、小型化及び高容量化を図ることができる。 With the miniaturization and high performance of electronic devices such as mobile phones and digital devices, it is desired to reduce the size and capacity of electronic components including multilayer ceramic capacitors. Multilayer ceramic capacitors have a structure in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately laminated, and by thinning these dielectric layers and internal electrode layers, miniaturization and high capacity can be achieved. Can be planned.
 積層セラミックコンデンサは、例えば、次のように製造される。まず、チタン酸バリウム(BaTiO)などの誘電体粉末及びバインダー樹脂を含有するセラミックグリーンシートの表面上に、内部電極用の導電性ペーストを、所定の電極パターンで印刷し、乾燥して、乾燥膜を形成する。次いで、乾燥膜とセラミックグリーンシートとを、交互に重なるように積層して、積層体を得る。次に、この積層体を加熱圧着して一体化し、圧着体を形成する。この圧着体を切断し、酸化性雰囲気または不活性雰囲気中にて脱有機バインダー処理を行った後、焼成を行い、焼成チップを得る。次いで、焼成チップの両端部に外部電極用ペーストを塗布し、焼成後、外部電極表面にニッケルメッキなどを施して、積層セラミックコンデンサが得られる。 Multilayer ceramic capacitors are manufactured, for example, as follows. First, a conductive paste for an internal electrode is printed on the surface of a ceramic green sheet containing a dielectric powder such as barium titanate (BaTIO 3) and a binder resin in a predetermined electrode pattern, dried, and dried. Form a film. Next, the dry film and the ceramic green sheet are laminated so as to be alternately overlapped to obtain a laminated body. Next, the laminated body is heat-bonded and integrated to form a pressure-bonded body. The pressure-bonded body is cut, subjected to a deorganizing binder treatment in an oxidizing atmosphere or an inert atmosphere, and then fired to obtain a fired chip. Next, pastes for external electrodes are applied to both ends of the fired chip, and after firing, the surface of the external electrodes is nickel-plated or the like to obtain a multilayer ceramic capacitor.
 導電性ペーストを誘電体グリーンシートに印刷する際に用いられる印刷法としては、従来、スクリーン印刷法が一般的に用いられてきたが、電子デバイスの小型化、薄膜化や生産性向上の要求から、より微細な電極パターンを生産性高く印刷することが求められている。 Conventionally, a screen printing method has been generally used as a printing method used when printing a conductive paste on a dielectric green sheet, but due to the demand for miniaturization, thinning, and productivity improvement of electronic devices. , It is required to print finer electrode patterns with high productivity.
 導電性ペーストの印刷法の一つとして、製版に設けられた凹部に導電性ペーストを充填し、これを被印刷面に押し当てることでその製版から導電性ペーストを転写する連続印刷法であるグラビア印刷法が提案されている。グラビア印刷法は印刷速度が速く、生産性に優れる。グラビア印刷法を用いる場合、導電性ペースト中のバインダー樹脂、分散剤、溶剤等を適宜選択して、粘度等の特性をグラビア印刷に適した範囲に調整する必要がある。 As one of the printing methods of the conductive paste, gravure is a continuous printing method in which the concave portion provided in the plate making is filled with the conductive paste and pressed against the surface to be printed to transfer the conductive paste from the plate making. A printing method has been proposed. The gravure printing method has a high printing speed and is excellent in productivity. When the gravure printing method is used, it is necessary to appropriately select the binder resin, dispersant, solvent, etc. in the conductive paste and adjust the characteristics such as viscosity within a range suitable for gravure printing.
 例えば、特許文献1では、複数のセラミック層および前記セラミック層間の特定の界面に沿って延びる内部導体膜を備える積層セラミック電子部品における前記内部導体膜をグラビア印刷によって形成するために用いられる導電性ペーストであって、金属粉末を含む30~70重量%の固形成分と、1~10重量%のエトキシ基含有率が49.6%以上のエチルセルロース樹脂成分と、0.05~5重量%の分散剤と、残部としての溶剤成分とを含み、ずり速度0.1(s-1)での粘度η0.1が1Pa・s以上であり、かつずり速度0.02(s-1)での粘度η0.02が特定の式で表わされる条件を満たす、チキソトロピー流体である、導電性ペーストが記載されている。 For example, in Patent Document 1, a conductive paste used for forming the internal conductor film in a laminated ceramic electronic component including a plurality of ceramic layers and an internal conductor film extending along a specific interface between the ceramic layers by gravure printing. A solid component of 30 to 70% by weight containing a metal powder, an ethyl cellulose resin component having an ethoxy group content of 1 to 10% by weight of 49.6% or more, and a dispersant of 0.05 to 5% by weight. And the solvent component as the balance, the viscosity η 0.1 at a shear rate of 0.1 (s -1 ) is 1 Pa · s or more, and the viscosity at a shear rate of 0.02 (s -1). Described is a conductive paste that is a thixotropy fluid that satisfies the condition that η 0.02 is expressed by a specific formula.
 また、特許文献2では、上記特許文献1と同様にグラビア印刷によって形成するために用いられる導電性ペーストであって、金属粉末を含む30~70重量%の固形成分と、1~10重量%の樹脂成分と、0.05~5重量%の分散剤と、残部としての溶剤成分とを含み、ずり速度0.1(s-1)での粘度が1Pa・s以上のチキソトロピー流体であって、ずり速度0.1(s-1)での粘度を基準としたときに、ずり速度10(s-1)での粘度変化率が50%以上である、導電性ペーストが記載されている。 Further, in Patent Document 2, a conductive paste used for forming by gravure printing as in Patent Document 1, wherein 30 to 70% by weight of a solid component containing a metal powder and 1 to 10% by weight of a solid component are used. A thixotropy fluid containing a resin component, a dispersant of 0.05 to 5% by weight, and a solvent component as a balance, and having a viscosity of 1 Pa · s or more at a shear rate of 0.1 (s -1). Described are conductive pastes having a viscosity change rate of 50% or more at a shear rate of 10 (s -1 ), based on the viscosity at a shear rate of 0.1 (s -1).
 上記特許文献1、2によれば、これらの導電性ペーストは、ずり速度0.1(s-1)での粘度が1Pa・s以上であるチキソトロピー流体であり、グラビア印刷において高速での安定した連続印刷性が得られ、良好な生産効率をもって、積層セラミックコンデンサのような積層セラミック電子部品を製造することができるとされている。 According to Patent Documents 1 and 2, these conductive pastes are thixotropy fluids having a viscosity of 1 Pa · s or more at a shear rate of 0.1 (s -1), and are stable at high speed in gravure printing. It is said that continuous printability can be obtained and laminated ceramic electronic components such as multilayer ceramic capacitors can be manufactured with good production efficiency.
 また、特許文献3には、導電性粉末(A)、有機樹脂(B)、及び有機溶剤(C)、添加剤(D)、及び誘電体粉末(E)を含む積層セラミックコンデンサ内部電極用導電性ペーストであって、有機樹脂(B)は、重合度が10000以上50000以下のポリビニルブチラールと、重量平均分子量が10000以上100000以下のエチルセルロースからなり、有機溶剤(C)は、プロピレングリコールモノブチルエーテル、もしくはプロピレングリコールモノブチルエーテルとプロピレングリコールメチルエーテルアセテートの混合溶剤、又はプロピレングリコールモノブチルエーテルとミネラルスピリットの混合溶剤のいずれかからなり、添加剤(D)は、分離抑制剤と分散剤からなり、該分離抑制剤としてポリカルボン酸ポリマーもしくはポリカルボン酸の塩を含む組成物からなるグラビア印刷用導電性ペーストが記載されている。特許文献3によれば、この導電性ペーストは、グラビア印刷に適した粘度を有し、ペーストの均一性・安定性が向上し、かつ、乾燥性がよいとされている。 Further, Patent Document 3 describes conductivity for an internal electrode of a multilayer ceramic capacitor containing a conductive powder (A), an organic resin (B), an organic solvent (C), an additive (D), and a dielectric powder (E). The organic resin (B) is a sex paste composed of polyvinyl butyral having a degree of polymerization of 10,000 or more and 50,000 or less and ethyl cellulose having a weight average molecular weight of 10,000 or more and 100,000 or less, and the organic solvent (C) is propylene glycol monobutyl ether. Alternatively, it is composed of either a mixed solvent of propylene glycol monobutyl ether and propylene glycol methyl ether acetate, or a mixed solvent of propylene glycol monobutyl ether and mineral spirit, and the additive (D) is composed of a separation inhibitor and a dispersant, and the separation thereof. A conductive paste for gravure printing, which comprises a composition containing a polycarboxylic acid polymer or a salt of polycarboxylic acid as an inhibitor, is described. According to Patent Document 3, this conductive paste has a viscosity suitable for gravure printing, the uniformity and stability of the paste are improved, and the drying property is good.
特開2003-187638号公報Japanese Unexamined Patent Publication No. 2003-187638 特開2003-242835号公報Japanese Unexamined Patent Publication No. 2003-242835 特開2012-174797号公報Japanese Unexamined Patent Publication No. 2012-174977
 グラビア印刷用の導電性ペーストでは、低粘度であることが要求される。しかしながら、低粘度の導電性ペーストでは、スクリーン印刷用などの高粘度の導電性ペーストと比較して、乾燥膜を形成した際に膜表面のうねりが大きくなりやすい。このような導電性ペーストを用いて積層セラミックコンデンサの内部電極層を形成した場合、得られる内部電極層の膜厚がばらつき、積層セラミックコンデンサの信頼性が低下する。 The conductive paste for gravure printing is required to have a low viscosity. However, in the low-viscosity conductive paste, the waviness of the film surface tends to be large when the dry film is formed, as compared with the high-viscosity conductive paste for screen printing or the like. When the internal electrode layer of the monolithic ceramic capacitor is formed by using such a conductive paste, the thickness of the obtained internal electrode layer varies, and the reliability of the monolithic ceramic capacitor decreases.
 本発明は、このような状況に鑑み、乾燥膜の表面のうねりが小さいグラビア印刷用の導電性ペーストを提供することを目的とする。 In view of such a situation, an object of the present invention is to provide a conductive paste for gravure printing in which the surface waviness of the dry film is small.
 本発明の第1の態様では、導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含むグラビア印刷用の導電性ペーストであって、有機溶剤は、第1の有機溶剤を含み、第1の有機溶剤は、ターピネオール、ジヒドロターピネオール、及び、ジヒドロターピニルアセテートからなる群から選ばれる少なくとも1種のテルペン系溶剤である、グラビア印刷用導電性ペーストが提供される。 In the first aspect of the present invention, the conductive paste for gravure printing contains a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent, wherein the organic solvent contains the first organic solvent and is the first. As the organic solvent of 1, a conductive paste for gravure printing, which is at least one terpene-based solvent selected from the group consisting of tarpineol, dihydroterpineol, and dihydroterpinyl acetate, is provided.
 また、導電性ペーストは、さらに、ジカルボン酸を、導電性ペースト全体に対して0.05質量%以上3.0質量%未満含むことが好ましい。また、第1の有機溶剤は、導電性ペースト全体に対して10質量%以上60質量%以下含まれることが好ましい。また、分散剤は、導電性ペースト全体に対して0.01質量%以上3.0質量%以下含まれることが好ましい。また、分散剤は、酸系分散剤を含むことが好ましい。 Further, the conductive paste preferably further contains a dicarboxylic acid in an amount of 0.05% by mass or more and less than 3.0% by mass with respect to the entire conductive paste. Further, the first organic solvent is preferably contained in an amount of 10% by mass or more and 60% by mass or less with respect to the entire conductive paste. Further, the dispersant is preferably contained in an amount of 0.01% by mass or more and 3.0% by mass or less with respect to the entire conductive paste. Further, the dispersant preferably contains an acid-based dispersant.
 また、有機溶剤は、さらに第2の有機溶剤を含み、第2の有機溶剤は、イソボルニルアセテート、メチルイソブチルケトン、及び、ジイソブチルケトンからなる群から選ばれる少なくとも1種であってもよい。また、有機溶剤は、さらに第3の有機溶剤を含み、第3の有機溶剤は、石油系炭化水素溶剤であってもよい。 Further, the organic solvent further contains a second organic solvent, and the second organic solvent may be at least one selected from the group consisting of isobornyl acetate, methyl isobutyl ketone, and diisobutyl ketone. Further, the organic solvent further contains a third organic solvent, and the third organic solvent may be a petroleum-based hydrocarbon solvent.
 また、有機溶剤は、さらに第3の有機溶剤と第4の有機溶剤とを含み、第3の有機溶剤は、石油系炭化水素溶剤であり、第4の有機溶剤は、第1の有機溶剤および第4の有機溶剤のそれぞれのHSP値および含有体積割合から算出される混合溶液のHSP値と、第3の有機溶剤のHSP値とのHSP距離が、第1の有機溶剤のHSP値と、第3の有機溶剤のHSP値とのHSP距離と同じか、それよりも短くなる溶剤からなる群から選ばれる少なくとも1種であってもよい。また、第4の有機溶剤は、アセテート系溶剤、ケトン系溶剤、及び、脂環式炭化水素系溶剤からなる群から選ばれる少なくとも1種であることが好ましい。また、第4の有機溶剤は、イソボルニルアセテート、メチルイソブチルケトン、及び、ジイソブチルケトンからなる群から選ばれる少なくとも1種であることが好ましい。 Further, the organic solvent further contains a third organic solvent and a fourth organic solvent, the third organic solvent is a petroleum-based hydrocarbon solvent, and the fourth organic solvent is the first organic solvent and The HSP distance between the HSP value of the mixed solution calculated from the HSP value and the content volume ratio of each of the fourth organic solvent and the HSP value of the third organic solvent is the HSP value of the first organic solvent and the HSP value of the first organic solvent. It may be at least one selected from the group consisting of solvents having the same or shorter HSP distance from the HSP value of the organic solvent of 3. Further, the fourth organic solvent is preferably at least one selected from the group consisting of an acetate solvent, a ketone solvent, and an alicyclic hydrocarbon solvent. Further, the fourth organic solvent is preferably at least one selected from the group consisting of isobornyl acetate, methyl isobutyl ketone, and diisobutyl ketone.
 また、導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金からなる群から選ばれる少なくとも1種の金属粉末を含むことが好ましい。また、導電性粉末は、平均粒径が0.05μm以上1.0μm以下であることが好ましい。また、セラミック粉末は、チタン酸バリウムを含むことが好ましい。セラミック粉末は、平均粒径が0.01μm以上0.5μm以下であることが好ましい。また、セラミック粉末は、導電性ペースト全体に対して1質量%以上20質量%以下含まれることが好ましい。また、バインダー樹脂が、セルロース系樹脂を含むことが好ましい。また、導電性ペーストは、ずり速度100sec-1での粘度が3Pa・S以下であり、ずり速度10000sec-1での粘度が1Pa・S以下であることが好ましい。また、導電性ペーストをグラビア印刷して得られる乾燥膜のうねり曲線要素の平均高さ(Wc)が0.5μm以下であることが好ましい。 Further, the conductive powder preferably contains at least one metal powder selected from the group consisting of Ni, Pd, Pt, Au, Ag, Cu and alloys thereof. Further, the conductive powder preferably has an average particle size of 0.05 μm or more and 1.0 μm or less. Further, the ceramic powder preferably contains barium titanate. The ceramic powder preferably has an average particle size of 0.01 μm or more and 0.5 μm or less. Further, the ceramic powder is preferably contained in an amount of 1% by mass or more and 20% by mass or less with respect to the entire conductive paste. Moreover, it is preferable that the binder resin contains a cellulosic resin. Further, it is preferable that the conductive paste has a viscosity of 3 Pa · S or less at a shear rate of 100 sec-1 and a viscosity of 1 Pa · S or less at a shear rate of 10000 sec-1. Further, it is preferable that the average height (Wc) of the waviness curve element of the dry film obtained by gravure printing the conductive paste is 0.5 μm or less.
 本発明の第2の態様では、上記の導電性ペーストを用いて形成された電子部品が提供される。 In the second aspect of the present invention, an electronic component formed by using the above conductive paste is provided.
 本発明の第3の態様では、誘電体層と内部電極層とを積層した積層体を少なくとも有し、内部電極層は、上記のグラビア印刷用導電性ペーストを用いて形成された積層セラミックコンデンサが提供される。 In the third aspect of the present invention, at least a laminated body in which a dielectric layer and an internal electrode layer are laminated is provided, and the internal electrode layer is a laminated ceramic capacitor formed by using the above-mentioned conductive paste for gravure printing. Provided.
 本発明の導電性ペーストは、グラビア印刷して乾燥膜を形成した場合でも、乾燥膜の表面のうねりを小さくすることができる。また、本発明の導電性ペーストを用いて形成される内部電極層は、薄膜化した電極を形成する際も、信頼性の高い積層セラミックコンデンサを生産性高く製造することができる。 The conductive paste of the present invention can reduce the waviness of the surface of the dry film even when the dry film is formed by gravure printing. Further, the internal electrode layer formed by using the conductive paste of the present invention can produce a highly reliable multilayer ceramic capacitor with high productivity even when forming a thin-film electrode.
図1は、実施形態に係る積層セラミックコンデンサを示す斜視図及び断面図である。FIG. 1 is a perspective view and a cross-sectional view showing a multilayer ceramic capacitor according to an embodiment. 図2は、実施例及び比較例で用いた有機溶剤のHSP距離と乾燥膜のうねり曲線要素の平均高さ(Wc)との関係を示す図である。FIG. 2 is a diagram showing the relationship between the HSP distance of the organic solvent used in Examples and Comparative Examples and the average height (Wc) of the swell curve element of the dry film.
[導電性ペースト]
 本実施形態の導電性ペーストは、導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む。以下、各成分について詳細に説明する。
[Conductive paste]
The conductive paste of this embodiment contains a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent. Hereinafter, each component will be described in detail.
(導電性粉末)
 導電性粉末としては、特に限定されず、金属粉末を用いることができ、例えば、Ni、Pd、Pt、Au、Ag、Cu、およびこれらの合金から選ばれる1種以上の粉末を用いることができる。これらの中でも、導電性、耐食性及びコストの観点から、Ni、またはその合金の粉末(以下、「Ni粉末」と称する場合がある)が好ましい。Ni合金としては、例えば、Mn、Cr、Co、Al、Fe、Cu、Zn、Ag、Au、PtおよびPdからなる群より選択される少なくとも1種以上の元素とNiとの合金が用いることができる。Ni合金におけるNiの含有量は、例えば、50質量%以上、好ましくは80質量%以上である。また、Ni粉末は、脱バインダー処理の際、バインダー樹脂の部分的な熱分解による急激なガス発生を抑制するために、数百ppm程度の元素Sを含んでもよい。
(Conductive powder)
The conductive powder is not particularly limited, and a metal powder can be used. For example, Ni, Pd, Pt, Au, Ag, Cu, and one or more powders selected from these alloys can be used. .. Among these, Ni or an alloy powder thereof (hereinafter, may be referred to as "Ni powder") is preferable from the viewpoint of conductivity, corrosion resistance and cost. As the Ni alloy, for example, an alloy of Ni with at least one element selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt and Pd can be used. it can. The content of Ni in the Ni alloy is, for example, 50% by mass or more, preferably 80% by mass or more. Further, the Ni powder may contain an element S of about several hundred ppm in order to suppress abrupt gas generation due to partial thermal decomposition of the binder resin during the debinder treatment.
 導電性粉末の平均粒径は、好ましくは0.05μm以上1.0μm以下であり、より好ましくは0.1μm以上0.5μm以下である。導電性粉末の平均粒径が上記範囲である場合、薄膜化した積層セラミックコンデンサ(積層セラミック部品)の内部電極用ペーストとして好適に用いることができ、例えば、乾燥膜の平滑性及び乾燥膜密度が向上する。平均粒径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率10,000倍にて観察した画像から、複数の粒子一つ一つの粒径を測定して、得られる平均値(SEM平均粒径)である。 The average particle size of the conductive powder is preferably 0.05 μm or more and 1.0 μm or less, and more preferably 0.1 μm or more and 0.5 μm or less. When the average particle size of the conductive powder is within the above range, it can be suitably used as a paste for an internal electrode of a thinned laminated ceramic capacitor (laminated ceramic component). For example, the smoothness of the dried film and the density of the dried film are high. improves. The average particle size is a value obtained from observation with a scanning electron microscope (SEM), and is obtained by measuring the particle size of each of a plurality of particles from an image observed with an SEM at a magnification of 10,000 times. It is an average value (SEM average particle diameter) to be obtained.
 導電性粉末の含有量は、導電性ペースト全体に対して、好ましくは30質量%以上70質量%未満であり、より好ましくは40質量%以上60質量%以下である。導電性粉末の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, and more preferably 40% by mass or more and 60% by mass or less with respect to the entire conductive paste. When the content of the conductive powder is within the above range, the conductivity and dispersibility are excellent.
(セラミック粉末)
 セラミック粉末としては、特に限定されず、例えば、積層セラミックコンデンサの内部電極用ペーストである場合、適用する積層セラミックコンデンサの種類により適宜、公知のセラミック粉末が選択される。セラミック粉末としては、例えば、Ba及びTiを含むペロブスカイト型酸化物を用いることができ、好ましくはチタン酸バリウム(BaTiO)を含む。
(Ceramic powder)
The ceramic powder is not particularly limited, and for example, in the case of a paste for an internal electrode of a multilayer ceramic capacitor, a known ceramic powder is appropriately selected depending on the type of the laminated ceramic capacitor to be applied. As the ceramic powder, for example, a perovskite-type oxide containing Ba and Ti can be used, and barium titanate (BaTIO 3 ) is preferably contained.
 セラミック粉末としては、チタン酸バリウムを主成分とし、酸化物を副成分として含むセラミック粉末を用いてもよい。酸化物としては、Mn、Cr、Si、Ca、Ba、Mg、V、W、Ta、Nbおよび1種類以上の希土類元素の酸化物が挙げられる。また、セラミック粉末としては、例えば、チタン酸バリウム(BaTiO)のBa原子やTi原子を他の原子、例えば、Sn、Pb、Zrなどで置換したペロブスカイト型酸化物強誘電体のセラミック粉末を用いてもよい。 As the ceramic powder, a ceramic powder containing barium titanate as a main component and an oxide as a sub component may be used. Examples of the oxide include oxides of Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb and one or more rare earth elements. Further, as the ceramic powder, for example, a perovskite-type oxide ferroelectric ceramic powder in which the Ba atom or Ti atom of barium titanate (BaTIO 3 ) is replaced with another atom, for example, Sn, Pb, Zr or the like is used. You may.
 内部電極用の導電性ペーストとして用いる場合、セラミック粉末は、積層セラミックコンデンサ(電子部品)のグリーンシートを構成する誘電体セラミック粉末と同一組成の粉末を用いてもよい。これにより、焼結工程における誘電体層と内部電極層との界面での収縮のミスマッチによるクラック発生が抑制される。このようなセラミック粉末としては、上記以外に、例えば、ZnO、フェライト、PZT、BaO、Al、Bi、R(希土類元素)、TiO、Ndなどの酸化物が挙げられる。なお、セラミック粉末は、1種類を用いてもよく、2種類以上を用いてもよい。 When used as a conductive paste for an internal electrode, the ceramic powder may be a powder having the same composition as the dielectric ceramic powder constituting the green sheet of a multilayer ceramic capacitor (electronic component). As a result, crack generation due to a shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer in the sintering process is suppressed. In addition to the above, such ceramic powders include, for example, ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , R (rare earth element) 2 O 3 , TIO 2 , Nd 2 O 3 and the like. Oxides can be mentioned. As the ceramic powder, one type may be used, or two or more types may be used.
 セラミック粉末の平均粒径は、例えば、0.01μm以上0.5μm以下であり、好ましくは0.01μm以上0.3μm以下の範囲である。セラミック粉末の平均粒径が上記範囲であることにより、内部電極用ペーストとして用いた場合、十分に細く薄い均一な内部電極を形成することができる。平均粒径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率50,000倍にて観察した映像から、複数の粒子一つ一つの粒径を測定して、得られる平均値(SEM平均粒径)である。 The average particle size of the ceramic powder is, for example, 0.01 μm or more and 0.5 μm or less, preferably 0.01 μm or more and 0.3 μm or less. When the average particle size of the ceramic powder is in the above range, it is possible to form a sufficiently thin and thin uniform internal electrode when used as a paste for an internal electrode. The average particle size is a value obtained from observation with a scanning electron microscope (SEM), and is obtained by measuring the particle size of each of a plurality of particles from an image observed with an SEM at a magnification of 50,000 times. It is an average value (SEM average particle diameter) to be obtained.
 セラミック粉末の含有量は、導電性ペースト全体に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは3質量%以上15質量%以下である。セラミック粉末の含有量が上記範囲である場合、分散性および焼結性に優れる。 The content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, and more preferably 3% by mass or more and 15% by mass or less with respect to the entire conductive paste. When the content of the ceramic powder is in the above range, the dispersibility and sinterability are excellent.
 また、セラミック粉末の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上30質量部以下である。 The content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the conductive powder.
(バインダー樹脂)
 バインダー樹脂としては、特に限定されず、公知の樹脂を用いることができる。バインダー樹脂としては、例えば、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロースなどのセルロース系樹脂、アクリル系樹脂、ポリビニルブチラールなどのブチラール系樹脂などが挙げられる。中でも、溶剤への溶解性、燃焼分解性の観点などから、セルロース系樹脂を含むことが好ましく、エチルセルロースを含むことがより好ましい。また、内部電極用ペーストとして用いる場合、グリーンシートとの接着強度を向上させる観点から、ブチラール系樹脂を含む、又は、ブチラール系樹脂単独で使用してもよい。バインダー樹脂がアセタール系樹脂を含む場合、グラビア印刷に適した粘度に容易に調整することができ、かつ、グリーンシートとの接着強度をより向上させることができる。バインダー樹脂は、例えば、バインダー樹脂全体に対して、アセタール系樹脂を20質量%以上含んでもよく、30質量%以上含んでもよい。
(Binder resin)
The binder resin is not particularly limited, and a known resin can be used. Examples of the binder resin include cellulosic resins such as methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose and nitrocellulose, acrylic resins, butyral resins such as polyvinyl butyral and the like. Above all, from the viewpoint of solubility in a solvent, combustion decomposition, and the like, it is preferable to contain a cellulosic resin, and more preferably ethyl cellulose is contained. When used as a paste for an internal electrode, it may contain a butyral resin or may be used alone from the viewpoint of improving the adhesive strength with the green sheet. When the binder resin contains an acetal resin, the viscosity can be easily adjusted to be suitable for gravure printing, and the adhesive strength with the green sheet can be further improved. The binder resin may contain, for example, 20% by mass or more of the acetal resin or 30% by mass or more of the entire binder resin.
 バインダー樹脂の重合度や重量平均分子量は、要求される導電性ペーストの粘度に応じて、上記範囲内で適宜調整することができる。 The degree of polymerization and weight average molecular weight of the binder resin can be appropriately adjusted within the above range according to the required viscosity of the conductive paste.
 バインダー樹脂の含有量は、導電性ペースト全体に対して、好ましくは0.5質量%以上10質量%以下であり、より好ましくは1質量%以上7質量%以下である。バインダー樹脂の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 7% by mass or less with respect to the entire conductive paste. When the content of the binder resin is within the above range, the conductivity and dispersibility are excellent.
 バインダー樹脂の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上20質量部以下であり、より好ましくは1質量部以上14質量部以下である。 The content of the binder resin is preferably 1 part by mass or more and 20 parts by mass or less, and more preferably 1 part by mass or more and 14 parts by mass or less with respect to 100 parts by mass of the conductive powder.
(有機溶剤)
 本実施形態に係る導電性ペーストは、有機溶剤を含む。有機溶剤は、第1の有機溶剤として、ターピネオール、ジヒドロターピネオール、及び、ジヒドロターピニルアセテートからなる群から選ばれる少なくとも1種のテルペン系溶剤を含み、好ましくは、ジヒドロターピネオールを含む。導電性ペーストは、上記テルペン系溶剤を含むことにより、乾燥膜を形成した際の膜表面のうねりを少なくすることができる。なお、上記テルペン系溶剤は、1種類を用いてもよく、2種類以上を用いてもよい。
(Organic solvent)
The conductive paste according to this embodiment contains an organic solvent. The organic solvent contains, as the first organic solvent, at least one terpene-based solvent selected from the group consisting of tarpineol, dihydroterpineol, and dihydroterpinyl acetate, and preferably contains dihydroterpineol. By containing the terpene-based solvent in the conductive paste, it is possible to reduce the waviness of the film surface when the dry film is formed. As the terpene solvent, one type may be used, or two or more types may be used.
 テルペン系溶剤(第1の有機溶剤)の含有量は、導電性ペースト全量に対して、10質量%以上60質量%以下であってもよく、10質量%以上45質量%以下が好ましく、10質量%以上40質量%以下が好ましく、15質量%以上40質量%以下がより好ましい。第1の有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the terpene solvent (first organic solvent) may be 10% by mass or more and 60% by mass or less, preferably 10% by mass or more and 45% by mass or less, based on the total amount of the conductive paste. % Or more and 40% by mass or less are preferable, and 15% by mass or more and 40% by mass or less are more preferable. When the content of the first organic solvent is in the above range, the conductivity and dispersibility are excellent.
 また、第1の有機溶剤として、2種類以上を含む場合、ジヒドロターピネオール、および、ジヒドロターピニルアセテートを含むことが好ましい。ジヒドロターピネオールと、ジヒドロターピニルアセテートとを含む場合、乾燥膜を形成した際の膜表面のうねりをより少なくすることができ、さらに、白浮きの発生も抑制することができる。また、この場合、ジヒドロターピネオールの含有量は、導電性ペースト全量に対して、10質量%以上60質量%以下が好ましく、10質量%以上45質量%以下が好ましく、15質量%以上40質量%以下がより好ましい。また、ジヒドロターピニルアセテートの含有量は、導電性ペースト全量に対して、3質量%以上20質量%以下であることが好ましい。また、ジヒドロターピネオールの含有量は、ジヒドロターピニルアセテートの含有量より多くてもよい。 Further, when two or more kinds are contained as the first organic solvent, it is preferable to contain dihydroterpineol and dihydroterpinyl acetate. When dihydroterpineol and dihydroterpinyl acetate are contained, the waviness of the film surface when the dry film is formed can be further reduced, and the occurrence of whitening can be suppressed. In this case, the content of dihydroterpineol is preferably 10% by mass or more and 60% by mass or less, preferably 10% by mass or more and 45% by mass or less, and 15% by mass or more and 40% by mass or less with respect to the total amount of the conductive paste. Is more preferable. The content of dihydroterpinyl acetate is preferably 3% by mass or more and 20% by mass or less with respect to the total amount of the conductive paste. Moreover, the content of dihydroterpineol may be higher than the content of dihydroterpinyl acetate.
 なお、有機溶剤としては、第1の有機溶剤以外の有機溶剤を含んでもよい。第1の有機溶剤以外の有機溶剤(その他の有機溶剤)としては、特に限定されず、上記のバインダー樹脂を溶解することができる公知の有機溶剤を用いることができる。上記テルペン系溶剤(第1の有機溶剤)以外の有機溶剤としては、例えば、グリコールエーテル系溶剤、アセテート系溶剤、酢酸エステル系溶剤、ケトン系溶剤、上記第1の有機溶剤以外のテルペン系溶剤、脂肪族系炭化水素溶剤などが挙げられる。なお、有機溶剤は、1種類を用いてもよく、2種類以上を用いてもよい。有機溶剤は、例えば、主溶剤として上記のテルペン系溶剤(第1の有機溶剤)を含み、副溶剤として、上記のテルペン系溶剤以外の有機溶剤を含んでもよい。この場合、上記のテルペン系溶剤は、導電性粉末100質量部に対して、例えば、30質量部以上50質量部以下含まれてもよい。また、副溶剤は、導電性粉末100質量部に対して、20質量部以上40質量部以下含まれてもよい。 The organic solvent may contain an organic solvent other than the first organic solvent. The organic solvent (other organic solvent) other than the first organic solvent is not particularly limited, and a known organic solvent capable of dissolving the above binder resin can be used. Examples of the organic solvent other than the terpene solvent (first organic solvent) include glycol ether solvent, acetate solvent, acetate ester solvent, ketone solvent, and terpene solvent other than the first organic solvent. Examples include an aliphatic hydrocarbon solvent. As the organic solvent, one type may be used, or two or more types may be used. The organic solvent may contain, for example, the above-mentioned terpene-based solvent (first organic solvent) as the main solvent, and may contain an organic solvent other than the above-mentioned terpene-based solvent as the auxiliary solvent. In this case, the terpene solvent may be contained in an amount of, for example, 30 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the conductive powder. Further, the auxiliary solvent may be contained in an amount of 20 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the conductive powder.
 有機溶剤は、例えば、第1の有機溶剤と、第1の有機溶剤以外の有機溶剤を含んでもよい。この場合、第1の有機溶剤は、導電性粉末100質量部に対して、例えば、10質量部以上120質量部以下であり、好ましくは15質量部以上90質量部以下、より好ましくは20質量部以上50質量部以下含まれる。また、第1の有機溶剤以外の有機溶剤は、導電性粉末100質量部に対して、例えば、5質量部以上100質量部以下、好ましくは15質量部以上90質量部以下、より好ましくは30質量部以上70質量部以下含まれる。 The organic solvent may include, for example, a first organic solvent and an organic solvent other than the first organic solvent. In this case, the first organic solvent is, for example, 10 parts by mass or more and 120 parts by mass or less, preferably 15 parts by mass or more and 90 parts by mass or less, and more preferably 20 parts by mass with respect to 100 parts by mass of the conductive powder. More than 50 parts by mass or less are included. The organic solvent other than the first organic solvent is, for example, 5 parts by mass or more and 100 parts by mass or less, preferably 15 parts by mass or more and 90 parts by mass or less, and more preferably 30 parts by mass with respect to 100 parts by mass of the conductive powder. More than 70 parts by mass or less.
 第1の有機溶剤以外の有機溶剤としては、例えば、アセテート系溶剤、脂肪族系炭化水素溶剤などを含むことができる。アセテート系溶剤としては、例えば、イソボルニルアセテート(IBA)、イソボルニルプロピオネート、イソボルニルブチレート、イソボルニルイソブチレートや、エチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、3-メトキシー3-メチルブチルアセテート、1-メトキシプロピル-2-アセテートなどのグリコールエーテルアセテート類、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチルなどが挙げられる。ケトン系溶剤としては、メチルエチルケトン、メチルイソブチルケトン(MIBK)などが挙げられる。脂肪族系炭化水素溶剤(石油系炭化水素)としては、トリデカン、ノナン、シクロヘキサンなどが挙げられる。また、ミネラルスピリット(MA)を含むことが好ましい。 Examples of the organic solvent other than the first organic solvent can include an acetate solvent, an aliphatic hydrocarbon solvent and the like. Examples of the acetate solvent include isobornyl acetate (IBA), isobornyl propionate, isobornyl butyrate, isobornyl isobutylate, ethylene glycol monobutyl ether acetate, and dipropylene glycol methyl ether acetate. Examples thereof include glycol ether acetates such as 3-methoxy-3-methylbutyl acetate and 1-methoxypropyl-2-acetate, ethyl acetate, propyl acetate, isobutyl acetate and butyl acetate. Examples of the ketone solvent include methyl ethyl ketone and methyl isobutyl ketone (MIBK). Examples of the aliphatic hydrocarbon solvent (petroleum hydrocarbon) include tridecane, nonane, cyclohexane and the like. It also preferably contains mineral spirit (MA).
 有機溶剤(全体)の含有量は、導電性ペースト全量に対して、20質量%以上60質量%以下が好ましく、25質量%以上45質量%以下がより好ましい。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 The content of the organic solvent (overall) is preferably 20% by mass or more and 60% by mass or less, and more preferably 25% by mass or more and 45% by mass or less with respect to the total amount of the conductive paste. When the content of the organic solvent is in the above range, the conductivity and dispersibility are excellent.
 有機溶剤の含有量は、導電性粉末100質量部に対して、下限が20質量部以上であることが好ましく、25質量部以上であることが好ましく、35質量部以上であることがより好ましい。また、有機溶剤の含有量は、導電性粉末100質量部に対して、上限が120質量部以下であることが好ましく、100質量部以下であることがより好ましく、80質量以下であることがさらに好ましい。また、有機溶剤の含有量は、導電性粉末100質量部に対して、例えば、50質量部以上130質量部以下であってもよく、60質量部以上90質量部以下であってもよい。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。 The lower limit of the content of the organic solvent is preferably 20 parts by mass or more, preferably 25 parts by mass or more, and more preferably 35 parts by mass or more with respect to 100 parts by mass of the conductive powder. The upper limit of the content of the organic solvent is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, and further preferably 80 parts by mass or less with respect to 100 parts by mass of the conductive powder. preferable. The content of the organic solvent may be, for example, 50 parts by mass or more and 130 parts by mass or less, or 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the conductive powder. When the content of the organic solvent is in the above range, the conductivity and dispersibility are excellent.
 以下、第1の有機溶剤と第1の有機溶剤以外の有機溶剤と組み合わせについて、好ましい態様の例を説明する。なお、第1の有機溶剤と第1の有機溶剤以外の有機溶剤との組み合わせは、以下の例に限定されない。 Hereinafter, an example of a preferable embodiment of the combination of the first organic solvent and the organic solvent other than the first organic solvent will be described. The combination of the first organic solvent and the organic solvent other than the first organic solvent is not limited to the following examples.
(a)第1の有機溶剤、及び、第2の有機溶剤
 有機溶剤は、第1の有機溶剤と、第2の有機溶剤とを含んでもよい。第2の有機溶剤は、イソボルニルアセテート(IBA)、メチルイソブチルケトン(MIBK)、及び、ジイソブチルケトン(DIBK)からなる群から選ばれる少なくとも1種であり、イソボルニルアセテート及びメチルイソブチルケトンの一方又は両方であることが好ましく、イソボルニルアセテートであることがより好ましい。導電性ペーストが、第1の有機溶剤と第2の有機溶剤とを含む場合、乾燥膜の表面のうねりをより小さくしたり、白浮きの発生を抑制したりすることができる。
(A) First Organic Solvent and Second Organic Solvent The organic solvent may contain a first organic solvent and a second organic solvent. The second organic solvent is at least one selected from the group consisting of isobornyl acetate (IBA), methyl isobutyl ketone (MIBK), and diisobutyl ketone (DIBK), and is of isobornyl acetate and methyl isobutyl ketone. One or both are preferable, and isobornyl acetate is more preferable. When the conductive paste contains the first organic solvent and the second organic solvent, the waviness of the surface of the dry film can be made smaller and the occurrence of whitening can be suppressed.
 また、第2の有機溶剤の含有量は、導電性ペースト全量に対して、3質量%以上20質量%以下であることが好ましく、4質量%以上15質量%以下であることがより好ましい。また、第2の有機溶剤は、導電性ペースト全量に対して、5%以上であってもよく、6%以上であってもよい。第2の有機溶剤の含有量が上記の範囲内で多い場合、乾燥膜の表面のうねりをより小さくすることができる。 The content of the second organic solvent is preferably 3% by mass or more and 20% by mass or less, and more preferably 4% by mass or more and 15% by mass or less, based on the total amount of the conductive paste. Further, the second organic solvent may be 5% or more, or 6% or more, based on the total amount of the conductive paste. When the content of the second organic solvent is large within the above range, the waviness of the surface of the dry film can be further reduced.
(b)第1の有機溶剤、及び、第3の有機溶剤
 有機溶剤は、第1の有機溶剤と、第3の有機溶剤とを含んでもよい。第3の有機溶剤は、脂肪族系炭化水素溶剤(石油系炭化水素溶剤)であり、トリデカン、ノナン、シクロヘキサンなどを含んでもよく、ミネラルスピリット(MA)であることが好ましい。第3の有機溶剤を含むことにより、導電性ペーストの粘度をグラビア印刷に適した粘度に容易に調整することができる。
(B) First Organic Solvent and Third Organic Solvent The organic solvent may contain a first organic solvent and a third organic solvent. The third organic solvent is an aliphatic hydrocarbon solvent (petroleum hydrocarbon solvent), may contain tridecane, nonane, cyclohexane and the like, and is preferably mineral spirit (MA). By including the third organic solvent, the viscosity of the conductive paste can be easily adjusted to a viscosity suitable for gravure printing.
 第1~第3の有機溶剤の含有割合は、例えば、有機溶剤100質量%に対して、第1の有機溶剤:第2の有機溶剤:第3の有機溶剤=5.0~80:0~60:0~50(質量比)であってもよく、20~50:20~50:0~30(質量比)であってもよい。各有機溶剤の割合が上記範囲である場合、乾燥膜表面の平滑性がより向上する。 The content ratio of the first to third organic solvents is, for example, with respect to 100% by mass of the organic solvent, the first organic solvent: the second organic solvent: the third organic solvent = 5.0 to 80: 0 to It may be 60: 0 to 50 (mass ratio) or 20 to 50:20 to 50: 0 to 30 (mass ratio). When the ratio of each organic solvent is in the above range, the smoothness of the surface of the dry film is further improved.
(c)第1の有機溶剤、第3の有機溶剤、及び、第4の有機溶剤
 また、有機溶剤は、第1の有機溶剤と第3の有機溶剤とを含む場合、さらに、第4の有機溶剤を含んでもよい。第4の有機溶剤は、第1の有機溶剤と第4の有機溶剤のそれぞれのHSP値および含有体積比率から算出される混合溶液のHSP値と、第3の有機溶剤のHSP値とのHSP距離が、第1の有機溶剤のHSP値と第3の有機溶剤のHSP値とのHSP距離と同じか、それよりも短くなる溶剤からなる群から選ばれる少なくとも1種である。導電性ペーストが、第1の有機溶剤と第3の有機溶剤とに加えて、さらに第4の有機溶剤とを含む場合、乾燥膜の表面のうねりをより小さくしたり、導電性ペーストを作成した際にセラミック粉末を含む白い分離層が上部に発生する白浮きの発生を抑制したりすることができる。
(C) A first organic solvent, a third organic solvent, and a fourth organic solvent When the organic solvent contains a first organic solvent and a third organic solvent, a fourth organic solvent is further added. It may contain a solvent. The fourth organic solvent is the HSP distance between the HSP value of the mixed solution calculated from the HSP values and the volume ratio of each of the first organic solvent and the fourth organic solvent and the HSP value of the third organic solvent. Is at least one selected from the group consisting of solvents having the same or shorter HSP distance between the HSP value of the first organic solvent and the HSP value of the third organic solvent. When the conductive paste contains a fourth organic solvent in addition to the first organic solvent and the third organic solvent, the waviness of the surface of the dry film is made smaller, or the conductive paste is prepared. At that time, the white separation layer containing the ceramic powder can suppress the occurrence of whitening generated in the upper part.
 また、第1の有機溶剤と第4の有機溶剤のそれぞれのHSP値および含有体積比率から算出される混合溶液のHSP値と、第3の有機溶剤のHSP値とのHSP距離は、例えば、6.2以下であることが好ましく、6.0以下であることがより好ましく、5.6以下であることがより好ましく、5.0以下であることがより好ましい。HSP距離が上記範囲である場合、乾燥膜の表面のうねりをより小さくすることができる。また、第1の有機溶剤および第4の有機溶剤の混合溶液のHSP値と、第3のHSP値とのHSP距離は、第1の有機溶剤のHSP値と、第3の有機溶剤のHSP値とのHSP距離と同一であってもよいが、より短くなることが好ましい。 Further, the HSP distance between the HSP value of the mixed solution calculated from the HSP values and the content volume ratios of the first organic solvent and the fourth organic solvent and the HSP value of the third organic solvent is, for example, 6. It is preferably .2 or less, more preferably 6.0 or less, more preferably 5.6 or less, and even more preferably 5.0 or less. When the HSP distance is in the above range, the waviness of the surface of the dry film can be made smaller. Further, the HSP distance between the HSP value of the mixed solution of the first organic solvent and the fourth organic solvent and the third HSP value is the HSP value of the first organic solvent and the HSP value of the third organic solvent. It may be the same as the HSP distance with, but it is preferably shorter.
 なお、HSP距離は、それぞれの有機溶剤のハンセン溶解度パラメータ(HSP値)間の距離をいう。ハンセン溶解度パラメータは、物質の溶解性を示す指標の一つであり、溶解性を3次元のベクトルで表す。この3次元ベクトルは、代表的には、分散項(δ)、極性項(δ)、水素結合項(δ)で表すことができる。ハンセン溶解度パラメータの距離(HSP距離)が近いほど、相溶性が高いと評価できる。 The HSP distance refers to the distance between the Hansen solubility parameters (HSP values) of each organic solvent. The Hansen solubility parameter is one of the indexes indicating the solubility of a substance, and the solubility is represented by a three-dimensional vector. This three-dimensional vector can be typically represented by a dispersion term (δ d ), a polarity term (δ p ), and a hydrogen bond term (δ h ). It can be evaluated that the closer the distance (HSP distance) of the Hansen solubility parameter is, the higher the compatibility.
 本明細書におけるHSP距離は、ハンセン溶解度パラメータソフトウエアHSPiP(Hansen Solubility Parameter in Practice)のデータベースに登録されている有機溶剤のHSP値を用いて算出することができる。なお、本発明においては、HSPiPバージョン5のデータベースに登録されている有機溶媒に関してはその値を使用し、データベースに登録の無い溶媒に関しては、HSPiPバージョン5により推算される値を使用する。なお、複数の種類の有機溶剤を混合した混合溶剤の場合、HSP値は、混合する有機溶剤単独のHSP値(3次元のベクトルの各成分)に混合体積割合を積算し、それらを加算して算出する。 The HSP distance in the present specification can be calculated using the HSP value of the organic solvent registered in the database of the Hansen solubility parameter software HSPiP (Hansen Solubility Parameter in Practice). In the present invention, the value is used for the organic solvent registered in the HSPiP version 5 database, and the value estimated by the HSPiP version 5 is used for the solvent not registered in the database. In the case of a mixed solvent in which a plurality of types of organic solvents are mixed, the HSP value is obtained by adding the mixed volume ratio to the HSP value (each component of the three-dimensional vector) of the mixed organic solvent alone and adding them. calculate.
 また、第4の有機溶剤は、上記の特性を満たす有機溶剤であれば特に限定されない。第4の有機溶剤は、例えば、アセテート系溶剤、ケトン系溶剤、及び、脂環式炭化水素系溶剤からなる群から選ばれる少なくとも1種であることが好ましく、イソボルニルアセテート、メチルイソブチルケトン、ジイソブチルケトン、及び、ジヒドロターピニルアセテートからなる群から選ばれる少なくとも1種であることがより好ましい。また、第4の有機溶剤としては、上記のHSP距離を満たす溶剤であれば、上述した第2の有機溶剤の中から選択してもよい。 Further, the fourth organic solvent is not particularly limited as long as it is an organic solvent satisfying the above characteristics. The fourth organic solvent is preferably at least one selected from the group consisting of, for example, an acetate solvent, a ketone solvent, and an alicyclic hydrocarbon solvent, and is preferably isobornyl acetate, methyl isobutyl ketone, and the like. More preferably, it is at least one selected from the group consisting of diisobutyl ketone and dihydroterpinyl acetate. Further, as the fourth organic solvent, any solvent that satisfies the above HSP distance may be selected from the above-mentioned second organic solvents.
 導電性ペーストが第1の有機溶剤、第3の有機溶剤および第4の有機溶剤を含む場合、第3の有機溶剤の含有量は、導電性ペースト全量に対して、1質量%以上20質量%以下であることが好ましく、3質量%以上15質量%以下であることがより好ましく、5質量%以上10質量%以下であることがより好ましい。また、第4の有機溶剤の含有量は、導電性ペースト全量に対して、3質量%以上35質量%以下であることが好ましく、4質量%以上25質量%以下であることがより好ましく、6質量%以上20質量%以下がより好ましい。 When the conductive paste contains a first organic solvent, a third organic solvent and a fourth organic solvent, the content of the third organic solvent is 1% by mass or more and 20% by mass with respect to the total amount of the conductive paste. It is preferably 3% by mass or more and 15% by mass or less, and more preferably 5% by mass or more and 10% by mass or less. The content of the fourth organic solvent is preferably 3% by mass or more and 35% by mass or less, more preferably 4% by mass or more and 25% by mass or less, based on the total amount of the conductive paste. More preferably, it is by mass% or more and 20% by mass or less.
(分散剤)
 本実施形態に係る導電性ペーストは、添加剤として、分散剤を含む。分散剤としては、公知の分散剤を用いることができる。分散剤として、例えば、酸系分散剤を含んでもよい。また、酸系分散剤としては、後述するジカルボン酸以外のカルボキシル基を有する酸系分散剤などを含んでもよい。なお、本明細書では、後述するように、ジカルボン酸の有する導電性粉末とセラミック粉末との分離抑制効果に着目して、ジカルボン酸は、分散剤とは別に規定する。
(Dispersant)
The conductive paste according to this embodiment contains a dispersant as an additive. As the dispersant, a known dispersant can be used. As the dispersant, for example, an acid-based dispersant may be contained. Further, the acid-based dispersant may include an acid-based dispersant having a carboxyl group other than the dicarboxylic acid described later. In this specification, as will be described later, the dicarboxylic acid is defined separately from the dispersant, focusing on the effect of suppressing the separation of the conductive powder and the ceramic powder of the dicarboxylic acid.
 例えば、分散剤として、くし型カルボン酸を用いた場合、くし型カルボン酸を含有することにより、導電性ペーストの分散性は向上する。なお、分散剤は、1種類を用いてもよく、2種類以上を用いてもよい。本実施形態に係る導電性ペーストは、分散剤を含むことにより、分散性が向上する。 For example, when a comb-type carboxylic acid is used as the dispersant, the dispersibility of the conductive paste is improved by containing the comb-type carboxylic acid. As the dispersant, one type may be used, or two or more types may be used. The conductive paste according to the present embodiment has improved dispersibility by containing a dispersant.
 分散剤として、例えば、炭化水素基を有する酸系分散剤を含んでもよい。このような酸系分散剤としては、例えば、高級脂肪酸、高分子界面活性剤等の酸系分散剤やリン酸系分散剤などが挙げられる。これらの分散剤は、1種または2種以上組み合わせて用いてもよい。 As the dispersant, for example, an acid-based dispersant having a hydrocarbon group may be contained. Examples of such an acid-based dispersant include acid-based dispersants such as higher fatty acids and polymer surfactants, and phosphoric acid-based dispersants. These dispersants may be used alone or in combination of two or more.
 高級脂肪酸としては、不飽和カルボン酸でも飽和カルボン酸でもよく、特に限定されるものではないが、ステアリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸、ラウリン酸、リノレン酸など炭素数11以上のものが挙げられる。中でもオレイン酸、またはステアリン酸が好ましい。 The higher fatty acid may be an unsaturated carboxylic acid or a saturated carboxylic acid, and is not particularly limited, but has 11 or more carbon atoms such as stearic acid, oleic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, and linolenic acid. Can be mentioned. Of these, oleic acid or stearic acid is preferable.
 それ以外の酸系分散剤としては、特に限定されず、例えば、モノアルキルアミン塩に代表されるアルキルモノアミン塩型などが挙げられる。 The other acid-based dispersant is not particularly limited, and examples thereof include an alkyl monoamine salt type represented by a monoalkyl amine salt.
 アルキルモノアミン型としては、例えば、グリシンとオレイン酸の化合物であるオレオイルザルコシンや、オレイン酸の代わりにステアリン酸あるいはラウリン酸などの高級脂肪酸を用いたアミド化合物が好ましい。 As the alkyl monoamine type, for example, oleoyl zarcosin, which is a compound of glycine and oleic acid, or an amide compound using a higher fatty acid such as stearic acid or lauric acid instead of oleic acid is preferable.
 また、分散剤は、酸系分散剤以外の分散剤を含んでもよい。酸系分散剤以外の分散剤としては、塩基系分散剤、非イオン系分散剤、両性分散剤などが挙げられる。これらの分散剤は、1種または2種以上組み合わせて用いてもよい。 Further, the dispersant may contain a dispersant other than the acid-based dispersant. Examples of the dispersant other than the acid-based dispersant include a basic-based dispersant, a nonionic dispersant, and an amphoteric dispersant. These dispersants may be used alone or in combination of two or more.
 塩基系分散剤としては、例えば、ラウリルアミン、ロジンアミン、セチルアミン、ミリスチルアミン、ステアリルアミンなどの脂肪族アミンなどが挙げられる。導電性ペーストは、上記の酸系分散剤と塩基系分散とを含有する場合、より分散性に優れ、経時的な粘度安定性にも優れる。 Examples of the basic dispersant include aliphatic amines such as laurylamine, rosinamine, cetylamine, myristylamine, and stearylamine. When the conductive paste contains the above-mentioned acid-based dispersant and basic-based dispersion, it is more excellent in dispersibility and also excellent in viscosity stability over time.
 分散剤は、導電性ペースト全体に対して、好ましくは3質量%以下含有される。分散剤の含有量の上限を含む範囲は、好ましくは、2質量%以下であり、より好ましくは1質量%以下である。分散剤の含有量の下限を含む範囲は、特に限定されないが、例えば、0.01質量%以上であり、好ましくは0.05質量%以上である。分散剤の含有量が上記範囲である場合、導電性ペーストの分散性を向上させつつ、ペースト粘度を適切な範囲に調整することができ、また、印刷後の乾燥性の悪化を防止することができ、さらにシートアタックやグリーンシートの剥離不良を抑制することができる。 The dispersant is preferably contained in an amount of 3% by mass or less based on the entire conductive paste. The range including the upper limit of the content of the dispersant is preferably 2% by mass or less, and more preferably 1% by mass or less. The range including the lower limit of the content of the dispersant is not particularly limited, but is, for example, 0.01% by mass or more, preferably 0.05% by mass or more. When the content of the dispersant is in the above range, the paste viscosity can be adjusted to an appropriate range while improving the dispersibility of the conductive paste, and the deterioration of the drying property after printing can be prevented. It is possible to suppress sheet attack and poor peeling of the green sheet.
 また、分散剤は、導電性粉末100質量部に対して、好ましくは0.01質量部以上5質量部以下含有され、より好ましくは0.05質量部以上3質量部以下含有され、さらに好ましくは0.4質量部以上3質量部以下含有される。分散剤の含有量が上記範囲である場合、導電性粉末やセラミック粉末の分散性や、塗布後の乾燥電極表面の平滑性により優れ、かつ、導電性ペーストの粘度を適切な範囲に調整することができ、また、印刷後の乾燥性の悪化を防止することができ、さらにシートアタックやグリーンシートの剥離不良を抑制することができる。 Further, the dispersant is preferably contained in an amount of 0.01 part by mass or more and 5 parts by mass or less, more preferably 0.05 part by mass or more and 3 parts by mass or less, more preferably, based on 100 parts by mass of the conductive powder. It is contained in an amount of 0.4 parts by mass or more and 3 parts by mass or less. When the content of the dispersant is within the above range, the dispersibility of the conductive powder or ceramic powder and the smoothness of the surface of the dry electrode after coating are excellent, and the viscosity of the conductive paste is adjusted to an appropriate range. In addition, deterioration of dryness after printing can be prevented, and sheet attack and poor peeling of the green sheet can be suppressed.
(ジカルボン酸)
 本実施形態に係る導電性ペーストは、添加剤として、ジカルボン酸を含んでもよい。グラビア印刷用の導電性ペーストにおいて、ジカルボン酸を特定量含むことにより、導電性粉末とセラミック粉末との分離抑制効果を向上させ、導電性ペーストを製造した際の白浮きの発生を抑制することができる。また、本実施形態に係る導電性ペーストを用いて内部電極層を形成した際の被覆率を向上させることができる。
(Dicarboxylic acid)
The conductive paste according to this embodiment may contain a dicarboxylic acid as an additive. By containing a specific amount of dicarboxylic acid in the conductive paste for gravure printing, the effect of suppressing the separation of the conductive powder and the ceramic powder can be improved, and the occurrence of whitening when the conductive paste is produced can be suppressed. it can. In addition, the coverage when the internal electrode layer is formed by using the conductive paste according to the present embodiment can be improved.
 ジカルボン酸は、2つのカルボキシル基(COO-基)を有するカルボン酸系の添加剤である。ジカルボン酸の例としては、テレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸等の脂肪族ジカルボン酸、ダイマー酸等の炭素数12~28の不飽和脂肪酸の二量化によって生成された二塩基酸、水素添加ダイマー酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2―シクロヘキサンジカルボン酸、4―メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、2-メチルヘキサヒドロ無水フタル酸、ジカルボキシ水素添加ビスフェノールA、ジカルボキシ水素添加ビスフェノールS、水素添加ナフタレンジカルボン酸、トリシクロデカンジカルボン酸等の脂環族ジカルボン酸など、を挙げることができる。 Dicarboxylic acid is a carboxylic acid-based additive having two carboxyl groups (COO-groups). Examples of dicarboxylic acids include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid and 2,6-naphthalenedicarboxylic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid and azelaic acid. Dibasic acid, hydrogenated dimeric acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, produced by dimerization of unsaturated fatty acids having 12 to 28 carbon atoms such as aliphatic dicarboxylic acid and dimer acid. 1,2-Cyclohexanedicarboxylic acid, 4-methylhexahydrohydride phthalic acid, 3-methylhexahydrohydride phthalic acid, 2-methylhexahydrohydride phthalic acid, dicarboxyhydrogenated bisphenol A, dicarboxyhydrogenated bisphenol S, hydrogen Examples thereof include an alicyclic dicarboxylic acid such as an added naphthalenedicarboxylic acid and a tricyclodecanedicarboxylic acid.
 また、ジカルボン酸の平均分子量は、特に限定されないが、例えば、1000以外であってもよく、500以下であってもよく、400以下であってもよい。ジカルボン酸の平均分子量が上記範囲である場合、高い分離抑制効果を得ることができる。 The average molecular weight of the dicarboxylic acid is not particularly limited, but may be, for example, other than 1000, 500 or less, or 400 or less. When the average molecular weight of the dicarboxylic acid is in the above range, a high separation suppressing effect can be obtained.
 また、本実施形態に係る導電性ペーストにおいて、ジカルボン酸は、導電性ペースト全体に対して0.05質量%以上3.0質量%未満含まれ、0.1質量%以上3.0質量%未満含まれることが好ましく、0.1質量%以上1.0質量%以下含まれることがより好ましい。ジカルボン酸の含有量が多すぎる場合、印刷、乾燥工程で、乾燥が不十分となり、内部電極層が柔らかい状態となり、その後の積層工程で積層ズレを生じたり、焼成時に残留したジカルボン酸が気化し、気化したガス成分によって内部応力が発生したり、積層体の構造破壊が生じたりすることがある。 Further, in the conductive paste according to the present embodiment, the dicarboxylic acid is contained in an amount of 0.05% by mass or more and less than 3.0% by mass and 0.1% by mass or more and less than 3.0% by mass with respect to the entire conductive paste. It is preferably contained, and more preferably 0.1% by mass or more and 1.0% by mass or less. If the content of the dicarboxylic acid is too high, the drying will be insufficient in the printing and drying processes, the internal electrode layer will be in a soft state, the lamination will be misaligned in the subsequent lamination process, and the dicarboxylic acid remaining during firing will evaporate. , Internal stress may be generated by the vaporized gas component, or the structure of the laminated body may be destroyed.
 なお、導電性ペーストが、分散剤(ジカルボン酸を除く)とジカルボン酸とを含む場合、分散剤とジカルボン酸との含有量の合計が、導電性ペースト全体に対して、0.05質量%以上3.0質量%以下であってもよく、0.1質量%以上2.0質量%以下であってもよく、0.1質量%以上1.0質量%以下であってもよい。 When the conductive paste contains a dispersant (excluding dicarboxylic acid) and a dicarboxylic acid, the total content of the dispersant and the dicarboxylic acid is 0.05% by mass or more with respect to the entire conductive paste. It may be 3.0% by mass or less, 0.1% by mass or more and 2.0% by mass or less, or 0.1% by mass or more and 1.0% by mass or less.
(その他の添加剤)
 本実施形態の導電性ペーストは、必要に応じて、上記の成分以外のその他の添加剤を含んでもよい。その他の添加剤としては、例えば、消泡剤、可塑剤、界面活性剤、増粘剤などの従来公知の添加物を用いることができる。
(Other additives)
The conductive paste of the present embodiment may contain other additives other than the above-mentioned components, if necessary. As other additives, for example, conventionally known additives such as defoaming agents, plasticizers, surfactants, and thickeners can be used.
(導電性ペースト)
 本実施形態に係る導電性ペーストの製造方法は、特に限定されず、従来公知の方法を用いることができる。導電性ペーストは、例えば、上記の各成分を、3本ロールミル、ボールミル、ミキサーなどで攪拌・混練することにより製造することができる。なお、ジカルボン酸については、ミキサーなどで撹拌・混錬する際に、他の材料と一緒に秤量して、添加することが好ましいが、他の材料を撹拌・混錬(分散)した後に、添加することでも導電性粉末とセラミック粉末との分離抑制効果を得ることができる。
(Conductive paste)
The method for producing the conductive paste according to the present embodiment is not particularly limited, and conventionally known methods can be used. The conductive paste can be produced, for example, by stirring and kneading each of the above components with a three-roll mill, a ball mill, a mixer or the like. The dicarboxylic acid is preferably added by weighing it together with other materials when stirring and kneading with a mixer or the like, but it is added after stirring and kneading (dispersing) the other materials. By doing so, the effect of suppressing the separation of the conductive powder and the ceramic powder can be obtained.
 導電性ペーストは、ずり速度100sec-1の粘度が、好ましくは3Pa・S以下である。ずり速度100sec-1の粘度が上記範囲である場合、グラビア印刷用の導電性ペーストとして好適に用いることができる。上記範囲を超えると粘度が高すぎてグラビア印刷用として適さない場合がある。ずり速度100sec-1の粘度の下限は、特に限定されないが、例えば、0.2Pa・S以上である。 The conductive paste has a viscosity of a shear rate of 100 sec -1 and is preferably 3 Pa · S or less. When the viscosity at a shear rate of 100 sec -1 is in the above range, it can be suitably used as a conductive paste for gravure printing. If it exceeds the above range, the viscosity may be too high to be suitable for gravure printing. The lower limit of the viscosity at a shear rate of 100 sec -1 is not particularly limited, but is, for example, 0.2 Pa · S or more.
 また、導電性ペーストは、ずり速度10000sec-1の粘度が、好ましくは1Pa・S以下である。ずり速度10000sec-1の粘度が上記範囲である場合、グラビア印刷用の導電性ペーストとして好適に用いることができる。上記範囲を超えた場合も、粘度が高すぎてグラビア印刷用として適さない場合がある。ずり速度10000sec-1の粘度の下限は、特に限定されないが、例えば、0.05Pa・S以上である。 The conductive paste has a viscosity of 10000 sec -1 with a shear rate of preferably 1 Pa · S or less. When the viscosity at a shear rate of 10000 sec -1 is in the above range, it can be suitably used as a conductive paste for gravure printing. Even if it exceeds the above range, the viscosity may be too high to be suitable for gravure printing. The lower limit of the viscosity at a shear rate of 10000 sec -1 is not particularly limited, but is, for example, 0.05 Pa · S or more.
 導電性ペーストは、積層セラミックコンデンサなどの電子部品に好適に用いることができる。積層セラミックコンデンサは、誘電体グリーンシートを用いて形成される誘電体層及び導電性ペーストを用いて形成される内部電極層を有する。この内部電極層は、導電性ペーストを印刷した膜を乾燥させて乾燥膜を得た後、その乾燥膜を焼成することによって得ることができる。 The conductive paste can be suitably used for electronic parts such as multilayer ceramic capacitors. The multilayer ceramic capacitor has a dielectric layer formed by using a dielectric green sheet and an internal electrode layer formed by using a conductive paste. This internal electrode layer can be obtained by drying a film on which the conductive paste is printed to obtain a dried film, and then firing the dried film.
 導電性ペーストを印刷速度35m/min、膜厚0.50μm以上2μm以下の条件にて、グラビア印刷して得られる乾燥膜は、カットオフ値(λc=0.25mm)を適用した場合のうねり曲線要素の平均高さ(Wc)が0.5μm以下であることが好ましく、0.4μm以下であることがより好ましく、0.35μm以下であってもよい。乾燥膜のうねり曲線要素の平均高さ(Wc)が上記範囲である場合、信頼性の高い積層セラミックコンデンサを生産性高く得ることができる。 The dry film obtained by gravure printing the conductive paste under the conditions of a printing speed of 35 m / min and a film thickness of 0.50 μm or more and 2 μm or less has a waviness curve when a cutoff value (λc = 0.25 mm) is applied. The average height (Wc) of the elements is preferably 0.5 μm or less, more preferably 0.4 μm or less, and may be 0.35 μm or less. When the average height (Wc) of the waviness curve element of the dry film is in the above range, a highly reliable multilayer ceramic capacitor can be obtained with high productivity.
 また、導電性ペーストを印刷速度30m/min、膜厚0.50μm以上2μm以下の条件にてグラビア印刷して得られる乾燥膜は、カットオフ値(λc=0.08mm)を適用した場合のうねり曲線要素の平均高さ(Wc)が0.50μm以下であることが好ましく、0.4μm以下であることがより好ましく、0.35μm以下であることがより好ましい。 Further, the dry film obtained by gravure printing the conductive paste under the conditions of a printing speed of 30 m / min and a film thickness of 0.50 μm or more and 2 μm or less has waviness when a cutoff value (λc = 0.08 mm) is applied. The average height (Wc) of the curved elements is preferably 0.50 μm or less, more preferably 0.4 μm or less, and even more preferably 0.35 μm or less.
 なお、うねり曲線要素の平均高さ(Wc)は、JIS B 0601:2013に準拠して測定することができる。うねり曲線要素の平均高さ(Wc)とは、基準長さにおけるうねり曲線要素(輪郭曲線要素)の高さ(Zti)の平均値を表したものである。輪郭曲線要素とは隣り合う山と谷を一組としたものであり、輪郭曲線要素の高さとは、隣り合う山と谷の高さの差にあたる。なお、輪郭要素を構成する山(谷)には、最低高さと最低長さの規定があり、高さ(深さ)が最大高さの10%以下、もしくは長さが計算区間の長さの1%以下であるものはノイズとみなして、前後に続く谷(山)の一部とする。 The average height (Wc) of the swell curve element can be measured in accordance with JIS B 0601: 2013. The average height (Wc) of the swell curve element represents the average value of the height (Zti) of the swell curve element (contour curve element) at the reference length. The contour curve element is a set of adjacent peaks and valleys, and the height of the contour curve element corresponds to the difference in height between the adjacent peaks and valleys. The peaks (valleys) that make up the contour elements have a minimum height and a minimum length, and the height (depth) is 10% or less of the maximum height, or the length is the length of the calculation section. If it is 1% or less, it is regarded as noise and is a part of the valley (mountain) that continues before and after.
[電子部品]
 以下、本発明の電子部品等の実施形態について、図面を参照しながら説明する。図面においては、適宜、模式的に表現することや、縮尺を変更して表現することがある。また、部材の位置や方向などを、適宜、図1などに示すXYZ直交座標系を参照して説明する。このXYZ直交座標系において、X方向およびY方向は水平方向であり、Z方向は鉛直方向(上下方向)である。
[Electronic components]
Hereinafter, embodiments of the electronic components and the like of the present invention will be described with reference to the drawings. In the drawings, it may be represented schematically or the scale may be changed as appropriate. Further, the positions and directions of the members will be described as appropriate with reference to the XYZ Cartesian coordinate system shown in FIG. 1 and the like. In this XYZ Cartesian coordinate system, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction (vertical direction).
 図1A及びBは、実施形態に係る電子部品の一例である、積層セラミックコンデンサ1を示す図である。積層セラミックコンデンサ1は、誘電体層12及び内部電極層11を交互に積層したセラミック積層体10と外部電極20とを備える。 1A and 1B are diagrams showing a multilayer ceramic capacitor 1 which is an example of an electronic component according to an embodiment. The multilayer ceramic capacitor 1 includes a ceramic laminate 10 in which a dielectric layer 12 and an internal electrode layer 11 are alternately laminated, and an external electrode 20.
 以下、上記導電性ペーストを使用した積層セラミックコンデンサの製造方法について説明する。まず、セラミックグリーンシート上に、導電性ペーストを印刷し、乾燥して、乾燥膜を形成する。この乾燥膜を上面に有する複数のセラミックグリーンシートを、圧着により積層させて積層体を得た後、積層体を焼成して一体化することにより、内部電極層11と誘電体層12とが交互に積層したセラミック積層体10を作製する。その後、セラミック積層体10の両端部に一対の外部電極を形成することにより積層セラミックコンデンサ1が製造される。以下に、より詳細に説明する。 Hereinafter, a method for manufacturing a multilayer ceramic capacitor using the above conductive paste will be described. First, a conductive paste is printed on a ceramic green sheet and dried to form a dry film. A plurality of ceramic green sheets having the dry film on the upper surface are laminated by pressure bonding to obtain a laminate, and then the laminate is fired to be integrated, whereby the internal electrode layer 11 and the dielectric layer 12 alternate. A ceramic laminate 10 laminated to the above is produced. After that, the multilayer ceramic capacitor 1 is manufactured by forming a pair of external electrodes at both ends of the ceramic laminate 10. It will be described in more detail below.
 まず、未焼成のセラミックシートであるセラミックグリーンシートを用意する。このセラミックグリーンシートとしては、例えば、チタン酸バリウム等の所定のセラミックの原料粉末に、ポリビニルブチラール等の有機バインダーとターピネオール等の溶剤とを加えて得た誘電体層用ペーストを、PETフィルム等の支持フィルム上にシート状に塗布し、乾燥させて溶剤を除去したもの等が挙げられる。なお、セラミックグリーンシートからなる誘電体層の厚みは、特に限定されないが、積層セラミックコンデンサの小型化の要請の観点から、0.05μm以上3μm以下が好ましい。 First, prepare a ceramic green sheet, which is an unfired ceramic sheet. As this ceramic green sheet, for example, a paste for a dielectric layer obtained by adding an organic binder such as polyvinyl butyral and a solvent such as tarpineol to a predetermined ceramic raw material powder such as barium titanate is used as a PET film or the like. Examples thereof include those coated on a support film in the form of a sheet and dried to remove the solvent. The thickness of the dielectric layer made of the ceramic green sheet is not particularly limited, but is preferably 0.05 μm or more and 3 μm or less from the viewpoint of requesting miniaturization of the multilayer ceramic capacitor.
 次いで、このセラミックグリーンシートの片面に、グラビア印刷法を用いて、上述の導電性ペーストを印刷して塗布し、乾燥して、セラミックグリーンシートの片面に乾燥膜を形成したものを複数枚、用意する。なお、導電性ペーストから形成される乾燥膜の厚みは、内部電極層11の薄層化の要請の観点から、乾燥後1μm以下とすることが好ましい。 Next, a plurality of ceramic green sheets having a dry film formed on one side of the ceramic green sheet were prepared by printing and applying the above-mentioned conductive paste on one side of the ceramic green sheet using a gravure printing method. To do. The thickness of the dry film formed from the conductive paste is preferably 1 μm or less after drying from the viewpoint of requesting thinning of the internal electrode layer 11.
 次いで、支持フィルムから、セラミックグリーンシートを剥離するとともに、セラミックグリーンシートとその片面に形成された乾燥膜とが交互に配置されるように積層した後、加熱・加圧処理により積層体を得る。なお、積層体の両面に、導電性ペーストを塗布していない保護用のセラミックグリーンシートを更に配置する構成としても良い。 Next, the ceramic green sheet is peeled off from the support film, and the ceramic green sheet and the dry film formed on one side thereof are laminated so as to be alternately arranged, and then a laminated body is obtained by heat / pressure treatment. In addition, a protective ceramic green sheet to which the conductive paste is not applied may be further arranged on both sides of the laminate.
 次いで、積層体を所定サイズに切断してグリーンチップを形成した後、グリーンチップに対して脱バインダー処理を施し、還元雰囲気下において焼成することにより、積層セラミック焼成体(セラミック積層体10)を製造する。なお、脱バインダー処理における雰囲気は、大気またはNガス雰囲気にすることが好ましい。脱バインダー処理を行う際の温度は、例えば200℃以上400℃以下である。また、脱バインダー処理を行う際の、上記温度の保持時間を0.5時間以上24時間以下とすることが好ましい。また、焼成は、内部電極層に用いる金属の酸化を抑制するために還元雰囲気で行われ、また、積層体の焼成を行う際の温度は、例えば、1000℃以上1350℃以下であり、焼成を行う際の、温度の保持時間は、例えば、0.5時間以上8時間以下である。 Next, after cutting the laminate to a predetermined size to form green chips, the green chips are debindered and fired in a reducing atmosphere to produce a laminated ceramic fired body (ceramic laminate 10). To do. Incidentally, the atmosphere in the binder removal process is preferably in the air or N 2 gas atmosphere. The temperature at which the debinder treatment is performed is, for example, 200 ° C. or higher and 400 ° C. or lower. Further, it is preferable that the holding time of the above temperature is 0.5 hours or more and 24 hours or less when the debinder treatment is performed. Further, the firing is performed in a reducing atmosphere in order to suppress the oxidation of the metal used for the internal electrode layer, and the temperature at which the laminated body is fired is, for example, 1000 ° C. or higher and 1350 ° C. or lower. The temperature holding time is, for example, 0.5 hours or more and 8 hours or less.
 グリーンチップの焼成を行うことにより、セラミックグリーンシート中の有機バインダーが完全に除去されるとともに、セラミックの原料粉末が焼成されて、セラミック製の誘電体層12が形成される。また乾燥膜中の有機ビヒクルが除去されるとともに、ニッケル粉末またはニッケルを主成分とする合金粉末が焼結もしくは溶融、一体化されて、内部電極層11が形成され、誘電体層12と内部電極層11とが複数枚、交互に積層された積層セラミック焼成体が形成される。なお、酸素を誘電体層の内部に取り込んで信頼性を高めるとともに、内部電極の再酸化を抑制するとの観点から、焼成後の積層セラミック焼成体に対して、アニール処理を施してもよい。 By firing the green chips, the organic binder in the ceramic green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12. Further, the organic vehicle in the dry film is removed, and nickel powder or an alloy powder containing nickel as a main component is sintered, melted, and integrated to form an internal electrode layer 11, and the dielectric layer 12 and the internal electrode are formed. A laminated ceramic fired body in which a plurality of layers 11 are alternately laminated is formed. From the viewpoint of incorporating oxygen into the dielectric layer to improve reliability and suppressing reoxidation of the internal electrodes, the laminated ceramic fired body after firing may be annealed.
 そして、作製した積層セラミック焼成体に対して、一対の外部電極20を設けることにより、積層セラミックコンデンサ1が製造される。例えば、外部電極20は、外部電極層21及びメッキ層22を備える。外部電極層21は、内部電極層11と電気的に接続する。なお、外部電極20の材料としては、例えば、銅やニッケル、またはこれらの合金が好適に使用できる。なお、電子部品は、積層セラミックコンデンサ以外の電子部品を用いることもできる。 Then, the laminated ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 with respect to the produced laminated ceramic fired body. For example, the external electrode 20 includes an external electrode layer 21 and a plating layer 22. The external electrode layer 21 is electrically connected to the internal electrode layer 11. As the material of the external electrode 20, for example, copper, nickel, or an alloy thereof can be preferably used. As the electronic component, an electronic component other than the monolithic ceramic capacitor can also be used.
 以下、本発明を実施例と比較例に基づき詳細に説明するが、本発明は実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in detail based on Examples and Comparative Examples, but the present invention is not limited to any of the Examples.
[評価方法]
(導電性ペーストの粘度)
 導電性ペーストの製造後の粘度を、レオメーター(株式会社アントンパール・ジャパン製:レオメーターMCR302)を用いて測定した。粘度は、コーン角度1°、直径25mmのコーンプレートを用いて、ずり速度(せん断速度)100sec-1、および、10000sec-1の条件で測定した場合の値を用いた。
[Evaluation method]
(Viscosity of conductive paste)
The viscosity of the conductive paste after production was measured using a rheometer (manufactured by Anton Pearl Japan Co., Ltd .: rheometer MCR302). Viscosity, a cone angle of 1 °, by using a cone plate with a diameter of 25 mm, shear rate (shear rate) 100 sec -1, and, using the value measured under the conditions of 10000 sec -1.
(乾燥膜のうねりの評価)
(1)実施例1A、比較例1Aは以下の方法にて、うねりの評価を行った。
 導電性ペーストを誘電体シート上に小型グラビア印刷機(倉敷紡績株式会社製、GP-10TYPEII)にて、印刷速度35m/min、導電性粉末(Ni粉末)が0.7mg/cmの割合となる塗布量で印刷したのち、80℃、4分間のボックス型乾燥器にて乾燥させ、取り出し、評価用の乾燥膜(横2.5mm×縦5mm)を得た。乾燥膜の膜厚は、0.50μm以上2μm以下であった。
(Evaluation of swell of dry film)
(1) In Example 1A and Comparative Example 1A, the swell was evaluated by the following method.
The conductive paste is printed on a dielectric sheet with a small gravure printing machine (GP-10TYPEII manufactured by Kurashiki Spinning Co., Ltd.) at a printing speed of 35 m / min and a conductive powder (Ni powder) at a ratio of 0.7 mg / cm 2. After printing with the above coating amount, the mixture was dried in a box-type dryer at 80 ° C. for 4 minutes and taken out to obtain a dry film for evaluation (width 2.5 mm × length 5 mm). The film thickness of the dry film was 0.50 μm or more and 2 μm or less.
 乾燥膜表面のうねりは、レーザー顕微鏡(キーエンス社製VK-100、測定対物レンズ×20、測定長さ:2000μm)を用いて、カットオフ値(λc=0.25mm)を適用した場合のうねり曲線要素の平均高さ(Wc)で評価した。なお、うねり曲線要素の平均高さ(Wc)は複数回行った平均値を用いた。 The waviness on the surface of the dry film is the waviness curve when the cutoff value (λc = 0.25 mm) is applied using a laser microscope (Keyence VK-100, measurement objective lens x 20, measurement length: 2000 μm). It was evaluated by the average height (Wc) of the elements. As the average height (Wc) of the swell curve element, the average value obtained a plurality of times was used.
(2)実施例1Aおよび比較例1A以外の他の実施例及び比較例は、以下の方法にて、うねりの評価を行った。
 導電性ペーストを誘電体シート上に小型グラビア印刷機(倉敷紡績株式会社製、GP-10TYPEII)にて、印刷速度30m/min、導電性粉末(Ni粉末)が0.7mg/cmの割合となる塗布量で印刷したのち、80℃、4分間のボックス型乾燥器にて乾燥させ、取り出し、評価用の乾燥膜(横2.5mm×縦5mm)を得た。乾燥膜の膜厚は、0.50μm以上2μm以下であった。
(2) In Examples 1A and other Examples and Comparative Examples other than Comparative Example 1A, the swell was evaluated by the following method.
The conductive paste is printed on a dielectric sheet with a small gravure printing machine (GP-10TYPEII manufactured by Kurashiki Spinning Co., Ltd.) at a printing speed of 30 m / min and a conductive powder (Ni powder) at a ratio of 0.7 mg / cm 2. After printing with the above coating amount, the mixture was dried in a box-type dryer at 80 ° C. for 4 minutes and taken out to obtain a dry film for evaluation (width 2.5 mm × length 5 mm). The film thickness of the dry film was 0.50 μm or more and 2 μm or less.
 乾燥膜表面のうねりは、レーザー顕微鏡(キーエンス社製VK-100、測定対物レンズ×20、測定長さ:2000μm)を用いて、カットオフ値(λc=0.08mm)を適用した場合のうねり曲線要素の平均高さ(Wc)で評価した。なお、うねり曲線要素の平均高さ(Wc)は複数回行った平均値を用いた。 The waviness on the surface of the dry film is the waviness curve when the cutoff value (λc = 0.08 mm) is applied using a laser microscope (Keyence VK-100, measurement objective lens x 20, measurement length: 2000 μm). It was evaluated by the average height (Wc) of the elements. As the average height (Wc) of the swell curve element, the average value obtained a plurality of times was used.
[使用材料]
(導電性粉末)
 導電性粉末としては、Ni粉末(SEM平均粒径0.2μm)を使用した。
[Material used]
(Conductive powder)
As the conductive powder, Ni powder (SEM average particle size 0.2 μm) was used.
(セラミック粉末)
 セラミック粉末としては、チタン酸バリウム(BaTiO;SEM平均粒径0.10μm)を使用した。
(Ceramic powder)
As the ceramic powder, barium titanate (BaTIO 3 ; SEM average particle size 0.10 μm) was used.
(バインダー樹脂)
 バインダー樹脂としては、ポリビニルブチラール樹脂、エチルセルロース使用した。
(Binder resin)
As the binder resin, polyvinyl butyral resin and ethyl cellulose were used.
(添加剤)
 添加剤として、ジカルボン酸を用いた。
(Additive)
A dicarboxylic acid was used as an additive.
(分散剤)
 分散剤として、酸系分散剤、及び、塩基系分散剤を用いた。また、酸系分散剤として、くし形カルボン酸とリン酸系分散剤からなる混合酸系分散剤を用い、また、塩基系分散剤として、オレイルアミンを用いた。
(Dispersant)
As the dispersant, an acid-based dispersant and a base-based dispersant were used. Further, a mixed acid-based dispersant composed of a comb-shaped carboxylic acid and a phosphoric acid-based dispersant was used as the acid-based dispersant, and oleylamine was used as the basic dispersant.
(有機溶剤)
 有機溶剤としては、ジヒドロターピネオール(DHT)、プロピレングリコールモノブチルエーテル(PNB)、ミネラルスピリット(MA)、イソボルニルアセテート(IBA)、メチルイソブチルケトン(MIBK)、及び、ジイソブチルケトン(DIBK)、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジプロピレングリコールメチルエーテルアセテート(DPMA)、ジエチレングリコールモノメチルエーテル(DEGME)を使用した。
(Organic solvent)
Examples of the organic solvent include dihydroterpineol (DHT), propylene glycol monobutyl ether (PNB), mineral spirit (MA), isobornyl acetate (IBA), methyl isobutyl ketone (MIBK), and diisobutyl ketone (DIBK) and propylene glycol. Monomethyl ether acetate (PMA), dipropylene glycol methyl ether acetate (DPMA), and diethylene glycol monomethyl ether (DEGME) were used.
[実施例1A]
 導電性粉末50質量%、セラミック粉末12.5質量%、分散剤0.7質量%(酸系分散剤0.4質量%、塩基系分散剤0.3質量%)、ジカルボン酸0.3質量%、バインダー樹脂2.5質量%(ポリビニルブチラール樹脂:エチルセルロース=1:2(質量比))、及び、残部として有機溶剤(MA13.6質量%、DHT残部)を添加して、全体として100質量%となるよう配合し、これらの材料を混合して導電性ペーストを作製した。導電性ペーストの添加剤等の含有量及びうねりの平均高さの評価結果Wcを表1に示す。
[Example 1A]
Conductive powder 50% by mass, ceramic powder 12.5% by mass, dispersant 0.7% by mass (acid-based dispersant 0.4% by mass, basic dispersant 0.3% by mass), dicarboxylic acid 0.3% by mass %, Binder resin 2.5% by mass (polyvinyl butyral resin: ethyl cellulose = 1: 2 (mass ratio)), and organic solvent (MA13.6% by mass, DHT balance) as the balance are added, and the total weight is 100%. These materials were mixed to prepare a conductive paste. Table 1 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
[比較例1A]
 DHTの代わりに、PNBを用いた以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの添加剤等の含有量及びうねりの平均高さの評価結果Wcを表1に示す。
[Comparative Example 1A]
A conductive paste was prepared and evaluated in the same manner as in Example 1 except that PNB was used instead of DHT. Table 1 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(評価結果1)
 実施例1Aの導電性ペーストは、テルペン系の有機溶剤を用いない比較例1Aの導電性ペーストと比較して、乾燥膜におけるうねり曲線要素の平均高さ(Wc)(カットオフ値:λc=0.25mm)が小さかった。
(Evaluation result 1)
The conductive paste of Example 1A has an average height (Wc) (cutoff value: λc = 0) of the waviness curve element in the dry film as compared with the conductive paste of Comparative Example 1A that does not use a terpene-based organic solvent. .25 mm) was small.
 また、表1に示す、すべての実施例、及び、比較例の導電性ペーストにおいて、ずり速度100sec-1での粘度が3Pa・S以下であり、ずり速度10000sec-1での粘度が1Pa・S以下であり、グラビア印刷に適した粘度を有することが確認された。 Also, shown in Table 1, all of Examples, and, in the conductive paste of Comparative Example, the viscosity at shear rate 100 sec -1 is not higher than 3 Pa · S, the viscosity at shear rate 10000 sec -1 is 1 Pa · S It was confirmed that the viscosity was suitable for gravure printing.
[実施例1B]
 導電性粉末50質量%、セラミック粉末12.5質量%、分散剤0.5質量%(酸系分散剤0.3質量%、塩基系分散剤0.2質量%)、ジカルボン酸0.2質量%、バインダー樹脂2.5質量%(ポリビニルブチラール樹脂:エチルセルロース=1:2(質量比))、及び、残部として有機溶剤(MA13.7質量%、DHT残部)を添加して、全体として100質量%となるよう配合し、これらの材料を混合して導電性ペーストを作製した。導電性ペーストの添加剤等の含有量及びうねりの平均高さの評価結果Wcを表2に示す。
[Example 1B]
Conductive powder 50% by mass, ceramic powder 12.5% by mass, dispersant 0.5% by mass (acid-based dispersant 0.3% by mass, basic dispersant 0.2% by mass), dicarboxylic acid 0.2% by mass %, Binder resin 2.5% by mass (polyvinyl butyral resin: ethyl cellulose = 1: 2 (mass ratio)), and organic solvent (MA13.7% by mass, DHT balance) as the balance are added, and the total weight is 100%. These materials were mixed to prepare a conductive paste. Table 2 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
[実施例1C]
 有機溶剤として、DHTA4.1質量%、MA12.0質量%、DHT残部を添加した以外は、実施例1Bと同様に導電性ペーストを作製して、評価した。導電性ペーストの添加剤等の含有量及びうねりの平均高さの評価結果Wcを表2に示す。
[Example 1C]
A conductive paste was prepared and evaluated in the same manner as in Example 1B except that DHTA 4.1% by mass, MA 12.0% by mass, and the DHT balance were added as the organic solvent. Table 2 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
[実施例1D]
 ジカルボン酸を添加せず、有機溶剤としてMA13.8質量%、DHT残部を添加した以外は、実施例1Bと同様に導電性ペーストを作製して、評価した。導電性ペーストの添加剤等の含有量及びうねりの平均高さの評価結果Wcを表2に示す。
[Example 1D]
A conductive paste was prepared and evaluated in the same manner as in Example 1B except that MA13.8% by mass and the DHT balance were added as an organic solvent without adding a dicarboxylic acid. Table 2 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
[比較例1B]
 DHTの代わりに、PNBを用いた以外は、実施例1Bと同様に導電性ペーストを作製して、評価した。導電性ペーストの添加剤等の含有量及びうねりの平均高さの評価結果Wcを表2に示す。
[Comparative Example 1B]
A conductive paste was prepared and evaluated in the same manner as in Example 1B except that PNB was used instead of DHT. Table 2 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(評価結果2)
 実施例1B、1C、1Dの導電性ペーストは、第1の有機溶剤(テルペン系の有機溶剤)を用いない比較例1Bの導電性ペーストと比較して、乾燥膜におけるうねり曲線要素の平均高さ(Wc)(カットオフ値:λc=0.08mm)が小さかった。
(Evaluation result 2)
The conductive pastes of Examples 1B, 1C and 1D have the average height of the waviness curve element in the dry film as compared with the conductive paste of Comparative Example 1B which does not use the first organic solvent (terpene-based organic solvent). (Wc) (cutoff value: λc = 0.08 mm) was small.
 また、第1の有機溶剤としてDHTおよびDHTAを用いた実施例1Cの導電性ペーストは、第1の有機溶剤としてDHTを用いた実施例1Bの導電性ペーストより、乾燥膜におけるうねり曲線要素の平均高さ(Wc)(カットオフ値:λc=0.08mm)がより小さくなった。 Further, the conductive paste of Example 1C using DHT and DHTA as the first organic solvent has an average of the waviness curve elements in the dry film as compared with the conductive paste of Example 1B using DHT as the first organic solvent. The height (Wc) (cutoff value: λc = 0.08 mm) became smaller.
 また、ジカルボン酸を添加せず、有機溶剤に第1の有機溶剤と第3の有機溶剤のみの組み合わせを使用した実施例1Dの導電性ペーストは、ジカルボン酸を添加し、その他の組成の近い実施例1Bの導電性ペーストと、ほぼ同程度のWcの値が得られた。 Further, in the conductive paste of Example 1D in which a combination of only the first organic solvent and the third organic solvent was used as the organic solvent without adding the dicarboxylic acid, the dicarboxylic acid was added and the other compositions were similar. A Wc value almost the same as that of the conductive paste of Example 1B was obtained.
 また、表2に示す、すべての実施例、及び、比較例の導電性ペーストにおいて、ずり速度100sec-1での粘度が3Pa・S以下であり、ずり速度10000sec-1での粘度が1Pa・S以下であり、グラビア印刷に適した粘度を有することが確認された。 Also, it is shown in Table 2, all of the examples, and, in the conductive paste of Comparative Example, the viscosity at shear rate 100 sec -1 is not higher than 3 Pa · S, the viscosity at shear rate 10000 sec -1 is 1 Pa · S It was confirmed that the viscosity was suitable for gravure printing.
[実施例2B~7B、5C、8B~10B]
 有機溶剤として、第1の有機溶剤と第2の有機溶剤を含有する試料を評価した。すなわち、表3に示すように、実施例2B~7Bでは、有機溶剤として、MIBK4.1質量%、MA12.0質量%およびDHT残部(実施例2B)、DIBK4.1質量%、MA12.0質量%およびDHT残部(実施例3B)、DIBK5.1質量%、MA10.3質量%およびDHT残部(実施例4B)、IBA4.1質量%、MA12.0質量%およびDHT残部(実施例5B)、IBA8.1質量%、MA10.3質量%およびDHT残部(実施例6B)、並びに、IBA8.6質量%、DIBK12.0質量%、およびGHT残部(実施例7B)を添加した以外は、実施例1Bと同様に導電性ペーストを作製して、評価した。
[Examples 2B to 7B, 5C, 8B to 10B]
As the organic solvent, a sample containing the first organic solvent and the second organic solvent was evaluated. That is, as shown in Table 3, in Examples 2B to 7B, as organic solvents, MIBK 4.1% by mass, MA12.0% by mass and DHT balance (Example 2B), DIBK 4.1% by mass, MA12.0% by mass. % And DHT Remaining (Example 3B), DIBK 5.1% by Mass, MA 10.3% by Mass and DHT Remaining (Example 4B), IBA 4.1% by Mass, MA 12.0% by Mass and DHT Remaining (Example 5B), Examples except that IBA 8.1% by mass, MA 10.3% by mass and DHT balance (Example 6B), and IBA 8.6% by mass, DIBK 12.0% by mass, and GHT balance (Example 7B) were added. A conductive paste was prepared in the same manner as in 1B and evaluated.
 また、表3に示すように、実施例5Cでは、ジカルボン酸を添加せず、有機溶剤として、IBA4.2質量%、MA12.0質量%およびDHT残部を添加した以外は、実施例1Bと同様に導電性ペーストを作製して、評価した。作製した導電性ペーストにおける有機溶剤の含有量及びうねりの平均高さの評価結果Wcを表3に示す。 Further, as shown in Table 3, in Example 5C, the same as in Example 1B except that IBA 4.2% by mass, MA 12.0% by mass and DHT balance were added as organic solvents without adding dicarboxylic acid. A conductive paste was prepared and evaluated. Table 3 shows the evaluation results Wc of the content of the organic solvent and the average height of the waviness in the prepared conductive paste.
 MIBKの代わりに、PMA(実施例8B)、DPMA(実施例9B)、DEGME(実施例10B)を用いた以外は、実施例2Bと同様に導電性ペーストを作製して、評価した。導電性ペーストの添加剤等の含有量及びうねりの平均高さの評価結果Wcを表3に示す。 A conductive paste was prepared and evaluated in the same manner as in Example 2B, except that PMA (Example 8B), DPMA (Example 9B), and DEGME (Example 10B) were used instead of MIBK. Table 3 shows the evaluation results Wc of the content of additives and the like of the conductive paste and the average height of the waviness.
 また、参考のため、上述した実施例1Bおよび比較例1Bの有機溶剤の含有量及びうねりの平均高さの評価結果Wcもあわせて表3に示す。 For reference, Table 3 also shows the evaluation results Wc of the organic solvent content and the average height of the waviness of Example 1B and Comparative Example 1B described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(評価結果3)
 実施例2B~10B、5Dの導電性ペーストは、第1の有機溶剤(テルペン系の有機溶剤)を用いない比較例1Bの導電性ペーストと比較して、乾燥膜におけるうねり曲線要素の平均高さ(Wc)(カットオフ値:λc=0.08mm))が小さかった。
(Evaluation result 3)
The conductive pastes of Examples 2B to 10B and 5D have the average height of the waviness curve element in the dry film as compared with the conductive paste of Comparative Example 1B which does not use the first organic solvent (terpene-based organic solvent). (Wc) (cutoff value: λc = 0.08 mm)) was small.
 また、有機溶剤として、第1の有機溶剤に加えて、第2の有機溶剤(MIBK、DIBK、IBA)を含む実施例2B~7Bの導電性ペーストは、第1の有機溶剤に加えて、表3に示す他の有機溶剤を含む実施例8B~10Bよりも、乾燥膜におけるうねり曲線要素の平均高さ(Wc)(カットオフ値:λc=0.08mm)がより小さくなった。 Further, the conductive pastes of Examples 2B to 7B containing the second organic solvent (MIBK, DIBK, IBA) in addition to the first organic solvent as the organic solvent are shown in the table in addition to the first organic solvent. The average height (Wc) (cutoff value: λc = 0.08 mm) of the waviness curve element in the dry film was smaller than that of Examples 8B to 10B containing the other organic solvents shown in 3.
 また、ジカルボン酸を添加していない実施例5Dの導電性ペーストは、ジカルボン酸を添加し、その他の組成の近い実施例5Bの導電性ペーストと、ほぼ同程度のWcの値が得られた。 Further, the conductive paste of Example 5D to which no dicarboxylic acid was added was obtained with a Wc value almost the same as that of the conductive paste of Example 5B to which the dicarboxylic acid was added and the other compositions were similar.
 また、第3の有機溶剤を添加せず、第1の有機溶剤及び第2の有機溶剤を含む実施例7Bの導電性ペーストでも、第1の有機溶剤及び第2の有機溶剤に加えて、第3の有機溶剤を含む実施例と同程度のWcの値が得られた。 なお、実施例7Bでは、ペースト粘度を調整するため、第2の有機溶剤であるDIBKを、他の実施例よりも多く(第1の有機溶剤含有量と同程度)含む。 Further, even in the conductive paste of Example 7B containing the first organic solvent and the second organic solvent without adding the third organic solvent, in addition to the first organic solvent and the second organic solvent, the first A value of Wc similar to that of the example containing the organic solvent of No. 3 was obtained. In Example 7B, in order to adjust the paste viscosity, DIBK, which is a second organic solvent, is contained in a larger amount than in other examples (similar to the content of the first organic solvent).
 また、表3に示す、すべての実施例、及び、比較例の導電性ペーストにおいて、ずり速度100sec-1での粘度が3Pa・S以下であり、ずり速度10000sec-1での粘度が1Pa・S以下であり、グラビア印刷に適した粘度を有することが確認された。 Also, it is shown in Table 3, all of the examples, and, in the conductive paste of Comparative Example, the viscosity at shear rate 100 sec -1 is not higher than 3 Pa · S, the viscosity at shear rate 10000 sec -1 is 1 Pa · S It was confirmed that the viscosity was suitable for gravure printing.
[HSP距離と乾燥膜のうねり曲線要素の平均高さ(Wc)との関係]
 以下の表4は、実施例1B~6B、8B~10Bおよび、比較例1Bの評価用導電性ペーストにおいて、第1の有機溶剤、第4の有機溶剤、それ以外の有機溶剤、又は、それらの混合有機溶剤と、第3の有機溶剤とのHSP距離(相溶性)と、乾燥膜を作製した際のうねりの平均高さ(Wc)との関係を示した表である。また、図2は、以下の表4に示される実施例、比較例における、第3の有機溶剤に対するHSP距離とうねりの平均高さ(Wc)との関係を示した図である。
[Relationship between HSP distance and average height (Wc) of swell curve element of dry film]
Table 4 below shows the first organic solvent, the fourth organic solvent, other organic solvents, or their respective in the evaluation conductive pastes of Examples 1B to 6B, 8B to 10B, and Comparative Example 1B. It is a table showing the relationship between the HSP distance (compatibility) between the mixed organic solvent and the third organic solvent, and the average height (Wc) of the swell when the dried film was prepared. Further, FIG. 2 is a diagram showing the relationship between the HSP distance to the third organic solvent and the average height (Wc) of the swell in the examples and comparative examples shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(評価結果4)
 表4及び図2に示されるように、第1の有機溶剤、第3の有機溶剤に加えて、第4の有機溶剤として、第1の有機溶剤および第4の有機溶剤のそれぞれのHSP値および含有体積割合から算出される混合溶液の第3の有機溶剤に対するHSP距離が、第1の有機溶剤の第3の有機溶剤に対するHSP距離と同じ、または、それよりも短くなる有機溶剤を含む場合、第3の有機溶剤に対するHSP距離に応じて、うねりの平均高さ(Wc)が小さくなる傾向があることが明らかである。
(Evaluation result 4)
As shown in Table 4 and FIG. 2, in addition to the first organic solvent and the third organic solvent, as the fourth organic solvent, the HSP values of the first organic solvent and the fourth organic solvent, respectively, and When the HSP distance of the mixed solution to the third organic solvent calculated from the content volume ratio contains an organic solvent that is equal to or shorter than the HSP distance of the first organic solvent to the third organic solvent. It is clear that the average height (Wc) of the swell tends to decrease depending on the HSP distance to the third organic solvent.
 本発明の導電性ペーストを積層セラミックコンデンサの内部電極の形成に用いた場合、信頼性の高い積層セラミックコンデンサを生産性高く得ることができる。よって、本発明の導電性ペーストは、特に携帯電話やデジタル機器などの小型化が進む電子機器のチップ部品である積層セラミックコンデンサの内部電極用の原料として好適に用いることができ、グラビア印刷用の導電性ペーストとして好適に用いることができる。 When the conductive paste of the present invention is used for forming the internal electrodes of a multilayer ceramic capacitor, a highly reliable multilayer ceramic capacitor can be obtained with high productivity. Therefore, the conductive paste of the present invention can be suitably used as a raw material for an internal electrode of a multilayer ceramic capacitor, which is a chip component of an electronic device such as a mobile phone or a digital device, which is becoming smaller and smaller, and is used for gravure printing. It can be suitably used as a conductive paste.
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、日本特許出願である特願2019-215974、及び上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。 The technical scope of the present invention is not limited to the embodiments described in the above-described embodiments. One or more of the requirements described in the above embodiments and the like may be omitted. In addition, the requirements described in the above-described embodiments and the like can be combined as appropriate. In addition, to the extent permitted by law, the disclosure of Japanese Patent Application No. 2019-215974 and all documents cited in the above-described embodiments will be incorporated as part of the description of the main text.
1    積層セラミックコンデンサ
10   セラミック積層体
11   内部電極層
12   誘電体層
20   外部電極
21   外部電極層
22   メッキ層
1 Multilayer ceramic capacitor 10 Ceramic laminate 11 Internal electrode layer 12 Dielectric layer 20 External electrode 21 External electrode layer 22 Plating layer

Claims (20)

  1.  導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含むグラビア印刷用導電性ペーストであって、
     前記有機溶剤は、第1の有機溶剤を含み、
     前記第1の有機溶剤は、ターピネオール、ジヒドロターピネオール、及び、ジヒドロターピニルアセテートからなる群から選ばれる少なくとも1種のテルペン系溶剤である、
    グラビア印刷用導電性ペースト。
    A conductive paste for gravure printing containing a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent.
    The organic solvent contains a first organic solvent and contains.
    The first organic solvent is at least one terpene-based solvent selected from the group consisting of tarpineol, dihydroterpineol, and dihydroterpinyl acetate.
    Conductive paste for gravure printing.
  2.  さらに、ジカルボン酸を、導電性ペースト全体に対して0.05質量%以上3.0質量%未満含む、請求項1に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to claim 1, further containing dicarboxylic acid in an amount of 0.05% by mass or more and less than 3.0% by mass with respect to the entire conductive paste.
  3.  前記第1の有機溶剤は、導電性ペースト全体に対して10質量%以上60質量%以下含まれる、請求項1又は請求項2に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to claim 1 or 2, wherein the first organic solvent is contained in an amount of 10% by mass or more and 60% by mass or less based on the entire conductive paste.
  4.  前記分散剤は、導電性ペースト全体に対して0.01質量%以上3.0質量%以下含まれる、請求項1~請求項3のいずれか一項に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to any one of claims 1 to 3, wherein the dispersant is contained in an amount of 0.01% by mass or more and 3.0% by mass or less based on the entire conductive paste.
  5.  前記分散剤は、酸系分散剤を含む、請求項1~請求項4のいずれか一項に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to any one of claims 1 to 4, wherein the dispersant contains an acid-based dispersant.
  6.  前記有機溶剤は、さらに第2の有機溶剤を含み、
     前記第2の有機溶剤は、イソボルニルアセテート、メチルイソブチルケトン、及び、ジイソブチルケトンからなる群から選ばれる少なくとも1種である、請求項1~請求項5のいずれか一項に記載のグラビア印刷用導電性ペースト。
    The organic solvent further contains a second organic solvent.
    The gravure printing according to any one of claims 1 to 5, wherein the second organic solvent is at least one selected from the group consisting of isobornyl acetate, methyl isobutyl ketone, and diisobutyl ketone. For conductive paste.
  7.  前記有機溶剤は、さらに第3の有機溶剤を含み、
     前記第3の有機溶剤は、石油系炭化水素溶剤である、請求項1~6のいずれか一項に記載のグラビア印刷用導電性ペースト。
    The organic solvent further contains a third organic solvent.
    The conductive paste for gravure printing according to any one of claims 1 to 6, wherein the third organic solvent is a petroleum-based hydrocarbon solvent.
  8.  前記有機溶剤は、さらに第3の有機溶剤と第4の有機溶剤とを含み、
     前記第3の有機溶剤は、石油系炭化水素溶剤であり、
     前記第4の有機溶剤は、前記第1の有機溶剤および前記第4の有機溶剤のそれぞれのHSP値および含有体積割合から算出される混合溶液のHSP値と、前記第3の有機溶剤のHSP値とのHSP距離が、前記第1の有機溶剤のHSP値と、前記第3の有機溶剤のHSP値とのHSP距離と同じか、それよりも短くなる溶剤からなる群から選ばれる少なくとも1種である、請求項1~5のいずれか一項に記載のグラビア印刷用導電性ペースト。
    The organic solvent further contains a third organic solvent and a fourth organic solvent.
    The third organic solvent is a petroleum-based hydrocarbon solvent.
    The fourth organic solvent is the HSP value of the mixed solution calculated from the HSP value and the content volume ratio of each of the first organic solvent and the fourth organic solvent, and the HSP value of the third organic solvent. At least one selected from the group consisting of solvents whose HSP distance is the same as or shorter than the HSP distance between the HSP value of the first organic solvent and the HSP value of the third organic solvent. The conductive paste for gravure printing according to any one of claims 1 to 5.
  9.  前記第4の有機溶剤は、アセテート系溶剤、ケトン系溶剤、及び、脂環式炭化水素系溶剤からなる群から選ばれる少なくとも1種である、請求項8に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to claim 8, wherein the fourth organic solvent is at least one selected from the group consisting of an acetate solvent, a ketone solvent, and an alicyclic hydrocarbon solvent.
  10.  前記第4の有機溶剤は、イソボルニルアセテート、メチルイソブチルケトン、及び、ジイソブチルケトンからなる群から選ばれる少なくとも1種である、請求項8又は請求項9に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to claim 8 or 9, wherein the fourth organic solvent is at least one selected from the group consisting of isobornyl acetate, methyl isobutyl ketone, and diisobutyl ketone.
  11.  前記導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金からなる群から選ばれる少なくとも1種の金属粉末を含む、請求項1~10のいずれか一項に記載のグラビア印刷用導電性ペースト。 The gravure according to any one of claims 1 to 10, wherein the conductive powder contains at least one metal powder selected from the group consisting of Ni, Pd, Pt, Au, Ag, Cu and alloys thereof. Conductive paste for printing.
  12.  前記導電性粉末は、平均粒径が0.05μm以上1.0μm以下である、請求項1~11のいずれか一項に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to any one of claims 1 to 11, wherein the conductive powder has an average particle size of 0.05 μm or more and 1.0 μm or less.
  13.  前記セラミック粉末は、チタン酸バリウムを含む、請求項1~12のいずれか一項に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to any one of claims 1 to 12, wherein the ceramic powder contains barium titanate.
  14.  前記セラミック粉末は、平均粒径が0.01μm以上0.5μm以下である、請求項1~13のいずれか一項に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to any one of claims 1 to 13, wherein the ceramic powder has an average particle size of 0.01 μm or more and 0.5 μm or less.
  15.  前記セラミック粉末は、導電性ペースト全体に対して1質量%以上20質量%以下含まれる、請求項1~14のいずれか一項に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to any one of claims 1 to 14, wherein the ceramic powder is contained in an amount of 1% by mass or more and 20% by mass or less based on the entire conductive paste.
  16.  前記バインダー樹脂が、セルロース系樹脂を含む、請求項1~15のいずれか一項に記載のグラビア印刷用導電性ペースト。 The conductive paste for gravure printing according to any one of claims 1 to 15, wherein the binder resin contains a cellulosic resin.
  17.  ずり速度100sec-1での粘度が3Pa・S以下であり、ずり速度10000sec-1での粘度が1Pa・S以下である、請求項1~16のいずれか一項に記載のグラビア印刷用導電性ペースト。 And viscosity of less than 3 Pa · S at a shear rate 100 sec -1, the viscosity at shear rate 10000 sec -1 is less than 1 Pa · S, gravure printing conductive according to any one of claims 1 to 16 paste.
  18.  前記導電性ペーストを印刷速度30m/min、膜厚0.50μm以上2μm以下の条件にてグラビア印刷して得られる乾燥膜のうねり曲線要素の平均高さ(Wc)が0.5μm以下である、請求項1~17のいずれか一項に記載のグラビア印刷用導電性ペースト。 The average height (Wc) of the waviness curve element of the dry film obtained by gravure printing the conductive paste under the conditions of a printing speed of 30 m / min and a film thickness of 0.50 μm or more and 2 μm or less is 0.5 μm or less. The conductive paste for gravure printing according to any one of claims 1 to 17.
  19.  請求項1~18のいずれか一項に記載の導電性ペーストを用いて形成された電子部品。 An electronic component formed by using the conductive paste according to any one of claims 1 to 18.
  20.  誘電体層と内部電極層とを積層した積層体を少なくとも有し、
     前記内部電極層は、前記1~19のいずれか一項に記載の導電性ペーストを用いて形成された積層セラミックコンデンサ。
    It has at least a laminate in which a dielectric layer and an internal electrode layer are laminated,
    The internal electrode layer is a multilayer ceramic capacitor formed by using the conductive paste according to any one of 1 to 19.
PCT/JP2020/040305 2019-11-29 2020-10-27 Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor WO2021106470A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080082831.1A CN114746967A (en) 2019-11-29 2020-10-27 Conductive paste for gravure printing, electronic component, and multilayer ceramic capacitor
JP2021561235A JPWO2021106470A1 (en) 2019-11-29 2020-10-27
KR1020227008452A KR20220106108A (en) 2019-11-29 2020-10-27 Conductive paste for gravure printing, electronic components, and multilayer ceramic capacitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019215974 2019-11-29
JP2019-215974 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021106470A1 true WO2021106470A1 (en) 2021-06-03

Family

ID=76128897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040305 WO2021106470A1 (en) 2019-11-29 2020-10-27 Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor

Country Status (5)

Country Link
JP (1) JPWO2021106470A1 (en)
KR (1) KR20220106108A (en)
CN (1) CN114746967A (en)
TW (1) TW202124602A (en)
WO (1) WO2021106470A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388169A (en) * 2021-12-28 2022-04-22 江苏云意电气股份有限公司 Conductor paste and preparation method thereof
WO2023190614A1 (en) * 2022-03-28 2023-10-05 住友金属鉱山株式会社 Electroconductive paste, electronic component, and laminated ceramic capacitor
WO2023190613A1 (en) * 2022-03-28 2023-10-05 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2023190615A1 (en) * 2022-03-28 2023-10-05 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2023190616A1 (en) * 2022-03-28 2023-10-05 住友金属鉱山株式会社 Conductive paste, electronic component, and laminated ceramic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192401A (en) * 2010-03-11 2011-09-29 Hitachi Maxell Ltd Transparent conductive paste composition
WO2014073530A1 (en) * 2012-11-06 2014-05-15 株式会社ノリタケカンパニーリミテド Conductive paste composition
JP2016032085A (en) * 2014-07-30 2016-03-07 住友金属鉱山株式会社 Paste for multilayer ceramic capacitor internal electrode, and multilayer ceramic capacitor
JP2019099860A (en) * 2017-11-30 2019-06-24 住友金属鉱山株式会社 Nickel slurry, manufacturing method of nickel slurry, and manufacturing method of nickel paste

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389431B2 (en) 2001-12-13 2009-12-24 株式会社村田製作所 Conductive paste for gravure printing, method for producing the same, and multilayer ceramic electronic component
JP2003187638A (en) 2001-12-20 2003-07-04 Murata Mfg Co Ltd Conductive paste for gravure printing and its manufacturing method as well as laminated ceramic electronic component
TWI275110B (en) * 2004-08-10 2007-03-01 Tdk Corp Paste for releasable layer, and method of manufacturing laminated electronic component
JP5569747B2 (en) 2011-02-18 2014-08-13 住友金属鉱山株式会社 Gravure printing conductive paste used for multilayer ceramic capacitor internal electrode
CN108780673B (en) * 2016-02-29 2020-06-02 住友金属矿山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
JP7083225B2 (en) * 2016-05-12 2022-06-10 株式会社村田製作所 Manufacturing method of electronic parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192401A (en) * 2010-03-11 2011-09-29 Hitachi Maxell Ltd Transparent conductive paste composition
WO2014073530A1 (en) * 2012-11-06 2014-05-15 株式会社ノリタケカンパニーリミテド Conductive paste composition
JP2016032085A (en) * 2014-07-30 2016-03-07 住友金属鉱山株式会社 Paste for multilayer ceramic capacitor internal electrode, and multilayer ceramic capacitor
JP2019099860A (en) * 2017-11-30 2019-06-24 住友金属鉱山株式会社 Nickel slurry, manufacturing method of nickel slurry, and manufacturing method of nickel paste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388169A (en) * 2021-12-28 2022-04-22 江苏云意电气股份有限公司 Conductor paste and preparation method thereof
WO2023190614A1 (en) * 2022-03-28 2023-10-05 住友金属鉱山株式会社 Electroconductive paste, electronic component, and laminated ceramic capacitor
WO2023190613A1 (en) * 2022-03-28 2023-10-05 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2023190615A1 (en) * 2022-03-28 2023-10-05 住友金属鉱山株式会社 Conductive paste, electronic component, and multilayer ceramic capacitor
WO2023190616A1 (en) * 2022-03-28 2023-10-05 住友金属鉱山株式会社 Conductive paste, electronic component, and laminated ceramic capacitor

Also Published As

Publication number Publication date
TW202124602A (en) 2021-07-01
JPWO2021106470A1 (en) 2021-06-03
CN114746967A (en) 2022-07-12
KR20220106108A (en) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2021106470A1 (en) Electroconductive paste for gravure printing, electronic component, and laminated ceramic capacitor
WO2019220667A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
CN112334995B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2020137290A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
JP2024032861A (en) Conductive paste, electronic components, and multilayer ceramic capacitors
WO2020137289A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
CN112470236B (en) Conductive paste, electronic component, and multilayer ceramic capacitor
WO2020166361A1 (en) Electroconductive paste, electronic component, and laminated ceramic capacitor
WO2021020557A1 (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
JP2022070803A (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2020067362A1 (en) Conductive paste, electronic component, and laminated ceramic capacitor
WO2022092045A1 (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2022255467A1 (en) Conductive paste for gravure printing, electronic component, and laminate ceramic capacitor
WO2021060540A1 (en) Electroconductive composition, electroconductive paste, electronic component, and laminated ceramic capacitor
WO2023033163A1 (en) Conductive paste for gravure printing, electronic component, and multilayer ceramic capacitor
WO2024024534A1 (en) Carboxy group-containing polymer dispersant, electroconductive paste, electronic component, and laminated ceramic capacitor
WO2023190613A1 (en) Conductive paste, electronic component, and multilayer ceramic capacitor
TW202414441A (en) Conductive paste, dry film, internal electrodes, and multilayer ceramic capacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893606

Country of ref document: EP

Kind code of ref document: A1