WO2021104219A1 - 一种含铝合金粉体的制备方法及其应用及一种合金条带 - Google Patents

一种含铝合金粉体的制备方法及其应用及一种合金条带 Download PDF

Info

Publication number
WO2021104219A1
WO2021104219A1 PCT/CN2020/130956 CN2020130956W WO2021104219A1 WO 2021104219 A1 WO2021104219 A1 WO 2021104219A1 CN 2020130956 W CN2020130956 W CN 2020130956W WO 2021104219 A1 WO2021104219 A1 WO 2021104219A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
aluminum alloy
containing powder
phase
initial
Prior art date
Application number
PCT/CN2020/130956
Other languages
English (en)
French (fr)
Inventor
刘丽
赵远云
Original Assignee
刘丽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘丽 filed Critical 刘丽
Priority to GB2209206.8A priority Critical patent/GB2606652A/en
Priority to EP20891884.7A priority patent/EP4066967A4/en
Priority to US17/781,343 priority patent/US20230001481A1/en
Priority to JP2022531409A priority patent/JP7365735B2/ja
Priority to KR1020227021974A priority patent/KR102539775B1/ko
Priority to CA3159866A priority patent/CA3159866A1/en
Publication of WO2021104219A1 publication Critical patent/WO2021104219A1/zh
Priority to JP2023120253A priority patent/JP2023153875A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/103Anti-corrosive paints containing metal dust containing Al
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of metal materials, in particular to a preparation method and application of aluminum alloy powder and an alloy strip.
  • each method has certain limitations.
  • the shortcomings of the liquid phase method are low yield, high cost, and complicated process.
  • the disadvantage of the mechanical method is that it is difficult to classify after the powder is prepared, and the purity, fineness and morphology of the product are difficult to guarantee.
  • the rotating electrode method and the gas atomization method are currently the main methods for preparing high-performance alloy powders, but the production efficiency is low and the energy consumption is relatively large. Jet milling method and hydrogenation dehydrogenation method are suitable for large-scale industrial production, but they are more selective for raw metals and alloys.
  • the impurity content of the metal powder or alloy powder especially the oxygen content, has a great influence on its performance.
  • the impurity content of metal powder or alloy powder is mainly controlled by controlling the purity and vacuum degree of raw materials, which is costly. Therefore, it is of great significance to develop new preparation methods for high-purity alloy powder materials.
  • Step 1 Select the initial alloy raw materials, and melt the initial alloy raw materials according to the initial alloy composition ratio to obtain a uniform initial alloy melt;
  • the main component of the initial alloy melt is RE a Al b M c T d ;
  • RE Contains at least one of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and M includes W, Cr, Mo, V, Ta, At least one of Nb, Zr, Hf, Ti, Fe, Co, and Ni;
  • T is an impurity element and contains at least one of O, H, N, P, S, F, and Cl;
  • a, b, c, d represents the atomic percentage content of the corresponding constituent elements, and 35% ⁇ a ⁇ 99.7%, 0.1% ⁇ b ⁇ 25%, 0.1% ⁇ c ⁇ 35%, 0 ⁇ d ⁇ 10%;
  • Step two solidify the initial alloy melt into an initial alloy strip; the solidification structure of the initial alloy strip includes a matrix phase and a dispersed particle phase; the melting point of the matrix phase is lower than that of the dispersed particle phase, and the dispersed particle The phase is coated in the matrix phase; the average composition of the matrix phase is mainly RE x1 Al y1 T z1 , and the composition of the dispersed particle phase is mainly M x2 Al y2 T z2 , x1, y1, z1, x2 , Y2 and z2 respectively represent the atomic percentage content of the corresponding constituent elements, and 68% ⁇ x1 ⁇ 99.8%, 0.2% ⁇ y1 ⁇ 30%, 0 ⁇ z1 ⁇ 30%; 77% ⁇ x2 ⁇ 99.8%, 0.1% ⁇ y2 ⁇ 22%, 0 ⁇ z2 ⁇ 1.5%, z2 ⁇ d ⁇ z1; during the solidification of the initial alloy melt, the impurity element T in the initial alloy melt is redistributed and enriched in
  • Step 3 Reacting the initial alloy strip with an acid solution, the matrix phase in the initial alloy strip reacts with the acid to become ions into the solution, and the dispersed particle phase that does not react with the acid solution changes from the initial alloy
  • the strips are separated, and the aluminum alloy-containing powder material with the main component of M x2 Al y2 T z2 is obtained.
  • the source of impurity elements in the initial alloy melt includes: introduction of impurities into the initial alloy raw materials, and introduction of impurities into the atmosphere or crucible during the smelting process.
  • the introduction of impurities in the atmosphere refers to impurities such as O, N, and H in the ambient atmosphere absorbed by the alloy melt.
  • the initial alloy raw materials include M-T raw materials containing T as an impurity element.
  • M-T raw materials containing T as an impurity element.
  • the M-T raw material includes Ti-O raw material containing O impurity.
  • T is an impurity element and contains at least one of O, H, N, P, S, F, and Cl; and the total content of these impurity elements is the content of the T impurity element;
  • the M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti, Fe, Co, and Ni, and when M includes Fe, Co, Ni At least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti;
  • the M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, and Ti;
  • the initial alloy strip does not contain an intermetallic compound composed of RE and M;
  • the method of solidification of the alloy melt includes the stripping method and the continuous casting method; generally speaking, a thinner initial alloy strip can be obtained by the stripping method; a thicker alloy strip can be obtained by the continuous casting method .
  • Both the thin alloy strips obtained by the strip casting method and the thick alloy strips obtained by the continuous casting method are completely different from the alloy ingots obtained by the ordinary casting method.
  • the alloy ingots obtained by the ordinary casting method generally have no obvious Comparison of length and thickness.
  • the thickness of the initial alloy strip is in the range of 5 ⁇ m to 50 mm; further, the thickness of the initial alloy strip is in the range of 5 ⁇ m to 5 mm; preferably, the thickness of the initial alloy strip is in the range of 5 ⁇ m to 1 mm. As a further preference, the thickness of the initial alloy strip is in the range of 5 ⁇ m to 200 ⁇ m; as a further preference, the thickness of the initial alloy strip is in the range of 5 ⁇ m to 20 ⁇ m.
  • the thickness of the initial alloy strip is millimeter-level, it can also be referred to as an alloy sheet.
  • the width of the cross section of the initial alloy strip is more than 2 times its thickness.
  • the length of the initial alloy strip is more than 10 times its thickness.
  • the length of the initial alloy strip is more than 50 times its thickness.
  • the length of the initial alloy strip is more than 100 times its thickness.
  • the solidification rate of the initial alloy melt is 1 K/s to 10 7 K/s.
  • the particle size of the dispersed particle phase is related to the solidification rate of the initial alloy melt; in general, the particle size of the dispersed particle phase has a negative correlation with the solidification rate of the initial alloy melt, that is, the initial alloy The greater the solidification rate of the melt, the smaller the particle size of the dispersed particle phase.
  • the particle size range of the dispersed particle phase is 2 nm to 3 mm; further, the particle size range of the dispersed particle phase is 2 nm to 500 ⁇ m; preferably, the particle size range of the dispersed particle phase is 2nm ⁇ 99 ⁇ m; as a further preference, the particle size range of the dispersed particle phase is 2nm ⁇ 5 ⁇ m; as a further preference, the particle size range of the dispersed particle phase is 2nm ⁇ 200nm; as a further preference, the dispersed particle The particle size of the phase ranges from 2nm to 100nm.
  • the dispersed particles whose particle size is mainly sub-micron scale can be obtained.
  • the dispersed particles whose particle size is mainly on the micron scale can be obtained.
  • the particle shape of the dispersed particle phase is not limited, and may include at least one of dendritic shape, spherical shape, nearly spherical shape, square shape, pie shape, and rod shape; when the particle shape is rod shape, the particle shape
  • the size specifically refers to the diameter of the cross-section of the bar.
  • the dispersed particle phase solidifies and precipitates from the initial alloy melt.
  • the crystal grains have a fixed orientation relationship for their crystal growth, so that the individual grains precipitated are mainly composed of a single crystal.
  • the number of single crystal particles in the dispersed particles in the initial alloy strip accounts for not less than 75% of the total number of dispersed particles.
  • the number of single crystal particles in the dispersed particles accounts for not less than 90% of the total number of dispersed particles.
  • volume percentage of the dispersed particle phase in the initial alloy strip does not exceed 40%.
  • the atomic percentage content of the Al element in the matrix phase whose average composition is mainly RE x1 Al y1 T z1 is higher than its atomic percentage content in the dispersed particle phase whose composition is mainly M x2 Al y2 T z2 , That is, y1>y2.
  • the dispersed particle phase mainly composed of M x2 Al y2 T z2 does not contain RE element.
  • z2 is less than the atomic percentage of T impurity element in the MT raw material, that is, the atomic percentage of the T impurity element in the dispersed particle phase whose main component is M x2 Al y2 T z2 is lower than the atomic percentage of T in the MT raw material.
  • the atomic percentage of impurity elements are less than the atomic percentage of T impurity elements.
  • 0 ⁇ z2 ⁇ d ⁇ z1, 3z2 ⁇ z1, and 0 ⁇ z2 ⁇ 1.5% that is, the T impurity content in the dispersed particle phase is lower than the T impurity content in the initial alloy melt, and 3 times the T impurity content in the dispersed particle phase is still lower than the T impurity content in the matrix phase;
  • the present invention uses the atomic percentage content to express the T impurity content.
  • the composition of each element is characterized by the atomic percentage content of the element, and the increase or decrease of the element content, such as the increase or decrease and change of impurity elements, can be accurately expressed through the concept of the amount of matter. If the mass percentage content (or ppm concept) of an element is used to characterize the content of each element, it is easy to produce wrong conclusions due to the difference in the atomic weight of each element. For example, if an alloy with an atomic percentage content of Ti 45 Gd 45 O 10 contains 100 atoms, the atomic percentage content of O is 10 at%.
  • the mass percentage content of O in Ti 45 Gd 45 O 10 is 1.70 wt%
  • the mass percentage content of O in Ti 45 O 4 and Gd 45 O 6 is 2.9 wt.% and 1.34wt.%
  • the acid in the acid solution includes at least one of sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, phosphoric acid, acetic acid, oxalic acid, formic acid, and carbonic acid.
  • the molar concentration of the acid is 0.01 mol/L to 10 mol/L.
  • the temperature at which the initial alloy strip reacts with the acid solution is 0°C-100°C, and the reaction time is 0.1min-24h.
  • the particle size of the aluminum alloy-containing powder material ranges from 2 nm to 3 mm.
  • the particle size of the aluminum alloy-containing powder material ranges from 2 nm to 500 ⁇ m;
  • the particle size of the aluminum alloy-containing powder material ranges from 2 nm to 99 ⁇ m;
  • the particle size of the aluminum alloy-containing powder material ranges from 2 nm to 10 ⁇ m;
  • the particle size of the aluminum alloy-containing powder material ranges from 2 nm to 1 ⁇ m;
  • the particle size of the aluminum alloy-containing powder material ranges from 2 nm to 200 nm;
  • the particle size of the aluminum alloy-containing powder material ranges from 2 nm to 100 nm.
  • the dispersed particles are separated from the initial alloy strip, cleaned and dried to obtain an aluminum alloy-containing powder material whose main component is M x2 Al y2 T z2.
  • step three after the aluminum alloy-containing powder material is sieved, the aluminum alloy-containing powder material with a particle size range of 5 ⁇ m to 200 ⁇ m is selected for plasma spheroidization to obtain Spherical powder material containing aluminum alloy;
  • the particle size of the spherical aluminum alloy-containing powder ranges from 5 ⁇ m to 200 ⁇ m.
  • the present invention also relates to the application of the aluminum alloy powder or spherical aluminum alloy powder material obtained by the above preparation method in optoelectronic devices, wave absorbing materials, catalysts, powder metallurgy, 3D metal printing, metal injection molding, and coatings .
  • the application of the spherical aluminum alloy-containing powder material obtained by the above preparation method in the field of metal powder 3D printing is characterized in that the particle size of the spherical aluminum alloy-containing powder is 5 ⁇ m to 200 ⁇ m.
  • the application of the aluminum alloy-containing powder or the spherical aluminum alloy-containing powder obtained by the above preparation method in metal injection molding and powder metallurgy is characterized in that the aluminum alloy-containing powder or the spherical aluminum alloy-containing powder The particle size is 0.1 ⁇ m-50 ⁇ m.
  • the application of the aluminum alloy-containing powder obtained by the above preparation method in a coating is characterized in that the particle size of the aluminum alloy-containing powder is 2 nm to 5 ⁇ m.
  • the present invention also relates to an alloy strip, which is characterized in that it contains endogenous aluminum alloy-containing powder and a coating body; the solidification structure of the alloy strip includes a matrix phase and a dispersed particle phase, and the matrix phase is the coating body , The dispersed particle phase is the endogenous aluminum alloy-containing powder; the melting point of the coating body is lower than the endogenous aluminum alloy-containing powder, and the endogenous aluminum alloy-containing powder is coated in the coating body
  • the average composition of the coating is mainly RE x1 Al y1 T z1
  • the main composition of the endogenous aluminum alloy powder is M x2 Al y2 T z2 , x1, y1, z1, x2, y2, and z2 represent Corresponding to the atomic percentage content of the constituent elements, and 68% ⁇ x1 ⁇ 99.8%, 0.2% ⁇ y1 ⁇ 30%, 0 ⁇ z1 ⁇ 30%; 77% ⁇ x2 ⁇ 99.8%, 0.1% ⁇ y2 ⁇ 22%, 0 ⁇
  • the M contains at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti, Fe, Co, and Ni, and when M contains at least one of Fe, Co, Ni When one type, it also contains at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, and Ti;
  • the M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, and Ti;
  • the endogenous aluminum alloy-containing powder whose main component is M x2 Al y2 T z2 does not contain RE element.
  • the thickness of the alloy strip ranges from 5 ⁇ m to 50 mm;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 5 mm;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 1 mm;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 200 ⁇ m;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 20 ⁇ m.
  • the width of the cross section of the alloy strip is more than 2 times its thickness
  • the length of the initial alloy strip is more than 10 times its thickness
  • the length of the initial alloy strip is more than 50 times its thickness
  • the length of the initial alloy strip is more than 100 times its thickness.
  • the particle size of the endogenous aluminum alloy-containing powder ranges from 2 nm to 3 mm;
  • the particle size of the endogenous aluminum alloy-containing powder ranges from 2 nm to 500 ⁇ m;
  • the particle size of the endogenous aluminum alloy-containing powder ranges from 2 nm to 99 ⁇ m;
  • the particle size of the endogenous aluminum alloy-containing powder ranges from 2 nm to 10 ⁇ m;
  • the particle size of the endogenous aluminum alloy-containing powder ranges from 2 nm to 1 ⁇ m;
  • the particle size of the endogenous aluminum alloy-containing powder ranges from 2nm to 200nm;
  • the particle size of the endogenous aluminum alloy-containing powder ranges from 2 nm to 100 nm.
  • the particle shape of the endogenous aluminum alloy-containing powder includes at least one of a dendritic shape, a spherical shape, a nearly spherical shape, a square shape, a pie shape, and a rod shape.
  • the number of single crystal particles in the endogenous aluminum alloy-containing powder in the alloy strip accounts for not less than 75% of the total number of the endogenous aluminum alloy-containing powder.
  • volume percentage content of the endogenous aluminum alloy-containing powder in the alloy strip does not exceed 40%.
  • the A, M or T may also contain other elements or impurity elements other than those listed above. As long as the introduction of these elements or the change in content does not cause the initial alloy solidification process and regularity to cause "qualitative change", it will not affect the realization of the above technical solution of the present invention.
  • the initial alloy strip does not contain intermetallic compounds mainly composed of RE and M;
  • the solidification structure of the initial alloy strip includes a matrix phase and a dispersed particle phase; the melting point of the matrix phase is lower than the dispersed particle phase, and the dispersed particle phase is coated in the matrix phase;
  • the T impurity content in the initial alloy melt is not 0, the T impurity content in the dispersed particle phase is lower than the T impurity content in the initial alloy melt, and the T impurity content in the dispersed particle phase is less than 2 times is still lower than the T impurity content in the matrix phase.
  • the solid solution of Al element in metal or alloy material containing W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti, Fe, Co, Ni and other elements is realized.
  • the addition of Al element plays a very important role.
  • the most widely used titanium alloy is Ti6Al4V alloy.
  • the Ti6Al4V alloy powder is generally obtained by smelting the Ti6Al4V alloy melt, and then through the atomization powdering technology. Due to the limitation of atomization powder technology, it is difficult to obtain ultra-fine Ti6Al4V alloy powder, or even nano-level Ti6Al4V alloy powder can not be obtained by atomization powder technology.
  • the Al in the Al-containing dispersed particles dominated by M is protected by the inert M element and will not be easily removed by acid reaction (such as Ti6Al4V alloy has a good Acid corrosion resistance), which makes it possible to prepare aluminum-containing titanium alloy powder by removing the matrix phase through acid reaction.
  • the present invention selects the initial alloy melt containing the metal M, metal Al, and rare earth RE containing the impurity T as the main component of RE a Al b M c T d.
  • the solidification structure of the initial alloy melt is composed of a dispersed particle phase whose main component is M x2 Al y2 T z2 and a matrix phase whose average composition is mainly RE x1 Al y1 T z1 .
  • the solidification structure is conducive to the passage of the dispersed particle phase through the initial alloy.
  • the strip is separated from the reaction of the acid solution. Specifically, when the initial alloy strip reacts with the acid solution, the hydrogen ions in the acid solution react with RE elements and Al elements in the matrix phase to dissolve RE elements and Al elements into ions. Solution; Al in the dispersed particle phase whose main component is M x2 Al y2 T z2 is protected by the inert element M and is not easy to react with acid solutions.
  • the dispersed particle phase whose main component is M x2 Al y2 T z2 can be dispersed and separated after the matrix phase reacts with the acid solution to remove it, and an aluminum alloy-containing powder with a main component of M x2 Al y2 T z2 is obtained.
  • the size of the dispersed particle phase whose main component is M x2 Al y2 T z2 can be nanometer, submicrometer, micrometer, or even millimeter, and the aluminum alloy powder prepared from it
  • the particle size of the body can also be nanometer, submicrometer, micrometer, or even millimeter.
  • each endogenous dispersive particle is nucleated from a certain position in the melt and then grows up according to a specific atomic arrangement.
  • volume percentage of the matrix phase By controlling the volume percentage of the matrix phase to ensure that each endogenous particle can be dispersed and distributed, it is difficult for each endogenous particle to merge and grow. Therefore, most of the dispersed particle phases finally obtained are single crystal phases.
  • the growth direction of each secondary dendrite maintains a certain phase relationship with the growth direction of the main dendrite, and it is still a single crystal particle.
  • the grain boundaries generally easily contain impurity elements discharged from the crystal during solidification, so it is difficult to obtain high-purity polycrystalline powder materials.
  • the powder material is mainly composed of single crystal particles, its purity must be guaranteed.
  • the surface atoms of the single crystal particles have a specific arrangement, such as (111) plane arrangement, etc. These specific arrangements will give the single crystal powder material special mechanical, physical, and chemical properties, thereby producing beneficial effects.
  • the impurity element T Due to the strong affinity between the selected RE rare earth element and the impurity element T, this can make the impurity element T in the initial alloy melt either more into the matrix phase mainly composed of RE elements, or in the melt state When it forms a slag with RE rare earth elements, and separates and removes from the alloy melt; 2) During the nucleation and growth process of aluminum-containing endogenous alloy powder (endogenous precipitated dispersed particle phase), the impurity element T will be discharged into the remaining In the melt.
  • the aluminum-containing endogenous alloy powder precipitates no later than the matrix phase during the solidification process, its impurities will be concentrated in the last solidified part of the melt, that is, the part of the melt mainly composed of RE rare earth elements and solidified to form the matrix phase.
  • the result of the two mechanisms is that the impurity element T is concentrated in the matrix phase mainly composed of RE rare earth, and the aluminum-containing endogenous dispersed particle phase is purified.
  • the crucible-related impurities that enter the melt due to the interaction between the crucible and the melt during the smelting process are generally concentrated in the second phase matrix, which further reduces the content of the aluminum alloy powder.
  • the impurity content of the smelting process further reduces the requirements on the crucible, which greatly reduces the production cost.
  • the alloy strip composed of the endogenous aluminum alloy powder and the cladding body creatively uses the in-situ generated matrix phase to wrap the endogenous aluminum alloy powder to maintain the high purity of the endogenous aluminum alloy powder With high activity.
  • metal or alloy powders prepared by traditional chemical or physical methods, especially nano-powders with extremely large specific surface areas are easily oxidized naturally, and are faced with the problem of difficult storage of the powders.
  • one of the technical solutions of the present invention is not eager to remove the cladding body after preparing the alloy strip composed of endogenous aluminum alloy powder and the cladding body, but directly uses the cladding body to protect the inner alloy strip.
  • Raw aluminum alloy powder is not naturally oxidized.
  • This kind of alloy strip composed of endogenous aluminum alloy powder and cladding can be directly used as a raw material for downstream production, so it has the potential to become a special kind of product.
  • downstream production needs to use high-purity endogenous aluminum alloy powder, you can select the appropriate time according to the characteristics of the next process and use acid solution to remove the endogenous aluminum alloy powder from the alloy strip under the appropriate environment. Release from the coating, and then make the released endogenous aluminum alloy powder enter the next production process in the shortest possible time, so that the chance of the aluminum alloy powder being polluted by impurities such as oxygen is greatly reduced.
  • the endogenous aluminum-containing aluminum alloy powder when the endogenous aluminum-containing aluminum alloy powder is nano-powder, it can be combined with the resin at the same time or immediately after the aluminum-containing aluminum alloy powder is released from the coating, so as to prepare a resin matrix added with aluminum-containing nano-alloy powder with high activity.
  • Composite materials when the endogenous aluminum-containing aluminum alloy powder is nano-powder, it can be combined with the resin at the same time or immediately after the aluminum-containing aluminum alloy powder is released from the coating, so as to prepare a resin matrix added with aluminum-containing nano-alloy powder with high activity.
  • the solid alloy obtained by solidification in the second step is in a strip shape, which ensures the uniformity of the product shape and the feasibility of large-scale production.
  • the alloy strip is a thin alloy strip, it can be prepared by the spinning strip method. As long as the flow rate of the alloy melt to the rotating roll is maintained and the rotation speed of the rotating roll is fixed, an alloy thin strip with uniform thickness can be obtained, and the preparation process It can be carried out continuously, which is conducive to mass production.
  • the alloy strip is a thick alloy strip, it can be prepared by a mature continuous casting method. The principle of continuous casting is similar to that of the stripping method. A continuous and uniform thick strip can also be obtained from the melt. The preparation process can also be used. Continuous operation is conducive to large-scale production.
  • the cooling rate is also relatively uniform, and the obtained dispersed particle size is also relatively uniform.
  • the solid alloy obtained by solidification is in the shape of an ingot, according to common sense, the ingot does not have a uniform thickness and no obvious length, which will generally cause difficulty in heat dissipation of the internal melt, and it is easy to obtain unusually large endogenous particles. This is only necessary when the large endogenous particles need to be collected and purified. Therefore, the present invention obtains alloy strips through solidification, which is suitable for subsequent preparation of aluminum alloy-containing powder materials through the "dephasing method".
  • the preparation method of the present invention is simple in process, easy to operate, and low in cost, and can prepare high-purity aluminum alloy-containing powders with different morphologies at nanometer, submicrometer, micrometer, and millimeter levels. Wave materials, catalysts, powder metallurgy, 3D metal printing, metal injection molding, coatings and other fields have good application prospects.
  • the present invention also provides a method for preparing aluminum alloy-containing powder, which includes the following steps:
  • the composition is RE x1 Al y1
  • the composition of the dispersed particle phase is M x2 Al y2 , x1, y1, x2, and y2 respectively represent the atomic percentage content of the corresponding constituent elements, and 0.5% ⁇ y1 ⁇
  • step S1 the raw materials required for smelting the initial alloy RE a Al b M c are prepared according to the specific composition and content;
  • step S1 the initial alloy is obtained through the following sub-steps:
  • each element can be melted according to the proportion to prepare the initial alloy melt.
  • the alloy raw materials provided are directly RE a Al b M c alloy
  • the RE a Al b M c alloy can be remelted to obtain an alloy melt.
  • the solidification method is not limited, and may be casting, melt stripping, melt drawing, and the like.
  • the particle size and morphology of the finally formed alloy powder are basically the same as the particle size and morphology of the dispersed particle phase of M x2 Al y2 in the initial alloy, and the composition of the dispersed particle phase of M x2 Al y2
  • the particle size is related to the solidification rate of the alloy melt during the preparation process.
  • the particle size of the dispersed particle phase with the composition of M x2 Al y2 is negatively related to the cooling rate of the alloy melt, that is: the greater the solidification rate of the alloy melt, the particle size of the dispersed particle phase The smaller.
  • the solidification rate of the alloy melt is preferably 0.001K/s ⁇ 10 7 K/s, so that the particle size of the dispersed particle phase with the composition of M x2 Al y2 in the initial alloy is 2nm ⁇ 50mm, so as to prepare nano-scale , Sub-micron, micron and millimeter-level aluminum alloy powders with different morphologies.
  • the solidification structure of the initial alloy obtained by the solidification of the alloy melt includes a matrix phase and a dispersed particle phase.
  • the dispersed particle phase is the particle phase dispersed in the matrix phase, wherein the matrix phase
  • the average composition of the dispersed particle phase is RE x1 Al y1
  • the composition of the dispersed particle phase is M x2 Al y2
  • the small amount of Al solid-dissolved in the dispersed particle phase of the composition M x2 Al y2 is protected by the inert element M and is not easy to mix with the acid solution.
  • the matrix phase with the average composition of RE x1 Al y1 is the active component, which is very easy to react with acid. Therefore, the solidification structure of the initial alloy facilitates subsequent separation, and an aluminum alloy-containing powder with a composition of M x2 Al y2 can be obtained.
  • the atomic percentage of Al element in the matrix phase with an average composition of RE x1 Al y1 is higher than the atomic percentage of the dispersed particle phase with a composition of M x2 Al y2 , that is, y1>y2.
  • the particle shape of the dispersed particle phase is not limited, and may include at least one of dendritic shape, spherical shape, sub-spherical shape, square shape, pie shape, and rod shape.
  • the particle shape is rod shape, the size of the particles is characteristic. Refers to the diameter of the rod-shaped cross-section.
  • the particle size of the dispersed particle phase is 2nm-50mm.
  • the acid in the acid solution includes at least one of sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, phosphoric acid, acetic acid, oxalic acid, formic acid, and carbonic acid, and the molar concentration of the acid is 0.001 mol/L to 20 mol /L.
  • the solvent in the acid solution includes water.
  • the temperature of the reaction between the matrix phase and the acid solution is 0°C-100°C, and the time is 0.1min-24h.
  • the separated preformed powder is sieved and then subjected to plasma spheroidization treatment to obtain spherical particles with different particle diameters.
  • Aluminum alloy powder or, the separated prefabricated powder is subjected to plasma spheroidization treatment and sieved to obtain aluminum alloy-containing powders with different particle diameters and in a spherical shape.
  • an aluminum alloy-containing powder obtained by the above preparation method is used in optoelectronic devices, wave absorbing materials, catalysts, 3D metal printing, metal injection molding, and anticorrosive coatings.
  • an application of the aluminum alloy-containing powder obtained by the above preparation method in 3D metal printing is characterized in that the particle size of the aluminum alloy-containing powder is 0.5 ⁇ m to 1 mm.
  • an application of the aluminum alloy-containing powder obtained by the above preparation method in metal injection molding is characterized in that the particle size of the aluminum alloy-containing powder is 0.1 ⁇ m-50 ⁇ m.
  • an application of the aluminum alloy-containing powder obtained by the above preparation method in an anticorrosive coating is characterized in that the particle size of the aluminum alloy-containing powder is 2 nm to 5 ⁇ m.
  • the preparation method of the aluminum alloy-containing powder of the present invention has the following beneficial aspects:
  • the solidification structure of the initial alloy is composed of a dispersed particle phase with a composition of M x2 Al y2 and a matrix phase with an average composition of RE x1 Al y1 . This structure facilitates the separation of the dispersed particle phase through the reaction between the initial alloy and the acid solution.
  • the hydrogen ions in the acid solution react with the rare earth elements and aluminum elements in the matrix phase to dissolve the rare earth elements and aluminum elements into ions into the solution;
  • a small amount of Al solid-dissolved in the dispersed particle phase of M x2 Al y2 is protected by the inert element M and is not easy to react with acid solutions. Therefore, the dispersed particle phase with a composition of M x2 Al y2 is dispersed and separated after the matrix phase with an average composition of RE x1 Al y1 reacts with the acid solution to remove, and an aluminum alloy-containing powder with a composition of M x2 Al y2 is obtained.
  • the particle size of the aluminum alloy-containing powder may be nanometer, submicrometer, micrometer, or even millimeter.
  • the above-mentioned substep (2) of the present invention can melt the raw material under low vacuum conditions or even atmospheric conditions.
  • the presence of rare earth elements in the alloy melt not only has a good "absorption” effect on the oxygen element, but also has a good “absorption” effect on other various impurity elements in the raw material M and the raw material Al.
  • the dispersed particle phase in the initial alloy obtained by solidification in the above substep (3) not only will not be contaminated by oxygen elements, but also has a lower impurity element content than the raw material M and the raw material Al.
  • These impurities may enter the average composition of RE x1 Al y1 matrix phase and with the average composition of RE x1 Al y1 phase acid-base reaction is removed, such that the composition containing aluminum powder having a ratio of M x2 Al y2 of Raw material M and raw material Al have lower impurity content.
  • the preparation method of the present invention is simple in process, easy to operate, and low in cost. It can prepare high-purity aluminum alloy powders with different morphologies at nanometer, submicron, micron, and millimeter levels. It is used in optoelectronic devices and wave-absorbing materials. , Catalysts, 3D metal printing, metal injection molding, anti-corrosion coatings and other fields have good application prospects.
  • Figure 1 is an energy spectrum diagram of Ti-V-Al powder of Example 5 of the present invention.
  • Figure 2 is a scanning electron micrograph of Ti-V-Al powder in Example 6 of the present invention.
  • Figure 3 is a scanning electron micrograph of Ti-V-Al powder in Example 7 of the present invention.
  • Figure 4 is a scanning electron micrograph of Ti-V-Al powder of Example 8 of the present invention.
  • Fig. 5 is an energy spectrum diagram of Ti-V-Al powder of Example 8 of the present invention.
  • This embodiment provides a method for preparing micron-sized Ti-V-Cr-Mo-Zr-Al alloy powder.
  • the preparation method includes the following steps:
  • the solidification structure of the alloy sheet is composed of a matrix phase with an average composition of about Gd 91.5 Al 8.5 and a dispersed dendritic grain phase with a composition of (Ti 82 V 8 Cr 6 Mo 2 Zr 2 ) 94.5 Al 5.5 , and the dispersed grain phase particles
  • the size is 1 ⁇ m ⁇ 200 ⁇ m.
  • the obtained (Ti 82 V 8 Cr 6 Mo 2 Zr 2 ) 94.5 Al 5.5 micron particles are separated from the solution, washed and dried to obtain micron-level (Ti 82 V 8 Cr 6 Mo 2 Zr 2 ) 94.5 Al 5.5 alloy powder, the average size of the single (Ti 82 V 8 Cr 6 Mo 2 Zr 2 ) 94.5 Al 5.5 particles ranges from 1 ⁇ m to 200 ⁇ m.
  • This embodiment provides a method for preparing micron-sized Ti-Mo-Zr-Al alloy powder.
  • the preparation method includes the following steps:
  • the solidification structure of the alloy sheet is composed of a matrix phase with an average composition of approximately Ce 91.5 Al 8.5 and a dispersed dendritic grain phase with a composition of (Ti 98 Mo 1 Zr 1 ) 94.5 Al 5.5 , and the size of the dispersed grain phase is 1 ⁇ m to 200 ⁇ m .
  • Ti 98 Mo 1 Zr 1 94.5 Al 5.5 micron particles are separated from the solution, washed and dried, and then micron-level (Ti 98 Mo 1 Zr 1 ) 94.5 Al 5.5 alloy powder is obtained.
  • the average size of Ti 98 Mo 1 Zr 1 ) 94.5 Al 5.5 particles ranges from 1 ⁇ m to 200 ⁇ m.
  • This embodiment provides a method for preparing nano-scale Ti-Cr-Al alloy powder.
  • the preparation method includes the following steps:
  • the solidified structure of the alloy strip is composed of a matrix phase with an average composition of approximately Ce 87 Al 13 and a dispersed particle phase with a composition of (Ti 97.5 Cr 2.5 ) 91.5 Al 8.5 , and the size of the dispersed particle phase is 10nm ⁇ 200nm, and the shape is Nearly spherical.
  • This embodiment provides a method for preparing micron-sized Ti-Nb-Al alloy powder.
  • the preparation method includes the following steps:
  • the alloy melt is prepared into a Ce 68 Al 14 (Ti 96 Nb 4 ) 18 alloy sheet with a thickness of 1 mm to 20 mm at a solidification rate of 10 K/s to 1000 K/s.
  • the solidified structure of the alloy sheet is composed of a matrix phase with an average composition of Ce 85 Al 15 and a dispersed dendritic grain phase with a composition of (Ti 96 Nb 4 ) 90 Al 10 , and the size of the dispersed grain phase is 1 ⁇ m to 200 ⁇ m.
  • Ti 96 Nb 4 the resulting (Ti 96 Nb 4) 90 Al 10 micron particle dendrites separated from the solution, cleaned and dried, to obtain micron level (Ti 96 Nb 4) 90 Al 10 alloy powder, which is a single (Ti 96
  • the average size of Nb 4 ) 90 Al 10 particles ranges from 1 ⁇ m to 200 ⁇ m.
  • This embodiment provides a method for preparing nano-scale Ti-V-Al alloy powder.
  • the preparation method includes the following steps:
  • the alloy melt is prepared into a Ce 72 Al 10 (Ti 96 V 4 ) 18 alloy strip with a thickness of 20 ⁇ m-100 ⁇ m through a copper roll spinning method at a rate of ⁇ 10 5 K/s.
  • the solidified structure of the alloy strip is composed of a matrix phase with an average composition of Ce 88.5 Al 11.5 and a dispersed particle phase with a composition of (Ti 96 V 4 ) 92.5 Al 7.5 .
  • the size of the dispersed particle phase is 10nm ⁇ 300nm, and the shape is close. spherical.
  • This embodiment provides a method for preparing nano-scale Ti-V-Al alloy powder.
  • the preparation method includes the following steps:
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of Ce 85 Al 15 and a dispersed particle phase with a composition of (Ti 96 V 4 ) 90 Al 10 , and the size of the dispersed particle phase is 10nm ⁇ 300nm, and the shape is close. spherical.
  • the average size of a single (Ti 96 V 4 ) 90 Al 10 particle ranges from 10 nm to 300 nm.
  • the obtained nano-scale (Ti 96 V 4 ) 90 Al 10 alloy powder can be used in the field of titanium alloy anticorrosive coating additives.
  • This embodiment provides a method for preparing sub-micron Ti-V-Al alloy powder.
  • the preparation method includes the following steps:
  • the solidified structure of the alloy strip consists of a matrix phase with an average composition of (La 50 Ce 50 ) 85 Al 15 and a dispersed grain phase with a composition of (Ti 96 V 4 ) 90 Al 10 , and the size of the dispersed grain phase is 100 nm ⁇ 1.5 ⁇ m.
  • This embodiment provides a method for preparing micron-sized Ti-V-Al alloy powder.
  • the preparation method includes the following steps:
  • the alloy melt is prepared into a Ce 68 Al 14 (Ti 96 V 4 ) 18 alloy sheet with a thickness of 2 mm to 6 mm at a rate of 50 K/s to 500 K/s.
  • the solidified structure of the alloy sheet is composed of a matrix phase with an average composition of Ce 85 Al 15 and a dispersed dendritic particle phase with a composition of (Ti 96 V 4 ) 90 Al 10 , and the size of the dispersed particle phase is 5 ⁇ m-100 ⁇ m.
  • This embodiment provides a method for preparing spherical micron Ti-V-Al alloy powder.
  • the preparation method includes the following steps:
  • the alloy melt is prepared into a Ce 68 Al 14 (Ti 96 V 4 ) 18 alloy sheet with a thickness of 1 mm to 20 mm at a solidification rate of 10 K/s to 1000 K/s.
  • the solidified structure of the alloy sheet is composed of a matrix phase with an average composition of Ce 85 Al 15 and a dispersed dendritic grain phase with a composition of (Ti 96 V 4 ) 90 Al 10 , and the size of the dispersed grain phase is 1 ⁇ m to 200 ⁇ m.
  • the resulting (Ti 96 V 4) 90 Al 10 micron particles separated from the solution, cleaned and dried, to obtain micron level (Ti 96 V 4) 90 Al 10 alloy powder, which is a single (Ti 96 V 4 )
  • the average size of 90 Al 10 particles ranges from 1 ⁇ m to 200 ⁇ m.
  • Ti 96 V 4 90 Al 10 alloy powders with dendritic grain sizes ranging from 150 ⁇ m to 53 ⁇ m, 53 ⁇ m to 13 ⁇ m, and 13 ⁇ m to 6.5 ⁇ m respectively, and further obtain a particle size range of 150 ⁇ m through mature plasma spheroidizing technology ⁇ 53 ⁇ m, 53 ⁇ m-13 ⁇ m and 13 ⁇ m ⁇ 6.5 ⁇ m spherical (Ti 96 V 4 ) 90 Al 10 alloy powder.
  • the obtained spherical (Ti 96 V 4 ) 90 Al 10 alloy powder can be used in the fields of 3D metal printing and metal injection molding (MIM).
  • This embodiment provides a preparation method for preparing high-purity nano Ti-V-Al alloy powder from low-purity raw materials.
  • the preparation method includes the following steps:
  • T containing at least one of O, H, N, P, S, F, and Cl
  • impurity elements whose atomic percentage content is 3at.%, 1at.%, 2.5at.%, and 0.2at.% respectively Ti, electrolytic V, rare earth Ce, and Al raw materials.
  • the initial alloy raw materials are fully melted according to a certain ratio to obtain an initial alloy melt with an atomic percentage content mainly of Ce 70.5 Al 10 (Ti 96 V 4 ) 17 T 2.5 .
  • the initial alloy melt is prepared into a Ce 70.5 Al 10 (Ti 96 V 4 ) 17 T 2.5 alloy strip with a thickness of -20 ⁇ m at a solidification rate of -10 6 K/s through a copper roll spinning method.
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of Ce 86.5 Al 10.5 T 3 and a dispersed grain phase with a composition of (Ti 96 V 4 ) 92.25 Al 7.5 T 0.25.
  • the volume percentage of the dispersed particle phase in the alloy strip is about 12%, and the particle size of the dispersed particle phase ranges from 5 nm to 100 nm, and the shape is nearly spherical.
  • the obtained alloy strip is an alloy strip composed of endogenous aluminum alloy powder and coating.
  • the Ce 70.5 Al 10 (Ti 96 V 4 ) 17 T 2.5 alloy strip prepared above is reacted with an aqueous hydrochloric acid solution with a concentration of 0.5 mol/L.
  • the matrix phase whose average composition is mainly Ce 86.5 Al 10.5 T 3 reacts with acid to become ions into the solution, while the nano-scale (Ti 96 V 4 ) 92.25 Al 7.5 T 0.25 dispersed particle phase that is difficult to react with acid gradually Disperse from the matrix phase.
  • the alloy powder has a particle size ranging from 5 nm to 100 nm, and the content of T impurity therein is greatly reduced compared to the sponge Ti raw material.
  • the nano-level (Ti 96 V 4 ) 92.25 Al 7.5 T 0.25 alloy powder is mixed with epoxy resin and other coating components in a protective atmosphere to prepare a titanium alloy nano-modified polymer anticorrosive coating.
  • This embodiment provides a preparation method for preparing high-purity micron Ti-Nb-Al alloy powder from low-purity raw materials.
  • the preparation method includes the following steps:
  • T containing at least one of O, H, N, P, S, F, and Cl
  • impurity elements whose atomic percentage content is 3at.%, 1at.%, 2.5at.%, and 0.2at.% respectively Ti, Nb flakes, rare earth Ce, and Al raw materials.
  • the initial alloy raw materials are fully melted according to a certain ratio to obtain an initial alloy melt with the main component of Ce 67.5 Al 13 (Ti 96 Nb 4 ) 17 T 2.5 in atomic percentage.
  • the initial alloy melt is made into a Ce 67.5 Al 13 (Ti 96 Nb 4 ) 17 T 2.5 alloy strip with a thickness of ⁇ 1 mm through a copper roll spinning method at a solidification rate of 300 K/s.
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of Ce 83.2 Al 13.7 T 3.1 and a dispersed grain phase with a composition of (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05.
  • the volume percentage of the dispersed particle phase in the alloy strip is about 13%, and the particle size of the dispersed particle phase ranges from 0.5 ⁇ m to 150 ⁇ m, and the shape is mainly dendritic.
  • the Ce 67.5 Al 13 (Ti 96 Nb 4 ) 17 T 2.5 alloy strip prepared above is reacted with an aqueous hydrochloric acid solution with a concentration of 0.5 mol/L.
  • the matrix phase whose average composition is mainly Ce 83.2 Al 13.7 T 3.1 reacts with acid and turns into ions into the solution, while the micron-sized (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 dispersed particle phase that is difficult to react with acid gradually Disperse from the matrix phase.
  • the dispersed (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 particles are separated from the solution, cleaned and dried in a protective atmosphere to obtain micron-level (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 alloy
  • the powder has a particle size ranging from 0.5 ⁇ m to 150 ⁇ m, and the T impurity content in it is greatly reduced compared to the sponge Ti raw material.
  • Ti 96 Nb 4 89.95 Al 10 T 0.05 alloy powder was sieved through 270 mesh, 1000 mesh, 2000 mesh, and 8000 mesh sieve, and the dendrite size ranges were 150 ⁇ m ⁇ 53 ⁇ m, 53 ⁇ m ⁇ 13 ⁇ m, Graded (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 alloy powder of 13 ⁇ m ⁇ 6.5 ⁇ m, 6.5 ⁇ m ⁇ 1.6 ⁇ m and less than 1.6 ⁇ m.
  • Ti 96 Nb 4 89.95 Al 10 T 0.05 alloy powders with dendritic grain sizes ranging from 150 ⁇ m to 53 ⁇ m, 53 ⁇ m to 13 ⁇ m, and 13 ⁇ m to 6.5 ⁇ m, and further prepare a particle size range of 150 ⁇ m by plasma spheroidizing technology ⁇ 53 ⁇ m, 53 ⁇ m-13 ⁇ m and 13 ⁇ m ⁇ 6.5 ⁇ m, and the shape is close to spherical Ti-Nb-Al alloy powder.
  • the obtained spherical Ti-Nb-Al alloy powder can be used in the fields of 3D metal printing and metal injection molding.
  • This embodiment provides a preparation method for preparing high-purity nano Ti-Al alloy powder from low-purity raw materials.
  • the preparation method includes the following steps:
  • T (containing at least one of O, H, N, P, S, F, Cl) impurity elements with atomic percentage content of 3at.%, 2.5at.%, 0.2at.% sponge Ti and rare earth Ce respectively , And Al raw materials.
  • the sponge Ti also contains 0.5 at.% of Mn; the rare earth Ce also contains 0.7 at.% of Mg.
  • the initial alloy raw materials are fully melted according to a certain ratio to obtain an initial alloy melt with an atomic percentage content mainly of (Ce 99.3 Mg 0.7 ) 70.5 Al 10 (Ti 99.5 Mn 0.5 ) 17 T 2.5 .
  • the initial alloy melt is prepared into a (Ce 99.3 Mg 0.7 ) 70.5 Al 10 (Ti 99.5 Mn 0.5 ) 17 T 2.5 alloy strip with a thickness of ⁇ 20 ⁇ m through a copper roll spinning method at a solidification rate of ⁇ 10 6 K/s .
  • the solidified structure of the alloy strip is composed of a matrix phase whose average composition is mainly (Ce 99.3 Mg 0.7 ) 86.5 Al 10.5 T 3 and a dispersed grain phase whose composition is mainly (Ti 99.5 Mn 0.5 ) 92.25 Al 7.5 T 0.25.
  • the volume percentage of the dispersed particle phase in the alloy strip is about 12%, and the particle size of the dispersed particle phase ranges from 5nm to 150nm, and the shape is nearly spherical.
  • the number of single crystal particles accounts for the proportion of all particles. More than 80%.
  • the obtained alloy strip is an alloy strip composed of endogenous aluminum alloy powder and coating.
  • the (Ce 99.3 Mg 0.7 ) 70.5 Al 10 (Ti 99.5 Mn 0.5 ) 17 T 2.5 alloy strip prepared above was reacted with an aqueous hydrochloric acid solution with a concentration of 1 mol/L.
  • the average composition is mainly (Ce 99.3 Mg 0.7 ) 86.5 Al 10.5 T 3 and the matrix phase reacts with acid to become ions into the solution, while the nano-sized (Ti 99.5 Mn 0.5 ) which is difficult to react with acid 92.25 Al 7.5 T 0.25
  • the dispersed particle phase gradually separates and disperses from the matrix phase.
  • the dispersed (Ti 99.5 Mn 0.5 ) 92.25 Al 7.5 T 0.25 nanoparticles were separated from the solution, washed and dried in a protective atmosphere, and then nano-sized (Ti 99.5 Mn 0.5 ) 92.25 Al 7.5 T 0.25 was obtained.
  • the alloy powder has a particle size ranging from 5 nm to 150 nm, and the content of T impurity therein is greatly reduced compared to the sponge Ti raw material.
  • the introduction of Mn and Mg in the alloy melt did not result in the formation of intermetallic compounds composed of Ce, Mg, Ti, and Mn in the initial alloy strip; it did not affect the structure of the matrix phase and the dispersed particle phase in the alloy strip. The characteristic does not affect the law of the decrease of the impurity content in the dispersed particle phase.
  • the nano-level (Ti 99.5 Mn 0.5 ) 92.25 Al 7.5 T 0.25 alloy powder is mixed with epoxy resin and other coating components in a protective atmosphere to prepare a titanium alloy nano-modified polymer anticorrosive coating.

Abstract

一种含铝合金粉体的制备方法及其应用及一种合金条带,所述制备方法利用初始合金凝固组织中包含基体相与弥散颗粒相的特点,通过酸溶液将基体相反应去除,从而使得弥散颗粒相分离出来,得到含铝合金粉体。所述制备方法工艺简单,可以制备得到纳米级、亚微米级、微米级以及毫米级的不同形貌的含铝合金粉体,可应用于光电子器件、吸波材料、催化剂、3D金属打印、金属注射成型、防腐涂料等领域。

Description

一种含铝合金粉体的制备方法及其应用及一种合金条带 技术领域
本发明涉及金属材料技术领域,特别涉及一种含铝合金粉体的制备方法及其应用及一种合金条带。
背景技术
合金粉体的制备方法虽然很多,但每种方法都有一定的局限性。例如,液相法的缺点是产量低、成本高和工艺复杂等。机械法的缺点是在制取粉体后存在分级困难的问题,且产品的纯度、细度和形貌均难以保证。旋转电极法和气体雾化法是目前制备高性能合金粉体的主要方法,但生产效率低,能耗相对较大。气流磨法和氢化脱氢法适合大批量工业化生产,但对原料金属和合金的选择性较强。此外,金属粉或者合金粉的杂质含量,尤其是氧含量,对其性能具有极大的影响。目前,主要通过控制原料纯度与真空度的方法来控制金属粉或者合金粉的杂质含量,成本高昂。因此,开发新的高纯合金粉体材料的制备方法,具有重要的意义。
发明内容
基于此,有必要针对上述问题,提供一种含铝合金粉体的制备方法及其应用;
一种含铝合金粉体的制备方法,其特征在于,包括如下步骤:
步骤一,选择初始合金原料,按照初始合金成分配比将初始合金原料熔化,得到均匀的初始合金熔体;所述初始合金熔体的主要成分为RE aAl bM cT d;其中,RE包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种;T为杂质元素且包含O、H、N、P、S、F、Cl中的至少一种;a、b、c、d分别代表对应组成元素的原子百分比含量,且35%≤a≤99.7%,0.1%≤b≤25%,0.1%≤c≤35%,0≤d≤10%;
步骤二,将初始合金熔体凝固成初始合金条带;所述初始合金条带的凝固组织包括基体相和弥散颗粒相;所述基体相的熔点低于所述弥散颗粒相,所述弥散颗粒相被包覆于所述基体相中;所述基体相的平均成分主要为RE x1Al y1T z1,所述弥散颗粒相的成分主要为M x2Al y2T z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量,且68%≤x1<99.8%,0.2%≤y1≤30%,0≤z1≤30%;77%≤x2≤99.8%,0.1%≤y2≤22%,0≤z2≤1.5%, z2≤d≤z1;所述初始合金熔体凝固过程中,初始合金熔体中的杂质元素T在弥散颗粒相与基体相中重新分配,并富集于所述基体相中,从而使所述弥散颗粒相得到纯化;
步骤三,将所述初始合金条带与酸溶液反应,所述初始合金条带中的基体相与酸反应变成离子进入溶液,而不与所述酸溶液反应的弥散颗粒相则从初始合金条带中脱离出来,即得主要成分为M x2Al y2T z2的含铝合金粉体材料。
所述步骤一中,
进一步地,所述初始合金熔体中的杂质元素来源包括:初始合金原料引入杂质,熔炼过程中气氛或坩埚引入杂质。其中,气氛引入杂质是指合金熔体吸收的环境气氛中的O、N、H等杂质。
进一步地,所述初始合金原料包括含有杂质元素T的M-T原料。例如,当M为Ti,且T包含O时,M-T原料即包括含有O杂质的Ti-O原料。
进一步地,T为杂质元素,且包含O、H、N、P、S、F、Cl中的至少一种;且这些杂质元素的总含量即为所述T杂质元素的含量;
进一步地,作为优选,0<d≤10%。
进一步地,作为优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种,且当M中包含有Fe、Co、Ni中的至少一种时,还同时包含有W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;
作为进一步优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;
所述步骤二中,
进一步地,所述初始合金条带中不含有由RE与M构成的金属间化合物;
进一步地,所述合金熔体凝固的方式包括甩带法、连铸法;一般来说,通过甩带法可以获得较薄的初始合金条带;通过连铸法可以获得较厚的合金条带。
不论是甩带法获得的薄合金条带,还是连铸法获得的厚合金条带,均与普通铸造法获得的合金铸锭形貌完全不同,普通铸造法获得的合金铸锭一般没有明显的长度厚度对比。
进一步地,所述初始合金条带的厚度范围为5μm~50mm;进一步地,所述初始合金条带的厚度范围为5μm~5mm;作为优选,所述初始合金条带的厚度范围为5μm~1mm;作为进一步优选,所述初始合金条带的厚度范围为5μm~200μm;作为进一步优选,所述初始合金条带的厚度范围为5μm~20μm。
需要说明的是,当初始合金条带的厚度为毫米级时,其也可以被称为合金薄板。
进一步地,所述初始合金条带横截面的宽度是其厚度的2倍以上。
进一步地,所述初始合金条带的长度是其厚度的10倍以上。
作为优选,所述初始合金条带的长度是其厚度的50倍以上。
作为优选,所述初始合金条带的长度是其厚度的100倍以上。
进一步地,所述初始合金熔体凝固的速率为1K/s~10 7K/s。
进一步地,所述弥散颗粒相的颗粒大小与初始合金熔体的凝固速率有关;一般来说,弥散颗粒相的颗粒粒径大小与初始合金熔体的凝固速率成负相关的关系,即初始合金熔体的凝固速率越大,弥散颗粒相的颗粒粒径就越小。
进一步地,所述弥散颗粒相的颗粒粒径范围为2nm~3mm;进一步地,所述弥散颗粒相的颗粒粒径范围为2nm~500μm;作为优选,所述弥散颗粒相的颗粒粒径范围为2nm~99μm;作为进一步优选,所述弥散颗粒相的颗粒粒径范围为2nm~5μm;作为进一步优选,所述弥散颗粒相的颗粒粒径范围为2nm~200nm;作为进一步优选,所述弥散颗粒相的颗粒粒径范围为2nm~100nm。
进一步地,所述初始合金熔体凝固的速率为10 5K/s~10 7K/s时,可以获得粒径以纳米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为10 4K/s~10 5K/s时,可以获得粒径以亚微米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为10 2K/s~10 4K/s时,可以获得粒径以微米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为1K/s~10 2K/s时,可以获得粒径以毫米级尺度为主的弥散颗粒。
进一步地,所述弥散颗粒相的颗粒形状不限,可包括枝晶形、球形、近球形、方块形、饼形、棒条形中的至少一种;当颗粒形状为棒条形时,颗粒的大小特指棒条横截面的直径尺寸。
进一步地,所述弥散颗粒相从所述初始合金熔体中凝固析出,根据形核长大理论,无论是刚刚形核长大的近球形纳米颗粒,还是充分长大的微米级、毫米级树枝晶颗粒,其晶体生长都具有固定的取向关系,从而使得析出的单个颗粒均主要由一个单晶构成。
当所述弥散颗粒在整个初始合金条带中体积百分含量较高时,在单晶颗粒的内生析出过程中,不排除有两个或两个以上颗粒合并的情况。如果两个或两个以上单晶颗粒仅仅软团聚、相互吸附、或者仅少许部位接触连接在一起,没有像多晶材料那样通过正常晶界充分结合成一个颗粒,其仍然为两个单晶颗粒。其特点是,在后续过程去除基体相后,这些单晶颗粒可以轻易地通过包括超声分散处理、气流磨碎化等技术等分开。而正常的韧性金属或合金的多晶材料,则难以通过包括超声分散处理、气流磨碎化等技术将晶界分开。
作为优选,所述初始合金条带中弥散颗粒中的单晶颗粒数目在所有弥散颗粒数目中的占比不低于75%。
作为进一步优选,所述弥散颗粒中的单晶颗粒数目在所有弥散颗粒数目中的占比不低于90%。
进一步地,所述弥散颗粒相在所述初始合金条带中的体积百分含量不超过40%。
进一步地,由于c≤35%,而RE元素主要为大原子的稀土元素,其原子量普遍高于M元素的原子量。因此,当控制M元素的原子百分含量在合金熔体中不超过35%时,主要由M元素组成的弥散颗粒相的体积百分含量也一般不超35%。
进一步地,所述Al元素在平均成分主要为RE x1Al y1T z1的基体相中的原子百分含量高于其在成分主要为M x2Al y2T z2的弥散颗粒相中的原子百分含量,即y1>y2。
作为优选,成分主要为M x2Al y2T z2的弥散颗粒相中不含有RE元素。
进一步地,z2小于M-T原料中T杂质元素的原子百分含量,即所述主要成分为M x2Al y2T z2的弥散颗粒相中的T杂质元素的原子百分含量低于M-T原料中的T杂质元素的原子百分含量。
进一步地,z2≤d≤z1,且2z2≤z1,
作为优选,z2≤d≤z1,且3z2≤z1,
进一步地,z2≤d≤z1,3z2≤z1,且0≤z2≤1.5%;
作为优选,0<z2<d<z1,3z2<z1,且0<z2≤1.5%;即所述弥散颗粒相中T杂质含量低于所述初始合金熔体中的T杂质含量,且所述弥散颗粒相中T杂质含量的3倍仍然低于所述基体相中的T杂质含量;
作为优选,68%≤x1<99.7%,0.2%≤y1≤30%,0<z1≤30%;77%≤x2≤99.8%,0.1%≤y2≤22%,0<z2≤1.5%,z2<d<z1;
作为进一步优选,0<z2<d<z1,3z2<z1,且0<z2≤0.75%。
本发明采用原子百分比含量来表达T杂质含量。通过元素的原子百分比含量来表征各元素的组成,可以通过物质的量的概念准确地表达元素含量的增减变化,比如杂质元素的增减与变化。如果采用元素的质量百分比含量(或ppm概念)来表征各个元素的含量,由于各元素原子量的不同,则容易产生错误的结论。举例来说,如原子百分比含量为Ti 45Gd 45O 10的合金,包含100个原子,O的原子百分比含量为10at%。将这100个原子分成Ti 45O 4(原子百分比组成为Ti 91.8O 8.2)与Gd 45O 6(原子百分比组成为Gd 88.2O 11.8)两部分,Gd 45O 6中氧的原子百分比含量增为11.8at%,Ti 45O 4中氧的原子百分比含量减为8.2at%,可以很准确地表达Gd中富集了O。但若采用O的质量百分比含量来衡量,Ti 45Gd 45O 10中O的质量百分比含量为1.70wt%,Ti 45O 4与Gd 45O 6中O的质量百分比含量分别为2.9wt.%与1.34wt.%,将会得出Ti 45O 4中O含量 相比Gd 45O 6中O含量明显增加的错误结论。
所述步骤三中,
进一步地,所述酸溶液中的酸包括硫酸、盐酸、硝酸、高氯酸、磷酸、醋酸、草酸、甲酸、碳酸中的至少一种。
进一步地,所述酸的摩尔浓度为0.01mol/L~10mol/L。
进一步地,所述初始合金条带与所述酸溶液反应的温度为0℃~100℃,反应时间为0.1min~24h。
进一步地,所述含铝合金粉体材料的颗粒粒径范围为2nm~3mm。
作为优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~500μm;
作为优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~99μm;
作为进一步优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~10μm;
作为进一步优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~1μm;
作为进一步优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~200nm;
作为进一步优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~100nm。
进一步地,初始合金条带与酸溶液反应后,弥散颗粒从初始合金条带中脱离出来,对其清洗、干燥,即得到主要成分为M x2Al y2T z2的含铝合金粉体材料。
进一步地,在所述步骤三之后还进行以下步骤:将所述含铝合金粉体材料筛分后,选择粒径范围为5μm~200μm的含铝合金粉体材料进行等离子球化处理,以得到呈球形的含铝合金粉体材料;
进一步地,所述球形含铝合金粉体的粒径大小范围为5μm~200μm。
进一步地,本发明还涉及上述制备方法得到的含铝合金粉体或球形含铝合金粉体材料在光电子器件、吸波材料、催化剂、粉末冶金、3D金属打印、金属注射成型、涂料中的应用。
进一步地,如上述制备方法得到的球形含铝合金粉体材料在金属粉3D打印领域中的应用,其特征在于,所述球形含铝合金粉体的粒径为5μm~200μm。
进一步地,如上述制备方法得到的含铝合金粉体或球形含铝合金粉体在金属注射成型与粉末冶金中的应用,其特征在于,所述含铝合金粉体或球形含铝合金粉体的粒径为0.1μm~50μm。
进一步地,如上述制备方法得到的含铝合金粉体在涂料中的应用,其特征在于,所述含铝合金粉体的粒径为2nm~5μm。
本发明还涉及一种合金条带,其特征在于,包含内生含铝合金粉与包覆体;所述合金条带的凝固组织包括基体相和弥散颗粒相,基体相即为所述包覆体,弥散颗粒相即为所述内生 含铝合金粉;所述包覆体的熔点低于所述内生含铝合金粉,所述内生含铝合金粉被包覆于所述包覆体中;所述包覆体的平均成分主要为RE x1Al y1T z1,所述内生含铝合金粉的主要成分为M x2Al y2T z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量,且68%≤x1<99.8%,0.2%≤y1≤30%,0≤z1≤30%;77%≤x2≤99.8%,0.1%≤y2≤22%,0≤z2≤1.5%,z2≤d≤z1;y1>y2;所述RE包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种;T为杂质元素且包含O、H、N、P、S、F、Cl中的至少一种。
作为优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种,且当M中包含有Fe、Co、Ni中的至少一种时,还同时包含有W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;
作为进一步优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;
作为优选,主要成分为M x2Al y2T z2的内生含铝合金粉中不含有RE元素。
进一步地,所述合金条带的厚度范围为5μm~50mm;
作为优选,所述合金条带的厚度范围为5μm~5mm;
作为优选,所述合金条带的厚度范围为5μm~1mm;
作为进一步优选,所述合金条带的厚度范围为5μm~200μm;
作为进一步优选,所述合金条带的厚度范围为5μm~20μm。
进一步地,所述合金条带横截面的宽度是其厚度的2倍以上;
进一步地,所述初始合金条带的长度是其厚度的10倍以上;
作为优选,所述初始合金条带的长度是其厚度的50倍以上;
作为优选,所述初始合金条带的长度是其厚度的100倍以上。
进一步地,所述内生含铝合金粉的颗粒粒径范围为2nm~3mm;
作为优选,所述内生含铝合金粉的颗粒粒径范围为2nm~500μm;
作为优选,所述内生含铝合金粉的颗粒粒径范围为2nm~99μm;
作为进一步优选,所述内生含铝合金粉的颗粒粒径范围为2nm~10μm;
作为进一步优选,所述内生含铝合金粉的颗粒粒径范围为2nm~1μm;
作为进一步优选,所述内生含铝合金粉的颗粒粒径范围为2nm~200nm;
作为进一步优选,所述内生含铝合金粉的颗粒粒径范围为2nm~100nm。
进一步地,所述内生含铝合金粉的颗粒形状包括枝晶形、球形、近球形、方块形、饼形、棒条形中的至少一种。
进一步地,所述合金条带中内生含铝合金粉中的单晶颗粒数目在所有内生含铝合金粉数 目中的占比不低于75%。
进一步地,所述内生含铝合金粉在所述合金条带中的体积百分含量不超过40%。
进一步地,2z2≤z1,且0≤z2≤1.5%;
作为优选,3z2<z1,且0<z2≤1.5%;
作为优选,68%≤x1<99.7%,0.2%≤y1≤30%,0<z1≤30%;77%≤x2≤99.8%,0.1%≤y2≤22%,0<z2≤1.5%,z2<d<z1;
作为进一步优选,3z2<z1,且0<z2≤0.75%。
需要说明的是,所述A、M或者T中还可以含有上述所列元素之外的其它元素或杂质元素。只要这些元素的引入或者含量的变化不引起初始合金凝固过程与规律发生“质变”的结果,都不影响本发明上述技术方案的实现。
具体来说,所述初始合金凝固过程与规律不发生“质变”的结果,是指所述A、M或者T中含有上述所列元素之外的其它元素或杂质元素时,下述1)-3)所列事实过程与规律仍然存在:
1)所述初始合金条带中不含有主要由RE与M构成的金属间化合物;
2)所述初始合金条带的凝固组织包括基体相和弥散颗粒相;所述基体相的熔点低于所述弥散颗粒相,所述弥散颗粒相被包覆于所述基体相中;
3)当初始合金熔体中T杂质含量不为0时,所述弥散颗粒相中T杂质含量低于所述初始合金熔体中的T杂质含量,且所述弥散颗粒相中T杂质含量的2倍仍然低于所述基体相中的T杂质含量。
本发明所述技术方案具有以下有益效果:
首先,实现了包含有W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni等元素的金属或合金材料中Al元素的固溶。在上述合金材料中,Al元素的添加具有非常重要的作用。例如,目前使用最广泛的钛合金即Ti6Al4V合金。对于Ti6Al4V合金粉末来说,一般通过熔炼Ti6Al4V合金熔体,然后通过雾化制粉技术获得Ti6Al4V合金粉末。受雾化制粉技术的限制,其很难获得超细的Ti6Al4V合金粉末,甚至不能通过雾化制粉技术获得纳米级的Ti6Al4V合金粉末。因此,通过本发明所涉及的“去相法”实现Al元素在Ti-V合金中的添加,并制备各种粒径的Ti6Al4V合金粉末,具有非常重要的意义。本发明巧妙地发现,当在RE-M组成的合金中添加可观含量Al元素时(可以超过10at.%甚至更高),合金凝固组织中Al元素可以通过一定的含量分配关系同时存在于主要由RE组成的基体相与主要由M组成的弥散颗粒相中。由于RE-Al基体相可以很容易被酸反应去除,而以M为主的含Al的弥散颗粒中的Al受惰性M元素的保护,不会轻易被酸反应去除(如Ti6Al4V合金具有很好的耐酸腐蚀能 力),这就使得通过酸反应去除基体相制备含铝钛合金粉末成为了可能。
其次,通过巧妙的元素选择,确保了初始合金条带中不生成由RE与M组成的金属间化合物,从而使得含铝与M的目标成分合金颗粒可以在初始合金熔体凝固过程中形成,并可以通过后续过程分离。本发明选择含有杂质T的金属M、金属Al与稀土RE熔炼成分主要成分为RE aAl bM cT d的初始合金熔体。该初始合金熔体的凝固组织由主要成分为M x2Al y2T z2的弥散颗粒相与平均成分主要为RE x1Al y1T z1的基体相组成,该凝固组织结构有利于弥散颗粒相通过初始合金条带与酸溶液的反应分离。具体来说,所述初始合金条带在与所述酸溶液反应时,所述酸溶液中的氢离子与基体相中的RE元素和Al元素反应,将RE元素和Al元素溶解变成离子进入溶液;主要成分为M x2Al y2T z2的弥散颗粒相中固溶的Al受到惰性元素M的保护,不易与酸溶液反应。因此,主要成分为M x2Al y2T z2的弥散颗粒相在基体相与酸溶液反应去除后,即可以分散脱离出来,得到主要成分为M x2Al y2T z2的含铝合金粉体。根据初始合金条带冷速的不同,主要成分为M x2Al y2T z2的弥散颗粒相的大小可以为纳米级,亚微米级、微米级、甚至毫米级,则由其制备的含铝合金粉体的粒径也可以为纳米级,亚微米级、微米级、甚至毫米级。
第三,可以获得以单晶颗粒为主的含铝合金粉末。相比多晶粉末,单晶粉末可以获得诸多显著且有益效果。在所述初始合金熔体凝固过程中,每一个内生弥散颗粒都是从熔体中某个位置形核后按照特定的原子排列方式长大生成。通过控制基体相的体积百分含量,确保每个内生颗粒可以弥散分布的情况下,各个内生颗粒之间难以发生合并长大。因此,最终获得的各个弥散分布的颗粒相大多都是单晶相。即使尺度大到数十微米或毫米级的枝晶颗粒,其每个次级枝晶的生长方向都与主枝晶的生长方向保持一定的位相关系,其仍然属于单晶颗粒。对于多晶材料来说,其晶界一般容易含有凝固过程中从晶内排出来的杂质元素,因此很难获得高纯的多晶粉体材料。而当粉体材料主要由单晶颗粒组成时,其纯度必然能得到保障。而且,单晶颗粒表面原子具有特定的排列方式,如(111)面排列等,这些特定的排列方式会赋予单晶粉体材料特殊的力学、物理、化学性能,从而产生有益的效果。
第四,实现了通过低纯原料获得高纯含铝合金粉,并为低纯原料制备高纯金属粉体材料指出了一条新的途径,具有积极意义。本发明高纯含铝合金粉纯度的提高主要通过以下两个机制实现:1)RE稀土元素对初始合金熔体杂质元素的“吸收”作用。由于所选RE稀土元素与杂质元素T之间具有极强的亲和力,这可以使得初始合金熔体中的杂质元素T要么更多地进入主要由RE元素组成的基体相中,要么在熔体状态时与RE稀土元素形成熔渣,并与合金熔体分离去除;2)含铝内生合金粉(内生析出的弥散颗粒相)的形核长大过程中,杂质元素T会被排入剩余熔体中。只要凝固过程中含铝内生合金粉不晚于基体相析出,其杂质都会富集于最后凝固的那部分熔体,即主要由RE稀土元素组成并凝固形成基体相的那部分熔 体。两个机制导致的结果是,杂质元素T富集于主要由RE稀土组成的基体相中,并使含铝内生弥散颗粒相得到提纯。此外,由于第二相基体的存在,熔炼过程中由于坩埚与熔体相互作用从而进入熔体的与坩埚相关的杂质也一般集中在第二相基体中,这就进一步降低了含铝合金粉中的杂质含量,使得熔炼过程中对坩埚的要求进一步降低,极大地降低了生产成本。
第五,所述由内生含铝合金粉与包覆体构成的合金条带,创造性地利用原位生成的基体相包裹内生含铝合金粉,保持了内生含铝合金粉的高纯度与高活性。具体来说,无论传统化学方法还是物理方法所制备的金属或合金粉,尤其是比表面积极大的纳米粉,极易自然氧化,都面临粉末的保存困难问题。针对这一问题,本发明其中一个技术方案在制备出由内生含铝合金粉与包覆体构成的合金条带之后,并不急于将包覆体去除,而是直接利用包覆体保护内生含铝合金粉不被自然氧化。这种由内生含铝合金粉与包覆体构成的合金条带可以直接作为下游生产的原料,因此有成为一类特殊产品的潜力。当下游生产需要使用高纯内生含铝合金粉时,可以根据下一工序的特点,选择合适的时机并在合适的环境下通过酸溶液将内生含铝合金粉从合金条带中的包覆体中释放,再在尽可能短的时间使释放出来的内生含铝合金粉进入下一生产流程,从而使含铝合金粉受到氧等杂质污染的机会大大减少。例如,当内生含铝合金粉为纳米粉时,可以在含铝合金粉从包覆体中释放的同时或者随后马上与树脂复合,从而制备具有高活性的含铝纳米合金粉添加的树脂基复合材料。
第六,所述步骤二中通过凝固获得的固态合金为条带状,其保证了产品形状的均一性与大规模生产的可行性。当合金条带为薄合金条带时,可以通过甩带法制备,只要维持合金熔体流向旋转辊的流量固定,旋转辊的转速固定,就可以获得厚度均一的合金薄带,而且该制备过程可以连续进行,利于大规模生产。当合金条带为厚合金条带时,可以通过成熟的连铸法制备,连铸的原理与甩带法的原理相似,也可以通过熔体获得连续且厚度均一的厚带,制备过程也可以连续进行,利于大规模生产。当合金条带厚度均一时,冷速也较为均匀,获得弥散颗粒粒度也较为均匀。相比而言,如果凝固获得的固态合金为铸锭状时,根据常识,铸锭没有均一的厚度,也没有明显的长度,一般会导致内部熔体散热困难,容易获得异常大的内生颗粒,只有单纯需要对大的内生颗粒进行收集并对其提纯的时候才需要这样操作。因此,本发明通过凝固获得合金条带,适合后续通过“去相法”进行含铝合金粉体材料的制备。
因此,本发明的制备方法工艺简单、易于操作、成本低,可以制备得到纳米级、亚微米级、微米级、以及毫米级的不同形貌的高纯含铝合金粉体,在光电子器件、吸波材料、催化剂、粉末冶金、3D金属打印、金属注射成型、涂料等领域具有很好的应用前景。
作为备选方案,本发明还提供一种含铝合金粉体的制备方法,包括如下步骤:
S1,提供初始合金,所述初始合金的成分为RE aAl bM c,其中,RE选自Y、La、Ce、Pr、 Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M选自W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种,a、b、c分别代表对应组成元素的原子百分比含量,且0.1%≤b≤25%,0.1%≤c≤35%,a+b+c=100%,所述初始合金的凝固组织包括基体相和弥散颗粒相,所述基体相的平均成分为RE x1Al y1,所述弥散颗粒相的成分为M x2Al y2,x1、y1、x2、y2分别代表对应组成元素的原子百分比含量,且0.5%≤y1≤30%,0.1%≤y2≤25%,x1+y1=100%,x2+y2=100%;
S2,提供酸溶液,将所述初始合金与所述酸溶液混合,使所述初始合金中的基体相与所述酸溶液反应变成金属离子,所述初始合金中的弥散颗粒相脱离出来,得到含铝合金粉体,所述含铝合金粉体的成分为M x2Al y2
步骤S1中,按照特定组成与含量配制熔炼初始合金RE aAl bM c所需的原料;
步骤S1中,所述初始合金通过以下子步骤得到:
(1)按照配比称取原料;
(2)将所述原料熔化得到合金熔体;
(3)将所述合金熔体凝固得到所述初始合金,其中,所述凝固的速率为0.001K/s~10 7K/s。
上述子步骤(1)中,如果原料是金属M、金属Al与稀土RE,则可将各元素按照配比熔化制备所述初始合金熔体。如果提供的合金原料直接为RE aAl bM c合金时,则可以将RE aAl bM c合金重熔得到合金熔体。当然,也可以将金属M、金属Al与稀土RE熔融配制成RE aAl bM c合金,再将RE aAl bM c合金重熔得到合金熔体。
上述子步骤(3)中,所述凝固方法不做限定,可为铸造、熔体甩带、熔体抽拉等方法。考虑到最终形成的合金粉体的颗粒大小、形貌与初始合金中成分为M x2Al y2的弥散颗粒相的颗粒大小、形貌基本一致,而所述成分为M x2Al y2的弥散颗粒相的颗粒大小与制备过程中合金熔体的凝固速率有关。一般来说,成分为M x2Al y2的弥散颗粒相的颗粒粒径大小与合金熔体的冷却速率成负相关的关系,即:合金熔体的凝固速率越大,弥散颗粒相的颗粒粒径越小。因此,所述合金熔体的凝固速率优选为0.001K/s~10 7K/s,使得初始合金中成分为M x2Al y2的弥散颗粒相的颗粒大小为2nm~50mm,以便制备得到纳米级、亚微米级、微米级以及毫米级的不同形貌的含铝合金粉体。
上述子步骤(3)中,该合金熔体凝固得到的初始合金的凝固组织包括基体相和弥散颗粒相,所述弥散颗粒相即为弥散分布于基体相中的颗粒相,其中,所述基体相的平均成分为RE x1Al y1,所述弥散颗粒相的成分为M x2Al y2,且成分为M x2Al y2的弥散颗粒相中固溶的少量Al受到惰性元素M的保护,不易与酸溶液反应,平均成分为RE x1Al y1的基体相为活性成分,非常容易与酸反应。所以,该初始合金的凝固组织有利于后续分离,得到成分为M x2Al y2的含 铝合金粉体。
进一步地,Al元素在平均成分为RE x1Al y1的基体相中的原子百分含量高于成分为M x2Al y2的弥散颗粒相中的原子百分含量,即y1>y2。
进一步地,所述弥散颗粒相的颗粒形状不限,可包括包括枝晶形、球形、近球形、方块形、饼形、棒形中的至少一种,当颗粒形状为棒状时,颗粒的大小特指棒状横截面的直径尺寸。
进一步地,且所述弥散颗粒相的颗粒大小为2nm~50mm。
进一步地,所述酸溶液中的酸包括硫酸、盐酸、硝酸、高氯酸、磷酸、醋酸、草酸、甲酸、碳酸中的至少一种,且所述酸的摩尔浓度为0.001mol/L~20mol/L。
进一步地,所述酸溶液中溶剂包括水。
进一步地,所述基体相与所述酸溶液反应的温度为0℃~100℃,时间为0.1min~24h。
进一步地,在所述基体相与所述酸溶液反应的步骤之后还进行以下步骤:将脱离出来的预制粉体筛分后分别进行等离子球化处理,以得到具有不同粒径且呈球形的含铝合金粉体;或者,将脱离出来的预制粉体进行等离子球化处理并筛分,以得到具有不同粒径且呈球形的含铝合金粉体。
进一步地,一种如上述制备方法得到的含铝合金粉体在光电子器件、吸波材料、催化剂、3D金属打印、金属注射成型、防腐涂料中的应用。
进一步地,一种如上述制备方法得到的含铝合金粉体在3D金属打印中的应用,其特征在于,所述含铝合金粉体的粒径为0.5μm~1mm。
进一步地,一种如上述制备方法得到的含铝合金粉体在金属注射成型中的应用,其特征在于,所述含铝合金粉体的粒径为0.1μm~50μm。
进一步地,一种如上述制备方法得到的含铝合金粉体在防腐涂料中的应用,其特征在于,所述含铝合金粉体的粒径为2nm~5μm。
本发明所述含铝合金粉体的制备方法具有以下有益方面:
首先,选择特定类别与含量的金属M、金属Al与稀土RE制成成分为RE aAl bM c的初始合金。该初始合金的凝固组织由成分为M x2Al y2的弥散颗粒相与平均成分为RE x1Al y1的基体相组成,该组织结构有利于弥散颗粒相通过初始合金与酸溶液的反应分离。具体来说:该初始合金在与所述酸溶液反应时,所述酸溶液中的氢离子与基体相中的稀土元素和铝元素反应,将稀土元素和铝元素溶解变成离子进入溶液;成分为M x2Al y2的弥散颗粒相中固溶的少量Al受到惰性元素M的保护,不易与酸溶液反应。因此,成分为M x2Al y2的弥散颗粒相在平均成分为RE x1Al y1的基体相与酸溶液反应去除后,即分散脱离出来,得到成分为M x2Al y2的含铝合金粉体。该含 铝合金粉体的粒径可以为纳米级,亚微米级、微米级、甚至毫米级。
其次,由于本发明原料熔化得到的合金熔体中存在大量的稀土元素,即使有氧元素进入该合金熔体也会全部被稀土元素迅速“吸收”,形成覆于该合金熔体的表面的致密氧化稀土保护膜,从而隔断氧元素进一步进入该合金熔体的通道,所以,本发明上述子步骤(2)可以在低真空条件、甚至是大气环境的条件下熔化所述原料。此外,合金熔体中存在稀土元素不仅对氧元素具有很好的“吸收”作用,对原料M与原料Al中的其它各类杂质元素也具有很好的“吸收”作用。因此,上述子步骤(3)凝固得到的初始合金中的弥散颗粒相不仅不会被氧元素污染,还具有比原料M与原料Al更低的杂质元素含量。这些杂质元素可以进入平均成分为RE x1Al y1的基体相并随着平均成分为RE x1Al y1的基体相与酸的反应被去除,使得成分为M x2Al y2的含铝合金粉体具有比原料M与原料Al更低的杂质含量。
本发明的制备方法工艺简单、易于操作、成本低,可以制备得到纳米级、亚微米级、微米级、以及毫米级的不同形貌的高纯含铝合金粉体,在光电子器件、吸波材料、催化剂、3D金属打印、金属注射成型、防腐涂料等领域具有很好的应用前景。
附图说明
图1为本发明实施例5的Ti-V-Al粉的能谱图;
图2为本发明实施例6的Ti-V-Al粉的扫描电镜照片;
图3为本发明实施例7的Ti-V-Al粉的扫描电镜照片;
图4为本发明实施例8的Ti-V-Al粉的扫描电镜照片;
图5为本发明实施例8的Ti-V-Al粉的能谱图。
具体实施方式
以下,将通过以下具体实施例对所述含铝合金粉体的制备方法及其应用做进一步的说明。
实施例1:
本实施例提供一种微米级Ti-V-Cr-Mo-Zr-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Gd 76Al 8(Ti 82V 8Cr 6Mo 2Zr 2) 16合金(原子百分比)的配方称取原料,电弧熔炼后得到Gd 76Al 8(Ti 82V 8Cr 6Mo 2Zr 2) 16母合金。将该母合金通过感应熔炼重新加热熔化成合金熔体,将该合金熔体以10K/s~1000K/s的凝固速率制备成厚度为1mm~20mm的Gd 76Al 8(Ti 82V 8Cr 6Mo 2Zr 2) 16合金薄板。该合金薄板的凝固组织由平均成分约为Gd 91.5Al 8.5的基体相与成分为(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5的弥散枝晶颗粒相组成,且弥散颗粒相的颗粒大小为1μm~200μm。
(2)室温下,将1克步骤(1)制得的Gd 76Al 8(Ti 82V 8Cr 6Mo 2Zr 2) 16合金薄板加入150mL浓度为0.25mol/L的硫酸水溶液中进行反应。反应过程中,平均成分约为Gd 91.5Al 8.5的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级的(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5微米颗粒与溶液进行分离,经清洗干燥,即得微米级的(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5合金粉体,其单个(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5颗粒的平均大小范围为1μm~200μm。
实施例2:
本实施例提供一种微米级Ti-Mo-Zr-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 76Al 8(Ti 98Mo 1Zr 1) 16合金(原子百分比)的配方称取原料,电弧熔炼后得到Ce 76Al 8(Ti 98Mo 1Zr 1) 16母合金。将该母合金通过感应熔炼重新加热熔化成合金熔体,将该合金熔体熔体以10K/s~1000K/s的凝固速率制备成厚度为1mm~20mm的Ce 76Al 8(Ti 98Mo 1Zr 1) 16合金薄板。该合金薄板的凝固组织由平均成分约为Ce 91.5Al 8.5的基体相与成分为(Ti 98Mo 1Zr 1) 94.5Al 5.5的弥散枝晶颗粒相组成,且弥散颗粒相的大小为1μm~200μm。
(2)室温下,将1克步骤(1)制得的Ce 76Al 8(Ti 98Mo 1Zr 1) 16合金薄板加入200mL浓度为0.4mol/L的盐酸水溶液中进行反应。反应过程中,平均成分约为Ce 91.5Al 8.5的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 98Mo 1Zr 1) 94.5Al 5.5弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 98Mo 1Zr 1) 94.5Al 5.5微米颗粒与溶液进行分离,经清洗干燥,即得微米级的(Ti 98Mo 1Zr 1) 94.5Al 5.5合金粉体,其单个(Ti 98Mo 1Zr 1) 94.5Al 5.5颗粒的平均大小范围为1μm~200μm。
实施例3:
本实施例提供一种纳米级Ti-Cr-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 72Al 12(Ti 97.5Cr 2.5) 16合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 72Al 12(Ti 97.5Cr 2.5) 16合金熔体。将该合金熔体通过铜辊甩带的方法以~10 5K/s的速率制备成厚度为20μm~100μm的Ce 72Al 12(Ti 97.5Cr 2.5) 16合金条带。该合金条带的凝固组织由平均成分约为Ce 87Al 13的基体相与成分为(Ti 97.5Cr 2.5) 91.5Al 8.5的弥散颗粒相组成,且弥散颗粒相的大小为10nm~200nm,形状为近球形。
(2)室温下,将1克步骤(1)制得的Ce 72Al 12(Ti 97.5Cr 2.5) 16合金条带加入150mL浓度为0.4mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 87Al 13的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 97.5Cr 2.5) 91.5Al 8.5弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将所得(Ti 97.5Cr 2.5) 91.5Al 8.5纳米颗粒与溶液进行分离,经清洗干燥,即得纳米级的(Ti 97.5Cr 2.5) 91.5Al 8.5合金粉体,其单个(Ti 97.5Cr 2.5) 91.5Al 8.5颗粒的平均大小范围为 10nm~200nm。
实施例4:
本实施例提供一种微米级Ti-Nb-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 68Al 14(Ti 96Nb 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 68Al 14(Ti 96Nb 4) 18合金熔体。将该合金熔体以10K/s~1000K/s的凝固速率制备成厚度1mm~20mm的Ce 68Al 14(Ti 96Nb 4) 18合金薄板。该合金薄板的凝固组织由平均成分为Ce 85Al 15的基体相与成分为(Ti 96Nb 4) 90Al 10的弥散枝晶颗粒相组成,且弥散颗粒相的大小为1μm~200μm。
(2)室温下,将1克步骤(1)制得的Ce 68Al 14(Ti 96Nb 4) 18合金薄板加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 96Nb 4) 90Al 10弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 96Nb 4) 90Al 10枝晶微米颗粒与溶液进行分离,经清洗干燥,即得微米级的(Ti 96Nb 4) 90Al 10合金粉体,其单个(Ti 96Nb 4) 90Al 10颗粒的平均大小范围为1μm~200μm。
实施例5:
本实施例提供一种纳米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 72Al 10(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 72Al 10(Ti 96V 4) 18合金熔体。将该合金熔体通过铜辊甩带的方法以~10 5K/s的速率制备成厚度20μm~100μm的Ce 72Al 10(Ti 96V 4) 18合金条带。该合金条带的凝固组织由平均成分为Ce 88.5Al 11.5的基体相与成分为(Ti 96V 4) 92.5Al 7.5的弥散颗粒相组成,且弥散颗粒相的大小为10nm~300nm,形状为近球形。
(2)室温下,将1克步骤(1)制得的Ce 72Al 10(Ti 96V 4) 18合金条带加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 88.5Al 11.5的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 96V 4) 92.5Al 7.5弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将所得(Ti 96V 4) 92.5Al 7.5纳米颗粒与溶液进行分离,经清洗干燥,即得纳米级的(Ti 96V 4) 92.5Al 7.5合金粉体,其单个(Ti 96V 4) 92.5Al 7.5颗粒的平均大小范围为10nm~300nm。如图1所示,经验证,该合金粉体由Ti、V、Al元素组成。
实施例6:
本实施例提供一种纳米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 68Al 14(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 68Al 14(Ti 96V 4) 18合金熔体。将该合金熔体通过铜辊甩带的方法以~10 5K/s的速率制备成厚度20μm~100μm的Ce 68Al 14(Ti 96V 4) 18合金条带。该合金条带的凝固组织由平均成分为Ce 85Al 15的 基体相与成分为(Ti 96V 4) 90Al 10的弥散颗粒相组成,且弥散颗粒相的大小为10nm~300nm,形状为近球形。
(2)室温下,将1克步骤(1)制得的Ce 68Al 14(Ti 96V 4) 18合金条带加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 96V 4) 90Al 10弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将所得(Ti 96V 4) 90Al 10纳米颗粒与溶液进行分离,经清洗干燥,即得如图2所示的纳米级的(Ti 96V 4) 90Al 10合金粉体,其单个(Ti 96V 4) 90Al 10颗粒的平均大小范围为10nm~300nm。所得纳米级(Ti 96V 4) 90Al 10合金粉可用于钛合金防腐涂料添加剂领域。
实施例7:
本实施例提供一种亚微米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照(La 50Ce 50) 68Al 14(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融(La 50Ce 50) 68Al 14(Ti 96V 4) 18合金熔体。将该合金熔体通过铜辊甩带的方法以约10 3~10 4K/s的凝固速率制备成厚度100μm~2mm的(La 50Ce 50) 68(Ti 96V 4) 18合金条带。该合金条带的凝固组织由平均成分为(La 50Ce 50) 85Al 15的基体相与成分为(Ti 96V 4) 90Al 10的弥散颗粒相组成,且弥散颗粒相的大小为100nm~1.5μm。
(2)室温下,将1克步骤(1)制得的(La 50Ce 50) 68Al 14(Ti 96V 4) 18合金条带加入200mL浓度为0.4mol/L的硫酸水溶液中进行反应。反应过程中,平均成分为(La 50Ce 50) 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的亚微米级(Ti 96V 4) 90Al 10弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将所得(Ti 96V 4) 90Al 10亚微米颗粒与溶液进行分离,经清洗干燥,即得如图3所示的亚微米级的(Ti 96V 4) 90Al 10合金粉体,其单个(Ti 96V 4) 90Al 10颗粒的平均大小范围为100nm~1.5μm。
实施例8:
本实施例提供一种微米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 68Al 14(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 68Al 14(Ti 96V 4) 18合金熔体。将该合金熔体以50K/s~500K/s的速率制备成厚度2mm~6mm的Ce 68Al 14(Ti 96V 4) 18合金薄板。该合金薄板的凝固组织由平均成分为Ce 85Al 15的基体相与成分为(Ti 96V 4) 90Al 10的弥散枝晶颗粒相组成,且弥散颗粒相的大小为5μm~100μm。
(2)室温下,将1克步骤(1)制得的Ce 68Al 14(Ti 96V 4) 18合金薄板加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 96V 4) 90Al 10弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 96V 4) 90Al 10微米颗粒与溶液进行分离,经清洗干燥,即得如图4微米级的 (Ti 96V 4) 90Al 10合金粉,其单个(Ti 96V 4) 90Al 10颗粒的平均大小范围为5μm~100μm。如图5所示,经验证,该合金粉体由Ti、V、Al元素组成。
实施例9:
本实施例提供一种球形微米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 68Al 14(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 68Al 14(Ti 96V 4) 18合金熔体。将该合金熔体以10K/s~1000K/s的凝固速率制备成厚度1mm~20mm的Ce 68Al 14(Ti 96V 4) 18合金薄板。该合金薄板的凝固组织由平均成分为Ce 85Al 15的基体相与成分为(Ti 96V 4) 90Al 10的弥散枝晶颗粒相组成,且弥散颗粒相的大小为1μm~200μm。
(2)室温下,将1克步骤(1)制得的Ce 68Al 14(Ti 96V 4) 18合金薄板加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 96V 4) 90Al 10弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 96V 4) 90Al 10微米颗粒与溶液进行分离,经清洗干燥,即得微米级的(Ti 96V 4) 90Al 10合金粉体,其单个(Ti 96V 4) 90Al 10颗粒的平均大小范围为1μm~200μm。
(3)收集0.5千克由步骤(2)制得的微米级(Ti 96V 4) 90Al 10合金粉,通过100目、270目、1000目、2000目、8000目的筛网进行筛分,得到枝晶粒径范围分别为>150μm、150μm~53μm、53μm~13μm、13μm~6.5μm、6.5μm~1.6μm以及小于1.6μm的分级(Ti 96V 4) 90Al 10合金粉体。分别选择枝晶粒径范围为150μm~53μm、53μm~13μm以及13μm~6.5μm的(Ti 96V 4) 90Al 10合金粉体,通过成熟的等离子球化处理技术进一步制得粒径范围为150μm~53μm、53μm~13μm以及13μm~6.5μm的球形(Ti 96V 4) 90Al 10合金粉体。所得球形(Ti 96V 4) 90Al 10合金粉体可用于3D金属打印与金属注射成型(MIM)领域。
实施例10:
本实施例提供一种通过低纯原料制备高纯纳米Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
选用T(包含O、H、N、P、S、F、Cl中的至少一种)杂质元素的原子百分比含量分别为3at.%,1at.%,2.5at.%,0.2at.%的海绵Ti、电解V、稀土Ce,以及Al原料。将初始合金原料按照一定配比充分熔化,得到原子百分比含量成分主要为Ce 70.5Al 10(Ti 96V 4) 17T 2.5的初始合金熔体。
将该初始合金熔体通过铜辊甩带的方法以~10 6K/s的凝固速率制备成厚度~20μm的Ce 70.5Al 10(Ti 96V 4) 17T 2.5合金条带。该合金条带的凝固组织由平均成分主要为Ce 86.5Al 10.5T 3的基体相与成分主要为(Ti 96V 4) 92.25Al 7.5T 0.25的弥散颗粒相组成。其中,弥散颗粒相在合金条带中的体积百分数约为12%,且弥散颗粒相的颗粒大小范围为5nm~100nm,形状为近球形。
所得合金条带即为由内生含铝合金粉与包覆体构成的合金条带。
室温下,将上述制得的Ce 70.5Al 10(Ti 96V 4) 17T 2.5合金条带与浓度为0.5mol/L的盐酸水溶液反应。反应过程中,平均成分主要为Ce 86.5Al 10.5T 3的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 96V 4) 92.25Al 7.5T 0.25弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将分散出来的(Ti 96V 4) 92.25Al 7.5T 0.25纳米颗粒与溶液进行分离,在保护气氛下经清洗、干燥,即得纳米级的(Ti 96V 4) 92.25Al 7.5T 0.25合金粉体,其颗粒的粒径大小范围为5nm~100nm,且其中的T杂质含量相对于海绵Ti原料得到了极大的降低。
在保护气氛下将纳米级(Ti 96V 4) 92.25Al 7.5T 0.25合金粉体与环氧树脂及其它涂料组分混合,从而制备得到钛合金纳米改性聚合物防腐涂料。
实施例11:
本实施例提供一种通过低纯原料制备高纯微米级Ti-Nb-Al合金粉体的制备方法,该制备方法包括如下步骤:
选用T(包含O、H、N、P、S、F、Cl中的至少一种)杂质元素的原子百分比含量分别为3at.%,1at.%,2.5at.%,0.2at.%的海绵Ti、Nb片、稀土Ce,以及Al原料。将初始合金原料按照一定配比充分熔化,得到原子百分比含量主要成分为Ce 67.5Al 13(Ti 96Nb 4) 17T 2.5的初始合金熔体。
将该初始合金熔体通过铜辊甩带的方法以300K/s的凝固速率制备成厚度~1mm的Ce 67.5Al 13(Ti 96Nb 4) 17T 2.5合金条带。该合金条带的凝固组织由平均成分主要为Ce 83.2Al 13.7T 3.1的基体相与成分主要为(Ti 96Nb 4) 89.95Al 10T 0.05的弥散颗粒相组成。其中,弥散颗粒相在合金条带中的体积百分数约为13%,且弥散颗粒相的颗粒大小范围为0.5μm~150μm,形状主要为枝晶形。
室温下,将上述制得的Ce 67.5Al 13(Ti 96Nb 4) 17T 2.5合金条带与浓度为0.5mol/L的盐酸水溶液反应。反应过程中,平均成分主要为Ce 83.2Al 13.7T 3.1的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 96Nb 4) 89.95Al 10T 0.05弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将分散出来的(Ti 96Nb 4) 89.95Al 10T 0.05颗粒与溶液进行分离,在保护气氛下经清洗、干燥,即得微米级的(Ti 96Nb 4) 89.95Al 10T 0.05合金粉体,其颗粒的粒径大小范围为0.5μm~150μm,且其中的T杂质含量相对于海绵Ti原料得到了极大的降低。
将上述(Ti 96Nb 4) 89.95Al 10T 0.05合金粉体通过270目、1000目、2000目、8000目的筛网进行筛分,得到枝晶粒径范围分别为150μm~53μm、53μm~13μm、13μm~6.5μm、6.5μm~1.6μm以及小于1.6μm的分级(Ti 96Nb 4) 89.95Al 10T 0.05合金粉体。分别选择枝晶粒径范围为 150μm~53μm、53μm~13μm以及13μm~6.5μm的(Ti 96Nb 4) 89.95Al 10T 0.05合金粉体,通过等离子球化处理技术进一步制得粒径范围为150μm~53μm、53μm~13μm以及13μm~6.5μm,且形状接近球形的Ti-Nb-Al合金粉体。所得球形Ti-Nb-Al合金粉体可用于3D金属打印与金属注射成型领域。
实施例12:
本实施例提供一种通过低纯原料制备高纯纳米Ti-Al合金粉体的制备方法,该制备方法包括如下步骤:
选用T(包含O、H、N、P、S、F、Cl中的至少一种)杂质元素的原子百分比含量分别为3at.%,2.5at.%,0.2at.%的海绵Ti、稀土Ce,以及Al原料。其中,海绵Ti中还含有0.5at.%的Mn;稀土Ce中还含有0.7at.%的Mg。
将初始合金原料按照一定配比充分熔化,得到原子百分比含量成分主要为(Ce 99.3Mg 0.7) 70.5Al 10(Ti 99.5Mn 0.5) 17T 2.5的初始合金熔体。将该初始合金熔体通过铜辊甩带的方法以~10 6K/s的凝固速率制备成厚度~20μm的(Ce 99.3Mg 0.7) 70.5Al 10(Ti 99.5Mn 0.5) 17T 2.5合金条带。该合金条带的凝固组织由平均成分主要为(Ce 99.3Mg 0.7) 86.5Al 10.5T 3的基体相与成分主要为(Ti 99.5Mn 0.5) 92.25Al 7.5T 0.25的弥散颗粒相组成。其中,弥散颗粒相在合金条带中的体积百分数约为12%,且弥散颗粒相的颗粒大小范围为5nm~150nm,形状为近球形,其单晶颗粒的数目在所有颗粒数目中的占比超过80%。
所得合金条带即为由内生含铝合金粉与包覆体构成的合金条带。
室温下,将上述制得的(Ce 99.3Mg 0.7) 70.5Al 10(Ti 99.5Mn 0.5) 17T 2.5合金条带与浓度为1mol/L的盐酸水溶液反应。反应过程中,平均成分主要为(Ce 99.3Mg 0.7) 86.5Al 10.5T 3的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 99.5Mn 0.5) 92.25Al 7.5T 0.25弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将分散出来的(Ti 99.5Mn 0.5) 92.25Al 7.5T 0.25纳米颗粒与溶液进行分离,在保护气氛下经清洗、干燥,即得纳米级的(Ti 99.5Mn 0.5) 92.25Al 7.5T 0.25合金粉体,其颗粒的粒径大小范围为5nm~150nm,且其中的T杂质含量相对于海绵Ti原料得到了极大的降低。而且,合金熔体中Mn与Mg的引入,并没有导致初始合金条带中生成由Ce、Mg与Ti、Mn构成的金属间化合物;且不影响合金条带中基体相与弥散颗粒相的结构特征,也不影响弥散颗粒相中杂质含量的降低的规律。
在保护气氛下将纳米级(Ti 99.5Mn 0.5) 92.25Al 7.5T 0.25合金粉体与环氧树脂及其它涂料组分混合,从而制备得到钛合金纳米改性聚合物防腐涂料。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种含铝合金粉体的制备方法,其特征在于,包括如下步骤:
    步骤一,选择初始合金原料,按照初始合金成分配比将初始合金原料熔化,得到均匀的初始合金熔体;所述初始合金熔体的主要成分为RE aAl bM cT d;其中,RE包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种;T为杂质元素且包含O、H、N、P、S、F、Cl中的至少一种;a、b、c、d分别代表对应组成元素的原子百分比含量,且35%≤a≤99.7%,0.1%≤b≤25%,0.1%≤c≤35%,0≤d≤10%;
    步骤二,将初始合金熔体凝固成初始合金条带;所述初始合金条带的凝固组织包括基体相和弥散颗粒相;所述基体相的熔点低于所述弥散颗粒相,所述弥散颗粒相被包覆于所述基体相中;所述基体相的平均成分主要为RE x1Al y1T z1,所述弥散颗粒相的成分主要为M x2Al y2T z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量,且68%≤x1<99.8%,0.2%≤y1≤30%,0≤z1≤30%;77%≤x2≤99.8%,0.1%≤y2≤22%,0≤z2≤1.5%,z2≤d≤z1;所述初始合金熔体凝固过程中,初始合金熔体中的杂质元素T在弥散颗粒相与基体相中重新分配,并富集于所述基体相中,从而使所述弥散颗粒相得到纯化;
    步骤三,将所述初始合金条带与酸溶液反应,所述初始合金条带中的基体相与酸反应变成离子进入溶液,而不与所述酸溶液反应的弥散颗粒相则从初始合金条带中脱离出来,即得主要成分为M x2Al y2T z2的含铝合金粉体材料。
  2. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,所述初始合金熔体中的杂质元素来源包括:初始合金原料引入杂质,熔炼过程中气氛或坩埚引入杂质。
  3. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,所述弥散颗粒相的颗粒粒径范围为2nm~3mm;
  4. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,所述初始合金条带中弥散颗粒的单晶颗粒数目在所有弥散颗粒数目中的占比不低于75%。
  5. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,y1>y2。
  6. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,z2≤d≤z1,且2z2≤z1。
  7. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,所述含铝合金粉体材料的颗粒粒径范围为2nm~3mm。
  8. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,在所述步骤三之后还进行以下步骤:将所述含铝合金粉体材料筛分后,选择粒径范围为5μm~200μm的含铝合金粉体材料进行等离子球化处理,得到呈球形的含铝合金粉体;
  9. 根据权利要求1-8任一项所述的含铝合金粉体或球形含铝合金粉体在光电子器件、吸 波材料、催化剂、粉末冶金、3D金属打印、金属注射成型、涂料中的应用。
  10. 一种合金条带,其特征在于,包含内生含铝合金粉与包覆体;所述合金条带的凝固组织包括基体相和弥散颗粒相,基体相即为所述包覆体,弥散颗粒相即为所述内生含铝合金粉;所述包覆体的熔点低于所述内生含铝合金粉,所述内生含铝合金粉被包覆于所述包覆体中;所述包覆体的平均成分主要为RE x1Al y1T z1,所述内生含铝合金粉的主要成分为M x2Al y2T z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量,且60%≤x1<99.8%,0.2%≤y1≤30%,0≤z1≤30%;80%≤x2≤99.8%,0.1%≤y2≤22%,0≤z2≤1.5%,z2≤z1,y1>y2;所述RE包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种;T为杂质元素且包含O、H、N、P、S、F、Cl中的至少一种。
  11. 一种含铝合金粉体的制备方法,其特征在于,包括:
    提供初始合金,所述初始合金的成分为RE aAl bM c,其中,RE选自Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M选自W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种,a、b、c分别代表对应组成元素的原子百分比含量,且0.1%≤b≤25%,0.1%≤c≤35%,a+b+c=100%,所述初始合金的凝固组织包括基体相和弥散颗粒相,所述基体相的平均成分为RE x1Al y1,所述弥散颗粒相的成分为M x2Al y2,x1、y1、x2、y2分别代表对应组成元素的原子百分比含量,且0.5%≤y1≤30%,0.1%≤y2≤25%,x1+y1=100%,x2+y2=100%;
    提供酸溶液,将所述初始合金与所述酸溶液混合,使所述初始合金中的基体相与所述酸溶液反应变成金属离子,所述初始合金中的弥散颗粒相脱离出来,得到含铝合金粉体,所述含铝合金粉体的成分为M x2Al y2
  12. 根据权利要求11所述的含铝合金粉体的制备方法,其特征在于,所述初始合金通过以下方法得到:
    按照配比称取原料;
    将所述原料充分熔化得到合金熔体;
    将所述合金熔体凝固得到所述初始合金,其中,所述凝固的速率为0.001K/s~10 7K/s。
  13. 根据权利要求11所述的含铝合金粉体的制备方法,其特征在于,y1>y2。
  14. 根据权利要求11所述的含铝合金粉体的制备方法,其特征在于,所述弥散颗粒相的颗粒形状包括枝晶形、球形、近球形、方块形、饼形、棒形中的至少一种,且所述弥散颗粒相的颗粒大小为2nm~50mm。
  15. 根据权利要求11所述的含铝合金粉体的制备方法,其特征在于,所述酸溶液中的酸 包括硫酸、盐酸、硝酸、高氯酸、磷酸、醋酸、草酸、甲酸、碳酸中的至少一种,且所述酸的摩尔浓度为0.001mol/L~20mol/L。
  16. 根据权利要求11所述的含铝合金粉体的制备方法,其特征在于,所述基体相与所述酸溶液反应的温度为0℃~100℃,时间为0.1min~24h。
  17. 根据权利要求11所述的含铝合金粉体的制备方法,其特征在于,在所述基体相与所述酸溶液反应的步骤之后还进行以下步骤:将脱离出来的预制粉体筛分后分别进行等离子球化处理,以得到具有不同粒径且呈球形的含铝合金粉体;或者,将脱离出来的预制粉体进行等离子球化处理并筛分,以得到具有不同粒径且呈球形的含铝合金粉体。
  18. 一种如权利要求11~17任一项所述制备方法得到的含铝合金粉体在3D金属打印中的应用,其特征在于,所述含铝合金粉体的粒径为0.5μm~1mm。
  19. 一种如权利要求11~17任一项所述制备方法得到的含铝合金粉体在金属注射成型中的应用,其特征在于,所述含铝合金粉体的粒径为0.1μm~50μm。
  20. 一种如权利要求11~17任一项所述制备方法得到的含铝合金粉体在防腐涂料中的应用,其特征在于,所述含铝合金粉体的粒径为2nm~5μm。
PCT/CN2020/130956 2019-11-28 2020-11-23 一种含铝合金粉体的制备方法及其应用及一种合金条带 WO2021104219A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
GB2209206.8A GB2606652A (en) 2019-11-28 2020-11-23 Method for preparing aluminum-containing alloy powder, use thereof and alloy strip
EP20891884.7A EP4066967A4 (en) 2019-11-28 2020-11-23 PROCESS FOR MANUFACTURE OF ALUMINUM CONTAINING ALLOY POWDER, USE THEREOF AND ALLOY STRIP
US17/781,343 US20230001481A1 (en) 2019-11-28 2020-11-23 Method of preparing aluminum-containing alloy powder and application thereof
JP2022531409A JP7365735B2 (ja) 2019-11-28 2020-11-23 アルミニウム含有合金粉末の製造方法及びその使用、ならびに合金リボン
KR1020227021974A KR102539775B1 (ko) 2019-11-28 2020-11-23 알루미늄 합금 함유 분말체의 제조 방법 및 이의 응용과 합금 스트립
CA3159866A CA3159866A1 (en) 2019-11-28 2020-11-23 Method for preparing aluminum-containing alloy powder, use thereof and alloy strip
JP2023120253A JP2023153875A (ja) 2019-11-28 2023-07-24 アルミニウム含有合金粉末の製造方法及びその使用、ならびに合金リボン

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911188404 2019-11-28
CN201911188404.7 2019-11-28
CN202011273043.9 2020-11-13
CN202011273043.9A CN112143926B (zh) 2019-11-28 2020-11-13 一种含铝合金粉体的制备方法及其应用及一种合金条带

Publications (1)

Publication Number Publication Date
WO2021104219A1 true WO2021104219A1 (zh) 2021-06-03

Family

ID=73887318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130956 WO2021104219A1 (zh) 2019-11-28 2020-11-23 一种含铝合金粉体的制备方法及其应用及一种合金条带

Country Status (8)

Country Link
US (1) US20230001481A1 (zh)
EP (1) EP4066967A4 (zh)
JP (2) JP7365735B2 (zh)
KR (1) KR102539775B1 (zh)
CN (1) CN112143926B (zh)
CA (1) CA3159866A1 (zh)
GB (1) GB2606652A (zh)
WO (1) WO2021104219A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100656A1 (zh) * 2019-11-28 2022-05-19 赵远云 一种含铝合金粉体的制备方法及其应用及一种合金条带
CN112207285B (zh) * 2020-03-12 2022-05-20 赵远云 粉体材料的制备方法及其应用
EP4223436A1 (en) * 2020-09-30 2023-08-09 Zhao, Yuanyun Alloy powder, preparation method therefor, and use thereof
WO2023142563A1 (zh) * 2022-01-25 2023-08-03 赵远云 一种球形铁合金粉体材料及其制备方法与用途
WO2023142251A1 (zh) * 2022-01-25 2023-08-03 赵远云 一种球形铁合金粉体材料及其制备方法与用途
CN115740485B (zh) * 2022-12-26 2023-06-23 宁波众远新材料科技有限公司 用于手板增材制造的3d打印铝合金粉体及其制备方法
CN117069553A (zh) * 2023-08-01 2023-11-17 浙江大学 一种新型铝基无膜合金颗粒的复合燃料制备与应用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090250143A1 (en) * 2006-05-19 2009-10-08 Korea Institute Of Science And Technology Metallic glass with nanometer-sized pores and method for manufacturing the same
CN102363217A (zh) * 2011-10-26 2012-02-29 济南大学 一种纳米多孔铜粉末的制备方法
CN109576610A (zh) * 2019-01-21 2019-04-05 河北工业大学 一种双峰纳米多孔非晶合金及其制备方法
CN111334682A (zh) * 2020-03-12 2020-06-26 东莞理工学院 一种纳米多孔金属粉末及其制备方法
CN111347056A (zh) * 2020-03-12 2020-06-30 东莞理工学院 纳米银粉的制备方法
CN111590084A (zh) * 2019-02-21 2020-08-28 刘丽 一种金属粉体材料的制备方法
CN111940750A (zh) * 2019-05-15 2020-11-17 刘丽 一种合金粉体材料的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230840A (ja) * 1985-08-02 1987-02-09 Natl Res Inst For Metals 磁気冷凍作業物質及びその製造方法
JPH07122119B2 (ja) * 1989-07-04 1995-12-25 健 増本 機械的強度、耐食性、加工性に優れた非晶質合金
KR100969862B1 (ko) * 2007-12-26 2010-07-13 연세대학교 산학협력단 독특한 자성 특성을 갖는 가돌리늄계 상분리 금속 비정질합금
DE102009001929A1 (de) * 2009-03-27 2010-09-30 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Trübungsmessgerät
KR101309516B1 (ko) * 2012-03-30 2013-10-14 서울대학교산학협력단 자성 비정질 금속 나노 파우더 제조방법
CN103317141B (zh) * 2013-06-17 2015-04-22 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
CN106811750B (zh) * 2015-11-30 2019-04-19 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属颗粒及其制备方法
CN106917090B (zh) * 2015-12-28 2019-02-19 中国科学院宁波材料技术与工程研究所 一种纳米多孔mn金属薄膜的制备方法及其应用
CN106916988A (zh) * 2015-12-28 2017-07-04 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属薄膜的制备方法
CN108531762A (zh) * 2018-05-03 2018-09-14 北京航空航天大学 一种基于多种非晶合金前驱体制备的纳米多孔AgCu超饱和固溶体合金及方法
CN111945000A (zh) * 2019-05-15 2020-11-17 刘丽 一种金属提纯方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090250143A1 (en) * 2006-05-19 2009-10-08 Korea Institute Of Science And Technology Metallic glass with nanometer-sized pores and method for manufacturing the same
CN102363217A (zh) * 2011-10-26 2012-02-29 济南大学 一种纳米多孔铜粉末的制备方法
CN109576610A (zh) * 2019-01-21 2019-04-05 河北工业大学 一种双峰纳米多孔非晶合金及其制备方法
CN111590084A (zh) * 2019-02-21 2020-08-28 刘丽 一种金属粉体材料的制备方法
CN111940750A (zh) * 2019-05-15 2020-11-17 刘丽 一种合金粉体材料的制备方法
CN111334682A (zh) * 2020-03-12 2020-06-26 东莞理工学院 一种纳米多孔金属粉末及其制备方法
CN111347056A (zh) * 2020-03-12 2020-06-30 东莞理工学院 纳米银粉的制备方法

Also Published As

Publication number Publication date
EP4066967A4 (en) 2023-01-11
GB2606652A (en) 2022-11-16
JP7365735B2 (ja) 2023-10-20
EP4066967A1 (en) 2022-10-05
KR20220106184A (ko) 2022-07-28
CN112143926B (zh) 2021-11-16
GB202209206D0 (en) 2022-08-10
CA3159866A1 (en) 2021-06-03
JP2023153875A (ja) 2023-10-18
US20230001481A1 (en) 2023-01-05
KR102539775B1 (ko) 2023-06-05
JP2023500975A (ja) 2023-01-11
CN112143926A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2021104219A1 (zh) 一种含铝合金粉体的制备方法及其应用及一种合金条带
WO2021179677A1 (zh) 粉体材料的制备方法及其应用
WO2022036906A1 (zh) 一种高纯粉体材料的制备方法及其应用及一种合金条带
WO2020228709A1 (zh) 一种合金粉体材料的制备方法
JP4836136B2 (ja) 金属ガラス膜作製用スパッタリングターゲット及びその製造方法
WO2022068710A1 (zh) 一类合金粉及其制备方法与用途
WO2022036938A1 (zh) 高纯粉体材料的制备方法及其应用及一种双相粉体材料
WO2020168883A1 (zh) 一种金属粉体材料的制备方法
WO2022041516A1 (zh) 一种包含贵金属元素的粉体材料的制备方法及其应用
WO2006051736A1 (ja) 水素分離膜及び水素分離膜形成用スパッタリングターゲット及びその製造方法
Liu et al. Oxidation behaviour of Fe3Al nanoparticles prepared by hydrogen plasma–metal reaction
WO2022100656A1 (zh) 一种含铝合金粉体的制备方法及其应用及一种合金条带
JP3720250B2 (ja) 高水素吸蔵合金とその製造方法
WO2023142251A1 (zh) 一种球形铁合金粉体材料及其制备方法与用途
WO2023142563A1 (zh) 一种球形铁合金粉体材料及其制备方法与用途
WO2004090182A1 (ja) 水素吸蔵合金材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531409

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3159866

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 202209206

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201123

ENP Entry into the national phase

Ref document number: 20227021974

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891884

Country of ref document: EP

Effective date: 20220628