WO2021082553A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021082553A1
WO2021082553A1 PCT/CN2020/104623 CN2020104623W WO2021082553A1 WO 2021082553 A1 WO2021082553 A1 WO 2021082553A1 CN 2020104623 W CN2020104623 W CN 2020104623W WO 2021082553 A1 WO2021082553 A1 WO 2021082553A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
component
sub
isolator
light
Prior art date
Application number
PCT/CN2020/104623
Other languages
English (en)
French (fr)
Inventor
蔚永军
张晓廓
张海祥
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021082553A1 publication Critical patent/WO2021082553A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical module.
  • the optical transceiver module referred to as the optical module, is a standard module in the field of optical communication equipment. In the process of assembling the optical module, factors that affect the coupling efficiency will appear, which in turn affects the optical power.
  • the optical power has an upper limit and a lower limit.
  • the embodiment of the application provides an optical module, which mainly includes: a circuit board with a circuit for providing electrical connection; an optical transceiver sub-module, connected with the circuit of the circuit board, for transmitting data optical signals and receiving data light Signal;
  • the optical transceiver module includes: a circular square tube body, the surface is provided with a first nozzle and a third nozzle, used to carry the adjustment connecting part and the optical receiver; the optical receiver extends into the third The nozzle is used to receive the data optical signal; one end of the adjusting and connecting part extends into the first nozzle, one end of the first nozzle is provided with an isolator, and the other end is placed in the circle
  • a light emitter is provided at one end of the round tube body; the light emitter is used to emit outgoing light with a polarization direction, and the outgoing light passes through the isolator;
  • the rotation of the adjusting connection member can drive the isolator to rotate with it, so as to change the angle between the
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of an optical transceiver sub-module provided in this embodiment.
  • FIG. 6 is a schematic diagram 1 of an exploded structure of an optical transceiver sub-module provided in this embodiment
  • FIG. 7 is a second schematic diagram of an exploded structure of an optical transceiver sub-module provided in this embodiment.
  • FIG. 8 is a schematic diagram of the control effect of the rotary isolator provided in the embodiment on the coupling power
  • FIG. 9 is a schematic diagram of receiving and emitting paths of an optical transceiver sub-module provided in this embodiment.
  • FIG. 10 is a third schematic diagram of an exploded structure of an optical transceiver sub-module provided in this embodiment.
  • FIG. 11 is a fourth schematic diagram of an exploded structure of an optical transceiver sub-module provided in this embodiment.
  • FIG. 12 is a schematic diagram 1 of the cross-sectional structure of the adjusting sleeve sub-component provided in this embodiment
  • Figure 13 is a schematic diagram of the three exploded structures of the adjusting sleeve sub-component, the protective sub-component and the isolator provided in this embodiment;
  • FIG. 14 is a schematic diagram of the exploded structure of the adjusting sleeve sub-component and the protective sub-component in the optical transceiver sub-module provided in this embodiment;
  • 15 is a schematic diagram 2 of the sectional structure of the sub-component of the adjusting sleeve provided in this embodiment
  • FIG. 16 is a schematic diagram of the exploded structure of the adjusting sleeve sub-component, the protective sub-component and the rectangular tube provided in this embodiment.
  • optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides, and the passive transmission characteristics of light in optical fibers can realize low-cost and low-loss information transmission.
  • information processing equipment such as computers uses electrical signals, which requires mutual conversion between electrical signals and optical signals in the signal transmission process.
  • the optical module implements the above-mentioned photoelectric conversion function in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on the circuit board.
  • the main electrical connections include power supply, I2C signal, data signal transmission and grounding, etc.
  • the electrical connection method realized by the golden finger has become the optical module industry.
  • the standard method, based on this, the circuit board is a necessary technical feature in most optical modules.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the optical network unit 100, the optical module 200, the optical fiber 101 and the network cable 103; one end of the optical fiber is connected to the remote server, and the other end of the network cable is connected to the local information processing equipment.
  • the connection of the remote server is completed by the connection of the optical fiber and the network cable; and the connection between the optical fiber and the network cable is completed by the optical network unit with the optical module.
  • the optical port of the optical module 200 is connected to the optical fiber 101 to establish a two-way optical signal connection with the optical fiber; the electrical port of the optical module 200 is connected to the optical network unit 100 to establish a two-way electrical signal connection with the optical network unit; the optical module implements optical signals And electrical signals, so as to realize the establishment of a connection between the optical fiber and the optical network unit; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input to the optical network unit 100, and the optical signal from the optical network unit 100 The electrical signal is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical module 200 is a tool for realizing the mutual conversion of photoelectric signals, and does not have the function of processing data. During the foregoing photoelectric conversion process, the information has not changed.
  • the optical network unit has an optical module interface 102, which is used to connect to the optical module and establish a two-way electrical signal connection with the optical module; the optical network unit has a network cable interface 104, which is used to connect to a network cable and establish a two-way electrical signal connection with the network cable;
  • the optical network unit establishes a connection between the module and the network cable. Specifically, the optical network unit transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module.
  • the optical network unit acts as the upper computer of the optical module to monitor the optical module. work.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network units, and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network unit is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG. 2 is a schematic diagram of the optical network unit structure.
  • the optical network unit 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided in the cage 106 for accessing optical module electrical ports such as golden fingers;
  • a radiator 107 is provided on the cage 106, and the radiator 107 has a structure of a clamping portion such as a fin to increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network unit, specifically, the electrical port of the optical module is inserted into the electrical connector in the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connectors on the circuit board in the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage. The heat generated by the optical module is conducted to the cage through the optical module housing, and finally passes through the cage.
  • the radiator 107 is diffused.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of this application
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of this application.
  • the optical module 200 provided by the embodiment of the present application includes an upper housing 201, a lower housing 202, an unlocking handle 203, a circuit board 204 and an optical transceiver module 205.
  • the upper shell 201 and the lower shell 202 form a wrapping cavity with two openings, which can be opened at both ends (206, 207) in the same direction, or at two openings in different directions; one of the openings
  • the electrical port 206 is used for inserting into the upper computer such as the optical network unit, and the other opening is the optical port 207 for external optical fiber access to connect the internal optical fiber.
  • Optoelectronic devices such as the circuit board 204 are located in the package cavity.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is beneficial to realize electromagnetic shielding and heat dissipation; the assembly method of the upper shell 201 and the lower shell 202 is used to facilitate the installation of the circuit board 204 and other components into the shell.
  • the housing of the optical module will not be made into an integrated structure, so that when assembling circuit boards and other devices, positioning components, heat dissipation and electromagnetic shielding structures cannot be installed, which is also not conducive to production automation.
  • the unlocking handle 203 is located on the outer wall of the package cavity/lower housing 202. Pulling the end of the unlocking handle can make the unlocking handle move relative to the outer wall surface; when the optical module is inserted into the upper computer, the unlocking handle 203 fixes the optical module to the cage of the upper computer Here, by pulling the unlocking handle 203 to release the engagement relationship between the optical module and the host computer, the optical module can be withdrawn from the cage of the host computer.
  • the optical transceiver module 205 is used to transmit and receive laser light, so that the optical module 200 transmits and receives optical signals.
  • FIG. 5 is a schematic structural diagram of an optical transceiver sub-module provided in this embodiment
  • FIG. 6 is a schematic diagram 1 of an exploded structure of an optical transceiver sub-module provided in this embodiment
  • FIG. 7 is a schematic diagram of an optical transceiver sub-module provided in this embodiment.
  • the optical transceiver sub-module 300 mainly includes an optical transmitter 301, a square tube body 302, an optical fiber adapter 303, an optical receiver 304, an adjustment connecting part 305 and an isolator 306.
  • the circular square tube body 302 is used to carry and fix the optical transmitter 301, the optical fiber adapter 303, and the optical receiver 304.
  • the circular square tube body 302 is generally made of a metal material to facilitate electromagnetic shielding and heat dissipation.
  • the round tube body 302 is provided with a first nozzle 3021 for fixing the optical transmitter 301, a second nozzle 3022 for fixing the optical fiber adapter 303, and a third nozzle 3023 for fixing the optical receiver 304.
  • the first nozzle 3021 and the second nozzle 3022 are respectively arranged on two opposite side walls of the circular square tube body 302, and the second nozzle 3022 and the third nozzle 3023 are arranged on adjacent side walls of the circular square pipe body 302.
  • the inside of the circular square tube 302 is a hollow cavity, and a filter reflector 307 and a filter 308 are arranged in the cavity.
  • the filter reflector 307 is arranged between the transmitter 301, the optical fiber adapter 303 and the optical receiver 304 to realize that the light received by the optical fiber adapter 303 can enter the optical receiver 304 and reduce the interference between the optical transmitter 301 and the optical receiver 304.
  • Light path interference; the filter reflector 307 can be a 45° filter reflector. When installed and used, the 45° filter reflector and the laser beam emitted by the light transmitter 301 are installed in a direction of 45° or close to 45°.
  • the filter 308 is arranged on the light incident side of the optical receiver 304 to isolate the stray light entering the optical receiver 304.
  • the data optical signal to be received is transmitted to the optical fiber adapter 303 through the optical fiber, and then is reflected by the filter reflector 307 to the filter 308, and then passes through
  • the filter 308 filters, filters out the stray light in the light beam that enters the optical receiver 304, and then shoots it toward the optical receiver 304; when the optical module sends out a data light signal, the optical transmitter 301 can send it out through its internal LD chip
  • the laser beam after being transmitted through the filter reflector 307, enters the optical fiber adapter 303, and then enters the optical fiber connected to the optical fiber adapter 303.
  • the optical transmitter 301 is used to transmit data optical signals. As shown in Figures 6 and 7, this embodiment is designed as a Tx TOCAN (coaxial package transmitter) composed of three parts: pins, sockets and caps.
  • the sockets are used to carry various devices such as For laser chips, backlight detectors, etc.
  • the tube caps are buckled on the tube socket to protect each device, and the pins are connected to the devices arranged on the tube socket through the tube socket.
  • the adjusting and connecting part 305 can be made of metal material to facilitate its welding with the light emitter 301 and the rectangular tube body 302 and to facilitate heat dissipation of the device.
  • the adjusting connecting part 305 extends into the first nozzle 3021 of the circular square tube body 302, and a part of it is placed outside the circular square tube body 302.
  • the part of the adjusting connecting part 305 placed on the outside of the square tube body 302 can be rotatably sleeved on the cap of the light emitter 301.
  • the end of the adjusting connecting part 305 placed in the square tube body 302 is fixedly provided with an isolator. 306.
  • an isolator 306 accommodating area is provided at one end of the adjustment connecting part 305 placed in the circular square tube body 302, and the isolator 306 is placed in the adjustment connecting part 305, as shown in FIG.
  • Figure 7 is the schematic diagram after the isolator 306 and the adjusting connecting part 305 are separated; of course, the isolator 306 can also be directly fixed in the adjusting connecting part 305 with the help of other parts.
  • the isolator 306 is disposed in the cavity of the circular square tube body 302 and is fixed on the adjusting connection part 305.
  • the isolator 306 in this embodiment is based on the polarization principle of passing light, and only allows light to pass through in one direction.
  • the isolator mainly includes two polarizers and a magnetic ring, and the polarizers are placed on the front and back sides of the magnetic ring.
  • the polarization direction of the incident light is consistent with the polarization direction of the first polarizer (also known as the polarizer), that is, the same as the incident direction of the isolator. After passing through the magnetic ring, its polarization plane is rotated by 45°, which is exactly the same as that of the second polarizer.
  • the direction of the transmission axis of the polarizer (also called the analyzer) is the same, so all the optical signals pass through the second polarizer.
  • the reflected light caused by the optical path first enters the second polarizer and becomes linearly polarized light at an angle of 45° with the direction of the transmission axis of the first polarizer.
  • the polarization direction continues to rotate 45°, and the polarization
  • the angle between the plane and the transmission axis of the first polarizer is 90°.
  • the polarization direction of the light is perpendicular to the direction of the first polarizer, so it cannot pass through the polarizer, which acts as a reverse isolation. .
  • the polarization direction of the first polarizer in the isolator 306 is referred to as the polarization direction of the isolator 306 in this embodiment.
  • the adjustment connecting part 305 is rotated outside the square tube body 302, and inside the square tube body 302
  • the isolator 306 will also rotate with the adjusting connecting part 305.
  • the light emitter 301 and the adjusting connecting part 305 are rotatable sockets, the light emitter 301 will not rotate with the adjusting connecting part 305.
  • the angle between the polarization direction of the laser light emitted by the light emitter 301 and the polarization direction of the isolator 306 can be adjusted.
  • the angle between the polarization directions of 306 can be any value between 0° and 180°. Based on the working principle of the isolator 306, by adjusting the angle between the polarization direction of the laser emitted by the optical transmitter 301 and the polarization direction of the isolator 306, the coupling power of the optical transmitter 301 and the isolator 306 is adjusted, and then The output optical power of the optical module can be controlled.
  • FIG. 8 is a schematic diagram of the control effect of the rotary isolator provided in this embodiment on the coupling power. As shown in FIG. 8, when the angle between the polarization direction of the isolator 306 and the polarization direction of the laser light emitted by the light emitter 301 is 0°, the light transmission percentage of the laser light emitted by the light emitter 301 is 100. %, and, as the angle between the two increases, the percentage of light passing gradually decreases.
  • the percentage of light passing is 0; then, continue to rotate and adjust the connecting part 305 to isolate
  • the light transmission percentage gradually increases, until the angle between the two is 180°, the light transmission percentage returns to 100% .
  • the angle between the polarization direction and the polarization direction of the laser emitted by the optical transmitter 301 can further increase the coupling power of the optical transmitter 301 and the isolator 306; and for products with a power limit requirement, when the optical transmitter and the isolator
  • the bias direction of the isolator 306 is adjusted by rotating the adjusting connecting part 305 to increase the difference between the polarization direction of the isolator 306 and the laser polarization direction emitted by the optical transmitter 301
  • the included angle of in turn, can reduce the coupling power of the optical transmitter 301 and the isolator 306.
  • this embodiment does not need to change the relative position between the optical transmitter 301 and the optical fiber adapter 303 to realize the adjustment of the output light power of the optical module. Therefore, when the module is packaged, the optical fiber adapter 303 can be directly fixed.
  • the laser beam emitted by the light transmitter 301 is designed to be coaxial with the fiber optic adapter 303. Therefore, the optical module provided in this embodiment can not only simplify the packaging process, but also ensure the stability of the output optical power of the optical module.
  • the adjusting connecting part 305 can be welded to the rectangular tube body 302, and the light emitter 301 is welded to Adjust the connecting part 305, wherein, in order to ensure the welding firmness and the heat dissipation effect of the light emitter 301, metal solder can be used to realize the welding between the above-mentioned devices, so that the light emitter 301 can dissipate heat through the rectangular tube body 302.
  • metal solder can be used to realize the welding between the above-mentioned devices, so that the light emitter 301 can dissipate heat through the rectangular tube body 302.
  • other fixing methods can also be used, such as a glue bonding method, as long as the light emitter 301 and the adjusting connecting part 305 and the adjusting connecting part 305 and the rectangular tube body 302 can be fixed.
  • the optical receiver 304 is used to receive data electrical signals.
  • this embodiment is also designed as Rx TOCAN (coaxial package receiver) consisting of three parts: pins, sockets and caps.
  • the sockets are used to carry various components of the device, and the cap buckle
  • the tube socket is used to protect each device, and the pins are connected to the devices arranged on the tube socket through the tube socket.
  • the optical fiber adapter 303 is provided with an optical fiber ferrule 3031 for passing the optical fiber.
  • the optical coupling end face of the optical fiber ferrule 3031 placed in the rectangular tube body 302 is generally processed into a certain angle. Incline. After the fiber optic adapter 303 is assembled on the rectangular tube body 302, part of the tube socket and the optical fiber ferrule 3031 are placed in the cavity of the circular tube body 302, and the remaining part of the tube socket is placed outside the circular tube body 302.
  • FIG. 9 is a schematic diagram of the receiving and emitting paths of an optical transceiver sub-module provided in this embodiment.
  • the optical transmitter 301 and the optical receiver 304 utilize the optical Components, such as isolator 306, filter reflector 307, and filter 308, respectively establish optical connections with the optical fiber adapter 303.
  • the light emitted and received in the optical transceiver sub-module are transmitted through the same optical fiber in the optical fiber adapter 303. That is, the same optical fiber in the optical fiber adapter 303 is the transmission channel for the optical transceiver module to enter and exit the light, and the optical transceiver module implements a single-fiber bidirectional optical transmission mode.
  • FIG. 10 is a third schematic diagram of an exploded structure of an optical transceiving sub-module provided in this embodiment
  • FIG. 11 is a fourth schematic diagram of an exploded structure of an optical transceiving sub-module provided in this embodiment.
  • the adjusting connection part 305 in this embodiment is composed of a welding sub-part 3051, an adjusting sleeve sub-part 3052, and a protection sub-part 3053.
  • the adjustment sleeve sub-component 3052 and the protection sub-component 3053 can also be an integrated structure, and can be collectively referred to as an adjustment sub-component.
  • the soldering sub-component 3051 may be made of metal material to facilitate soldering between devices and heat dissipation of the devices.
  • the welding subassembly 3051 is designed as a hollow cylindrical structure and is sleeved on the light emitter 301.
  • the two can be interference Fit, that is, the outer diameter of the light emitter 301 is slightly larger than the inner diameter of the welding sub-part 3051.
  • the adjusting sleeve sub-component 3052 is provided with a light emitter accommodating cavity, and the welding sub-component 3051 can be rotatably embedded into the light emitter accommodating cavity.
  • the cap of the light emitter 301 is embedded in the In the welding sub-assembly 3051, the tube socket is placed outside the welding sub-assembly 3051.
  • the welding sub-component 3051 is also sleeved on the outside of the light emitter 301, which can prevent damage to the cap of the light emitter 301 when the light emitter 301 is welded on the adjusting sleeve sub-component 3052, thereby ensuring The air tightness of the light emitter 301 is required.
  • the cap of the light emitter 301 is set to protrude in this embodiment.
  • the adjustment sleeve sub-component is also designed accordingly.
  • FIG. 12 is a schematic diagram 1 of the cross-sectional structure of the adjusting sleeve sub-component provided in this embodiment.
  • the light emitter accommodating cavity of the adjusting sleeve sub-component 3052 is designed to consist of a first accommodating area 521a and a second accommodating area 521b, in which the inner diameter of the first receiving area 521a is designed to be larger than the inner diameter of the second receiving area 521b to facilitate the positioning of the installation position of the light emitter 301 during assembly.
  • the light emitter 301 and the welding sub-part 3051 are assembled with the adjusting sleeve sub-part 3052, there is a certain gap between the end of the welding sub-part 3051 and the bottom of the first receiving area 521a, and the cap end of the light emitter 301 There is a certain gap between the bottom portion and the bottom of the second receiving area 521b.
  • FIG. 13 is a schematic diagram of the three exploded structures of the adjustment sleeve sub-component, the protection sub-component and the isolator provided in this embodiment
  • FIG. 14 is the adjustment sleeve sub-component and the protection sub-component of the optical transceiver sub-module provided in this embodiment.
  • the protection sub-component 3053 is designed as a hollow structure to place the isolator 306.
  • the outer cross-section of the protective sub-component 3053 is designed with a circular structure. Compared with the square structure, it can ensure the size of its clear aperture. At the same time, it can take up less square when it rotates with the adjusting sleeve sub-component 3052.
  • the end for connecting with the adjusting sleeve sub-component 3052 is provided with a clamping portion 531; the shape of the clamping portion 531 matches the adjusting sleeve
  • the clamping part 523 is provided on the tube part 3052, so that the protective sub-part 3053 can be clamped in the clamping part 523 through the clamping part 531, and the two can be fixed by glue or the like. Of course, it can also be connected by the clamping part 531.
  • a special fixing structure is provided on the part 531 and the engaging part 523 to realize the fixed connection between the protective sub-component 3053 and the adjusting sleeve sub-component 3052.
  • the protection sub-component 3053 is fixedly connected with the adjusting sleeve sub-component 3052, the isolator 306 is arranged inside the protection sub-component 3053, and further, when the adjusting sleeve sub-component 3052 is rotated, the isolator 306 can be driven.
  • the adjusting sleeve sub-part 3052 can be driven.
  • the other end of the protection sub-component 3053 is set to have a fully open structure that matches the outer diameter of the isolator 306. In this way, it is convenient to put the isolator 306 into the protection sub-component 3053 and place the isolator 306 Take it out of the protective sub-assembly 3053.
  • the protection sub-component 3053 can also be configured to be composed of multiple parts that can be disassembled.
  • the isolator 306 is provided in the protection sub-component 3053. When the isolator 306 needs to be taken out of the protection sub-component 3053, it is directly disassembled. It is sufficient to protect the sub-component 3053.
  • the adjusting sleeve sub-component 3052 and the protective sub-component 3053 are configured as detachable structures. In this way, during the optical module packaging process, when rework is required, the protective sub-component 3053 and the adjusting sleeve sub-component 3052 are removed. Open, only the adjustment sleeve sub-component 3052 is replaced, and there is no need to replace the isolator 306 and the protective sub-component 3053, which can save material costs. In addition, through the design of the opening shape of the protection sub-component 3053, it is convenient to take out the isolator 306 from the protection sub-component 3053.
  • the isolator 306 can be replaced.
  • the isolator 306 is taken out from the protection sub-component 3053, and there is no need to replace the isolator 306, thereby saving material costs.
  • Figure 15 is a second schematic cross-sectional structure view of the adjusting sleeve sub-component provided in this embodiment.
  • the adjusting sleeve sub-component 3052 between the light emitter accommodating cavity 521 and the engaging portion 523 for inserting the protective sub-component 3053, there is also a transition zone 522, and this embodiment is provided
  • the inner diameter of the transition area 522 is smaller than the inner diameter of the light emitter accommodating cavity 521.
  • a first isolating plate 524 is provided between the transition area 522 and the engaging portion 523, and the first isolating plate 524 is provided for the light emitter 301.
  • the through hole through which the emitted laser beam passes.
  • the purpose of providing the transition zone 522 in this embodiment is to provide optical elements such as a focusing lens and/or filter on the light exit side of the light emitter 301, which can be reduced compared with placing the above optical elements outside the isolation sleeve 306.
  • FIG. 16 is a schematic diagram of the exploded structure of the adjusting sleeve sub-component, the protective sub-component and the rectangular tube provided in this embodiment.
  • the circular square tube body 302 is provided with a transmitter accommodating area 3024 that matches the shape of the protective sub-component 3053 and the adjusting sleeve sub-component 3052 after assembly, and an adapter accommodating area that matches the shape of the optical fiber adapter.
  • a second isolation plate 3022 is provided between the transmitter accommodating area 3024 and the adapter accommodating area 3026, and the second isolation plate 3022 is provided with a through hole for the laser beam emitted by the light transmitter to pass.
  • a part of the adjusting sleeve sub-component 3052 and the isolator 306 are arranged in the transmitter accommodating area 3024, and the filter reflector 307 and the fiber ferrule 3031 and part of the tube body of the optical fiber adapter 303 are arranged in the adapter accommodating area 3026.
  • the light beam emitted by the light transmitter 301 passes through the isolator 306, the through hole on the second isolating plate 3022 and the filter reflector 307 to the optical coupling end face of the optical fiber ferrule 3031 of the optical fiber adapter 303, and finally enters the optical fiber to be sent out.
  • the laser beam emitted by the optical transmitter 301 is configured in this embodiment.
  • the convergence point is located on the light incident surface of the optical fiber ferrule 3031 on the optical fiber adapter 303, and at the same time, the filter reflector 307 is disposed close to the light incident surface of the optical fiber ferrule 3031, and the isolator 306 is disposed close to the filter reflector 307.
  • a receiver accommodating area 3028 matching the shape of the light receiver 304 is also provided in the circular square tube 302, and between the receiver accommodating area 304 and the transmitter accommodating area 3024 and the adapter accommodating area 3026 A third isolation plate 3027 is provided, and the third isolation plate 3027 is provided with a through hole for the laser beam reflected by the filter reflection sheet 307 to pass.
  • the cap part of the light receiver 304 is arranged in the transmitter receiving area 3024.
  • the light beam received by the optical fiber adapter 303 reflected by the filter reflector 307 passes through the through hole on the third isolation plate 3027, and then is directed to the filter 308. After being filtered by the filter 308, it is directed to the optical receiver 304.
  • the installation and positioning of the components can be facilitated.
  • isolation of stray light can be achieved by means of isolation plates arranged between different containing areas and through-hole structures on the isolation plates.
  • the optical transmitting sub-module and the optical receiving sub-module are packaged together in a metal shell to make an optical transceiver sub-module as an example.
  • the two can also be packaged independently, that is, for light emitting
  • the third nozzle 3023 is not provided on the square tube body 302 in the above embodiment.
  • the shape of the square tube body 302 can also be designed in other shapes, such as a cylindrical shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),属于光纤通信领域。光模块(200)中的光收发次模块(205)包括圆方管体(302)、隔离器(306)、调节连接部件(305)和光发射器(301),其中,调节连接部件(305)嵌入圆方管体(302)内的一端连接有隔离器(306)、置于圆方管体(302)外的一端转动套接光发射器(301)。通过在圆方管体(302)外旋转调节连接部件(305),圆方管体(302)内的隔离器(306)也会随着调节连接部件(305)一起旋转,进而可以通过调节光发射器(301)所发出的激光偏振方向与隔离器(306)的偏振方向之间的夹角,实现光发射器(301)与隔离器(306)耦合功率的调整,最终可以实现光模块(200)的输出光功率的控制。无需改变光发射器(301)与光纤适配器(303)之间的相对位置,进而在封装时光纤适配器(303)直接固定即可,不仅可以简化封装过程,还可以保证光模块(200)输出光功率的稳定性。

Description

一种光模块
本申请要求在2019年10月31日提交中国专利局、申请号为201911053059.6、发明名称为“一种光模块”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光收发一体模块,简称光模块,是光通讯领域设备中的一种标准模块。在光模块组装过程中会有影响耦合效率的因素出现,进而影响光功率。光功率有上限要求,也有下限要求。
发明内容
本申请实施例提供一种光模块,其主要包括:电路板,具有电路,用于提供电连接;光收发次模块,与所述电路板的电路连接,用于发射数据光信号以及接收数据光信号;所述光收发次模块包括:圆方管体,表面开设有第一管口和第三管口,用于承载调节连接部件和光接收器;所述光接收器,伸入所述第三管口,用于接收所述数据光信号;所述调节连接部件,一端伸入所述第一管口,伸入所述第一管口的一端设置有隔离器,另一端置于所述圆方管体的外部,置于所述圆方管体的外部的一端设置有光发射器;所述光发射器,用于发射具有偏振方向的出射光,所述出射光通过所述隔离器;其中,所述调节连接部件的旋转可以带动所述隔离器随其旋转,以改变所述隔离器的偏振方向与所述出射光的偏振方向之间的夹角。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本申请实施例提供的一种光模块结构示意图;
图4为本申请实施例提供光模块分解结构示意图;
图5为本实施例中提供的一种光收发次模块的结构示意图;
图6为本实施例中提供的一种光收发次模块的分解结构示意图一;
图7为本实施例中提供的一种光收发次模块的分解结构示意图二;
图8为本实施例中提供的旋转隔离器对耦合功率的控制效果示意图;
图9为本实施例中提供的一种光收发次模块的收、发光路示意图;
图10为本实施例中提供的一种光收发次模块的分解结构示意图三;
图11为本实施例中提供的一种光收发次模块的分解结构示意图四;
图12为本实施例中提供的调节套筒子部件的剖面结构示意图一;
图13为本实施例中提供的调节套筒子部件、保护子部件和隔离器的三者分解结构示意图;
图14为本实施例中提供的光收发次模块中调节套筒子部件与保护子部件的分解结构示意图;
图15为本实施例中提供的调节套筒子部件的剖面结构示意图二;
图16为本实施例中提供的调节套筒子部件、保护子部件与圆方管体的三者的分解结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
光纤通信的核心环节之一是光电信号的转换。光纤通信使用携带信息的光信号在光纤/光波导中传输,利用光在光纤中的无源传输特性可以实现低成本、低损耗的信息传输。而计算机等信息处理设备采用的是电信号,这就需要在信号传输过程中实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光电转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、传输数据信号以及接地等,金手指实现的电连接方式已经成为光模块行业的标准方式,以此为基础,电路板是大部分光模块中必备的技术特征。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络单元100、光模块200、光纤101及网线103;光纤的一端连接远端服务器,网线的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤与网线的连接完成;而光纤与网线之间的连接由具有光模块的光网络单元完成。
光模块200的光口与光纤101连接,与光纤建立双向的光信号连接;光模块200的电口接入光网络单元100中,与光网络单元建立双向的电信号连接;光模块实现光信号与电信号的相互转换,从而实现在光纤与光网络单元之间建立连接;具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络单元100中,来自光网络单元100的电信号由光模块转换为光信号输入至光纤中。光模块200是实现光电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络单元具有光模块接口102,用于接入光模块,与光模块建立双向的电信号连接;光网络单元具有网线接口104,用于接入网线,与网线建立双向的电信号连接;光模块与网线之间通过光网络单元建立连接,具体地,光网络单元将来自光模块的信号传递给网线, 将来自网线的信号传递给光模块,光网络单元作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络单元及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络单元是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络单元结构示意图。如图2所示,在光网络单元100中具有电路板105,在电路板105的表面设置笼子106;在笼子106中设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等卡接部结构。
光模块200***光网络单元中,具体为光模块的电口***笼子106中的电连接器,光模块的光口与光纤101连接。笼子106位于电路板上,将电路板上的电连接器包裹在笼子中;光模块***笼子中,由笼子固定光模块,光模块产生的热量通过光模块壳体传导给笼子,最终通过笼子上的散热器107进行扩散。
图3为本申请实施例提供的一种光模块的结构示意图,图4为本申请实施例提供光模块的分解结构示意图。如图3和图4所示,本申请实施例提供的光模块200包括上壳体201、下壳体202、解锁手柄203、电路板204和光收发次模块205。
上壳体201与下壳体202形成具有两个开口的包裹腔体,具体可以是在同一方向的两端开口(206、207),也可以是在不同方向上的两处开口;其中一个开口为电口206,用于***光网络单元等上位机中,另一个开口为光口207,用于外部光纤接入以连接内部光纤,电路板204等光电器件位于包裹腔体中。
上壳体201及下壳体202一般采用金属材料,利于实现电磁屏蔽以及散热;采用上壳体201、下壳体202结合的装配方式,便于将电路板204等器件安装到壳体中,一般不会将光模块的壳体做成一体结构,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽结构无法安装,也不利于生产自动化。
解锁手柄203位于包裹腔体/下壳体202的外壁,拉动解锁手柄的末端可以在使解锁手柄在外壁表面相对移动;光模块***上位机时由解锁手柄203将光模块固定在上位机的笼子里,通过拉动解锁手柄203以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
光收发次模块205用于发射和接收激光,进而实现光模块200发射和接收光信号。图5为本实施例中提供的一种光收发次模块的结构示意图,图6为本实施例中提供的一种光收发次模块的分解结构示意图一,图7为本实施例中提供的一种光收发次模块的分解结构示意图二。如图5至7所示,该光收发次模块300主要包括光发射器301、圆方管体302、光纤适配器303、光接收器304、调节连接部件305以及隔离器306。
其中,圆方管体302用于承载固定光发射器301、光纤适配器303和光接收器304。在本实施例中,圆方管体302一般采用金属材料制成,以利于实现电磁屏蔽以及散热。圆方管体302上设置用于固定光发射器301的第一管口3021、用于固定光纤适配器303的 第二管口3022以及用于固定光接收器304的第三管口3023。其中,为降低收、发光路的干扰以及缩小器件体积,本实施例将第一管口3021和第二管口3022分别设置在圆方管体302两个相对的侧壁上、第二管口3022以及第三管口3023设置在圆方管体302的相邻的侧壁上。
如图6和7所示,圆方管体302内部为中空的腔体,在该腔体内设有滤波反射片307和滤波片308。其中,滤波反射片307设置在发射器301、光纤适配器303和光接收器304中间,用于实现光纤适配器303所接收的光可进入光接收器304以及降低光发射器301和光接收器304之间的光路干扰;滤波反射片307可以选用45°滤波反射片,在安装使用时,45°滤波反射片与光发射器301所发出的激光束成45°或接近45°方向安装。滤波片308设置在光接收器304的入光侧,以实现对进入光接收器304的杂光的隔离。
利用上述滤波反射片307和滤波片308,当该光模块接收数据光信号时,则待接收的数据光信号通过光纤传输至光纤适配器303,然后经过滤波反射片307反射至滤波片308,再经过滤波片308滤波,滤除进入光接收器304的光束中的杂光后,射向光接收器304;当该光模块发出数据光信号时,则光发射器301可通过其内部的LD芯片发出激光束,该激光束经过滤波反射片307透射后,进入光纤适配器303,然后进入与光纤适配器303连接的光纤。
光发射器301用于发射数据光信号。如图6和7所示,本实施例设计其为由管脚、管座和管帽三部分构成的Tx TOCAN(同轴封装发射器),其中,管座用于承载器件各种器件、如激光芯片、背光探测器等,管帽扣在管座上以实现各器件的保护,管脚通过管座与设置在管座上的器件连接。光发射器301与调节连接部件305装配后,其管帽部分镶嵌在调节连接部件305中、管座与管脚置于调节连接部件305的外侧。
调节连接部件305可以选用金属材料制成,以方便其与光发射器301以及圆方管体302焊接以及有利于器件散热。调节连接部件305伸入圆方管体302的第一管口3021中,并且有一部分置于圆方管体302的外部。调节连接部件305置于圆方管体302的外部的部分可转动套接在光发射器301的管帽上,另外,调节连接部件305置于圆方管体302内的一端固定设置有隔离器306。其中,本实施例在调节连接部件305置于圆方管体302内的一端设置隔离器306容纳区,将隔离器306放置在调节连接部件305内,如图6即为将隔离器306与调节连接部件305装配后的示意图,图7即为将隔离器306与调节连接部件305拆分内后的示意图;当然,还可以借助其他部件将隔离器306直接固定在调节连接部件305中置于圆方管体302内的端部。
隔离器306设置在圆方管体302的腔体内且被固定在调节连接部件305上。本实施例中的隔离器306是基于通过光的偏振原理,仅允许光单方向通过。通常,隔离器主要包括两个偏振器和一个磁环,偏振器置于磁环前后两侧。入射光的偏振方向与第一个偏振器(又称起偏器)的偏振方向一致,即与隔离器的入射方向一致,然后经过磁环后其偏振面被旋转45°,刚好与第二个偏振器(又称检偏器)的透光轴方向一致,于是光信号全部通过第二个偏振器。由光路引起的反射光先进入第二个偏振器,变成与第一个偏振器透光轴方向成45°夹角的线偏振光,再经过磁环后,偏振方向继续旋转45°,偏振面与第一个偏 振器透光轴的夹角为90°,此时光的偏振方向与第一个偏振器的方向是垂直正交的,因而不能通过起偏器,起到了反向隔离的作用。基于隔离器306的上述工作原理,本实施例中将隔离器306中第一个偏振器的偏振方向称为隔离器306的偏振方向。
通过对光发射器301、调节连接部件305、隔离器307以及圆方管体302上述结构设计,在光模块封装时,在圆方管体302外旋转调节连接部件305,圆方管体302内的隔离器306也会随着调节连接部件305一起旋转,同时,由于光发射器301与调节连接部件305为可转动套接,所以光发射器301不会随着调节连接部件305旋转。进而,通过旋转调节连接部件305,便可以调节光发射器301所发出的激光偏振方向与隔离器306的偏振方向之间的夹角,其中,光发射器301所发出的激光偏振方向与隔离器306的偏振方向之间的夹角可以为0°至180°之间的任一数值。基于隔离器306的工作原理,通过对光发射器301所发出的激光偏振方向与隔离器306的偏振方向之间的夹角的调整,实现光发射器301与隔离器306耦合功率的调整,进而可以实现光模块的输出光功率的控制。
图8为本实施例中提供的旋转隔离器对耦合功率的控制效果示意图。如图8所示,当隔离器306的偏振方向与光发射器301所发出的激光偏振方向之间的夹角为0°时,则对光发射器301所发出的激光的通光百分比为100%,并且,随着两者夹角的增大,通光百分比逐渐减小,其中,当两者夹角为90°时,通光百分比为0;然后,继续旋转调节连接部件305,使隔离器306的偏振方向与光发射器301所发出的激光偏振方向之间的夹角继续增大,则通光百分比逐渐增大,直至两者夹角为180°时,通光百分比恢复为100%。
因此,对于有功率下限要求的产品,当光发射器与隔离器初步耦合功率低于目标下限功率时,则通过旋转调节连接部件305,调整隔离器306的偏置方向,来缩小隔离器306的偏振方向与光发射器301所发出的激光偏振方向之间的夹角,进而可以增大光发射器301与隔离器306的耦合功率;而对于有功率上限要求的产品,当光发射器与隔离器初步耦合功率高于目标上限功率时,则通过旋转调节连接部件305,调整隔离器306的偏置方向,来增大隔离器306的偏振方向与光发射器301所发出的激光偏振方向之间的夹角,进而可以减小光发射器301与隔离器306的耦合功率。
基于上述方案可知,本实施例无需改变光发射器301与光纤适配器303之间的相对位置,便可以实现光模块出光功率的调整,所以在模块封装时,直接固定光纤适配器303即可,在本申请的某些实施例中,将光发射器301发出的激光束设计为与光纤适配器303同轴。因此,本实施例提供的光模块不仅可以简化封装过程,还可以保证光模块输出光功率的稳定性。
另外,考虑到光模块出厂后的工作性能稳定性,本实施例在对光模块完成光功率耦合后,可以将调节连接部件305焊接在圆方管体302上,并且将光发射器301焊接在调节连接部件305上,其中,为保证焊接牢固度以及光发射器301的散热效果,可以采用金属焊料实现上述器件之间的焊接,以实现光发射器301可以通过圆方管体302散热。当然,还可以采用其它固定方式,如采用胶水粘接的方式,只要能够将光发射器301与调节连接部件305以及调节连接部件305与圆方管体302固定即可。
在本申请的某些实施例中,光接收器304用于接收数据电信号。同样的,本实施例也 设计其为由管脚、管座和管帽三部分构成的设计为Rx TOCAN(同轴封装接收器),其中,管座用于承载器件各种器件,管帽扣在管座上以实现各器件的保护,管脚通过管座与设置在管座上的器件连接。光接收器304与圆方管体302装配后,其管帽部分伸入第三管口3023中,管座与管脚置于圆方管体302外侧。
光纤适配器303中设有用于穿过光纤的光纤插芯3031,为保证光器件具有一定的回损值,光纤插芯3031置于圆方管体302内的光耦合端面一般被加工成一定角度的斜面。光纤适配器303装配在圆方管体302上后,其部分管座和光纤插芯3031置于圆方管体302的管腔中、剩余的部分管座置于圆方管体302外部。
图9为本实施例中提供的一种光收发次模块的收、发光路示意图。如图9所示,在上述光发射器301、光纤适配器303、光接收器304和圆方管体302的装配方式下,光发射器301和光接收器304利用设置在圆方管体302的光学元件、如隔离器306、滤波反射片307和滤波片308,分别与光纤适配器303建立光连接,光收发次模块中发出的光及接收的光均经由光纤适配器303中的同一根光纤进行传输,即光纤适配器303中的同一根光纤是光收发次模块进出光的传输通道,光收发次模块实现单纤双向的光传输模式。
图10为本实施例中提供的一种光收发次模块的分解结构示意图三,图11为本实施例中提供的一种光收发次模块的分解结构示意图四。如图10和11所示,本实施例中的调节连接部件305由焊接子部件3051、调节套筒子部件3052和保护子部件3053组成。当然,调节套筒子部件3052和保护子部件3053也可以为一体式结构,可以合称为调节子部件。
焊接子部件3051可以采用金属材料制成,以便于器件之间的焊接和器件散热。本实施例中,焊接子部件3051设计为中空的筒形结构,套设在光发射器301上,另外,为了保证焊接子部件3051与光发射器301的连接牢固度,两者可以为过盈配合,即光发射器301的外径略大于焊接子部件3051的内径。与焊接子部件3051相匹配的,调节套筒子部件3052上设有光发射器容纳腔,焊接子部件3051可转动镶嵌入光发射器容纳腔中,同时,光发射器301的管帽镶嵌在焊接子部件3051中、管座置于焊接子部件3051外部。当完成光模块的功率耦合工作后,便可以通过焊料、胶水等将焊接子部件3051和调节套筒子部件3052固定在一起。
本实施例通过在光发射器301的外部还套设焊接子部件3051,便可以防止将光发射器301焊接在调节套筒子部件3052上时对光发射器301的管帽的损伤,保证了光发射器301其内部的气密性要求。
在本申请的某些实施例中,考虑到光模块使用过程中,受热膨胀会对各器件之间的间距产生影响,如图11所示,本实施例设置光发射器301的管帽凸出于焊接子部件3051,同样的,对调节套筒子部件也进行相应的设计。
图12为本实施例中提供的调节套筒子部件的剖面结构示意图一。如图12所示,与光发射器301和焊接子部件3051的装配后形状相匹配的,将调节套筒子部件3052的光发射器容纳腔设计为由第一容纳区521a和第二容纳区521b组成,其中,设计第一容纳区521a的内径大于第二容纳区521b的内径,以方便装配时,对光发射器301安装位置的定位。
设置光发射器301和焊接子部件3051与调节套筒子部件3052装配后,焊接子部件 3051的端部与第一容纳区521a的底部之间具有一定的间隙,光发射器301的管帽端部与第二容纳区521b的底部之间具有一定的间隙。通过上述设计,一方面可以光模块使用过程中,为光发射器301受热膨胀留有一定的间隙;另一方面可以使光发射器301在轴向上有一定的移动空间,进而方便其与光纤适配器303之间的耦合。
图13为本实施例中提供的调节套筒子部件、保护子部件和隔离器的三者分解结构示意图,图14为本实施例中提供的光收发次模块中调节套筒子部件与保护子部件的分解结构示意图。如图13至14所示,保护子部件3053被设计为中空的结构,以放置隔离器306。
保护子部件3053的外周横截面设计圆形结构,与方形结构相比,可以保证其通光口径的尺寸的同时,在其随着调节套筒子部件3052旋转时,可以占用更少的圆方管体302的内部空间。
在本申请的某些实施例中,在保护子部件3053中,用于与调节套筒子部件3052连接的一端设有卡接部531;与该卡接部531的形状相匹配的,调节套筒子部件3052上设置的卡合部523,这样,保护子部件3053便可以通过卡接部531卡在卡合部523中,通过胶水等可以将两者固定,当然,还可以通过在卡接部531和卡合部523上设置专门的固定结构等方式实现保护子部件3053与调节套筒子部件3052的固定连接。利用上述结构,由于保护子部件3053与调节套筒子部件3052固定连接,同时,隔离器306设置在保护子部件3053内部,进而,当转动调节套筒子部件3052时,便可以带动隔离器306跟着调节套筒子部件3052同步转动。
同时,本实例设置保护子部件3053的另一端为与隔离器306的外径相匹配的全开开口结构,这样,便可以方便将将隔离器306放入保护子部件3053中以及将隔离器306从保护子部件3053中取出。当然,还可以将保护子部件3053设置为由可以拆卸的多个部分组成,隔离器306设置在保护子部件3053中,当需要将将隔离器306从保护子部件3053中取出时,直接拆开保护子部件3053即可。
本实施例通过将调节套筒子部件3052和保护子部件3053设置为可拆分结构,这样,在光模块封装过程中,当需要返工时,将保护子部件3053与调节套筒子部件3052拆开,只更换调节套筒子部件3052,无需更换隔离器306和保护子部件3053,可以节省材料成本。另外,通过保护子部件3053的开口形状设计,方便将隔离器306从保护子部件3053取出,进而,在光模块封装过程中,当需要返工时,若需要更换保护子部件3053时,便可以将隔离器306从保护子部件3053取出,无需更换隔离器306,进而可以节省材料成本。
图15为本实施例中提供的调节套筒子部件的剖面结构示意图二。如图15所示,在调节套筒子部件3052中,在光发射器容纳腔521与用于镶嵌保护子部件3053的卡合部523之间,还设有过渡区522,并且本实施例设置过渡区522的内径小于光发射器容纳腔521的内径,在过渡区522与卡合部523之间设有第一隔离板524,且第一隔离板524上开设有用于供光发射器301所发出的激光束通过的通孔。本实施例设置该过渡区522的目的是,可以在光发射器301的出光侧设置聚焦透镜和/或滤波片等光学元件,与将上述光学元件放置在隔离套筒306外部相比,可以缩小整个光收发次模块的体积,并且通过设置该过渡 区522的内径以及第一隔离板524,可以实现对光学元件的位置定位,方便光学元件的安装;另外,本实施例设置第一隔离板524以及在第一隔板3063上开设通孔,还可以实现对进入隔离器306中的杂光的隔离。
同样的,本实施例对圆方管体302的内部结构也进行相应的设计。图16为本实施例中提供的调节套筒子部件、保护子部件与圆方管体的三者的分解结构示意图。如图16所示,在圆方管体302内设有与保护子部件3053和调节套筒子部件3052装配后的形状相匹配的发射器容纳区3024、与光纤适配器形状相匹配的适配器容纳区3026,并且,在发射器容纳区3024和适配器容纳区3026之间设有第二隔离板3022,第二隔离板3022上开设有用于供光发射器所发出的激光束通过的通孔。调节套筒子部件3052的一部分和隔离器306设置在发射器容纳区3024中,滤波反射片307以及光纤适配器303的光纤插芯3031和部分管体设置在适配器容纳区3026中。光发射器301发出的光束经过隔离器306、第二隔离板3022上的通孔以及滤波反射片307射向光纤适配器303的光纤插芯3031的光耦合端面,最终进入光纤发送出去。
在本申请的某些实施例中,为了缩小整个光收发次模块的体积,以及,缩小隔离器306和滤波反射片307的体积,节省材料成本,本实施设置光发射器301所发出激光束的会聚点位于光纤适配器303上的光纤插芯3031的入光面,同时,滤波反射片307靠近光纤插芯3031的入光面设置,隔离器306靠近滤波反射片307设置。
同样的,在该圆方管体302内还设有与光接收器304的形状相匹配的接收器容纳区3028,并且,接收器容纳区304与发射器容纳区3024以及适配器容纳区3026之间设有第三隔离板3027,第三隔离板3027上开设有供滤波反射片307反射的激光束通过的通孔。光接收器304的管帽部分设置在发射器容纳区3024中。光纤适配器303接收的光经滤波反射片307反射的光束,通过第三隔离板3027上的通孔后,射向滤波片308,经过滤波片308滤波后,射向光接收器304。
本实施例通过在圆方管体302内设置不同的与各元器件形状相匹配的容纳区,与将圆方管体302设置为一个空腔结构相比,可以方便对元器件的安装定位,另外,借助设置在不同的容纳区之间的隔离板以及隔离板上的通孔结构,可以实现对杂散光的隔离。
需要说明的是,上述实施例是以光发射次模块和光接收次模块一起封装在金属外壳中制成光收发次模块为例,在具体实过程中还可以将两者独立封装,即对于光发射次模块,在上述实施例中的圆方管体302上不开设第三管口3023即可,同时,圆方管体302的形状还可以设计为其它形状、如圆柱形。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光模块,其特征在于,包括:
    电路板,具有电路,用于提供电连接;
    光收发次模块,与所述电路板的电路电连接,用于发射数据光信号以及接收数据光信号;
    所述光收发次模块包括:
    圆方管体,表面开设有第一管口和第三管口,用于承载调节连接部件和光接收器;
    所述光接收器,伸入所述第三管口,用于接收所述数据光信号;
    所述调节连接部件,一端伸入所述第一管口,伸入所述第一管口的一端设置有隔离器,另一端置于所述圆方管体的外部,置于所述圆方管体的外部的一端设置有光发射器;
    所述光发射器,用于发射具有偏振方向的出射光,所述出射光通过所述隔离器;
    其中,所述调节连接部件的旋转可以带动所述隔离器随其旋转,以改变所述隔离器的偏振方向与所述出射光的偏振方向之间的夹角。
  2. 根据权利要求1所述的光模块,其特征在于,所述调节连接部件包括调节子部件和套设在所述光发射器上的焊接子部件,其中:
    所述调节子部件,一端伸入所述第一管口、另一端置于所述圆方管体的外部;伸入所述第一管口的一端设置有所述隔离器;
    所述焊接子部件,嵌入所述调节子部件中置于所述圆方管体外的一端。
  3. 根据权利要求2所述的光模块,其特征在于,所述调节子部件包括调节套筒子部件和保护子部件,其中:
    所述调节套筒子部件,一端伸入所述第一管口,伸入所述第一管口的一端连接所述保护子部件,另一端置于所述圆方管体的外部,置于所述圆方管体的外的一端套设在所述焊接子部件上;
    所述保护子部件内部设有所述隔离器。
  4. 根据权利要求3所述的光模块,其特征在于,与所述保护子部件连接的一端,所述调节套筒子部件上设有卡合部;与所述卡合部相匹配的,所述保护子部件上设有卡接部,所述卡接部卡接在所述卡合部中。
  5. 根据权利要求3所述的光模块,其特征在于,所述光发射器的管帽凸出于所述焊接子部件设置,其中:
    与所述光发射器和所述焊接子部件的装配形状相匹配的,所述调节套筒子部件上开设有用于容置所述光发射器和所述焊接子部件的光发射器容纳腔;
    所述光发射器容纳腔由第一容纳区和第二容纳区组成;
    所述第一容纳区的内径大于所述第二容纳区的内径;
    所述焊接子部件的端部与所述第一容纳区的底部之间具有一定的间隙,所述管帽端部与所述第二容纳区的底部之间具有一定的间隙。
  6. 根据权利要求5所述的光模块,其特征在于,在所述调节套筒子部件中还设有过 渡区,其中:
    所述过渡区位于所述光发射器容纳腔与用于设置所述隔离器的卡合部之间;
    所述过渡区的内径小于所述光发射器容纳腔的内径;
    所述过渡区与所述卡合部之间设有第一隔离板,所述第一隔离板上开设有用于供所述发射光通过的通孔。
  7. 根据权利要求1所述的光模块,其特征在于,所述光收发次模块还包括光纤适配器,其中:
    所述圆方管体上还开设第二管口,所述光纤适配器伸入所述第二管口;
    所述光纤适配器中设有光纤插芯,所述光发射器所发出发射光的会聚点位于所述光纤插芯的入光面;
    所述隔离器靠近所述光纤插芯的入光面设置。
  8. 根据权利要求7所述的光模块,其特征在于,所述圆方管体内设有与所述隔离器和调节连接部件装配后的形状相匹配的发射器容纳区、与所述光纤适配器形状相匹配的适配器容纳区,其中:
    所述发射器容纳区和所述适配器容纳区之间设有第二隔离板,所述第二隔离板上开设有用于供所述发射光通过的通孔。
  9. 根据权利要求8所述的光模块,其特征在于,所述圆方管体内设有与所述光接收器的形状相匹配的接收器容纳区,其中:
    所述接收器容纳区与所述发射器容纳区以及适配器容纳区之间设有第三隔离板,所述第三隔离板上开设有供所述光接收器所接收的光束通过的通孔。
  10. 根据权利要求7或8所述的光模块,其特征在于,所述光模块还包括滤波反射片和滤波片,其中:
    所述光纤适配器所接收的光束经所述滤波反射片反射向所述滤波片;
    所述滤波反射片所反射的光束经所述滤波片滤波后,射向所述光接收器;
    所述光发射器所发射的出射光依次透过所述隔离器和滤波反射片后,射向所述光纤适配器。
PCT/CN2020/104623 2019-10-31 2020-07-24 一种光模块 WO2021082553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911053059.6A CN110727064B (zh) 2019-10-31 2019-10-31 一种光模块
CN201911053059.6 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021082553A1 true WO2021082553A1 (zh) 2021-05-06

Family

ID=69223514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104623 WO2021082553A1 (zh) 2019-10-31 2020-07-24 一种光模块

Country Status (2)

Country Link
CN (1) CN110727064B (zh)
WO (1) WO2021082553A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110727064B (zh) * 2019-10-31 2022-12-16 青岛海信宽带多媒体技术有限公司 一种光模块
CN113640924A (zh) * 2020-04-27 2021-11-12 青岛海信宽带多媒体技术有限公司 一种光模块
CN113009653B (zh) * 2020-12-11 2022-12-27 大连优迅科技股份有限公司 光发射组件
CN114690324B (zh) * 2020-12-31 2023-06-02 华为技术有限公司 一种合波模块以及光组件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566363A (ja) * 1991-03-20 1993-03-19 Sumitomo Electric Ind Ltd 光アイソレータおよびその組立方法
JPH06186502A (ja) * 1992-12-18 1994-07-08 Kyocera Corp 光アイソレータ
JP2003195218A (ja) * 2001-12-28 2003-07-09 Mitsumi Electric Co Ltd 光アイソレータ及びその製造方法
JP2004029335A (ja) * 2002-06-25 2004-01-29 Sumitomo Metal Mining Co Ltd 光アイソレータと光アイソレータモジュール
US20040086256A1 (en) * 2002-10-30 2004-05-06 Gustavson Todd L. Continuously variable attenuation of an optical signal using an optical isolator
CN101222115A (zh) * 2007-01-10 2008-07-16 恩益禧电子股份有限公司 半导体激光器模块
CN101672986A (zh) * 2008-12-08 2010-03-17 高培良 一种光隔离器、开关、可调光衰减器和调制器的光学设备
JP2012220816A (ja) * 2011-04-12 2012-11-12 Smm Precision Co Ltd 偏波無依存型光アイソレータ
CN107153235A (zh) * 2016-03-03 2017-09-12 青岛海信宽带多媒体技术有限公司 一种光网络单元
CN110727064A (zh) * 2019-10-31 2020-01-24 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136819A (ja) * 1988-11-18 1990-05-25 Fujitsu Ltd 光アイソレータ内蔵型半導体レーザモジュールにおける光アイソレータの回転方向位置調整方法
CN101621334B (zh) * 2009-07-03 2013-06-19 招远招金光电子科技有限公司 一种光通讯发射组件
CN102809787A (zh) * 2012-08-10 2012-12-05 江苏奥雷光电有限公司 光发射次模块
CN204269872U (zh) * 2014-12-30 2015-04-15 厦门市贝莱通信设备有限公司 一种隔离器与激光器耦合粘接治具及***
CN207424313U (zh) * 2017-12-07 2018-05-29 武汉宜鹏光电科技股份有限公司 一种单纤双向组件
CN109324376A (zh) * 2018-11-05 2019-02-12 中航海信光电技术有限公司 一种同轴空间光收发通信器件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566363A (ja) * 1991-03-20 1993-03-19 Sumitomo Electric Ind Ltd 光アイソレータおよびその組立方法
JPH06186502A (ja) * 1992-12-18 1994-07-08 Kyocera Corp 光アイソレータ
JP2003195218A (ja) * 2001-12-28 2003-07-09 Mitsumi Electric Co Ltd 光アイソレータ及びその製造方法
JP2004029335A (ja) * 2002-06-25 2004-01-29 Sumitomo Metal Mining Co Ltd 光アイソレータと光アイソレータモジュール
US20040086256A1 (en) * 2002-10-30 2004-05-06 Gustavson Todd L. Continuously variable attenuation of an optical signal using an optical isolator
CN101222115A (zh) * 2007-01-10 2008-07-16 恩益禧电子股份有限公司 半导体激光器模块
CN101672986A (zh) * 2008-12-08 2010-03-17 高培良 一种光隔离器、开关、可调光衰减器和调制器的光学设备
JP2012220816A (ja) * 2011-04-12 2012-11-12 Smm Precision Co Ltd 偏波無依存型光アイソレータ
CN107153235A (zh) * 2016-03-03 2017-09-12 青岛海信宽带多媒体技术有限公司 一种光网络单元
CN110727064A (zh) * 2019-10-31 2020-01-24 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN110727064B (zh) 2022-12-16
CN110727064A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2021082553A1 (zh) 一种光模块
CN111239934B (zh) 一种光模块
CN112444923A (zh) 一种光模块
CN111239923A (zh) 一种光模块
WO2020224644A1 (zh) 一种光模块
CN111239930A (zh) 一种光模块
WO2021012591A1 (zh) 一种单纤双向多模波分复用光电转换装置及制备方法
CN111061019A (zh) 一种光模块
EP2350718A1 (en) Device for optically coupling photonic elements
WO2021223448A1 (zh) 一种光模块
CN112230349B (zh) 一种光模块
CN115097579A (zh) 光模块
CN214704097U (zh) 一种光模块
WO2020248642A1 (zh) 光模块
CN113484960A (zh) 一种光模块
CN114594555A (zh) 一种光模块
CN218547061U (zh) 一种光模块
CN110989103A (zh) 一种光模块
CN216526414U (zh) 一种光模块
CN216449795U (zh) 一种光模块
CN214795316U (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
CN214704098U (zh) 一种光模块
CN112230347B (zh) 一种光模块
WO2021120669A1 (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882866

Country of ref document: EP

Kind code of ref document: A1