WO2021012591A1 - 一种单纤双向多模波分复用光电转换装置及制备方法 - Google Patents

一种单纤双向多模波分复用光电转换装置及制备方法 Download PDF

Info

Publication number
WO2021012591A1
WO2021012591A1 PCT/CN2019/126035 CN2019126035W WO2021012591A1 WO 2021012591 A1 WO2021012591 A1 WO 2021012591A1 CN 2019126035 W CN2019126035 W CN 2019126035W WO 2021012591 A1 WO2021012591 A1 WO 2021012591A1
Authority
WO
WIPO (PCT)
Prior art keywords
division multiplexing
wavelength division
module
lens module
photoelectric conversion
Prior art date
Application number
PCT/CN2019/126035
Other languages
English (en)
French (fr)
Inventor
王灏
王东
Original Assignee
杭州耀芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州耀芯科技有限公司 filed Critical 杭州耀芯科技有限公司
Publication of WO2021012591A1 publication Critical patent/WO2021012591A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4226Positioning means for moving the elements into alignment, e.g. alignment screws, deformation of the mount
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the invention relates to a single-fiber bidirectional multimode wavelength division multiplexing photoelectric conversion device and a preparation method thereof, and belongs to the technical field of information transmission.
  • the photoelectric conversion device is the main component of the equipment to realize optical communication.
  • the length of the optical fiber is variable, so that the traditional AOC (active optical cable, active optical cable) is not a good method, and the pluggable optical module method is an effective solution.
  • the alignment accuracy between the laser, photodiode and lens is within ⁇ 15um, preferably within ⁇ 5um. Therefore, how to quickly and accurately complete the assembly becomes an urgent problem.
  • the present application provides a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device and a manufacturing method.
  • the present application provides a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device, which includes:
  • PCBA has an electrical connector, an optical fiber connector, a first positioning part, multiple lasers and multiple photodiodes;
  • the turning lens module has a light-incident surface, a reflective surface, a light-emitting surface, and a first matching portion.
  • the light-incident surface is provided with a plurality of first collimating lenses.
  • the light-emitting surface is perpendicular to the light-incident surface.
  • the first matching portion cooperates with the first positioning portion to mount the turning lens module on the PCBA, and to pair the plurality of first collimating lenses with the plurality of lasers and the plurality of photodiodes quasi;
  • the wavelength division multiplexing module has a total optical port and a plurality of optical splitting ports, the wavelength division multiplexing module is mounted on the PCBA, and the plurality of optical splitting ports and the light exit surface of the turning lens module Align;
  • the second collimating lens is arranged between the optical fiber connector and the total optical port of the wavelength division multiplexing module;
  • the electrical signal carrying information drives multiple lasers through the electrical connector to emit multiple optical signals of different frequencies.
  • the multiple optical signals are collimated and reflected by the turning lens module, and then passed through the wave
  • the division and multiplexing modules are aggregated into a single optical signal, which is then converged by the second collimating lens and then enters the optical fiber of the optical fiber connector;
  • the single optical signal from the optical fiber is collimated by the second collimating lens, and then dispersed into multiple optical signals of different frequencies by the wavelength division multiplexing module, and then reflected and converged by the turning lens module , Corresponding to a plurality of said photodiodes, converted into corresponding electrical signals and outputted through said electrical connector.
  • the wavelength division multiplexing module is combined with the PCBA and aligned with the turning lens module through a mounting base, and an end surface of the mounting base opposite to the turning lens module is provided with The second positioning part, the end of the turning lens module where the light exit surface is provided with a second matching part that cooperates with the second positioning part.
  • the top of the mounting base is recessed downward to form a receiving cavity of the wavelength division multiplexing module, and a baffle portion is formed along one side of the mouth of the receiving cavity extending inwardly, so
  • the accommodating cavity has a positioning side surface for matching with the side surface of the wavelength division multiplexing module and positioning the wavelength division multiplexing module.
  • the wavelength division multiplexing module includes a substrate and a diaphragm, and the substrate adopts a parallelepiped structure.
  • the turning lens module is an integrated structure.
  • the turning lens module includes a substrate, a first concave portion is formed on the top surface of the substrate, a second concave portion is formed on the bottom surface of the substrate, and the side surface of the first concave portion constitutes the reflecting surface.
  • the top surface of the second recess constitutes the light incident surface
  • the light incident surface is formed with a hemispherical protrusion used as the first collimating lens
  • one side surface of the substrate constitutes the light exit surface.
  • the first positioning portion is a pin hole
  • the first matching portion is a pin
  • the second positioning portion is a pin or a pin hole
  • the second matching portion is a pin hole or a pin.
  • the present application also provides a method for manufacturing a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device, which includes the following steps:
  • the wavelength division multiplexing module is installed on the basis of the turning lens module.
  • the installation method of the wavelength division multiplexing module includes:
  • the second positioning portion on the mounting base cooperates with the second matching portion on the turning lens module, so that the positioning and combination of the mounting base and the turning lens module are integrated.
  • the photoelectric conversion device of the present application integrates the devices for optical signal transmission, transmission, and reception, and can realize the standardization of the photoelectric conversion device, simplify the design, and meet
  • the photoelectric conversion device of this application can be directly connected to the external circuit, which effectively shortens the development time and reduces the development cost.
  • the present application has a first positioning part and a first matching part, and the combination of the two can quickly assemble the photodiode, laser, PCB and turning lens module while realizing precise alignment of the optical path.
  • the wavelength division multiplexing module is installed through the mounting base, and the optical path can be realized while the wavelength division multiplexing module is quickly assembled through the positioning side of the mounting base and the second positioning part on the mounting base. Precise alignment.
  • FIG. 1 is one of the schematic diagrams of a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device according to a specific embodiment of this application.
  • Fig. 2 is a second schematic diagram of a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device provided by a specific embodiment of this application.
  • FIG. 3 is a schematic diagram of a PCBA in a single-fiber bidirectional multimode wavelength division multiplexing photoelectric conversion device provided by a specific embodiment of this application.
  • FIG. 4 is one of the schematic diagrams of the turning lens module in a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device according to a specific embodiment of the application.
  • FIG. 5 is a second schematic diagram of a turning lens module in a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device according to a specific embodiment of this application.
  • FIG. 6 is a schematic diagram of a wavelength division multiplexing module in a single-fiber bidirectional multimode wavelength division multiplexing photoelectric conversion device according to a specific embodiment of the application.
  • Figure 7 is a schematic diagram of a WDM module aggregated optical signals.
  • Fig. 8 is a schematic diagram of a wavelength division multiplexing module dispersing optical signals.
  • FIG. 9 is a schematic diagram of a mounting base in a single-fiber bidirectional multimode wavelength division multiplexing photoelectric conversion device according to a specific embodiment of this application.
  • FIG. 10 is a schematic diagram of a second collimating lens in a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device according to a specific embodiment of this application.
  • FIG. 11 is a schematic diagram of a combination of a turning lens module, a mounting base, and a PCBA in a single-fiber bidirectional multimode wavelength division multiplexing photoelectric conversion device according to a specific embodiment of the application.
  • FIG. 1 is a schematic diagram of an embodiment of a single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device of the present application.
  • the single-fiber bidirectional multi-mode wavelength division multiplexing photoelectric conversion device includes: PCBA 4, turning lens module 1, wavelength division multiplexing module 2, and second collimating lens 3 for installing wavelength division multiplexing
  • the mounting base 5 of the module 2 and the optical fiber connector 6 for connecting the optical fiber 7 are used.
  • the PCBA 4 has an electrical connector 41, a first positioning portion 42, a plurality of lasers 43, and a plurality of photodiodes 44.
  • the turning lens module 1 has a light-incident surface 13, a reflective surface 18, a light-emitting surface 16 and a first matching portion 12.
  • the light-incident surface 13 is provided with a plurality of first collimating lenses 14 ,
  • the light-emitting surface 16 is perpendicular to the light-incident surface 13.
  • the turning propagation path of the optical signal in the turning lens module 1 is marked 17 in FIG. 5.
  • the first matching portion 12 cooperates with the first positioning portion 42 to mount the turning lens module 1 on the PCBA 4, and make a plurality of the first
  • the collimator lens 14 is aligned with a plurality of the lasers 43 and a plurality of the photodiodes 44.
  • the first matching portion 12 uses a pin
  • the first positioning portion 42 uses a pin hole.
  • the pin hole includes a first pin hole on the PCBA 4 and a second pin hole on the small substrate 421.
  • the small substrate 421 is bonded and fixed to On the back of PCBA 4, the second pin hole is preferably concentric with the first pin hole.
  • the laser 43 and the photodiode 44 are mounted on the PCB based on the first positioning portion (the second pin hole) on the PCB; then the pins on the turning lens module 1
  • the post (first matching portion 12) passes through the first pin hole on the PCBA 4, is inserted into the second pin hole on the small substrate 421, and is tightly fitted with the second pin hole, so that the turning lens module 1 is mounted on the PCBA 4,
  • the plurality of first collimating lenses 14 are automatically aligned with the plurality of lasers 43 and the plurality of photodiodes 44.
  • the wavelength division multiplexing module 2 has a total optical port 22 and a plurality of optical splitting ports 21.
  • the wavelength division multiplexing module 2 is mounted on the PCBA 4, and a plurality of the light splitting ports 21 are aligned with the light exit surface 16 of the turning lens module 1.
  • Fig. 7 shows the principle of the WDM module 2 aggregating optical signals
  • Fig. 8 shows the principle of the WDM module 2 dispersing optical signals.
  • Different optical splitting ports 21 have filters of different frequencies, and there is a reflective sheet 23 opposite to the splitting port 21.
  • the optical signal is directed to the filter of frequency fn, only the optical signal of frequency fn can pass through it. Filters, light signals of other frequencies will be reflected.
  • the multiple optical signals with frequencies f1, f2,..., fn enter from multiple light splitting ports 21, they are reflected by the filter and reflector 23, and are reflected in the wavelength division multiplexing It is propagated in the module 2 and finally aggregated into one optical signal and emitted from the total optical port 22.
  • the second collimating lens 3 is arranged between the optical fiber connector and the total optical port of the wavelength division multiplexing module 2, and is used to separate the total optical port of the wavelength division multiplexing module 2
  • the light output from the optical port is converged and sent to the optical fiber 7, and the light from the optical fiber 7 is collimated and sent to the total optical port of the wavelength division multiplexing module 2.
  • the optical fiber connector 6 adopts an LC adapter, and the LC adapter is sleeved outside the second collimating lens 3 and fixed to the PCBA 4.
  • the electrical signal carrying information drives the multiple lasers 43 through the electrical connector 41 to emit multiple optical signals of different frequencies, and the multiple optical signals correspond to the multiple optical signals injected into the turning lens module 1
  • One of the first collimating lenses 14 enters the reflective surface 18 after collimation, and is reflected to the wavelength division multiplexing module 2 through the light exit surface 16, correspondingly entering from the multiple light splitting ports 21 of the wavelength division multiplexing module 2
  • the wavelength division multiplexing module 2 is aggregated into a single optical signal and emitted from the total optical port 22, and then converged by the second collimator lens 3, and then enters the optical fiber 7 of the optical fiber connector 6 for transmission through the optical fiber 7.
  • the single optical signal from the optical fiber is collimated by the second collimating lens 3, enters the wavelength division multiplexing module 2 from the total optical port 22, and is dispersed into different frequencies.
  • the multiple optical signals enter from the light-emitting surface 16 of the turning lens module, are reflected by the reflective surface 18 to the light-incident surface 13, and are converged by the first collimating lens 14, and then enter the multiple
  • the photodiode 44 converts into a corresponding electrical signal and outputs it from the electrical connector 41.
  • the photoelectric conversion device provided in this application integrates the devices used for optical signal transmission, transmission, and reception, can realize the standardization of the photoelectric conversion device, simplify the design, and meet different application requirements; when used, it can be directly connected through the electrical connector 41 Connecting the photoelectric conversion device of the present application with an external circuit can effectively shorten the development time and reduce the development cost.
  • this application has a first positioning portion 42 and a first matching portion 12.
  • the first positioning portion 42 installs the turning lens module 1 on the PCB, so that the photodiode 44, the laser 43, the PCB and the turning lens module 1 can be quickly assembled, and at the same time, accurate alignment of the optical path is realized.
  • the photoelectric conversion device further includes a mounting base through which the wavelength division multiplexing module is combined with the PCBA4 and aligned with the turning lens module assembly.
  • a mounting base through which the wavelength division multiplexing module is combined with the PCBA4 and aligned with the turning lens module assembly.
  • the end surface of the mounting base 5 opposite to the turning lens module 1 is provided with a second positioning portion 53.
  • the light-emitting surface of the turning lens module 1 The end is provided with a second matching portion 15 that cooperates with the second positioning portion 53.
  • the second positioning portion 53 is a pin
  • the second matching portion 15 is a pin hole. The second positioning portion 53 and the second matching portion 15 can realize the rapid positioning combination of the mounting base 5 and the turning lens module 1.
  • the top 51 of the mounting base 5 is recessed downward to form a receiving cavity 55 of the wavelength division multiplexing module 2, and one side of the mouth of the receiving cavity 55 extends inwardly.
  • the accommodating cavity 55 has a positioning side surface 56 for matching with the side surface of the wavelength division multiplexing module 2 and positioning the wavelength division multiplexing module 2, and the mounting base
  • the side of 5 is provided with a light exit 52 opposite to the total light port of the wavelength division multiplexing module 2.
  • the wavelength division multiplexing module 2 is placed in the accommodating cavity 55 on the mounting base 5, and the side of the wavelength division multiplexing module 2 is attached to the positioning side 56 in the accommodating cavity 55
  • the second positioning portion 53 on the mounting base 5 is matched with the second matching portion 15 on the turning lens module 2 to make the mounting base 5 and the The positioning and combination of the turning lens module 2 are integrated.
  • the wavelength division multiplexing module 2 is installed through the installation base 5. Through the positioning side 56 in the installation base 5 and the second positioning portion 53 on the installation base 5, the wavelength division multiplexing module can be quickly assembled 2 Realize precise alignment of the optical path at the same time.
  • the wavelength division multiplexing module 2 includes a substrate and a diaphragm, and the diaphragm includes a filter diaphragm arranged at the light splitting port and a reflective diaphragm arranged on the opposite side.
  • the substrate adopts a parallelepiped structure, which can better cooperate with the positioning side 56 on the mounting base 5 to realize the rapid assembly and precise positioning of the wavelength division multiplexing module 2 and the mounting base 5.
  • the turning lens module 1 is an integrated structure, which is more convenient to combine with other devices.
  • An integral structure of the turning lens module 1 includes a substrate 11, a first recess is formed on the top surface of the substrate 11, a second recess is formed on the bottom surface of the substrate 11, and the side surface of the first recess constitutes the The reflecting surface 18, the top surface of the second recess constitutes the light incident surface 13, and the light incident surface 13 is formed with a plurality of hemispherical protrusions, and the hemispherical protrusions constitute the first collimating lens 14.
  • One side surface of the base 11 constitutes the light emitting surface 16. With this structure, the light incident surface 13, the light exit surface 16, and the first collimating lens 14 can be easily processed.
  • the reflective surface 18 can be easily formed by coating the side surface of the first recess with a reflective material, and the processing technology is simple.
  • FIG. 10 A second collimating lens is shown in FIG. 10.
  • the second collimating lens 3 has a main body 31, the main body 31 is provided with a through hole 32 for installing an optical fiber, the lens is located in the through hole 32, and mounting lugs 33 are provided on both sides of the main body 31.
  • This application also provides a method for manufacturing the above-mentioned single-fiber bidirectional multimode wavelength division multiplexing photoelectric conversion device, which includes the following steps:
  • Step S1 using the first positioning part on the PCB as a reference, mount a laser and a photodiode on the PCB;
  • Step S2 Install a turning lens module on the PCB through the first positioning portion
  • Step S3 Install the wavelength division multiplexing module based on the turning lens module.
  • the installation method of the wavelength division multiplexing module includes: placing the wavelength division multiplexing module in the accommodating cavity on its mounting base, and connecting the side of the wavelength division multiplexing module with the The positioning side surfaces in the accommodating cavity are attached to achieve positioning, and are fixed with glue; then the second positioning portion on the mounting base and the second matching portion on the turning lens module cooperate to make the mounting base It is integrated with the positioning and combination of the turning lens module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

一种单纤双向多模波分复用光电转换装置及制备方法,该装置包括:PCBA(4),转折透镜模组(1),波分复用模组(2)和第二准直透镜(3)。PCBA(4)具有电连接器(41)、光纤连接器(6)、第一定位部(42)、多个激光器(43)和多个光电二极管(44)。转折透镜模组(1)具有入光面(13)、反射面(18)、出光面(16)和第一配合部(12),第一配合部(12)与第一定位部(42)配合将转折透镜模组(1)安装于PCBA(4)、且使多个第一准直透镜(14)与多个激光器(43)和多个光电二极管(44)对准。该制备方法包括:以PCB上的第一定位部(42)为基准,在PCB上安装激光器(43)和光电二极管(44);通过第一定位部(42)在PCB上安装转折透镜模组(1)。该装置能够在快速组装的同时实现光路的精确对准。

Description

一种单纤双向多模波分复用光电转换装置及制备方法 技术领域
本发明涉及一种单纤双向多模波分复用光电转换装置及制备方法,属于信息传输技术领域。
背景技术
随着通讯领域传输容量的日益增长,传统的传输技术已很难满足传输容量及传输速度的要求。目前,数据中心、商业应用和家庭对带宽的要求越来越高,而且应用多样化。光电转换装置是设备实现光通讯的主要组件,本申请的发明人在研发过程中发现,一般现有技术中都是采用并行光纤的方式实现带宽增加,如用4个光纤实现4*10gbps=40gbps或者4*25gbps=100gbps的带宽。但是在一些应用场合,希望能够用一根光纤实现相同的功能,比如在数据中心布线不变的情况下增加带宽,那么波分复用技术就是一种有效的解决方案。另外在一些应用里面,希望光纤长度可变,这样传统的AOC(active optical cable,有源光缆)不是好的方式,可插拔的光模块方式就是一种有效的解决方案。同时,制造中需要保证激光器、光电二极管与透镜之间的对准精度在±15um以内,最好是在±5um以内,因此如何快速、精准地完成组装成为亟需解决的问题。
发明内容
为至少在一定程度上克服相关技术中存在的问题,本申请提供了一种单纤双向多模波分复用光电转换装置及制备方法。
根据本申请实施例的第一方面,本申请提供了一种单纤双向多模波分复用光电转换装置,其包括:
PCBA,具有电连接器、光纤连接器、第一定位部、多个激光器和多个光电二极管;
转折透镜模组,具有入光面、反射面、出光面和第一配合部,所述入光面 设置有多个第一准直透镜,所述出光面与所述入光面垂直,所述第一配合部与所述第一定位部配合将所述转折透镜模组安装于所述PCBA、且使多个所述第一准直透镜与多个所述激光器和多个所述光电二极管对准;
波分复用模组,具有一个总光口和多个分光口,所述波分复用模组安装于所述PCBA上、且多个所述分光口与所述转折透镜模组的出光面对准;以及
第二准直透镜,设置于所述光纤连接器和所述波分复用模组的总光口之间;
载有信息的电信号通过所述电连接器驱动多个所述激光器发射不同频率的多路光信号,多路所述光信号经所述转折透镜模组准直和反射,再经所述波分复用模组聚合成单路光信号,然后经所述第二准直透镜汇聚后进入所述光纤连接器的光纤;
来自光纤的单路光信号经所述第二准直透镜准直,再经所述波分复用模组分散成不同频率的多路光信号,然后经所述转折透镜模组反射和汇聚后,对应进入多个所述光电二极管,转换成相应的电信号经所述电连接器输出。
进一步地,所述波分复用模组通过安装基座与所述PCBA组合以及与所述转折透镜模组组合对准,所述安装基座的与所述转折透镜模组相对的端面设置有第二定位部,所述转折透镜模组的出光面所在的端部设置有与所述第二定位部配合的第二配合部。
更进一步地,所述安装基座的顶部向下凹陷形成有所述波分复用模组的容置腔,所述容置腔的口部的一边沿向内延伸形成有档板部,所述容置腔具有用于与所述波分复用模组的侧面配合、对所述波分复用模组定位的定位侧面。
更进一步地,所述波分复用模组包括基片和膜片,所述基片采用平行六面体结构。
进一步地,所述转折透镜模组为一体式结构。
更进一步地,所述转折透镜模组包括基板,所述基板的顶面形成有第一凹部,所述基板的底面形成有第二凹部,所述第一凹部的侧面构成所述反射面, 所述第二凹部的顶面构成所述入光面,所述入光面成型有用作所述第一准直透镜的、半球形的突起,所述基板的一个侧面构成所述出光面。
进一步地,所述第一定位部为销孔,所述第一配合部为销柱。
进一步地,所述第二定位部为销柱或销孔,所述第二配合部为销孔或销柱。
根据本申请实施例的第二方面,本申请还提供了一种单纤双向多模波分复用光电转换装置的制备方法,其包括以下步骤:
以PCB上的第一定位部为基准,在所述PCB上安装激光器和光电二极管;
通过所述第一定位部在所述PCB安装转折透镜模组;以及
以所述转折透镜模组为基准安装波分复用模组。
进一步地,波分复用模组的安装方法包括:
将波分复用模组放置于其安装基座上的容置腔中,将波分复用模组的侧面与所述容置腔中的定位侧面相贴合实现定位,并用胶固定;以及
所述安装基座上的第二定位部和所述转折透镜模组上的第二配合部配合,使所述安装基座与所述转折透镜模组定位组合为一体。
根据本申请的上述具体实施方式可知,至少具有以下有益效果:本申请光电转换装置将用于光信号发送、传输和接收的器件集成在一起,能够实现光电转换装置的标准化,简化设计,满足不同的应用需求;使用时,可以直接将本申请光电转换装置与外部电路连接,有效缩短研发时间,降低研发成本。同时,本申请中具有第一定位部和第一配合部,二者相结合,能够在快速组装光电二极管、激光器、PCB和转折透镜模组的同时实现光路的精确对准。另外,本申请通过安装基座来安装波分复用模组,通过安装基座中的定位侧面、安装基座上的第二定位部,能够在快速组装波分复用模组的同时实现光路的精确对准。
应了解的是,上述一般描述及以下具体实施方式仅为示例性及阐释性的,其并不能限制本申请所欲主张的范围。
附图说明
下面的所附附图是本申请的说明书的一部分,其示出了本申请的实施例,所附附图与说明书的描述一起用来说明本申请的原理。
图1为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置的示意图之一。
图2为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置的示意图之二。
图3为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置中的PCBA的示意图。
图4为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置中的转折透镜模组的示意图之一。
图5为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置中的转折透镜模组的示意图之二。
图6为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置中的波分复用模组的示意图。
图7为波分复用模组聚合光信号的原理图。
图8为波分复用模组分散光信号的原理图。
图9为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置中的安装基座的示意图。
图10为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置中的第二准直透镜的示意图。
图11为本申请具体实施方式提供的一种单纤双向多模波分复用光电转换装置中转折透镜模组、安装基座以及PCBA的组合示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚明白,下面将以附图及详细叙述清楚说明本申请所揭示内容的精神,任何所属技术领域技术人员在了解本申请内容的实施例后,当可由本申请内容所教示的技术,加以改变及修 饰,其并不脱离本申请内容的精神与范围。
本申请的示意性实施例及其说明用于解释本申请,但并不作为对本申请的限定。另外,在附图及实施方式中所使用相同或类似标号的元件/构件是用来代表相同或类似部分。
关于本文中所使用的“第一”、“第二”、…等,并非特别指称次序或顺位的意思,也非用以限定本申请,其仅为了区别以相同技术用语描述的元件或操作。
关于本文中所使用的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本创作。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
关于本文中所使用的“及/或”,包括所述事物的任一或全部组合。
关于本文中的“多个”包括“两个”及“两个以上”;关于本文中的“多组”包括“两组”及“两组以上”。
关于本文中所使用的用语“大致”、“约”等,用以修饰任何可以细微变化的数量或误差,但这些微变化或误差并不会改变其本质。一般而言,此类用语所修饰的细微变化或误差的范围在部分实施例中可为20%,在部分实施例中可为10%,在部分实施例中可为5%或是其他数值。本领域技术人员应当了解,前述提及的数值可依实际需求而调整,并不以此为限。
某些用以描述本申请的用词将于下或在此说明书的别处讨论,以提供本领域技术人员在有关本申请的描述上额外的引导。
图1为本申请单纤双向多模波分复用光电转换装置一个实施例的示意图。如图1所示,单纤双向多模波分复用光电转换装置包括:PCBA 4,转折透镜模组1,波分复用模组2,第二准直透镜3,用于安装波分复用模组2的安装基座5,以及用于连接光纤7的光纤连接器6。
如图2、图3所示,PCBA 4具有电连接器41、第一定位部42、多个激光器43和多个光电二极管44。
如图4和图5所示,转折透镜模组1具有入光面13、反射面18、出光面16和第一配合部12,所述入光面13设置有多个第一准直透镜14,所述出光面16与所述入光面13垂直。光信号在转折透镜模组1的转折传播路径如图5中标记17。
进一步结合图4、图5和图11,所述第一配合部12与所述第一定位部42配合将所述转折透镜模组1安装于所述PCBA 4、且使多个所述第一准直透镜14与多个所述激光器43和多个所述光电二极管44对准。其中,第一配合部12采用销柱,第一定位部42采用销孔,该销孔包括PCBA 4上的第一销孔以及小基板421上的第二销孔,小基板421粘结固定在PCBA 4背部,第二销孔与第一销孔最好同心。
采用上述结构,在制备时,首先以PCB上的第一定位部(上述第二销孔)为基准在所述PCB上贴装激光器43和光电二极管44;然后将转折透镜模组1上的销柱(第一配合部12)穿过PCBA 4上的第一销孔、***小基板421上的第二销孔,与第二销孔紧配合,这样就将转折透镜模组1安装于PCBA4,并且多个所述第一准直透镜14与多个所述激光器43和多个所述光电二极管44自动对准。
进一步结合图6、图4、图11,波分复用模组2具有一个总光口22和多个分光口21。所述波分复用模组2安装于所述PCBA 4上、且多个所述分光口21与所述转折透镜模组1的出光面16对准。
图7中示出了波分复用模组2聚合光信号的原理,图8中示出了波分复用模组2分散光信号的原理。在不同的分光口21具有不同频率的滤光片,在分光口21的对面则有反光片23,当光信号射向频率fn的滤光片后,仅有频率fn的光信号可以穿过该滤光片,其它频率的光信号会被反射。如图7所示,当频率为f1、f2、......、fn的多路光信号对应从多个分光口21进入后,被滤光片和反光片23反射,在波分复用模组2中传播,最后聚合成一路光信号从总光 口22射出。相反,如图8所示,当一路光信号从总光口22进入后,被滤光片和反光片23反射,在波分复用模组2中传播,在此过程中,频率为f1、f2、......、fn的多种光信号分别从频率为f1、f2、......、fn滤光片射出,从而分散成不同频率的多路光信号。
如图1所示,第二准直透镜3设置于所述光纤连接器和所述波分复用模组2的总光口之间,用于将所述波分复用模组2的总光口输出的光汇聚后送入光纤7,以及将来自光纤7的光准直后送入所述波分复用模组2的总光口。在一个实施例中,光纤连接器6采用LC适配器,LC适配器套设在第二准直透镜3外、与PCBA 4固定。
工作时,载有信息的电信号通过所述电连接器41驱动多个所述激光器43发射不同频率的多路光信号,多路所述光信号对应射入所述转折透镜模组1的多个所述第一准直透镜14,准直后进入反射面18,反射后经出光面16射向波分复用模组2,对应从波分复用模组2的多个分光口21进入波分复用模组2,聚合成单路光信号从总光口22射出,然后经所述第二准直透镜3汇聚后进入所述光纤连接器6的光纤7,经光纤7进行传输。相反,当接收来自光纤7的光信号后,来自光纤的单路光信号经所述第二准直透镜3准直,从总光口22进入波分复用模组2,被分散成不同频率的多路光信号,多路光信号从所述转折透镜模组的出光面16进入、被反射面18反射至入光面13,被第一准直透镜14汇聚后,对应进入多个所述光电二极管44,转换成相应的电信号从所述电连接器41输出。
本申请提供的光电转换装置将用于光信号发送、传输和接收的器件集成在一起,能够实现光电转换装置的标准化,简化设计,满足不同的应用需求;使用时,可以通过电连接器41直接将本申请光电转换装置与外部电路连接,有效缩短研发时间,降低研发成本。同时,本申请中具有第一定位部42和第一配合部12,在安装时,首先以PCB上的第一定位部42为基准在所述PCB上贴装激 光器43和光电二极管44;然后通过所述第一定位部42在所述PCB安装转折透镜模组1,这样可以快速组装光电二极管44、激光器43、PCB和转折透镜模组1,同时实现了光路的精确对准。
进一步光电转换装置还包括一个安装基座,所述波分复用模组通过安装基座与所述PCBA4组合以及与所述转折透镜模组组合对准。请结合图1、图4、图9、图11,所述安装基座5的与所述转折透镜模组1相对的端面设置有第二定位部53,所述转折透镜模组1的出光面所在的端部设置有与所述第二定位部53配合的第二配合部15。所述第二定位部53为销柱,所述第二配合部15为销孔。通过第二定位部53和第二配合部15可以实现安装基座5与转折透镜模组1的快速定位组合。
进一步参照图9,所述安装基座5的顶部51向下凹陷形成有所述波分复用模组2的容置腔55,所述容置腔55的口部的一边沿向内延伸形成有档板部54,所述容置腔55具有用于与所述波分复用模组2的侧面配合、对所述波分复用模组2定位的定位侧面56,所述安装基座5的侧部设置有与波分复用模组2的总光口相对的出光口52。
组装时,将波分复用模组2放置于其安装基座5上的容置腔55中,将波分复用模组2的侧面与所述容置腔55中的定位侧面56相贴合实现定位,并用胶固定;然后通过所述安装基座5上的第二定位部53和所述转折透镜模组2上的第二配合部15配合,使所述安装基座5与所述转折透镜模组2定位组合为一体。本申请通过安装基座5来安装波分复用模组2,通过安装基座5中的定位侧面56、安装基座5上的第二定位部53,能够在快速组装波分复用模组2的同时实现光路的精确对准。
所述波分复用模组2包括基片和膜片,膜片包括设置在分光口的滤光膜片和设置在对侧的反射膜片。其中,所述基片采用平行六面体结构,能够更好地与所述安装基座5上的定位侧面56配合,实现波分复用模组2与安装基座5 的快速组装和精确定位。
进一步结合图4、图5,所述转折透镜模组1为一体式结构,与其它器件的组合更加方便。一种一体式结构的转折透镜模组1包括基板11,所述基板11的顶面形成有第一凹部,所述基板11的底面形成有第二凹部,所述第一凹部的侧面构成所述反射面18,所述第二凹部的顶面构成所述入光面13,所述入光面13成型有若干半球形的突起,半球形的突起构成所述第一准直透镜14,所述基11板的一个侧面构成所述出光面16。该结构可以方便地加工形成入光面13、出光面16、第一准直透镜14,通过在第一凹部的侧面涂覆反光材料即可方便地形成反射面18,加工工艺简单。
图10中示出了一种第二准直透镜。如图10所示,本第二准直透镜3具有主体31,主体31设置有用于安装光纤的通孔32,透镜位于该通孔32中,主体31的两侧设置有安装突耳33。
本申请还提供了一种上述单纤双向多模波分复用光电转换装置的制备方法,其包括以下步骤:
步骤S1、以PCB上的第一定位部为基准,在所述PCB上贴装激光器和光电二极管;
步骤S2、通过所述第一定位部在所述PCB安装转折透镜模组;
步骤S3、以所述转折透镜模组为基准安装波分复用模组。
其中,在步骤S3中,波分复用模组的安装方法包括:将波分复用模组放置于其安装基座上的容置腔中,将波分复用模组的侧面与所述容置腔中的定位侧面相贴合实现定位,并用胶固定;然后所述安装基座上的第二定位部和所述转折透镜模组上的第二配合部配合,使所述安装基座与所述转折透镜模组定位组合为一体。
上述通过具体实施例对本发明进行了详细的说明,这些详细的说明仅仅限于帮助本领域技术人员理解本发明的内容,并不能理解为对本发明保护范围的 限制。本领域技术人员在本发明构思下对上述方案进行的各种润饰、等效变换等均应包含在本发明的保护范围内。

Claims (10)

  1. 一种单纤双向多模波分复用光电转换装置,其特征在于,包括:
    PCBA(4),具有电连接器(41)、光纤连接器(6)、第一定位部(42)、多个激光器(43)和多个光电二极管(44);
    转折透镜模组(1),具有入光面(13)、反射面(18)、出光面(16)和第一配合部(12),所述入光面设置有多个第一准直透镜(14),所述出光面与所述入光面垂直,所述第一配合部与所述第一定位部配合将所述转折透镜模组安装于所述PCBA、且使多个所述第一准直透镜与多个所述激光器和多个所述光电二极管对准;
    波分复用模组(2),具有一个总光口(22)和多个分光口(21),所述波分复用模组安装于所述PCBA上、且多个所述分光口与所述转折透镜模组的出光面对准;以及
    第二准直透镜(3),设置于所述光纤连接器和所述波分复用模组的总光口之间;
    载有信息的电信号通过所述电连接器驱动多个所述激光器发射不同频率的多路光信号,多路所述光信号经所述转折透镜模组准直和反射,再经所述波分复用模组聚合成单路光信号,然后经所述第二准直透镜汇聚后进入所述光纤连接器的光纤;
    来自光纤的单路光信号经所述第二准直透镜准直,再经所述波分复用模组分散成不同频率的多路光信号,然后经所述转折透镜模组反射和汇聚后,对应进入多个所述光电二极管,转换成相应的电信号经所述电连接器输出。
  2. 根据权利要求1所述的单纤双向多模波分复用光电转换装置,其特征在于:所述波分复用模组(2)通过安装基座(5)与所述PCBA组合以及与所述转折透镜模组(1)组合对准,所述安装基座的与所述转折透镜模组相对的端面设置有第二定位部(53),所述转折透镜模组(1)的出光面所在的端部设置有与 所述第二定位部配合的第二配合部(15)。
  3. 根据权利要求2所述的单纤双向多模波分复用光电转换装置,其特征在于:所述安装基座(5)的顶部向下凹陷形成有所述波分复用模组的容置腔(55),所述容置腔的口部的一边沿向内延伸形成有档板部(54),所述容置腔具有用于与所述波分复用模组的侧面配合、对所述波分复用模组定位的定位侧面(56)。
  4. 根据权利要求3所述的单纤双向多模波分复用光电转换装置,其特征在于:所述波分复用模组包括基片和膜片,所述基片采用平行六面体结构。
  5. 根据权利要求1所述的单纤双向多模波分复用光电转换装置,其特征在于:所述转折透镜模组为一体式结构。
  6. 根据权利要求5所述的单纤双向多模波分复用光电转换装置,其特征在于:所述转折透镜模组(1)包括基板(11),所述基板的顶面形成有第一凹部,所述基板的底面形成有第二凹部,所述第一凹部的侧面构成所述反射面(18),所述第二凹部的顶面构成所述入光面(13),所述入光面成型有用作所述第一准直透镜(14)的、半球形的突起,所述基板的一个侧面构成所述出光面(16)。
  7. 根据权利要求1所述的单纤双向多模波分复用光电转换装置,其特征在于:所述第一定位部(42)为销孔,所述第一配合部(12)为销柱。
  8. 根据权利要求2所述的单纤双向多模波分复用光电转换装置,其特征在于:所述第二定位部为销柱或销孔,所述第二配合部为销孔或销柱。
  9. 一种单纤双向多模波分复用光电转换装置的制备方法,其特征在于,包括以下步骤:
    以PCB上的第一定位部为基准,在所述PCB上安装激光器和光电二极管;
    通过所述第一定位部在所述PCB安装转折透镜模组;以及
    以所述转折透镜模组为基准安装波分复用模组。
  10. 根据权利要求9所述的单纤双向多模波分复用光电转换装置的制备方法,其特征在于,波分复用模组的安装方法包括:
    将波分复用模组放置于其安装基座上的容置腔中,将波分复用模组的侧面与所述容置腔中的定位侧面相贴合实现定位,并用胶固定;以及
    所述安装基座上的第二定位部和所述转折透镜模组上的第二配合部配合,使所述安装基座与所述转折透镜模组定位组合为一体。
PCT/CN2019/126035 2019-07-19 2019-12-17 一种单纤双向多模波分复用光电转换装置及制备方法 WO2021012591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910657335.3A CN110389414A (zh) 2019-07-19 2019-07-19 一种单纤双向多模波分复用光电转换装置及制备方法
CN201910657335.3 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021012591A1 true WO2021012591A1 (zh) 2021-01-28

Family

ID=68286858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126035 WO2021012591A1 (zh) 2019-07-19 2019-12-17 一种单纤双向多模波分复用光电转换装置及制备方法

Country Status (3)

Country Link
US (1) US11054591B2 (zh)
CN (1) CN110389414A (zh)
WO (1) WO2021012591A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389414A (zh) * 2019-07-19 2019-10-29 杭州耀芯科技有限公司 一种单纤双向多模波分复用光电转换装置及制备方法
CN110780391A (zh) * 2019-11-12 2020-02-11 杭州耀芯科技有限公司 一种光纤连接光学组件
CN112433300B (zh) * 2020-12-21 2023-04-18 杭州耀芯科技有限公司 一种光纤波分复用器
CN113848616B (zh) * 2021-09-23 2022-08-16 杭州耀芯科技有限公司 基于mid/lds技术的信号传输装置及其组装方法
CN114236716B (zh) * 2022-02-28 2022-05-17 耀芯电子(浙江)有限公司 一种单纤双向多模波分复用光电转换装置及制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140960A (ja) * 2003-11-06 2005-06-02 Fujikura Ltd 光デバイス
US20130168537A1 (en) * 2010-09-20 2013-07-04 Opticis Co., Ltd. Apparatus for wavelength-division multiplexing and demultiplexing
JP2017529552A (ja) * 2015-06-11 2017-10-05 ジーピー インコーポレーテッド.Gp Inc. 波長多重化光受信モジュール
CN108535821A (zh) * 2017-03-01 2018-09-14 陈佩娟 一种多波长共存osa结构
WO2018170828A1 (zh) * 2017-03-23 2018-09-27 华为技术有限公司 双向光组件、光网络单元、光线路终端和无源光网络***
CN108732684A (zh) * 2018-07-28 2018-11-02 福建天蕊光电有限公司 一种单纤双向多波长光收发组件
CN208953742U (zh) * 2018-09-06 2019-06-07 大连优迅科技有限公司 适用于小型化封装多路光高速传输接收装置
CN110389414A (zh) * 2019-07-19 2019-10-29 杭州耀芯科技有限公司 一种单纤双向多模波分复用光电转换装置及制备方法

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774343A (ja) * 1993-08-31 1995-03-17 Fujitsu Ltd 集積化光装置及びその製造方法
JP3739540B2 (ja) * 1997-08-04 2006-01-25 アルプス電気株式会社 光送受信モジュール
US6198864B1 (en) * 1998-11-24 2001-03-06 Agilent Technologies, Inc. Optical wavelength demultiplexer
US6201908B1 (en) * 1999-07-02 2001-03-13 Blaze Network Products, Inc. Optical wavelength division multiplexer/demultiplexer having preformed passively aligned optics
JP2004533004A (ja) * 2000-11-01 2004-10-28 インテル・コーポレーション ビームの平行化及び転送の装置及びその方法
US6839517B2 (en) * 2001-02-12 2005-01-04 Agere Systems Inc. Apparatus and method for transmitting optical signals through a single fiber optical network
US20020118915A1 (en) * 2001-02-23 2002-08-29 Sagan Stephen F. Optical multiplexer/demultiplexer device
US6870976B2 (en) * 2001-03-13 2005-03-22 Opnext, Inc. Filter based multiplexer/demultiplexer component
US6542306B2 (en) * 2001-03-16 2003-04-01 Optical Coating Laboratories, Inc. Compact multiple channel multiplexer/demultiplexer devices
US6571033B2 (en) * 2001-09-28 2003-05-27 Corning Incorporated Optical signal device
US6939058B2 (en) * 2002-02-12 2005-09-06 Microalign Technologies, Inc. Optical module for high-speed bidirectional transceiver
JP4134639B2 (ja) * 2002-08-28 2008-08-20 住友電気工業株式会社 多心光コネクタ、及び光モジュール
US6769816B2 (en) * 2002-08-28 2004-08-03 Intel Corporation Multi-wavelength transceiver device with integration on transistor-outline cans
CN101398516B (zh) * 2003-04-30 2011-07-27 株式会社藤仓 光收发器及光连接器
US6945711B2 (en) * 2003-10-28 2005-09-20 Chang Gung University Multiplexer with a dense wavelength division multiplexing function
US7198416B2 (en) * 2004-02-04 2007-04-03 Omron Network Products, Llc Optical combiner device
US7013069B1 (en) * 2004-07-06 2006-03-14 Alliance Fiber Optic Products, Inc. Method and apparatus for separating channel signals
US20060013541A1 (en) * 2004-07-16 2006-01-19 Infineon Technologies Fiber Optics Gmbh Optoelectronic module
US20060088255A1 (en) * 2004-10-22 2006-04-27 Enboa Wu Multi-wavelength optical transceiver subassembly module
US7203426B2 (en) * 2005-06-04 2007-04-10 National Taiwan University Optical subassembly of optical transceiver
US7532826B2 (en) * 2005-09-02 2009-05-12 Beam Express, Inc Optical demultiplexer and receiver assembly
JP2008225339A (ja) * 2007-03-15 2008-09-25 Hitachi Cable Ltd 光学系接続構造、光学部材及び光伝送モジュール
EP2312352B1 (en) * 2009-09-07 2018-04-18 Electronics and Telecommunications Research Institute Multi-wavelength optical transmitting and receiving modules
KR101191323B1 (ko) * 2010-11-18 2012-10-16 옵티시스 주식회사 광통신 모듈
US8625989B2 (en) * 2011-01-21 2014-01-07 Finisar Corporation Multi-laser transmitter optical subassemblies for optoelectronic modules
US20120189323A1 (en) * 2011-01-21 2012-07-26 Finisar Corporation Multi-laser transmitter optical subassembly
US9350454B2 (en) * 2011-01-21 2016-05-24 Finisar Corporation Multi-laser transmitter optical subassembly
US20130064507A1 (en) * 2011-09-09 2013-03-14 Sven Mahnkopf Wavelength division multiplexing device
US9160450B2 (en) * 2011-09-23 2015-10-13 Te Connectivity Nederland B.V. Multi-channel transceiver
US9178620B2 (en) * 2011-09-23 2015-11-03 Te Connectivity Nederland B.V. Optical interface for bidirectional communications
JP5737145B2 (ja) * 2011-11-11 2015-06-17 日立金属株式会社 光モジュール
TWI567953B (zh) * 2011-12-20 2017-01-21 新加坡恒立私人有限公司 光電模組及包含該模組之裝置
JP2013153136A (ja) * 2011-12-27 2013-08-08 Sumitomo Electric Ind Ltd 発光モジュール及び光トランシーバ
JP5653983B2 (ja) * 2012-09-27 2015-01-14 株式会社フジクラ モジュール製造方法及びモジュール
CN103777286B (zh) * 2012-10-23 2017-08-04 赛恩倍吉科技顾问(深圳)有限公司 光电转换模组
US9482819B2 (en) * 2013-03-04 2016-11-01 Alliance Fiber Optic Products, Inc. WDM Mux/DeMux on cable and methods of making the same
EP3018509A4 (en) * 2013-07-05 2017-03-15 Furukawa Electric Co., Ltd. Optical module, optical module mounting method, optical module-mounted circuit substrate, optical module evaluation kit system, circuit substrate and communication system
CN103765271B (zh) * 2013-07-29 2016-08-31 索尔思光电(成都)有限公司 多通道光收发器及其元件校正方法
US9780882B2 (en) * 2014-05-13 2017-10-03 Sumitomo Electric Industries, Ltd. Optical transmitter module having multiple signal lanes
JP2015225980A (ja) * 2014-05-28 2015-12-14 日立金属株式会社 光通信モジュール及びその製造方法
US9715115B2 (en) * 2014-08-14 2017-07-25 Finisar Corporation Wavelength division multiplexing of uncooled lasers with wavelength-common dispersive element
CN204129284U (zh) * 2014-10-21 2015-01-28 华天科技(昆山)电子有限公司 用于有源光缆光学***的无源对准结构
US9385829B2 (en) * 2014-10-28 2016-07-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical transceiver having optics with rotated optical path
US10386579B2 (en) * 2014-10-31 2019-08-20 Sumitomo Electric Industries, Ltd. Optical transmitting module and multi-lane transmitter optical module
JP2016197635A (ja) * 2015-04-02 2016-11-24 日立金属株式会社 送受一体型光サブアセンブリ及び光モジュール
US9810873B2 (en) * 2015-04-24 2017-11-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and device for measuring alignment of an optical surface of a lens block
TWI519835B (zh) * 2015-05-27 2016-02-01 合鈞科技股份有限公司 混成集成式光學次模組
US9794017B2 (en) * 2015-08-12 2017-10-17 Finisar Corporation SWDM OSAs
US9915560B2 (en) * 2015-08-27 2018-03-13 Applied Optoelectronics, Inc. Receiver optical subassembly (ROSA) housing with sidewall receptacle to provide electrical isolation between an adjacent transmitter optical subassembly (TOSA) in a transceiver housing
US20170063464A1 (en) * 2015-08-27 2017-03-02 Applied Optoelectronics, Inc. Multi-channel transmitter optical subassembly (tosa) with opposing placement of transistor outline (to) can laser packages
KR101940776B1 (ko) * 2015-09-17 2019-01-22 한국전자통신연구원 리셉터클-콜리메이터 어셈블리 및 이를 포함하는 다파장 광 수신 모듈
US9880366B2 (en) * 2015-10-23 2018-01-30 Nanoprecision Products, Inc. Hermetic optical subassembly
US10090934B2 (en) * 2015-11-10 2018-10-02 Sumitomo Electric Industries, Ltd. Optical receiver module that receives wavelength-multiplexed signal
KR101860847B1 (ko) * 2016-06-28 2018-05-29 주식회사 오이솔루션 광모듈
US9977200B2 (en) * 2016-08-31 2018-05-22 Applied Optoelectronics, Inc. Optical component assembly with a vertical mounting structure for multi-angle light path alignment and an optical subassembly using the same
CN108008501B (zh) * 2016-11-01 2021-10-29 住友电工光电子器件创新株式会社 光发送器设备
US9798087B1 (en) * 2016-11-01 2017-10-24 Hewlett Packard Enterprise Development Lp Optoelectronic devices and wavelength-division multiplexing optical connectors
US10763987B2 (en) * 2017-03-01 2020-09-01 Peijuan Chen Transceiver with multi-wavelength coexistence
US10120149B1 (en) * 2017-07-13 2018-11-06 Hewlett Packard Enterprise Development Lp Wavelength division multiplexing (WDM) optical modules
JP7346457B2 (ja) * 2018-02-05 2023-09-19 イネオス, エル・エル・シー マルチチャネル光結合器
CN108490554A (zh) * 2018-03-30 2018-09-04 青岛海信宽带多媒体技术有限公司 光接收次模块和光模块
CN208421302U (zh) * 2018-07-28 2019-01-22 福建天蕊光电有限公司 一种单纤双向多波长光收发组件
CN109061804A (zh) * 2018-08-17 2018-12-21 杭州耀芯科技有限公司 多路多模光信号聚合、传输、分离装置及方法
CN109188615A (zh) * 2018-09-06 2019-01-11 杭州耀芯科技有限公司 光引擎及其应用方法、光收发器
CN109239865A (zh) * 2018-10-11 2019-01-18 菲尼萨光电通讯(上海)有限公司 高精度低成本可拆卸的光收发模块结构
CN109752802A (zh) * 2019-01-29 2019-05-14 武汉联特科技有限公司 多路波分复用光接收组件以及光模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140960A (ja) * 2003-11-06 2005-06-02 Fujikura Ltd 光デバイス
US20130168537A1 (en) * 2010-09-20 2013-07-04 Opticis Co., Ltd. Apparatus for wavelength-division multiplexing and demultiplexing
JP2017529552A (ja) * 2015-06-11 2017-10-05 ジーピー インコーポレーテッド.Gp Inc. 波長多重化光受信モジュール
CN108535821A (zh) * 2017-03-01 2018-09-14 陈佩娟 一种多波长共存osa结构
WO2018170828A1 (zh) * 2017-03-23 2018-09-27 华为技术有限公司 双向光组件、光网络单元、光线路终端和无源光网络***
CN108732684A (zh) * 2018-07-28 2018-11-02 福建天蕊光电有限公司 一种单纤双向多波长光收发组件
CN208953742U (zh) * 2018-09-06 2019-06-07 大连优迅科技有限公司 适用于小型化封装多路光高速传输接收装置
CN110389414A (zh) * 2019-07-19 2019-10-29 杭州耀芯科技有限公司 一种单纤双向多模波分复用光电转换装置及制备方法

Also Published As

Publication number Publication date
CN110389414A (zh) 2019-10-29
US20210018704A1 (en) 2021-01-21
US11054591B2 (en) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021012591A1 (zh) 一种单纤双向多模波分复用光电转换装置及制备方法
US6901221B1 (en) Method and apparatus for improved optical elements for vertical PCB fiber optic modules
US20180175940A1 (en) Integrated transceiver with lightpipe coupler
RU2638979C1 (ru) Герметическая сборка для выравнивания оптического волокна, имеющая интегрированный оптический элемент
US7539367B2 (en) Optical system connection structure, optical component, and optical communication module
JP4964127B2 (ja) モジュラー光デバイス・パッケージ
CN112444923A (zh) 一种光模块
CN110989099B (zh) 一种光模块
JP2010122312A (ja) 送受信レンズブロック及びそれを用いた光モジュール
WO2022142171A1 (zh) 一种基于mlg2.0协议的单模光模块
CN210401753U (zh) 光收发组件和光模块
JP2010122311A (ja) レンズブロック及びそれを用いた光モジュール
CN111061019A (zh) 一种光模块
CN115097579A (zh) 光模块
CN214704097U (zh) 一种光模块
US8636426B2 (en) Photoelectric conversion system with optical transceive module
CN217606135U (zh) 光模块
CN217606136U (zh) 光模块
TWI498619B (zh) 雙向光傳輸次組件
CN217521402U (zh) 光模块
CN113625399A (zh) 一种光模块
CN217443588U (zh) 一种光模块
CN216526414U (zh) 一种光模块
CN114895411A (zh) 光模块
CN111983759A (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938486

Country of ref document: EP

Kind code of ref document: A1