WO2021120669A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021120669A1
WO2021120669A1 PCT/CN2020/111050 CN2020111050W WO2021120669A1 WO 2021120669 A1 WO2021120669 A1 WO 2021120669A1 CN 2020111050 W CN2020111050 W CN 2020111050W WO 2021120669 A1 WO2021120669 A1 WO 2021120669A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
positioning
fiber holder
hole
Prior art date
Application number
PCT/CN2020/111050
Other languages
English (en)
French (fr)
Inventor
杨思更
付深圳
刘旭霞
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201922315188.XU external-priority patent/CN211878239U/zh
Priority claimed from CN201911329907.1A external-priority patent/CN110989103A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021120669A1 publication Critical patent/WO2021120669A1/zh
Priority to US17/477,522 priority Critical patent/US11927817B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • G02B6/4261Packages with mounting structures to be pluggable or detachable, e.g. having latches or rails
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4278Electrical aspects related to pluggable or demountable opto-electronic or electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • the optical transceiver module In the optical fiber communication system, the optical transceiver module, referred to as the optical module, is a standard module in the field of optical communication equipment.
  • the optical module is a connection module that plays the role of photoelectric conversion.
  • a standard optical module usually includes light emitting devices, light receiving devices and other devices. The light emitting device is used to convert the electrical signal into an optical signal and then transmitted through the optical fiber, and the optical receiving device is used to convert the optical signal transmitted by the optical fiber into an electrical signal.
  • the core component of an optical module is an optical transceiver device, which generally includes a lens component, a laser, and a driver chip.
  • the embodiment of the present disclosure provides an optical module, which includes: a circuit board with a signal circuit for providing signal electrical connection; an optoelectronic chip placed on the circuit board for generating or receiving optical signals; a lens assembly placed on The circuit board covers the photoelectric chip; the optical fiber holder is used for connecting with the lens assembly, and the optical fiber array is arranged on it; the lens assembly includes: a lens base body, the top surface is provided with a first groove, and the inclined side of the first groove The wall forms a reflective surface, which is used to change the propagation direction of the optical signal; the first positioning column extends from one end of the side surface of the lens base and points in the direction of the optical fiber holder; the second positioning column is formed from the side surface of the lens base The other end extends and points in the direction of the optical fiber holder; the optical fiber holder includes: a first positioning hole opened on the front end surface of the optical fiber holder and facing the first positioning post for insertion of the first positioning post; first positioning The holes respectively have an opening on the front end surface
  • FIG. 1 is a schematic diagram of the connection relationship of optical communication terminals according to some embodiments of the present disclosure
  • Figure 2 is a schematic diagram of the optical network terminal structure
  • FIG. 3 is a schematic structural diagram of an optical module according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module according to some embodiments of the present disclosure.
  • Fig. 5-1 is a schematic view showing the disassembled structure of the lens assembly and the fiber holder of the optical module in some embodiments of the present disclosure
  • Figure 5-2 is a schematic structural diagram of the component structure in Figure 5-1 from another perspective;
  • Figure 5-3 is a cross-sectional view of the lens assembly and fiber holder assembled together in Figure 5-1;
  • Fig. 6 is a schematic diagram of the assembly of the assembled lens assembly, fiber holder, and laser chip in Fig. 5-1;
  • Fig. 7 is an exploded schematic diagram of the component structure in Fig. 6.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
  • Fig. 1 is a schematic diagram of a connection relationship of an optical communication terminal according to some embodiments of the present disclosure.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101, and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between optical signals and electrical signals, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input to the optical network terminal 100 , The electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103.
  • Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal serves as the optical The host computer of the module monitors the work of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • Fig. 2 is a schematic structural diagram of an optical network terminal according to some embodiments of the present disclosure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers;
  • a heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then spread through the radiator 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300, a lens assembly 400, an optical fiber array 500 and an optical fiber socket 501.
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower shell includes a main board and is located on both sides of the main board and is connected to the main board.
  • Two side plates are arranged vertically; the upper shell includes a cover plate, and the cover plate is covered on the two side plates of the upper shell to form a wrapping cavity; the upper shell may also include two sides of the cover plate and a cover plate.
  • the two vertical side walls of the plate are combined with the two side plates to realize the upper casing covering the lower casing.
  • the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the gold finger of the circuit board protrudes from the electrical port 204 , Inserted into an upper computer such as an optical network terminal; the other opening is an optical port 205 for external optical fiber access to connect the lens assembly 400 inside the optical module; photoelectric devices such as the circuit board 300 and the lens assembly 400 are located in the package cavity.
  • the assembly method of the upper shell and the lower shell is used to facilitate the installation of the circuit board 300, the lens assembly 400 and other components into the shell.
  • the upper shell and the lower shell form the outermost package protection shell of the optical module;
  • the upper shell and the lower shell are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation; generally, the shell of the optical module is not made into an integrated part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding parts Unable to install, it is not conducive to production automation.
  • the unlocking component 203 is located on the outer wall of the wrapping cavity/lower casing 202, and is used to realize a fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking component 203 has an engaging component that matches the cage of the host computer; pulling the end of the unlocking component can make the unlocking component move relative to the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging component of the unlocking component Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed, so as to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
  • the circuit board 300 is provided with a light emitting chip, a driving chip, a light receiving chip, a transimpedance amplifying chip, a limiting amplifying chip, and a microprocessor chip.
  • the light emitting chip and the light receiving chip are directly mounted on the circuit board of the optical module This form is called COB (chip on board) package in the industry.
  • the circuit board connects the electrical components in the optical module according to the circuit design through circuit traces to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the carrying function. For example, the rigid circuit board can carry the chip smoothly; when the lens assembly and the corresponding optical chip are on the circuit board, the rigid circuit The board can also provide a stable bearing; the rigid circuit board can also be inserted into the electrical connector in the cage of the host computer. Specifically, a metal pin/gold finger is formed on the end surface of one side of the rigid circuit board for connecting with the electrical connector Connection; these are not easy to achieve with flexible circuit boards.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • the lens assembly 400 is arranged on the circuit board 300, and is arranged on the optical chip in a cover-mounted manner (the optical chip mainly includes a light emitting chip, a driving chip, a light receiving chip, a transimpedance amplifier chip, a limiting amplifier chip, etc., and photoelectric conversion function Above the relevant chip), the lens assembly 400 and the circuit board 300 form a cavity that wraps the light emitting chip, the light receiving chip, and other optical chips.
  • the light emitted by the light emitting chip enters the optical fiber after being reflected by the lens assembly, and the light from the optical fiber enters the light receiving chip after being reflected by the lens assembly.
  • the lens assembly establishes a mutual relationship between the light emitting chip, the optical power monitoring chip, and the optical fiber array. Light connection.
  • the lens assembly not only functions to seal the optical chip, but also establishes the optical connection between the optical chip and the optical fiber.
  • the optical fiber array 500 establishes an optical connection with the lens assembly 400 at one end, and establishes an optical connection with the optical fiber socket 501 at the other end.
  • the optical fiber array is composed of multiple optical fibers, which transmit the light from the lens assembly to the optical fiber socket to send out optical signals to the outside, and it transmits the light from the optical fiber socket to the lens assembly to receive optical signals from the outside of the optical module. There is a good optical coupling design between the optical fiber array and the lens assembly.
  • the multiple convergent light from the lens assembly is incident on the multiple optical fibers of the optical fiber array, and the optical structure of the lens assembly is used to realize the optical connection with the light emitting chip;
  • the multi-path light of the array is incident into the lens assembly, and the optical structure of the lens assembly is used to realize the optical connection with the light receiving chip.
  • the optical fiber socket 501 is a connector that connects the optical module with the optical fiber outside the optical module.
  • the optical fiber socket generally has a standard shape and size to facilitate the insertion of an external optical fiber plug.
  • Common optical fiber plugs are MT plugs (such as MPO (Multi-fiber Push On) optical fiber patch cord connectors).
  • Figure 5-1 is a schematic structural diagram of the lens assembly and fiber holder of the optical module in some embodiments of the disclosure
  • Figure 5-2 is a schematic structural diagram of the component structure in Figure 5-1 from another perspective
  • Figure 5 -3 is a cross-sectional view of the assembled lens component and fiber holder in Figure 5-1
  • Figure 6 is a schematic diagram of the assembled lens component, fiber holder and laser chip in Figure 5-1
  • Figure 7 is a diagram The exploded schematic diagram of the component structure in 6.
  • the optical module includes an optoelectronic chip 430 that is placed on the circuit board 300 for generating optical signals.
  • the optoelectronic chip includes a transmitter chip, a receiver chip, a driver chip, and a transimpedance amplifier chip; the driver chip cooperates with the transmitter chip to drive the transmitter chip to generate light signals; the transimpedance amplifier chip is used to Cooperate with the receiving chip to cooperate with the receiving chip to receive optical signals.
  • the optical module also includes a lens assembly 400, which is placed on the circuit board 300 and covers the optoelectronic chip 430, for changing the propagation direction of the optical signal.
  • the optical module also includes an optical fiber holder 580 for connecting with the lens assembly 400, and is provided with optical fibers for transmitting optical signals.
  • the lens assembly 400 includes:
  • the lens assembly 400 includes:
  • the lens base 411 has a first groove 415 on its top surface.
  • the inclined side wall of the first groove 415 forms a reflecting surface 415a.
  • the optical signal emitted by the optoelectronic chip is reflected by the reflecting surface 415a and then directed toward the fiber lens
  • the array 416a converges and finally enters the optical fiber array 500; it should be noted that the lens base 411 is a general term for the remaining parts of the lens assembly 400 except for the first positioning pillar 413 and the second positioning pillar 414.
  • the circuit board 300 is used to provide signal electrical connections to the optoelectronic chip 430 so that the optoelectronic chip 430 emits optical signals or receives optical signals.
  • the lens assembly 400 is disposed on the circuit board and covers the optoelectronic chip 430. In this way, when the photoelectric chip 430 emits an optical signal or receives an incoming optical signal transmitted from the outside, the lens base 411 of the lens assembly 400 functions to change the propagation direction of light.
  • the optical fiber holder 580 is used to connect with the lens assembly 400, and optical fibers are connected to it (the optical fibers can be arranged in an array), so that the optical signal whose propagation direction is changed through the lens assembly is injected into the optical fiber array 500, or injected through the optical fiber array 500 The optical signal is received by the optoelectronic chip after changing its direction through the lens assembly.
  • the first positioning post 413 extends from the side of the first assembly surface 412 opposite to the position of the lens base 411 and the optical fiber holder 580, that is, extends from one end of the side of the lens base and points in the direction of the optical fiber holder. It can be defined as the first assembly surface 412; it should be noted that the first assembly surface 412 has no special meaning, and refers to the side of the lens base 411 opposite to the light intensity bracket, the first positioning pillar 413 and the second positioning pillar 414 Extending from this surface, since the first positioning post 413 and the second positioning post 414 are used for assembling with the fiber holder 580, this surface is defined as the first assembly surface 412 for the purpose of description.
  • the second positioning pillar 414 extends from the other end of the side surface of the lens base 411 and points in the direction of the fiber holder 580, that is, extends from the other side of the first assembly surface 412.
  • the fiber support 580 includes:
  • the first positioning hole 510 is opened on the front end surface of the optical fiber holder 580 and faces the first positioning post 413 for insertion of the first positioning post 413.
  • the first positioning hole 510 is located on the front end surface and the corresponding side surface of the optical fiber holder 580 There is an opening on each of the two openings, and the two openings are connected; the front end surface of the optical fiber holder 580 can be defined as the second assembly surface 530, that is, the first positioning hole 510 is opened at the position of the optical fiber holder 580 opposite to the lens base 411.
  • One side of the second assembly surface 530 penetrates the fiber holder 580 to be on the same side of the first side; similarly, the definition of the second assembly surface 530 is the same as the above-mentioned naming rule of the first assembly surface 412: the fiber holder 580 and the lens assembly
  • the opposite side of 400 has a first positioning hole 510 and a second positioning hole 520 for installation. Therefore, for the convenience of description, this surface is defined as the second assembly surface 530.
  • first side and the second side 550 are two sides of the fiber holder 580.
  • the side on the side of the first positioning hole 510 is the first side 540
  • the side on the side of the second positioning hole 520 is The second side 550.
  • the first side is not shown in the figure due to the shielding relationship.
  • the first positioning hole 510 In relation to the meaning that the first positioning hole 510 penetrates the first side surface 540, as shown in FIGS. 5-1 and 5-2, the first positioning hole 510 is not closed on the first side surface 540, and thus is a semi-closed hole.
  • the processing technology can be formed by punching holes on the second assembly surface 530 and then penetrating to the first side surface 540; or digging grooves on the first side surface 540 and then penetrating to the second assembly surface 530, which is not limited in the present disclosure. .
  • the second positioning hole 520 is opened on the front end surface of the optical fiber holder 580 and faces the second positioning post 414 for insertion of the second positioning post 414; the second positioning hole 520 is on the front end surface and the corresponding side surface of the optical fiber holder 580 Each has one opening, and the two openings are connected. That is, it is opened on the other side of the second mounting surface and penetrates the second side surface 550 on the same side of the fiber holder 580; referring to the meaning that the second positioning hole 520 penetrates the second side surface 550, as shown in Figure 5-1 and Figure 5- As shown in 2, the second positioning hole 520 is not closed on the second side surface 550, so it is a semi-closed hole.
  • the processing technology can be formed by punching holes on the second assembly surface 530 and then penetrating to the second side surface 550; it can also dig grooves on the second side surface 550 and then penetrating to the second assembly surface 530, which is not limited in the present disclosure. .
  • the first positioning post 413 can be inserted into the first positioning hole 510, and the second positioning post 414 can be inserted into the second positioning hole 520, so that the fiber holder 580 and the lens assembly 400 can be realized connection.
  • the two positioning holes are semi-closed holes, so the processing technology is relatively simple, and the processing difficulty is reduced a lot.
  • the semi-closed hole when the positioning column is assembled with the positioning hole, the assembly difficulty will be reduced.
  • the size of the positioning hole and the positioning column can be made larger, so the stability and reliability of the two after assembly are also improved.
  • the shapes of the two positioning holes and the two positioning posts are not limited, so any shape of semi-closed positioning holes and corresponding positioning posts should be within the protection scope of the present disclosure.
  • the first positioning pillar 413 may be a square positioning pillar, and the first positioning hole 510 may be matched with the square positioning pillar.
  • the square hole or the second positioning pillar 414 may be a square positioning pillar, and the second positioning hole 520 may be a square hole matching the square positioning pillar.
  • the first positioning pillar 413 is glued into the first positioning hole 510.
  • the second positioning pillar 414 is glued to the second positioning hole 520.
  • glue bonding is just an example.
  • connection methods such as welding, riveting, buckling, and clamping, as long as the connection performance of the positioning column and the positioning hole can be improved, they should all fall within the protection scope of the present disclosure.
  • the optical fiber holder 580 is provided with an optical fiber hole 560 penetrating through the second assembly surface 530 and the rear side surface for the optical fiber to pass through.
  • the optical fiber hole 560 is located in the first positioning hole 510 and the second positioning hole 520. between.
  • the top surface of the optical fiber holder 580 is provided with a dispensing hole 570 that penetrates the optical fiber hole 560. Glue is injected through the glue hole 570 so that the optical fiber can be firmly connected in the optical fiber hole 560.
  • the lens assembly 400 and the fiber holder 580 fixed together are placed on the circuit board 300.
  • the lens assembly 400 and the fiber holder 580 that are fixed together can be glued to the circuit board 300.
  • other connection methods can also be used, which is not limited in the present disclosure.
  • the side of the lens base 411 facing the fiber holder 580 is provided with a second groove 416, the second groove 416 is provided with a fiber lens array 416a, and the fiber lens array 416a is located in the first position. Between the post 413 and the second positioning post 414. In this way, the optical signal reflected by the reflecting surface 415a can be converged and injected into the corresponding optical fiber array 500 via the optical fiber lens array 416a.
  • the bottom wall of the lens assembly 400 may be provided with a first groove, the first groove 415 and the circuit board 300 enclose a containing cavity, and the optoelectronic chip 430 is placed in the containing cavity.
  • a second groove may be provided on the circuit board 300, and the second groove and the lens assembly 400 enclose a containing cavity, and the optoelectronic chip 430 is placed in the containing cavity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括电路板(300);光电芯片(430);透镜组件(400);光纤支架(580);透镜组件(400)包括透镜基体(411);第一定位柱(413);第二定位柱(414);光纤支架(580)包括第一定位孔(510),开设于光纤支架(580)与透镜基体(411)位置相对的第二装配面(530)的一侧,并贯通光纤支架(580)处于同侧的第一侧面;第二定位孔(520),开设于第二安装面(530)的另一侧,并贯通光纤支架(580)处于同侧的第二侧面;第一定位柱(413)可***第一定位孔(410)中,第二定位柱(414)可***第二定位孔(520)中,以便光纤支架(580)与透镜组件(400)实现连接。

Description

一种光模块
本申请要求在2019年12月20日提交中国专利局、申请号为201911329907.1、发明名称为“一种光模块”,在2019年12月20日提交中国专利局、申请号为201922315188.X、实用新型名称为“一种光模块”的中国专利的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在光纤通信***中,光收发一体模块,简称光模块,是光通讯领域设备中的一种标准模块。光模块是起到光电转换作用的一种连接模块。一个标准光模块通常包括光发射器件、光接收器件等器件。光发射器件用于将电信号转换成光信号后再通过光纤传输出去,光接收器件用于将光纤传输来的光信号转换成电信号。光模块的核心组件是光收发器件,光收发器件一般包括透镜组件、激光器和驱动芯片。
发明内容
本公开实施例提供一种光模块,包括:电路板,具有用于提供信号电连接的信号电路;光电芯片,置于电路板上,用于产生光信号或接收光信号;透镜组件,置于电路板上,并覆盖光电芯片;光纤支架,用于与透镜组件连接,其上设有光纤阵列;透镜组件,包括:透镜基体,顶面设有第一凹槽,第一凹槽的倾斜侧壁形成反射面,该反射面用于改变光信号的传播方向;第一定位柱,由透镜基体的侧面的一端伸出,并指向光纤支架的方向;第二定位柱,由透镜基体的侧面的另一端伸出,并指向光纤支架的方向;光纤支架,包括:第一定位孔,开设于光纤支架的前端面上,并朝向第一定位柱,用于第一定位柱的***;第一定位孔在光纤支架的前端面、以及与前端面相接的侧面上分别具有一个开口,并该两个开口连通;第二定位孔,开设于光纤支架的前端面上,并朝向第二定位柱,用于第二定位柱***;第二定位孔在光纤支架的前端面、以及与前端面相接的侧面上分别具有一个开口,并该两个开口连通。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一些实施例的光通信终端连接关系示意图;
图2为光网络终端结构示意图;
图3为根据本公开一些实施例的一种光模块结构示意图;
图4为根据本公开一些实施例的一种光模块分解结构示意图;
图5-1为根据本公开一些实施例中的光模块的透镜组件与光纤支架分解的结构示意图;
图5-2为图5-1中的部件结构在另一种视角下的结构示意图;
图5-3为图5-1中装配在一起的透镜组件与光纤支架的截面图;
图6为图5-1中的装配在一起的透镜组件与光纤支架与激光芯片的装配示意图;
图7为图6中部件结构的分解示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为根据本公开一些实施例的光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,具体地,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光 模块的上位机监控光模块的工作。
远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为根据本公开一些实施例的光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200***光网络终端中,具体为光模块的电口***笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块***笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300、透镜组件400、光纤阵列500及光纤插座501。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体,具体地,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,***光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的透镜组件400;电路板300、透镜组件400等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、透镜组件400等器件安装到壳体中,由上壳体、下壳体形成光模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块***上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变 卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有光发射芯片、驱动芯片、光接收芯片、跨阻放大芯片、限幅放大芯片及微处理器芯片,其中光发射芯片与光接收芯片直接贴装在光模块的电路板上,此种形态业内称为COB(chip on board)封装。
电路板通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当透镜组件及相应的光芯片位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以***上位机笼子中的电连接器中,具体地,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用。
透镜组件400设置在电路板300上,采用罩设式的方式设置在光芯片(光芯片主要包括光发射芯片、驱动芯片、光接收芯片、跨阻放大芯片、限幅放大芯片等与光电转换功能相关的芯片)的上方,透镜组件400与电路板300形成包裹光发射芯片、光接收芯片等光芯片的腔体。光发射芯片发出的光经透镜组件反射后进入光纤中,来自光纤的光经透镜组件反射后进入光接收芯片中,透镜组件在光发射芯片、光功率监控芯片及光纤阵列之间建立了相互的光连接。透镜组件不仅起到密封光芯片的作用,同时也建立了光芯片与光纤之间的光连接。
光纤阵列500一端与透镜组件400之间建立光连接,另一端与光纤插座501建立光连接。光纤阵列由多根光纤组成,其将来自透镜组件的光传输至光纤插座,实现对外发出光信号,其将来自光纤插座的光传输至透镜组件,实现从光模块外部接收光信号。光纤阵列与透镜组件之间具有良好的光耦合设计,来自透镜组件的多路汇聚光入射到光纤阵列的多路光纤中,利用透镜组件的光学结构实现与光发射芯片的光连接;将来自光纤阵列的多路光入射到透镜组件中,利用透镜组件的光学结构实现与光接收芯片的光连接。
光纤插座501是光模块与光模块外部的光纤实现连接的连接件。光纤插座一般具有标准形状及尺寸,便于外部光纤插头***,其内部具有多个光纤对接口,包括传出光信号的接口及传入光信号的接口。常见的光纤插头为MT插头(如MPO(Multi-fiber Push On)光纤跳线连接器)。通过光纤插头***光模块的光纤插座,使得光模块内部的光信号可以传入外部光纤中,使得光模块外部的光信号可以传入光模块内部。
如背景技术介绍,本公开要解决的技术问题为:透镜组件410的两个定位柱与光纤支架500的定位孔的加工难度和装配难度、以及二者之间安装后的可靠性和稳定性的问题。,图5-1为本公开一些实施例中光模块的透镜组件与光纤支架分解的结构示意图;图5-2为图5-1中的部件结构在另一种视角下的结构示意图;图5-3为图5-1中装配在一起的透镜组件与光纤支架的截面图;图6为图5-1中的装配在一起的透镜组件与光纤支架与激光芯 片的装配示意图;图7为图6中部件结构的分解示意图。
在本公开的一些实施例中,光模块包括光电芯片430,该光电芯片430置于电路板300上,用于产生光信号。需要说明的是,如图7所示,光电芯片包括发射芯片和接收芯片、驱动芯片及跨阻放大芯片;驱动芯片与发射芯片配合,用于驱动发射芯片产生光信号;跨阻放大芯片用以与接收芯片配合,用以协同接收芯片接收光信号。
该光模块还包括透镜组件400,置于电路板300上,并覆盖光电芯片430,用于改变光信号的传播方向。该光模块还包括光纤支架580,用于与透镜组件400连接,并设有光纤,用于传输光信号。
如图5-1和图5-2所示,透镜组件400包括:
透镜组件400,包括:
透镜基体411,其顶面上设有第一凹槽415,该第一凹槽415的倾斜侧壁形成反射面415a,光电芯片发射的光信号经该反射面415a发生反射,然后射向光纤透镜阵列416a汇聚,最后进入光纤阵列500中;需要说明的是,透镜基体411为透镜组件400除了第一定位柱413和第二定位柱414的剩余部分的总称。
工作时,电路板300用于给光电芯片430提供信号电连接,以便光电芯片430发射光信号或接收光信号。透镜组件400设置在电路板上,并覆盖光电芯片430。这样光电芯片430发射光信号或接收外部传输的进来的光信号时,透镜组件400的透镜基体411起到改变光的传播方向作用。光纤支架580用于与透镜组件400连接,其上连接有光纤(光纤可以以阵列方式排布),以便经由透镜组件改变传播方向的光信号射入光纤阵列500,或者经由光纤阵列500射入的光信号经透镜组件改变方向后,由光电芯片接收。
第一定位柱413,由透镜基体411与光纤支架580位置相对的第一装配面412的一侧伸出,也就是由透镜基体的侧面的一端伸出,并指向光纤支架的方向,该侧面我们可以定义为第一装配面412;需要说明的是,第一装配面412并无特殊含义,指的是透镜基体411与光强支架位置相对的一面,第一定位柱413和第二定位柱414由该面伸出,由于第一定位柱413和第二定位柱414用于与光纤支架580实现装配,因而为了描述方面,该面定义为第一装配面412。
第二定位柱414,由透镜基体411的侧面的另一端伸出,并指向光纤支架580的方向,也就是由第一装配面412的另一侧伸出。
如图5-1和图5-2所示,光纤支架580,包括:
第一定位孔510,开设于光纤支架580的前端面上,并朝向第一定位柱413,用于第一定位柱413的***,第一定位孔510在光纤支架580的前端面和相应的侧面上分别具有一个开口,并该两个开口连通;该光纤支架580的前端面我们可以定义为第二装配面530,也就是第一定位孔510开设于光纤支架580与透镜基体411位置相对的第二装配面530的一侧,并贯通光纤支架580处于同侧的第一侧面;同理,对于第二装配面530的定义,同上述第一装配面412的命名规则:光纤支架580与透镜组件400相对的一面,该面上开设用于安装的第一定位孔510和第二定位孔520,因而为了描述方便,将该面定义为第二装配面530。
此外,第一侧面和第二侧面550为光纤支架580的两个侧面,为了描述方便,处于第一定位孔510一侧的侧面为第一侧面540,处于第二定位孔520一侧的侧面为第二侧面550。在图中,第一侧面,由于遮挡关系,在图中未显示。
涉及第一定位孔510贯通第一侧面540的含义,如图5-1和图5-2所示,第一定位孔510在第一侧面540上是不封闭的,因而是一个半封闭孔。其加工工艺可以为在第二装配面530上打孔形成,然后贯通到第一侧面540;也可以在第一侧面540上挖槽,然后贯通至第二装配面530,本公开对此不作限制。
第二定位孔520,开设于光纤支架580的前端面上,并朝向第二定位柱414,用于第二定位柱414***;第二定位孔520在光纤支架580的前端面和相应的侧面上分别具有一个开口,且两个开口连通。也就是开设于第二安装面的另一侧,并贯通光纤支架580处于同侧的第二侧面550;涉及第二定位孔520贯通第二侧面550的含义,如图5-1和图5-2所示,第二定位孔520在第二侧面550上是不封闭的,因而是一个半封闭孔。其加工工艺可以为在第二装配面530上打孔形成,然后贯通到第二侧面550;也可以在第二侧面550上挖槽,然后贯通至第二装配面530,本公开对此不作限制。
如图5-1和图5-2所示,第一定位柱413可***第一定位孔510中,第二定位柱414可***第二定位孔520中,以便光纤支架580与透镜组件400实现连接。
在该种结构中,两个定位孔为半封闭孔,因而其加工工艺较为简单,加工难度降低了不少。此外,由于是半封闭孔,因而当定位柱与定位孔装配时,装配难度也会降低。再者,由于加工难度和装配难度均降低,定位孔和定位柱的尺寸可以做的较大些,因而二者装配后的稳定性和可靠性也得到了提高。
需要说明的是,在上述实施例中,对于两个定位孔和两个定位柱的形状不作限制,因而任意形状的半封闭定位孔及相对应的定位柱,均应该在本公开的保护范围之内。当然,为了本公开的某些实施例中降低加工和装配难度,提高装配的可靠性和稳定性,第一定位柱413可以为方形定位柱,第一定位孔510可以为与方形定位柱配合的方形孔,或者第二定位柱414可以为方形定位柱,第二定位孔520可以为与方形定位柱配合的方形孔。
此外,为了本公开的某些实施例中增强连接强度,提高装配的稳定性和可靠性,第一定位柱413胶水粘接于第一定位孔510中。第二定位柱414胶水粘接于第二定位孔520中。当然,胶水粘接仅仅是一种举例。对于其他连接方式,如焊接、铆接、扣接、卡接等其他连接方式,只要能够提升定位柱和定位孔的连接性能,也均应该在本公开的保护范围之内。
此外,如图6所示,光纤支架580开设有贯穿其第二装配面530和后侧面、并用于光纤穿过的光纤孔560,该光纤孔560位于第一定位孔510和第二定位孔520之间。在本公开的一些实施例中,如图6所示,光纤支架580的顶面上开设有与所光纤孔560贯通的点胶孔570。通过该点胶孔570,将胶水注入,从而使得光纤能够稳固的连接在光纤孔560中。
在上述任一种技术方案中,还可以做出本公开的某些实施例中改进。
固定在一起的透镜组件400和光纤支架580,置于电路板300上。为了提升放置的稳 固性,固定在一起的透镜组件400与光纤支架580可以胶水粘接于电路板300上。当然,如上文,也可以采用其他连接方式,本公开对此不作限制。
此外,如图5-1所示,透镜基体411面向光纤支架580的侧面上开设有第二凹槽416,第二凹槽416内设有光纤透镜阵列416a,并且光纤透镜阵列416a位于第一定位柱413和第二定位柱414之间。这样经过反射面415a反射的光信号可以经由该光纤透镜阵列416a汇聚射入到相应的光纤阵列500中。
此外,透镜组件400的底壁上可以设有第一凹槽,第一凹槽415和电路板300围成容纳腔体,光电芯片430置于容纳腔体中。或者,如图10所示,电路板300上可以设有第二凹槽,第二凹槽与透镜组件400围成容纳腔体,光电芯片430置于容纳腔体中。显然,该两种结构设计能够方便的实现透镜组件400对于光信号传播方向的改变功能。
最后应说明的:以上实施例仅用以说明本公开的技术方案,而非对其限制;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;本质未脱离本公开各实施例技术方案的精神和范围。

Claims (9)

  1. 一种光模块,其特征在于,包括:
    电路板,具有用于提供信号电连接的信号电路;
    光电芯片,置于所述电路板上,用于产生光信号或接收光信号;
    透镜组件,置于所述电路板上,并覆盖所述光电芯片;
    光纤支架,用于与所述透镜组件连接,并设有光纤阵列;
    所述透镜组件,包括:
    透镜基体,顶面设有第一凹槽,所述第一凹槽的倾斜侧壁形成反射面,用于改变光信号的传播方向;
    第一定位柱,由所述透镜基体的侧面的一端伸出,并指向所述光纤支架的方向;第二定位柱,由所述透镜基体的侧面的另一端伸出,并指向所述光纤支架的方向;
    所述光纤支架,包括:
    第一定位孔,开设于所述光纤支架的前端面上,并朝向所述第一定位柱,用于所述第一定位柱的***;
    所述第一定位孔在所述光纤支架的前端面、以及与所述前端面相接的侧面上分别具有一个开口,且该两个开口连通;
    第二定位孔,开设于所述光纤支架的前端面上,并朝向所述第二定位柱,用于所述第二定位柱***;
    所述第二定位孔在所述光纤支架的前端面、以及与所述前端面相接的侧面上分别具有一个开口,且该两个开口连通。
  2. 如权利要求1所述的光模块,其特征在于,所述第一定位柱为方形定位柱,所述第一定位孔为与所述方形定位柱配合的方形孔。
  3. 如权利要求1所述的光模块,其特征在于,所述第二定位柱为方形定位柱,所述第二定位孔为与所述方形定位柱配合的方形孔。
  4. 如权利要求1至3任一项所述的光模块,其特征在于,所述第一定位柱通过胶水粘接于所述第一定位孔中。
  5. 如权利要求1至3任一项所述的光模块,其特征在于,所述第二定位柱通过胶水粘接于所述第二定位孔中。
  6. 如权利要求1至3任一项所述的光模块,其特征在于,所述光纤支架开设有用于所述光纤阵列穿过的光纤孔;所述光纤孔位于所述第一定位孔与所述第二定位孔之间。
  7. 如权利要求6所述的光模块,其特征在于,所述光纤支架的顶面上开设有与所光纤孔贯通的点胶孔。
  8. 如权利要求1-3任一项所述的光模块,其特征在于,所述透镜基体面向所述光纤支架的侧面上开设有第二凹槽,所述第二凹槽内设有光纤透镜阵列,并所述光纤透镜阵列位于所述第一定位柱和所述第二定位柱之间。
  9. 如权利要求1至3任一项所述的光模块,其特征在于,连接在一起的所述透镜组 件与所述光纤支架通过胶水粘接于所述电路板上。
PCT/CN2020/111050 2019-12-20 2020-08-25 一种光模块 WO2021120669A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/477,522 US11927817B2 (en) 2019-12-20 2021-09-16 Optical module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201922315188.X 2019-12-20
CN201922315188.XU CN211878239U (zh) 2019-12-20 2019-12-20 一种光模块
CN201911329907.1 2019-12-20
CN201911329907.1A CN110989103A (zh) 2019-12-20 2019-12-20 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/477,522 Continuation-In-Part US11927817B2 (en) 2019-12-20 2021-09-16 Optical module

Publications (1)

Publication Number Publication Date
WO2021120669A1 true WO2021120669A1 (zh) 2021-06-24

Family

ID=76478202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111050 WO2021120669A1 (zh) 2019-12-20 2020-08-25 一种光模块

Country Status (2)

Country Link
US (1) US11927817B2 (zh)
WO (1) WO2021120669A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021120669A1 (zh) * 2019-12-20 2021-06-24 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064540A (ko) * 2014-11-28 2016-06-08 (주)옵토마인드 광 송수신 장치
US10018791B2 (en) * 2016-09-19 2018-07-10 Electronics And Telecommunications Research Institute Multi-channel optical subassembly and method of manufacturing the same
CN108508549A (zh) * 2018-03-30 2018-09-07 翔光光通讯器材(昆山)有限公司 高密度光收发模块
CN109212672A (zh) * 2017-07-05 2019-01-15 禾橙科技股份有限公司 光纤固定支架及包含其的光纤模组
CN110023804A (zh) * 2016-09-12 2019-07-16 优导股份有限公司 光学模块装置及制造该光学模块装置的方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818058B1 (en) * 1988-03-03 1995-04-25 Bell Telephone Labor Inc Optical connector.
US6422761B1 (en) * 2000-03-06 2002-07-23 Fci Americas Technology, Inc. Angled optical connector
US6909827B2 (en) * 2002-05-01 2005-06-21 Adc Telecommunications, Inc. Compact optical module with adjustable joint for decoupled alignment
JP2004191564A (ja) * 2002-12-10 2004-07-08 Mitsubishi Electric Corp 光路変換コネクタ
US7373031B2 (en) * 2004-09-30 2008-05-13 Intel Corporation Apparatus for an electro-optical device connection
JP4690963B2 (ja) * 2006-08-09 2011-06-01 株式会社日立製作所 多チャンネル光モジュールの製造方法
US7371014B2 (en) * 2006-08-21 2008-05-13 Intel Corporation Monolithic active optical cable assembly for data device applications and various connector types
US7578623B2 (en) * 2006-08-21 2009-08-25 Intel Corporation Aligning lens carriers and ferrules with alignment frames
US8989539B2 (en) * 2009-11-03 2015-03-24 3M Innovative Properties Company Fiber optic devices and methods of manufacturing fiber optic devices
US8414199B2 (en) * 2010-01-07 2013-04-09 Hitachi Cable, Ltd. Optical connector and lens block connecting structure, and optical module
TWI459661B (zh) * 2010-02-03 2014-11-01 Hon Hai Prec Ind Co Ltd 光纖插頭、光纖插座及光纖連接器
US20110222823A1 (en) * 2010-03-12 2011-09-15 Xyratex Technology Limited Optical connector and a method of connecting a user circuit to an optical printed circuit board
US8195017B2 (en) * 2010-05-31 2012-06-05 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Consumer input/output (CIO) optical transceiver module for use in an active optical cable, an active optical cable that incorporates the CIO optical transceiver module, and a method
US8297856B2 (en) * 2010-12-13 2012-10-30 Sae Magnetics (H.K.) Ltd. Electro-optical module and multi-functional latch member therefor
TWI479215B (zh) * 2010-12-16 2015-04-01 Hon Hai Prec Ind Co Ltd 光纖連接器
US8469610B2 (en) * 2011-01-18 2013-06-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical connection system with plug having optical turn
WO2013015197A1 (ja) * 2011-07-28 2013-01-31 京セラ株式会社 光コネクタ、光伝送モジュールおよび光コネクタの製造方法
US9128248B2 (en) * 2011-11-23 2015-09-08 Intel Corporation Optical transceiver interface with C-shaped planar alignment and securing
WO2013105975A1 (en) * 2012-01-13 2013-07-18 Intel Corporation Ir reflowable optical transceiver
KR20140124821A (ko) * 2012-02-21 2014-10-27 코닝 옵티컬 커뮤니케이션스 엘엘씨 능동형 광 케이블 (aoc) 어셈블리에서의 열 관리를 위한 구조 및 방법
US8807846B2 (en) * 2012-03-02 2014-08-19 Sae Magnetics (H.K.) Ltd. Pluggable optical transceiver
US9383519B2 (en) * 2012-12-07 2016-07-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical communication module with fiber submount and latching optics assembly
TWI599807B (zh) * 2012-12-19 2017-09-21 鴻海精密工業股份有限公司 光纖連接器
CN203164482U (zh) * 2013-04-08 2013-08-28 青岛海信宽带多媒体技术有限公司 一种光模块
US8926199B1 (en) * 2013-09-16 2015-01-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Fiber to lens attach device, system, and method
TW201520625A (zh) * 2013-11-19 2015-06-01 Hon Hai Prec Ind Co Ltd 光纖連接器
JP6342215B2 (ja) * 2014-05-14 2018-06-13 日本航空電子工業株式会社 光モジュール
CN105445869B (zh) * 2014-09-01 2017-08-11 富士康(昆山)电脑接插件有限公司 光模组
TW201610500A (zh) * 2014-09-10 2016-03-16 鴻海精密工業股份有限公司 光纖耦合連接器
TWI617852B (zh) * 2014-10-16 2018-03-11 英屬開曼群島商鴻騰精密科技股份有限公司 光電轉換裝置
TWI604240B (zh) * 2014-10-16 2017-11-01 鴻騰精密科技股份有限公司 光電轉換裝置
TW201617660A (zh) * 2014-11-07 2016-05-16 鴻海精密工業股份有限公司 光纖連接器及光通訊裝置
US9720188B2 (en) * 2015-12-31 2017-08-01 International Business Machines Corporation Connecting mid-board optical modules
JP6734763B2 (ja) * 2016-11-22 2020-08-05 日本航空電子工業株式会社 光モジュール
CN212031792U (zh) * 2017-03-07 2020-11-27 康宁光电通信有限责任公司 用于在光学连接器与光电基板之间提供接口的光子适配器及用于安装到载体基板的光电组件
US10466427B2 (en) * 2017-03-14 2019-11-05 Finisar Corporation Optical module with integrated lens
US10110311B1 (en) * 2017-10-02 2018-10-23 Prime World International Holdings Ltd. Optical transceiver
US10151891B1 (en) * 2017-10-24 2018-12-11 Prime World International Holdings Ltd. Optical transceiver
WO2021120669A1 (zh) * 2019-12-20 2021-06-24 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064540A (ko) * 2014-11-28 2016-06-08 (주)옵토마인드 광 송수신 장치
CN110023804A (zh) * 2016-09-12 2019-07-16 优导股份有限公司 光学模块装置及制造该光学模块装置的方法
US10018791B2 (en) * 2016-09-19 2018-07-10 Electronics And Telecommunications Research Institute Multi-channel optical subassembly and method of manufacturing the same
CN109212672A (zh) * 2017-07-05 2019-01-15 禾橙科技股份有限公司 光纤固定支架及包含其的光纤模组
CN108508549A (zh) * 2018-03-30 2018-09-07 翔光光通讯器材(昆山)有限公司 高密度光收发模块

Also Published As

Publication number Publication date
US20220003944A1 (en) 2022-01-06
US11927817B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2021227317A1 (zh) 一种光模块
WO2021212849A1 (zh) 一种光模块
CN111555811B (zh) 一种光模块
WO2021120668A1 (zh) 一种光模块
CN112230349B (zh) 一种光模块
CN112230350B (zh) 一种光模块
CN212647091U (zh) 一种光模块
CN211603626U (zh) 一种光模块
CN113253400A (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN114488438B (zh) 一种光模块
WO2020108294A1 (zh) 光模块
CN215181035U (zh) 一种光模块
WO2021120669A1 (zh) 一种光模块
CN113419315A (zh) 一种光模块
CN110989103A (zh) 一种光模块
CN220526047U (zh) 光模块
CN111239935B (zh) 光模块
CN112230347B (zh) 一种光模块
WO2022166350A1 (zh) 一种光模块
WO2021212868A1 (zh) 一种光模块
CN114488420A (zh) 一种光模块
CN211878239U (zh) 一种光模块
WO2022037226A1 (zh) 一种光模块
CN214795317U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901186

Country of ref document: EP

Kind code of ref document: A1