WO2021082398A1 - 空调器制热除霜后运行的控制方法 - Google Patents

空调器制热除霜后运行的控制方法 Download PDF

Info

Publication number
WO2021082398A1
WO2021082398A1 PCT/CN2020/090384 CN2020090384W WO2021082398A1 WO 2021082398 A1 WO2021082398 A1 WO 2021082398A1 CN 2020090384 W CN2020090384 W CN 2020090384W WO 2021082398 A1 WO2021082398 A1 WO 2021082398A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
heating
defrosting
compressor
Prior art date
Application number
PCT/CN2020/090384
Other languages
English (en)
French (fr)
Inventor
钱益
曾友坚
罗安发
Original Assignee
宁波奥克斯电气股份有限公司
奥克斯空调股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波奥克斯电气股份有限公司, 奥克斯空调股份有限公司 filed Critical 宁波奥克斯电气股份有限公司
Publication of WO2021082398A1 publication Critical patent/WO2021082398A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the embodiment of the present disclosure relates to a control method for the operation of an air conditioner after heating and defrosting.
  • the indoor temperature sensing bulb is usually shifted to the upper side of the air conditioner electric control box, that is, at the original position of the middle frame, so that the air conditioner does not interfere when disassembling and installing.
  • a hole will be opened on the corresponding upper side of the temperature sensor, so that the indoor side fan can ventilate the surrounding temperature of the temperature sensor when it is running, and ensure that the temperature detected by the temperature sensor is the indoor ambient temperature.
  • the embodiments of the present disclosure are intended to provide a method for controlling the operation of an air conditioner after heating and defrosting, so as to solve the technical problem that the air conditioner stops accidentally after heating and defrosting, which affects the user's use and heating comfort.
  • a control method for the operation of an air conditioner after heating and defrosting includes: after the controller receives the defrost end signal, it obtains the temperature sensing bulb detection temperature T B ; judging whether the temperature sensing bulb detection temperature T B is lower than the user set temperature T a ; if the temperature T B detected by the temperature sensing bulb is not lower than the user set temperature T a , the compressor is controlled to run for the first preset time.
  • the controller receives the signal and determines the defrosting end temperature package detected temperature T B is not lower than the user set temperature T a, the forced compressor operation control , So as to avoid the accidental shutdown of the air conditioner due to the inability of the temperature sensor to accurately detect the indoor ambient temperature, optimize the heating operation mode of the air conditioner, and improve the user experience.
  • the fan inside the control chamber further low rotational speed operating a second predetermined time.
  • the air around the electric control box of the air conditioner can be ventilated in advance to shorten the time required for the air conditioner to enter normal operation.
  • the air conditioner is controlled to enter the cold wind prevention stage.
  • the air conditioner when the compressor starts to run forcibly, the air conditioner is controlled to enter the anti-cold wind stage, which can prevent the indoor side fan from blowing cold wind and cause discomfort to the human body and improve the heating comfort of the air conditioner.
  • the air conditioner into the anti-cold stage of heating system and the compression chamber side of the fan is not running, the fan blowing the indoor side can be avoided.
  • the cold wind causes discomfort to the human body and improves the heating comfort of the air conditioner.
  • the value range of the first preset time is 3-15 min.
  • the forced operation time of the compressor is prevented from being too long, and the indoor temperature is controlled to ensure indoor comfort.
  • the first preset time is 7 minutes.
  • the value range of the second preset time is 0-90s.
  • the temperature sensing bulb is dissipated while avoiding conflicts with the anti-cold wind operation program of the air conditioner, and ensuring indoor comfort.
  • the controller acquires sensing bulb temperature T B detected again; Analyzing reacquired bulb temperature T B detected is lower than the user set temperature T a; if reacquired If the temperature sensor temperature T B is not lower than the user set temperature T a , adjust the operating parameters of the air conditioner; or, if the temperature sensor temperature T B obtained again is lower than the user set temperature T a , control the air conditioner to maintain Run with original parameters.
  • the temperature detected by the temperature sensing bulb can truly reflect the indoor ambient temperature, and the air conditioner resumes normal operation.
  • the controller acquires again sensing bulb temperature T B detected, determination reacquired bulb temperature T B detected is lower than the user set temperature T a, the control operation of the air conditioner according to the determination result.
  • adjusting the air conditioner operating parameters comprising: a fixed-frequency air for the control stops the compressor, the indoor side low speed fan operation; For inverter air conditioners, control the low-frequency operation of the compressor to keep the speed of the indoor fan unchanged.
  • different temperature control methods are adopted for the fixed frequency air conditioner and the variable frequency air conditioner, which saves the energy consumption of the air conditioner and improves the heating comfort of the air conditioner.
  • the embodiment of the present disclosure also provides a control method for the operation of an air conditioner after heating and defrosting, including:
  • the controller After the controller receives the defrost end signal, it controls the compressor to run for the first preset time.
  • the method for controlling the operation of the air conditioner after heating and defrosting in the embodiment of the present disclosure controls the forced operation of the compressor after the controller receives the defrost end signal, thereby avoiding the error of the air conditioner caused by the inability of the temperature sensor to accurately detect the indoor ambient temperature. In the case of shutdown, optimize the heating operation mode of the air conditioner to improve the user experience.
  • the controller further controls the indoor side fan to operate at a low speed for a second preset time.
  • the air around the electric control box of the air conditioner can be ventilated in advance to shorten the time required for the air conditioner to enter normal operation.
  • the air conditioner is controlled to enter the cold wind prevention stage.
  • the air conditioner when the compressor starts to run forcibly, the air conditioner is controlled to enter the anti-cold wind stage, which can prevent the indoor side fan from blowing cold wind and cause discomfort to the human body and improve the heating comfort of the air conditioner.
  • the value range of the first preset time is 3-15 min.
  • the forced operation time of the compressor is prevented from being too long, and the indoor temperature is controlled to ensure indoor comfort.
  • the first preset time is 7 minutes.
  • the value range of the second preset time is 0-90s.
  • the temperature sensing bulb is dissipated while avoiding conflicts with the anti-cold wind operation program of the air conditioner, and ensuring indoor comfort.
  • the controller acquires sensing bulb temperature T B detected; Analyzing sensing bulb temperature T B detected is lower than the user set temperature T A; sensing bulb if the detected temperature T user B is not lower than the set temperature T a, the air conditioner operating parameter adjustment; or, if the detected temperature sensing bulb lower than the user set temperature T B T a, control the air conditioner operation maintaining the original parameters.
  • the temperature detected by the temperature sensing bulb can truly reflect the indoor ambient temperature, and the air conditioner resumes normal operation.
  • the temperature sensitive controller acquires the detected temperature T B packet, determines whether the acquired temperature kits detected temperature T B is lower than the user set temperature T a, the control operation of the air conditioner according to the determination result.
  • adjusting the air conditioner operating parameters comprising: a fixed-frequency air for the control stops the compressor, the indoor side low rotational speed operating fan; for inverter air conditioner , Control the low-frequency operation of the compressor to keep the speed of the indoor fan unchanged.
  • different temperature control methods are adopted for the fixed frequency air conditioner and the variable frequency air conditioner, which saves the energy consumption of the air conditioner and improves the heating comfort of the air conditioner.
  • Fig. 1 is a flow chart of the control method for the operation of the air conditioner after heating and defrosting according to the first embodiment of the present invention
  • Fig. 2 is a flow chart of the control method for the operation of the air conditioner after heating and defrosting according to the second embodiment of the present invention.
  • the air conditioner When the air conditioner is heating, the outdoor unit is prone to frost. In order to ensure the normal operation of the air conditioner, the air conditioner needs to enter the defrost mode after heating for a period of time to melt the frost on the heat exchanger of the outdoor unit. After defrosting is complete Re-heat operation. However, during the actual operation of the air conditioner, it will stop after the heating and defrosting, and in the event of a shutdown failure, the air conditioner will automatically start after a period of shutdown.
  • the operation process of the heating and defrosting of the air conditioner was checked and analyzed. Specifically, the user sets the temperature T a , the indoor ambient temperature is T b , and the temperature detected by the temperature sensing bulb is T B. Since the temperature detected by the temperature sensor during the operation of the air conditioner is actually the temperature value obtained by the controller after the temperature sensor transmits the detected temperature value to the controller, the air conditioner does not directly display the temperature value. Intuitively obtain the detection temperature of the temperature sensor, set a temperature sensor at the installation position of the temperature sensor, and use the temperature value measured by the temperature sensor as the detection temperature T B of the temperature sensor. In order to obtain an accurate indoor ambient temperature, an indoor temperature sensor is installed at the air inlet of the panel of the indoor unit of the air conditioner, and the temperature value measured by the indoor temperature sensor is used as the indoor ambient temperature T b .
  • T B ⁇ T a that is, T b ⁇ T a
  • the air conditioner will resume heating operation; if T B ⁇ T a , no matter if T b ⁇ T a or T b ⁇ T a , control
  • the air conditioner will control the compressor not to run due to the received temperature signal, that is, the air conditioner will enter the stop state. In this case the user is lower than the set temperature T a particularly vulnerable when 26 °C.
  • the indoor fan does not operate, and the components such as the electric control box continue to dissipate heat.
  • the air conditioner cannot enter the heating operation state again for a long time. After the air conditioner is stopped for a period of time, the electric control box and other components will naturally cool down until T B ⁇ T a before they can resume heating operation.
  • the controller sets the indoor temperature T b and the temperature T a user is compared, controls the compressor is operating; Specifically, if T b ⁇ T a, the air conditioner system Hot running, the compressor restarts, if T b ⁇ T a , the controller receives the temperature signal and controls the compressor not to run.
  • the embodiment of the present disclosure proposes a control method for the operation of the air conditioner after heating and defrosting, so as to solve the problem that the air conditioner stops accidentally after heating and defrosting, which affects the user's use And the technical problem of heating comfort.
  • the air conditioner of this embodiment needs to defrost the outdoor unit heat exchanger during heating operation, the indoor side fan and the outdoor side fan stop air supply, the air conditioner four-way valve changes direction, and the outdoor side heat exchanger temperature rises;
  • the defrost mode is operating, the outdoor side fan is activated, but the indoor side fan does not operate; after defrosting, the four-way valve of the air conditioner is reversed, the compressor starts heating, the air conditioner enters the anti-cold phase operation, and the indoor side fan does not operate.
  • the indoor side condenser reaches the set temperature, the indoor side fan resumes air supply.
  • a cold wind prevention stage is set.
  • the air conditioner during heating and not the defrosting operation, the indoor side fan operation, the surrounding thermal package for ventilation sensing bulb temperature T B detected indoor temperature is equal to T b.
  • the controller receives the sensing bulb temperature T B detected, and the sensing bulb temperature T B detected temperature T a is set by the user is compared:
  • the air conditioner adjusts the operating parameters, including: for fixed-frequency air conditioners, the compressor stops running, and the indoor side fan runs at low speed to blow breeze; for inverter air conditioners, the compressor runs at low frequency and the indoor side fan keeps rotating speed constant.
  • the speed of the indoor fan is 400-600r/min when the indoor fan is running at low speed; the operating frequency of the compressor is between f min ⁇ f min +20 Hz when the compressor is running at low frequency, where f min refers to the air conditioner The lowest compressor frequency set at the factory.
  • the controller When the air conditioner controller receives defrost end signal, the controller acquires sensing bulb temperature T B detected, and determines whether the detected temperature sensing bulb T B is lower than the user set temperature T a; if T B ⁇ T a, the control operation of the first predetermined time to force the compressor, the compressor is not running during the sensing bulb affect the detected temperature T B, the compressor starts the forced operation, the air conditioner to enter the anti cold stage, after cold anti-phase side of the indoor fan Start the operation and ventilate the surrounding area of the air-conditioning electric control box so that the temperature detected by the temperature sensing bulb T B is equal to the indoor ambient temperature T b .
  • sensing bulb temperature T B detected by the heat affect electrical box and other components caused by sensing bulb temperature T B detected not a true reflection of the ambient room temperature T b in turn lead to downtime of the air conditioner. If T B ⁇ T a , the air conditioner is in normal heating operation. At this time, the compression mechanism is running hot and the indoor side fan is not running, that is, the air conditioner directly enters the anti-cold phase.
  • the forced compressor operation control only the first predetermined time.
  • the air conditioner enters the anti-cold-wind phase.
  • the indoor side fan starts to operate to ventilate the air conditioner electric control box so that the temperature detection temperature T B of the temperature sensor is equal to the indoor ambient temperature T b .
  • the compressor controls the forced operation of the first predetermined time and the control chamber inside a second preset low rotational speed operating fan time.
  • the speed of the indoor fan is 400-600 r/min when the indoor fan is running at a low speed.
  • the air conditioner enters the anti-cold phase.
  • the indoor side fan does not operate.
  • the indoor side condenser reaches the set temperature, the indoor side fan resumes air supply.
  • This embodiment controls the forced operation of the compressor while controlling the low-speed operation of the indoor side fan, so that the air conditioner can ventilate the air conditioner electric control box before the indoor side condenser reaches the set temperature, shortening the air conditioner to enter normal operation The time required.
  • the compressor is forced to run a first predetermined time
  • the controller acquires again sensing bulb temperature T B detected; Analyzing reacquired bulb temperature T B detected is lower than the user set temperature Ta; if again Get temperature kits detected temperature T B is lower than the user set temperature T a, the control operation of the air conditioner to maintain the original parameters; reacquired if bulb is not lower than the detected temperature T B user set temperature T a, adjusting an air conditioner
  • the operating parameters specifically include: for fixed-frequency air conditioners, control the compressor to stop running, and the indoor side fan runs at a low speed to blow breeze; for inverter air conditioners, control the compressor to operate at low frequency to keep the indoor side fan speed unchanged.
  • the value range of the first preset time is 3-15 min.
  • the running time of the air conditioner in the anti-cold wind phase is 90s-270s, and can be 3min. Specifically, if the compressor run time is below the forced 3min, after the end of anti-prone side of the indoor fan stage cold running time is too short, near the bulb insufficient cooling, sensing bulb temperature T B detected indoor temperature is still above the T b case occurs, which causes the controller to stop the air conditioner recovery control again the phenomenon of the compressor is operating in accordance with the detected temperature sensing bulb T B. If the forced compressor operation time than 15min, then the compressor will forced to run too long, resulting in the indoor temperature T b is higher than the user set temperature T a, indoor comfort is deteriorated.
  • the first preset time is 7 minutes. Therefore, it is possible to ensure sufficient heat dissipation of the temperature sensing bulb while taking into account the function of preventing cold wind, thereby improving the user experience.
  • the compressor set 7min forced to run, the indoor side fan operation may be increased based on both the time of the anti-cold feature on the forced operation of the first compressor after a predetermined time, sensing bulb temperature T B detected a true reflection of the indoor environment Temperature T b .
  • the value range of the second preset time is 0-90s.
  • the running time of the air conditioner in the anti-cold wind phase in this embodiment is 90s-270s. If the low-speed operation time of the indoor fan exceeds 90s, the anti-cold wind phase of the air conditioner may end.
  • the controller should control the indoor fan to run at normal or high speed, and according to this control method, the indoor fan still keeps running at a low speed. , Which causes the indoor environment temperature to be unable to increase, which affects indoor comfort.
  • Fig. 2 shows another optional method for controlling operation of an air conditioner after heating and defrosting in the present disclosure.
  • the controller when the air conditioner controller receives the defrost end signal, the controller does not determine the temperature detected by the temperature sensing bulb T B , and controls the compressor to run for a first preset time.
  • the compressor not affect the detected temperature sensing bulb T B, the forced compressor operation, preventing cool air directly into the air conditioner stage.
  • the indoor side fan starts to run to ventilate the surroundings of the temperature sensor, so that the detection temperature of the temperature sensor T B is equal to the indoor ambient temperature T b , to prevent the detection of the temperature sensor caused by the heat dissipation of the electric control box and other components
  • the temperature T B cannot truly reflect the indoor ambient temperature T b, which causes the air conditioner to stop.
  • the air conditioner controller after the air conditioner controller receives the defrost end signal, it only controls the compressor to forcefully run for the first preset time. When the compressor starts to run forcibly, the air conditioner enters the anti-cold-wind phase. After the anti-cold-wind phase is over, the indoor side fan starts to operate to ventilate the air conditioner electric control box so that the temperature detection temperature T B of the temperature sensor is equal to the indoor ambient temperature T b .
  • the controller controls the compressor to run for a first preset time and the indoor fan to run at a low speed for a second preset time.
  • the speed of the indoor fan is 400-600 r/min when the indoor fan is running at a low speed.
  • the air conditioner enters the anti-cold phase. According to the anti-cold phase operation logic, the indoor side fan does not operate. When the indoor side condenser reaches the set temperature, the indoor side fan resumes air supply.
  • This embodiment controls the forced operation of the compressor while controlling the low-speed operation of the indoor side fan, so that the air conditioner can ventilate the air conditioner electric control box before the indoor side condenser reaches the set temperature, shortening the air conditioner to enter normal operation The time required.
  • the compressor is forced to run a first predetermined time
  • the controller acquires sensing bulb temperature T B detected; Analyzing sensing bulb temperature T B detected is lower than the user set temperature T a; if the bulb detection T B the temperature is lower than the user set temperature T a, the control operation of the air conditioner to maintain the original parameters; sensing bulb if the detected temperature T B is not lower than the user set temperature T a, adjusting the air conditioner operating parameters, comprises: for a given frequency For air conditioners, control the compressor to stop running, and the indoor side fan runs at a low speed to blow breeze; for inverter air conditioners, control the compressor to operate at low frequency to keep the indoor side fan speed unchanged.
  • the speed of the indoor fan is 400-600r/min; when the compressor is running at low frequency, the operating frequency of the compressor is between f min ⁇ f min +20 Hz, where f min refers to the air conditioner The lowest compressor frequency set at the factory.
  • the value range of the first preset time is 3-15 min.
  • the first preset time is 7 minutes. While taking into account the function of anti-cold wind, it can ensure sufficient heat dissipation of the temperature sensing bag and improve the user experience.
  • the value range of the second preset time is 0-90s.
  • the running time of the air conditioner in the anti-cold wind phase in this embodiment is 90s-270s. If the low-speed operation time of the indoor fan exceeds 90s, the anti-cold wind phase of the air conditioner may end.
  • the controller should control the indoor fan to run at normal or high speed, and according to this control method, the indoor fan still keeps running at a low speed. , Which causes the indoor environment temperature to be unable to increase, which affects indoor comfort.
  • control method of the air conditioner in the second embodiment in heating operation without defrosting is the same as that in the first embodiment, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器制热除霜后运行的控制方法,包括:控制器收到除霜结束信号后,获取感温包检测温度TB;判断感温包检测温度TB是否低于用户设定温度Ta;若感温包检测温度TB不低于用户设定温度Ta,则控制压缩机强制运行第一预设时间。一种空调器制热除霜后运行的控制方法,包括:控制器收到除霜结束信号后,控制压缩机强制运行第一预设时间。所述的空调器制热除霜后运行的控制方法,可避免空调器制热除霜后误停机情况的发生,优化空调器制热运行模式,改善用户体验。

Description

空调器制热除霜后运行的控制方法
本申请要求于2019年10月30日提交的中国专利申请第201911047260.3的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
技术领域
本公开实施例涉及一种空调器制热除霜后运行的控制方法。
背景技术
已知技术中为了使空调更易拆卸和安装,实现结构的合理布局,通常将室内侧感温包移位至空调电控盒上侧,即原始位置中框处,使空调拆卸安装时不干涉。同时,为了保证感温包测温的准确性,会在感温包对应的上侧开孔,使室内侧风机运行时能对感温包周围进行通风,确保感温包检测温度为室内环温。
通常情况下,空调制热运行一段时间后,室外机换热器易结霜,需要进入除霜模式以融化室外机换热器上的冰霜,除霜结束后重新制热运行。但是,空调在实际运行过程中,会出现制热除霜结束后停机的情况。导致停机的原因众多,如程序逻辑故障、***能力不匹配、内外盘温度的影响均会造成停机。通常情况下制冷运行时并未出现停机故障,而制热运行时也并非每次均出现故障,且在制热除霜后出现停机故障时,停机一段时间后空调又会自动启动,致使无法准确找到故障原因,对此情况目前无有效处理手段,影响用户使用,影响空调制热舒适性。
因此,有必要对空调器在制热除霜后出现停机故障的原因进行排查,设计一种控制方法,以解决空调器制热除霜后误停机的问题。
发明内容
本公开实施例旨在提出一种空调器制热除霜后运行的控制方法,以解决空调器制热除霜后误停机,影响用户使用和制热舒适性的技术问题。
为实现上述目的,本公开采用如下技术方案,
一种空调器制热除霜后运行的控制方法,包括:控制器收到除霜结束信号后,获取感温包检测温度T B;判断感温包检测温度T B是否低于用户设定温度T a;若感温包检测温度T B不低于用户设定温度T a,控制压缩机强制运行第一预设时间。
本公开实施例的空调器制热除霜后运行的控制方法,控制器收到除霜结束信号且判断感温包检测温度T B不低于用户设定温度T a时,控制压缩机强制运行,从而避免由于感温包无法准确检测室内环境温度而导致空调器误停机的情况,优化空调器制热运行模式,改善用户体验。
进一步地,若感温包检测温度T B不低于用户设定温度T a,进一步控制室内侧风机低转速运行第二预设时间。
根据该实施例的技术方案,在控制压缩机强制运行的同时控制室内侧风机低转速运行,可提前对空调电控盒周围进行通风,缩短空调器进入正常运行所需时间。
进一步地,压缩机开始强制运行时,控制空调器进入防冷风阶段。
根据该实施例的技术方案,压缩机开始强制运行时,控制空调器进入防冷风阶段,可避免室内侧风机吹冷风造成人体不适,提高空调制热舒适性。
进一步地,若感温包检测温度T B低于用户设定温度T a,控制空调器进入防冷风阶段。
根据该实施例的技术方案,当感温包检测温度T B低于用户设定温度T a时,空调器进入防冷风阶段,压缩机制热运行而室内侧风机不运行,可避免室内侧风机吹冷风造成人体不适,提高空调制热舒适性。
进一步地,第一预设时间的取值范围为3-15min。
根据该实施例的技术方案,在保证感温包散热充分的同时避免压缩机强制运行时间过长,控制室内温度保证室内舒适度。
进一步地,第一预设时间为7min。
根据该实施例的技术方案,在兼顾防冷风功能的同时保证感温包散热充分,改善用户体验。
进一步地,第二预设时间的取值范围为0-90s。
根据该实施例的技术方案,保证在对感温包进行散热的同时避免与空调 器的防冷风运行程序冲突,保证室内舒适度。
进一步地,压缩机强制运行第一预设时间后,控制器再次获取感温包检测温度T B;判断再次获取的感温包检测温度T B是否低于用户设定温度T a;若再次获取的感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数;或者,若再次获取的感温包检测温度T B低于用户设定温度T a,控制空调器保持原参数运行。
根据该实施例的技术方案,压缩机强制运行第一预设时间后,感温包检测温度可以真实反映室内环境温度,空调恢复正常运行。此时,控制器再次获取感温包检测温度T B,判断再次获取的感温包检测温度T B是否低于用户设定温度T a,根据判断结果控制空调器运行。
进一步地,若再次获取的感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数,包括:对于定频空调,控制压缩机停止运行,室内侧风机低转速运行;对于变频空调,控制压缩机低频运行,保持室内侧风机转速不变。
根据该实施例的技术方案,对于定频空调和变频空调采用不同的达温控制方式,节约空调器能耗,提高空调制热舒适性。
本公开实施例还提供了一种空调器制热除霜后运行的控制方法,包括:
控制器收到除霜结束信号后,控制压缩机强制运行第一预设时间。
本公开实施例空调器制热除霜后运行的控制方法,在控制器收到除霜结束信号后,控制压缩机强制运行,从而避免由于感温包无法准确检测室内环境温度而导致空调器误停机的情况,优化空调器制热运行模式,改善用户体验。
进一步地,控制器收到除霜结束信号后,进一步控制室内侧风机低转速运行第二预设时间。
根据该实施例的技术方案,在控制压缩机强制运行的同时控制室内侧风机低转速运行,可提前对空调电控盒周围进行通风,缩短空调器进入正常运行所需时间。
进一步地,压缩机开始强制运行时,控制空调器进入防冷风阶段。
根据该实施例的技术方案,压缩机开始强制运行时,控制空调器进入防冷风阶段,可避免室内侧风机吹冷风造成人体不适,提高空调制热舒适性。
进一步地,第一预设时间的取值范围为3-15min。
根据该实施例的技术方案,在保证感温包散热充分的同时避免压缩机强制运行时间过长,控制室内温度保证室内舒适度。
进一步地,第一预设时间为7min。
根据该实施例的技术方案,在兼顾防冷风功能的同时保证感温包散热充分,改善用户体验。
进一步地,第二预设时间的取值范围为0-90s。
根据该实施例的技术方案,保证在对感温包进行散热的同时避免与空调器的防冷风运行程序冲突,保证室内舒适度。
进一步地,压缩机强制运行第一预设时间后,控制器获取感温包检测温度T B;判断感温包检测温度T B是否低于用户设定温度T a;若感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数;或者,若感温包检测温度T B低于用户设定温度T a,控制空调器保持原参数运行。
根据该实施例的技术方案,压缩机强制运行第一预设时间后,感温包检测温度可以真实反映室内环境温度,空调恢复正常运行。此时,控制器获取感温包检测温度T B,判断获取的感温包检测温度T B是否低于用户设定温度T a,根据判断结果控制空调器运行。
进一步地,若感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数,包括:对于定频空调,控制压缩机停止运行,室内侧风机低转速运行;对于变频空调,控制压缩机低频运行,保持室内侧风机转速不变。
根据该实施例的技术方案,对于定频空调和变频空调采用不同的达温控制方式,节约空调器能耗,提高空调制热舒适性。
附图说明
附图1为本发明实施例一的空调器制热除霜后运行的控制方法流程图;
附图2为本发明实施例二的空调器制热除霜后运行的控制方法流程图。
具体实施方式
空调器制热运行时,室外机容易结霜,为了保证空调器正常运行,空调器制热运行一段时间后需进入除霜模式,以融化使室外机换热器上的冰霜, 除霜结束后重新制热运行。但是,空调器在实际运行过程中,会出现制热除霜结束后停机的情况,且在出现停机故障时,停机一段时间后空调又会自动启动。
为了得出空调器在制热除霜后出现停机故障的原因,对空调制热除霜及制热除霜后的运行过程进行排查分析。具体地,用户设定温度T a,室内环境温度为T b,感温包检测温度为T B。由于空调器运行过程中,感温包检测温度实际上为感温包将检测到的温度值传输至控制器后控制器获得的温度值,空调器并不直接显示该温度值,排查中,为了直观的获取感温包检测温度,在感温包安装位置设置温度传感器,以温度传感器测得的温度值作为感温包检测温度T B。为了获得准确的室内环境温度,在空调器室内机的面板进风口设置室内温度传感器,以室内温度传感器测得的温度值作为室内环境温度T b
排查发现,空调器正常制热运行时,室内侧风机运行,对感温包周围进行通风,此时T B=T b,感温包检测温度T B真实反映室内侧环境温度T b。空调器进入除霜模式后,室内侧风机不运行,受电控盒等元器件发热的影响,T B>T b。空调器除霜结束后,若T B<T a,即T b<T a,空调器恢复制热运行;若T B≥T a,则无论T b<T a或者T b≥T a,控制器均会由于收到达温信号而控制压缩机不运行,即空调器进入停机状态。这种情况在用户设定温度T a低于26℃时尤其容易发生。空调器进入停机状态后,室内侧风机不运行,电控盒等元器件持续散热,空调器长时间无法重新进入制热运行状态。空调器停机一段时间后,电控盒等元器件自然降温,直至T B<T a后才可重新制热运行。
按照空调器的运行逻辑,空调器正常运行时,控制器对室内环境温度T b与用户设定温度T a进行比较,控制压缩机是否运行;具体地,若T b<T a,空调器制热运行,压缩机重新启动,若T b≥T a,则控制器收到达温信号而控制压缩机不运行。
从上述排查过程中容易发现,空调除霜结束后,在T B≥T a且T b<T a时达温停机不符合空调器运行逻辑,为停机故障。进一步分析容易得到该情况产生的原因为:空调器制热除霜后感温包检测温度T B高于室内环境温度T b,即感温包检测温度T B无法真实反映室内环境温度T b
在得到空调器制热除霜后出现停机故障的原因后,本公开实施例提出一种空调器制热除霜后运行的控制方法,以解决空调器制热除霜后误停机,影 响用户使用和制热舒适性的技术问题。
为使本公开的上述目的、特征和优点能够更为明显易懂,下面结合附图对本公开的具体实施例做详细的说明。
实施例一
本实施例的空调器在制热运行中需要对室外机换热器进行除霜时,室内侧风机和室外侧风机停止送风,空调器四通阀换向,室外侧换热器温度升高;除霜模式运作时,室外侧风机启动,室内侧风机不运行;除霜结束后,空调器四通阀换向,压缩机启动制热,空调器进入防冷风阶段运行,室内侧风机不运行,当室内侧冷凝器达到设定温度后,室内侧风机恢复送风。本实施例中,为了保证空调制热舒适性,在压缩机停机后重新启动制热运行时,均设置防冷风阶段。
如图1所示,空调器在制热运行且未除霜时,室内侧风机运行,对感温包周围进行通风,感温包检测温度T B等于室内环境温度T b。控制器接收感温包检测温度T B,并对感温包检测温度T B与用户设定温度T a进行比较:
若T B<T a,则空调器保持原参数运行;
若T B≥T a,则空调器调整运行参数,具体包括:对于定频空调,压缩机停止运行,室内侧风机低转速运行吹微风;对于变频空调,压缩机低频运行,室内侧风机保持转速不变。
本实施例中,室内侧风机低转速运行时室内侧风机转速为400~600r/min;压缩机低频运行时压缩机运行频率介于f min~f min+20Hz之间,其中,f min指空调器出厂时设置的压缩机最低频率。
当空调器控制器收到除霜结束信号后,控制器获取感温包检测温度T B,并判断感温包检测温度T B是否低于用户设定温度T a;若T B≥T a,则控制压缩机强制运行第一预设时间,期间压缩机运行不受感温包检测温度T B的影响,压缩机开始强制运行时,空调器进入防冷风阶段,防冷风阶段结束后室内侧风机开始运行,对空调电控盒周围进行通风,使感温包检测温度T B等于室内环境温度T b。由此,防止感温包检测温度T B受电控盒等元器件散热影响而导致感温包检测温度T B无法真实反映室内环境温度T b进而导致空调停机情况的发生。若T B<T a,空调正常制热运行,此时压缩机制热运行,室内侧风机不运行,即空调器直接进入防冷风阶段。
一种可选的实施例中,若感温包检测温度T B不低于用户设定温度T a,仅控制压缩机强制运行第一预设时间。压缩机开始强制运行时,空调器进入防冷风阶段,防冷风阶段结束后室内侧风机开始运行,对空调电控盒周围进行通风,使感温包检测温度T B等于室内环境温度T b
另一种可选的实施例中,若感温包检测温度T B不低于用户设定温度T a,控制压缩机强制运行第一预设时间且控制室内侧风机低转速运行第二预设时间。本实施例中,室内侧风机低转速运行时室内侧风机转速为400~600r/min。压缩机开始强制运行时,空调器进入防冷风阶段,按照防冷风阶段运行逻辑,室内侧风机不运行,当室内侧冷凝器达到设定温度后,室内侧风机恢复送风。本实施例在控制压缩机强制运行的同时控制室内侧风机低转速运行,可使空调器在室内侧冷凝器达到设定温度之前即可对空调电控盒周围进行通风,缩短空调器进入正常运行所需时间。
本实施例中,压缩机强制运行第一预设时间后,控制器再次获取感温包检测温度T B;判断再次获取的感温包检测温度T B是否低于用户设定温度Ta;若再次获取的感温包检测温度T B低于用户设定温度T a,控制空调器保持原参数运行;若再次获取的感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数,具体包括:对于定频空调,控制压缩机停止运行,室内侧风机低转速运行吹微风;对于变频空调,控制压缩机低频运行,保持室内侧风机转速不变。
本实施例中,第一预设时间的取值范围为3-15min。由此,可以在感温包散热充分的同时避免压缩机强制运行时间过长,控制室内温度保证室内舒适度。
本实施例中空调器防冷风阶段运行时间为90s-270s,可选为3min。具体地,若压缩机强制运行时间低于3min,容易出现防冷风阶段结束后室内侧风机运行时间过短,感温包附近散热不充分,感温包检测温度T B仍然高于室内环境温度T b的情况发生,这导致控制器在恢复根据感温包检测温度T B控制压缩机是否运行后再次出现空调器停机的现象。若压缩机强制运行时间高于15min,则会使压缩机强制运行时间过长,导致室内环境温度T b高于用户设定温度T a,室内舒适度变差。
本实施例可选的,第一预设时间为7min。由此,可以在兼顾防冷风功能 的同时保证感温包散热充分,改善用户体验。具体地,设定压缩机强制运行7min,可以在兼顾防冷风功能的基础上增加室内侧风机运行时间,使压缩机强制运行第一预设时间后,感温包检测温度T B真实反映室内环境温度T b
本实施例中,第二预设时间的取值范围为0-90s。由此,可以保证在对感温包进行散热的同时避免与空调器的防冷风运行程序冲突,保证室内舒适度。具体地,本实施例中空调器防冷风阶段运行时间为90s-270s。若室内侧风机低转速运行时间超过90s,则可能会出现空调器防冷风阶段结束,控制器应控制室内侧风机按照正常转速或高转速运行,而根据本控制方法室内侧风机仍保持低转速运行,这导致室内环境温度无法提高,影响室内舒适性。
实施例二
图2所示为本公开另一可选的一种空调器制热除霜后运行的控制方法。
如图2所示,当空调器控制器收到除霜结束信号后,控制器不判断感温包检测温度T B,控制压缩机强制运行第一预设时间。期间压缩机运行不受感温包检测温度T B的影响,压缩机强制运行时,空调器直接进入防冷风阶段。防冷风阶段结束后室内侧风机开始运行,对感温包周围进行通风,使感温包检测温度T B等于室内环境温度T b,防止受电控盒等元器件散热影响而导致感温包检测温度T B无法真实反映室内环境温度T b进而导致空调停机情况的发生。
一种可选的实施例中,当空调器控制器收到除霜结束信号后,仅控制压缩机强制运行第一预设时间。压缩机开始强制运行时,空调器进入防冷风阶段,防冷风阶段结束后室内侧风机开始运行,对空调电控盒周围进行通风,使感温包检测温度T B等于室内环境温度T b
另一可选的实施例中,控制器收到除霜结束信号后,控制压缩机强制运行第一预设时间且控制室内侧风机低转速运行第二预设时间。本实施例中,室内侧风机低转速运行时室内侧风机转速为400~600r/min。压缩机开始强制运行时,空调器进入防冷风阶段,按照防冷风阶段运行逻辑,室内侧风机不运行,当室内侧冷凝器达到设定温度后,室内侧风机恢复送风。本实施例在控制压缩机强制运行的同时控制室内侧风机低转速运行,可使空调器在室内侧冷凝器达到设定温度之前即可对空调电控盒周围进行通风,缩短空调器进入正常运行所需时间。
本实施例中,压缩机强制运行第一预设时间后,控制器获取感温包检测温度T B;判断感温包检测温度T B是否低于用户设定温度T a;若感温包检测温度T B低于用户设定温度T a,控制空调器保持原参数运行;若感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数,具体包括:对于定频空调,控制压缩机停止运行,室内侧风机低转速运行吹微风;对于变频空调,控制压缩机低频运行,保持室内侧风机转速不变。本实施例中,室内侧风机低转速运行时室内侧风机转速为400~600r/min;压缩机低频运行时压缩机运行频率介于f min~f min+20Hz之间,其中,f min指空调器出厂时设置的压缩机最低频率。
本实施例中,第一预设时间的取值范围为3-15min。由此,可以保证感温包散热充分的同时避免压缩机强制运行时间过长,控制室内温度保证室内舒适度。可选的,第一预设时间为7min。在兼顾防冷风功能的同时保证感温包散热充分,改善用户体验。
本实施例中,第二预设时间的取值范围为0-90s。由此,可以保证在对感温包进行散热的同时避免与空调器的防冷风运行程序冲突,保证室内舒适度。具体地,本实施例中空调器防冷风阶段运行时间为90s-270s。若室内侧风机低转速运行时间超过90s,则可能会出现空调器防冷风阶段结束,控制器应控制室内侧风机按照正常转速或高转速运行,而根据本控制方法室内侧风机仍保持低转速运行,这导致室内环境温度无法提高,影响室内舒适性。
实施例二中空调器在制热运行且未除霜时的控制方法与实施例一相同,在此不再赘述。
虽然本公开披露如上,但本公开并非限定于此。任何本领域技术人员,在不脱离本公开的精神和范围内,均可作各种更动与修改,因此本公开的保护范围应当以权利要求所限定的范围为准。

Claims (17)

  1. 一种空调器制热除霜后运行的控制方法,其中,包括:
    控制器收到除霜结束信号后,获取感温包检测温度T B
    判断感温包检测温度T B是否低于用户设定温度T a
    若感温包检测温度T B不低于用户设定温度T a,控制压缩机强制运行第一预设时间。
  2. 如权利要求1所述的空调器制热除霜后运行的控制方法,其中,
    若感温包检测温度T B不低于用户设定温度T a,进一步控制室内侧风机低转速运行第二预设时间。
  3. 如权利要求1或2所述的空调器制热除霜后运行的控制方法,其中,
    压缩机开始强制运行时,控制空调器进入防冷风阶段。
  4. 如权利要求1所述的空调器制热除霜后运行的控制方法,其中,
    若感温包检测温度T B低于用户设定温度T a,控制空调器进入防冷风阶段。
  5. 如权利要求1或2所述的空调器制热除霜后运行的控制方法,其中,
    第一预设时间的取值范围为3-15min。
  6. 如权利要求1或2所述的空调器制热除霜后运行的控制方法,其中,
    第一预设时间为7min。
  7. 如权利要求2所述的空调器制热除霜后运行的控制方法,其中,
    第二预设时间的取值范围为0-90s。
  8. 如权利要求1或2所述的空调器制热除霜后运行的控制方法,其中,
    压缩机强制运行第一预设时间后,控制器再次获取感温包检测温度T B
    判断再次获取的感温包检测温度T B是否低于用户设定温度T a
    若再次获取的感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数;或者,
    若再次获取的感温包检测温度T B低于用户设定温度T a,控制空调器保持原参数运行。
  9. 如权利要求8所述的空调器制热除霜后运行的控制方法,其中,
    若再次获取的感温包检测温度T B不低于用户设定温度T a,调节空调器 运行参数,包括:
    对于定频空调,控制压缩机停止运行,室内侧风机低转速运行;
    对于变频空调,控制压缩机低频运行,保持室内侧风机转速不变。
  10. 一种空调器制热除霜后运行的控制方法,其中,包括:
    控制器收到除霜结束信号后,控制压缩机强制运行第一预设时间。
  11. 如权利要求10所述的空调器制热除霜后运行的控制方法,其中,包括:
    控制器收到除霜结束信号后,进一步控制室内侧风机低转速运行第二预设时间。
  12. 如权利要求10或11所述的空调器制热除霜后运行的控制方法,其中,
    压缩机开始强制运行时,控制空调器进入防冷风阶段。
  13. 如权利要求10或11所述的空调器制热除霜后运行的控制方法,其中,
    第一预设时间的取值范围为3-15min。
  14. 如权利要求10或11所述的空调器制热除霜后运行的控制方法,其中,
    第一预设时间为7min。
  15. 如权利要求11所述的空调器制热除霜后运行的控制方法,其中,
    第二预设时间的取值范围为0-90s。
  16. 如权利要求10或11所述的空调器制热除霜后运行的控制方法,其中,
    压缩机强制运行第一预设时间后,控制器获取感温包检测温度T B
    判断感温包检测温度T B是否低于用户设定温度T a
    若感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数;或者,
    若感温包检测温度T B低于用户设定温度T a,控制空调器保持原参数运行。
  17. 如权利要求16所述的空调器制热除霜后运行的控制方法,其中,
    若感温包检测温度T B不低于用户设定温度T a,调节空调器运行参数, 包括:
    对于定频空调,控制压缩机停止运行,室内侧风机低转速运行;
    对于变频空调,控制压缩机低频运行,保持室内侧风机转速不变。
PCT/CN2020/090384 2019-10-30 2020-05-15 空调器制热除霜后运行的控制方法 WO2021082398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911047260.3A CN111023447A (zh) 2019-10-30 2019-10-30 一种空调器制热除霜后运行的控制方法
CN201911047260.3 2019-10-30

Publications (1)

Publication Number Publication Date
WO2021082398A1 true WO2021082398A1 (zh) 2021-05-06

Family

ID=70200727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090384 WO2021082398A1 (zh) 2019-10-30 2020-05-15 空调器制热除霜后运行的控制方法

Country Status (2)

Country Link
CN (1) CN111023447A (zh)
WO (1) WO2021082398A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080046A (ja) * 1983-10-11 1985-05-07 Matsushita Refrig Co 空気調和装置
JPS61276649A (ja) * 1985-05-30 1986-12-06 Matsushita Seiko Co Ltd ヒ−トポンプ式空気調和機の除霜制御装置
KR20010001012A (ko) * 1999-06-01 2001-01-05 구자홍 공기조화기의 제상운전 방법
JP2003240391A (ja) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp 空気調和機
CN101975422A (zh) * 2010-09-30 2011-02-16 广东美的电器股份有限公司 冷暖型空调器及其除霜方法
CN102062504A (zh) * 2010-12-24 2011-05-18 中国扬子集团滁州扬子空调器有限公司 一种除霜不停机的分体式热泵变频空调器以及除霜控制方法
CN103123194A (zh) * 2012-03-31 2013-05-29 宁波奥克斯电气有限公司 多联式空调机组的除霜方法
CN107192094A (zh) * 2017-05-27 2017-09-22 宁波奥克斯电气股份有限公司 一种柜式空调的除霜控制方法
CN108488997A (zh) * 2018-05-08 2018-09-04 广东美的制冷设备有限公司 空调器及其控制方法和计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101605901B1 (ko) * 2009-09-11 2016-03-23 엘지전자 주식회사 공기 조화기 및 그 제어방법
CN101976050B (zh) * 2010-11-09 2012-02-01 田利 空调恒温运行节能控制***
CN105805892B (zh) * 2016-03-31 2019-01-29 海信(山东)空调有限公司 一种空调制热控制方法
CN109612020B (zh) * 2018-11-28 2021-04-09 宁波奥克斯电气股份有限公司 一种空调器的控制方法及其空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080046A (ja) * 1983-10-11 1985-05-07 Matsushita Refrig Co 空気調和装置
JPS61276649A (ja) * 1985-05-30 1986-12-06 Matsushita Seiko Co Ltd ヒ−トポンプ式空気調和機の除霜制御装置
KR20010001012A (ko) * 1999-06-01 2001-01-05 구자홍 공기조화기의 제상운전 방법
JP2003240391A (ja) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp 空気調和機
CN101975422A (zh) * 2010-09-30 2011-02-16 广东美的电器股份有限公司 冷暖型空调器及其除霜方法
CN102062504A (zh) * 2010-12-24 2011-05-18 中国扬子集团滁州扬子空调器有限公司 一种除霜不停机的分体式热泵变频空调器以及除霜控制方法
CN103123194A (zh) * 2012-03-31 2013-05-29 宁波奥克斯电气有限公司 多联式空调机组的除霜方法
CN107192094A (zh) * 2017-05-27 2017-09-22 宁波奥克斯电气股份有限公司 一种柜式空调的除霜控制方法
CN108488997A (zh) * 2018-05-08 2018-09-04 广东美的制冷设备有限公司 空调器及其控制方法和计算机可读存储介质

Also Published As

Publication number Publication date
CN111023447A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021037138A1 (zh) 空调器预热控制方法、装置及空调器
CN105805892B (zh) 一种空调制热控制方法
WO2018076981A1 (zh) 空调及其制热防冷风装置和方法
CN104110780B (zh) 空调器及其电辅热的控制方法和***
US20120291984A1 (en) Kind Of Air Conditioner System And Control Method Of Its Condensing Fan
CN106766007B (zh) 一种空调器及提高空调器除霜过程舒适度的方法
WO2020133845A1 (zh) 空调器及其控制方法
CN105972774A (zh) 空调器的控制方法、控制装置及空调器
CN113007857B (zh) 空调电加热器运行控制方法、装置、空调器和计算机可读存储介质
CN104713202A (zh) 判断空调制热到温后的风机控制方法
CN110762782B (zh) 一种低温除湿控制方法、控制装置及空调器
WO2019158048A1 (zh) 空调器除霜控制方法
CN105135518A (zh) 空调室内机及空调室内出风控制方法
CN106839279B (zh) 一种空调睡眠控制方法
WO2020094007A1 (zh) 提升变频空调器制冷舒适性的控制方法、装置及空调器
CN113028590B (zh) 一种空调器低温制冷控制方法、控制装置和空调器
WO2021233468A1 (zh) 吸风式空调器的控制方法
JP2001304648A (ja) 空気調和装置の消費エネルギー削減装置
CN111457540A (zh) 一种室外风机控制方法、装置及空调器
CN105180347A (zh) 空调器防热风控制方法及空调器
WO2024093393A1 (zh) 空调器及其控制方法
WO2021082398A1 (zh) 空调器制热除霜后运行的控制方法
CN104180605B (zh) 微波炉冰箱的风机的控制方法、控制装置和微波炉冰箱
JP3019081B1 (ja) 外気温検出機能を備えた空調室外機
CN106091282A (zh) 空调室外机的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883599

Country of ref document: EP

Kind code of ref document: A1