WO2024093393A1 - 空调器及其控制方法 - Google Patents

空调器及其控制方法 Download PDF

Info

Publication number
WO2024093393A1
WO2024093393A1 PCT/CN2023/109355 CN2023109355W WO2024093393A1 WO 2024093393 A1 WO2024093393 A1 WO 2024093393A1 CN 2023109355 W CN2023109355 W CN 2023109355W WO 2024093393 A1 WO2024093393 A1 WO 2024093393A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
maximum value
valve opening
air conditioner
compressor
Prior art date
Application number
PCT/CN2023/109355
Other languages
English (en)
French (fr)
Inventor
赵江龙
徐昊
黄罡
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024093393A1 publication Critical patent/WO2024093393A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the technical field of air conditioning, and in particular to an air conditioner and a control method thereof.
  • the frequency reduction protection mechanism refers to limiting the exhaust temperature of the air conditioner compressor from exceeding the limit value by limiting the frequency increase, frequency reduction and shutdown in sequence, so as to achieve the effect of protecting the compressor.
  • the above-mentioned frequency reduction protection mechanism will cause the heat exchange capacity of the air conditioner to decrease, which reduces the user experience.
  • the present invention is proposed to provide an air conditioner and a control method thereof that overcome the above problems or at least partially solve the above problems, so as to reduce the impact of abnormal frequency reduction shutdown on user experience.
  • the present invention provides a control method for an air conditioner, the air conditioner comprising a compressor, an evaporator, a heat exchange fan and an electronic expansion valve, the compressor being connected to the electronic expansion valve and the evaporator, the heat exchange fan being adapted to the evaporator; and
  • the control method comprises:
  • the fan speed and the valve opening are both lower than their respective maximum values, the fan speed is adjusted to its maximum value, and then it is determined whether the exhaust temperature is still not lower than the exhaust threshold, and if so, the valve opening is adjusted to its maximum value;
  • the compressor in response to the exhaust temperature of the compressor being not lower than an exhaust threshold and the fan speed and the valve opening being both at their respective maximum values, the compressor is controlled to execute a frequency reduction protection mechanism.
  • the air conditioner is a split-type air conditioner, and the air conditioner further comprises an indoor heat exchanger, an outdoor heat exchanger, an indoor fan and an outdoor fan, the indoor fan is adapted to the indoor heat exchanger, and the outdoor fan is adapted to the outdoor heat exchanger; and
  • the evaporator is the outdoor heat exchanger, and the heat exchange fan is the outdoor fan.
  • the air conditioner is a split-type air conditioner, and the air conditioner further comprises an indoor heat exchanger, an outdoor heat exchanger, an indoor fan and an outdoor fan, the indoor fan is adapted to the indoor heat exchanger, and the outdoor fan is adapted to the outdoor heat exchanger; and
  • the evaporator is the indoor heat exchanger, and the heat exchange fan is the indoor fan.
  • the exhaust temperature is acquired after a preset time.
  • the fan speed or the valve opening is maintained at the adjusted maximum value.
  • the method of "adjusting the fan speed to its maximum value” includes:
  • the fan speed is adjusted to its maximum value at a preset speed increase.
  • the method of "adjusting the valve opening to its maximum value” comprises:
  • the valve opening is adjusted to its maximum value at a preset speed increase.
  • the operation mode is first acquired, and then the fan speed and the valve opening are acquired.
  • the present invention further provides an air conditioner, comprising a compressor, an evaporator, a heat exchange fan, an electronic expansion valve and a control device, wherein the compressor is connected to the electronic expansion valve and the evaporator, and the heat exchange fan is adapted to the evaporator;
  • the control device comprises a processor and a memory storing a program code, wherein:
  • the compressor is provided with a temperature sensor for measuring the exhaust temperature
  • the processor is configured to execute any one of the above-described air conditioner control methods when running the program code.
  • the control method of the air conditioner in the present invention is a compressor exhaust temperature protection method.
  • the method first determines whether the fan speed of the heat exchange fan and the valve opening of the electronic expansion valve are their respective maximum values. If not, both are adjusted to their respective maximum values. Therefore, the control method of the present invention first eliminates the exhaust anomaly caused by the fan speed and the valve opening of the electronic expansion valve, which can better reduce the impact of abnormal frequency reduction and shutdown on user experience.
  • the control method of the present invention first eliminates the exhaust anomaly caused by the fan speed and the valve opening of the electronic expansion valve, which can better reduce the impact of abnormal frequency reduction and shutdown on user experience.
  • adjusting The valve opening of the electronic expansion valve will change the refrigerant temperature; therefore, when the fan speed and valve opening are both lower than their respective maximum values, first adjusting the fan speed to its maximum value can further reduce the impact on user experience.
  • FIG1 is a flow chart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for controlling an air conditioner according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of the features, that is, include one or more of the features.
  • the meaning of “multiple” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “set”, “install”, “connect”, “connect”, “fix”, “couple” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • a person skilled in the art should be able to understand the specific meanings of the above terms in the present invention according to the specific circumstances.
  • the first feature “above” or “below” the second feature may include the first and second features being in direct contact, or the first and second features being in contact not directly but through another feature between them. That is, in the description of this embodiment, the first feature being “above”, “above” and “above” the second feature includes the first feature being directly above the second feature.
  • the first feature being “below”, “below”, or “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower than the second feature in level.
  • Fig. 1 is a flow chart of a control method of an air conditioner according to an embodiment of the present invention.
  • an embodiment of the present invention provides a control method of an air conditioner.
  • the air conditioner includes a compressor, an evaporator, a heat exchange fan and an electronic expansion valve, the compressor is connected to the electronic expansion valve and the evaporator, and the heat exchange fan is adapted to the evaporator.
  • the control method of the air conditioner includes: in response to the exhaust temperature of the compressor being not lower than the exhaust threshold, judging whether the fan speed of the heat exchange fan and the valve opening of the electronic expansion valve are their respective maximum values; if both the fan speed and the valve opening are lower than their respective maximum values, adjusting the fan speed to its maximum value; then judging whether the exhaust temperature is still not lower than the exhaust threshold, if so, adjusting the valve opening to its maximum value; if one of the fan speed and the valve opening is lower than its maximum value and the other is its maximum value, adjusting the lower one to its maximum value.
  • the exhaust temperature of the compressor is set to T d
  • the exhaust threshold of the compressor is set to T 0
  • the fan speed of the heat exchange fan is set to N
  • the maximum fan speed is set to N 0
  • the valve opening of the electronic expansion valve is set to K f
  • the maximum valve opening is set to K 0 .
  • the above steps specifically include:
  • Step S101 After the air conditioner is started, the exhaust temperature T d of the compressor is obtained, and it is determined whether the exhaust temperature T d of the compressor is not lower than the exhaust threshold T 0 .
  • Step S102 when the exhaust temperature Td of the compressor is not lower than the exhaust threshold T0 , that is, when Td ⁇ T0 , the exhaust protection program is entered.
  • Step S103 judging whether the fan speed N of the heat exchange fan is the maximum fan speed N 0 , and judging whether the valve opening K f of the electronic expansion valve is the maximum valve opening K 0 .
  • Step S104 executing different exhaust protection programs according to different judgment results, specifically including the following three situations:
  • the present invention provides a compressor exhaust temperature protection method.
  • the cause of abnormal compressor exhaust temperature may be due to some parameter settings, which may include one or more of the fan speed of the heat exchange fan, the valve opening of the electronic expansion valve and the compressor frequency.
  • the outdoor unit fan speed setting value is too low, resulting in low heat exchange efficiency of the outdoor heat exchanger, resulting in increased exhaust pressure, and thus abnormal compressor exhaust temperature.
  • the existing exhaust temperature abnormality protection method is direct frequency reduction, and the cause of the exhaust temperature abnormality is not necessarily that the compressor frequency is too high. Therefore, in the control method of the present invention, the exhaust temperature abnormality caused by the fan speed of the heat exchange fan and the valve opening parameter setting of the electronic expansion valve is first eliminated. Specifically, the method uses a method of sequentially judging whether the fan speed of the heat exchange fan and the valve opening of the electronic expansion valve are their respective maximum values. If not, both are adjusted to their respective maximum values. In other words, before thermal protection, the present invention first strengthens the indoor air circulation to first determine that the exhaust temperature abnormality is not caused by the hot air circulating in the upper part. After eliminating the above reasons, thermal protection is performed, thereby ensuring the correctness of thermal protection.
  • the control method of the present invention first eliminates the exhaust anomaly caused by the fan speed and the valve opening of the electronic expansion valve, which can better reduce the impact of abnormal frequency reduction shutdown on user experience.
  • the control method of the present invention first eliminates the exhaust anomaly caused by the fan speed and the valve opening of the electronic expansion valve, which can better reduce the impact of abnormal frequency reduction shutdown on user experience.
  • since adjusting the valve opening of the electronic expansion valve will change the refrigerant temperature; therefore, when the fan speed and valve opening are both lower than their respective maximum values, first adjusting the fan speed to its maximum value can further reduce the impact on user experience.
  • the exhaust temperature is acquired after a preset time.
  • T d is obtained and it is determined whether T d is still not less than T 0. If Td ⁇ T 0 , K f is adjusted to K 0. Then after a preset time, T d is obtained and it is determined whether T d is still not less than T 0 .
  • the fan speed or valve opening is maintained at the adjusted maximum value. That is, within a preset time, the fan speed N is maintained at the adjusted maximum value N 0 ; or, within a preset time, the valve opening K f is maintained at the adjusted maximum value K 0 .
  • the method of "adjusting the fan speed to its maximum value” is: directly adjusting the fan speed to its maximum value, that is, directly adjusting N to N 0. This setting can improve the adjustment efficiency of the fan speed and quickly determine whether the abnormal compressor exhaust temperature is caused by the abnormal fan speed.
  • the method of "adjusting the fan speed to its maximum value” may also be: adjusting the fan speed to its maximum value at a preset increase rate, that is, increasing the fan speed to its maximum value N 0 at the preset increase rate.
  • the method of "adjusting the valve opening to its maximum value” is: directly adjusting the valve opening of the electronic expansion valve to its maximum value. This arrangement can improve the adjustment efficiency of the valve opening and can quickly determine whether the abnormality of the compressor exhaust temperature is caused by the abnormal valve opening.
  • the method of "adjusting the valve opening to its maximum value” may also be: adjusting the valve opening to its maximum value at a preset increasing speed, that is, increasing the valve opening to its maximum value K 0 at a preset increasing speed.
  • the air conditioner is a split-type air conditioner, and the air conditioner also includes an indoor heat exchanger, an outdoor heat exchanger, an indoor fan and an outdoor fan, the indoor fan and the indoor heat exchanger are adapted, and the outdoor fan and the outdoor heat exchanger are adapted.
  • the operating mode of the air conditioner is a cooling or dehumidification mode
  • the evaporator is the outdoor heat exchanger
  • the heat exchange fan is the outdoor fan. That is to say, when the operating mode of the air conditioner is a cooling or dehumidification mode, the fan speed to be judged and adjusted is the fan speed of the outdoor fan. In cooling or dehumidification mode, increasing the speed of the outdoor fan will not affect the temperature of the cold air blown by the indoor fan, thereby not reducing the user experience.
  • the air conditioner is a split air conditioner, and the air conditioner further includes an indoor heat exchanger, an outdoor heat exchanger, an indoor fan and an outdoor fan, the indoor fan is adapted to the indoor heat exchanger, and the outdoor fan is adapted to the outdoor heat exchanger.
  • the operation mode of the air conditioner is the heating mode
  • the evaporator is the indoor heat exchanger
  • the heat exchange fan is the indoor fan.
  • the fan speed is judged and adjusted to be the fan speed of the indoor fan.
  • increasing the speed of the indoor fan can increase the amount of hot air blown out by the indoor unit, thereby improving the user experience.
  • the operation mode in response to the exhaust temperature being not lower than the exhaust threshold, the operation mode is first obtained, and then the fan speed and valve opening are obtained. Specifically, when the exhaust temperature Td of the compressor is not lower than the exhaust threshold T0 , the operation mode of the air conditioner is obtained, and when the operation mode of the air conditioner is the heating mode, the fan speed of the indoor fan and the valve opening of the electronic expansion valve are obtained; when the operation mode of the air conditioner is the cooling or dehumidification mode, the fan speed of the outdoor fan and the valve opening of the electronic expansion valve are obtained.
  • the exhaust temperature of the compressor is set to T d
  • the exhaust threshold of the compressor is set to T 0
  • the fan speed of the outdoor fan is set to N s
  • the maximum fan speed of the outdoor fan is set to N s0
  • the valve opening of the electronic expansion valve is set to K f
  • the maximum valve opening is set to K 0
  • the fan speed of the indoor fan is set to N r
  • the maximum fan speed of the indoor fan is set to N r0 .
  • control method of the air conditioner includes:
  • Step S201 After the air conditioner is started, the exhaust temperature T d of the compressor is obtained, and it is determined whether the exhaust temperature T d of the compressor is not lower than the exhaust threshold T 0 .
  • Step S202 When the exhaust temperature Td of the compressor is not lower than the exhaust threshold T0 , that is, when Td ⁇ T0 , the exhaust protection program is entered.
  • Step S203 obtaining the operating mode of the air conditioner.
  • Step S204 selecting different exhaust protection programs according to different operating modes of the air conditioner, specifically including the following two situations:
  • the fan speed Ns of the outdoor fan and the valve opening Kf of the electronic expansion valve are first obtained, and it is determined whether the fan speed Ns of the outdoor fan is a maximum value Ns0 , and whether the valve opening Kf of the electronic expansion valve is a maximum value K0 .
  • the second step is to execute different exhaust protection procedures according to different judgment results, specifically:
  • Ns Ns0 and Kf ⁇ K0 .
  • Td time
  • Td time
  • Td ⁇ T0 Kf is adjusted to K0 .
  • Td still not lower than T0 .
  • the fan speed Nr of the indoor fan and the valve opening Kf of the electronic expansion valve are first obtained, and it is determined whether the fan speed Nr of the indoor fan is a maximum value Nr0 , and whether the valve opening Kf of the electronic expansion valve is a maximum value K0 .
  • the second step is to execute different exhaust protection procedures according to different judgment results, specifically:
  • the embodiment of the present invention further provides an air conditioner, which includes a compressor, an evaporator, a heat exchange fan, an electronic expansion valve and a control device, wherein the compressor is connected to the electronic expansion valve and the evaporator, and the heat exchange fan and the evaporator are adapted;
  • the control device includes a processor and a memory storing program code, and a temperature sensor for measuring exhaust temperature is provided on the compressor; the processor is configured to When performing the control method described in any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空气调节技术领域,特别是涉及一种空调器及其控制方法。空调器包括压缩机、蒸发器、换热风机和电子膨胀阀,压缩机与电子膨胀阀、蒸发器连接,换热风机和蒸发器适配;以及控制方法包括:响应于压缩机的排气温度不低于排气阈值,判断换热风机的风机转速和电子膨胀阀的阀开度是否为各自的最大值,如风机转速和阀开度均低于各自的最大值,则调整风机转速为其最大值,之后判断排气温度是否仍不低于排气阈值,如是则调整阀开度为其最大值;如风机转速和阀开度中一个低于其最大值,另一个为其最大值,则调整低者为其最大值。本发明首先排除由于风机转速和电子膨胀阀的阀开度原因造成的排气异常,可以更好的减少异常降频停机影响用户体验。

Description

空调器及其控制方法 技术领域
本发明涉及空气调节技术领域,特别是涉及一种空调器及其控制方法。
背景技术
空调器在运行过程中,压缩机排气温度异常会对压缩机产生危害。为防止压缩机排气温度异常,现有空调器采用了降频保护机制。该降频保护机制指的是,依次通过限制升频、降频和停机的方式,限制空调压缩机的排气温度超过限定值,达到保护压缩机的作用。上述降频保护机制,会导致空调换热能力下降,降低了用户体验。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的一种空调器及其控制方法,以减少异常降频停机影响用户体验。
一方面,本发明提供了一种空调器的控制方法,所述空调器包括压缩机、蒸发器、换热风机和电子膨胀阀,所述压缩机与所述电子膨胀阀、所述蒸发器连接,所述换热风机和所述蒸发器适配;以及
所述控制方法包括:
响应于所述压缩机的排气温度不低于排气阈值,判断所述换热风机的风机转速和所述电子膨胀阀的阀开度是否为各自的最大值,
如所述风机转速和所述阀开度均低于各自的最大值,则调整所述风机转速为其最大值,之后判断所述排气温度是否仍不低于排气阈值,如是则调整所述阀开度为其最大值;
如所述风机转速和所述阀开度中一个低于其最大值,另一个为其最大值,则调整低者为其最大值。
优选地,响应于所述压缩机的排气温度不低于排气阈值以及,所述风机转速和所述阀开度均为各自的最大值,控制所述压缩机执行降频保护机制。
优选地,所述空调器为分体式空调器,所述空调器还包括室内换热器、室外换热器、室内风机和室外风机,所述室内风机和所述室内换热器适配,所述室外风机与所述室外换热器适配;以及
响应于所述空调器的运行模式为制冷或除湿模式,所述蒸发器为所述室外换热器,所述换热风机为所述室外风机。
优选地,所述空调器为分体式空调器,所述空调器还包括室内换热器、室外换热器、室内风机和室外风机,所述室内风机和所述室内换热器适配,所述室外风机与所述室外换热器适配;以及
响应于所述空调器的运行模式为制热模式,所述蒸发器为所述室内换热器,所述换热风机为所述室内风机。
优选地,响应于所述风机转速或所述阀开度调整至最大值,经过预设时间后,获取所述排气温度。
优选地,在所述预设时间内,所述风机转速或所述阀开度保持在所述调整后的所述最大值。
优选地,“调整所述风机转速为其最大值”的方法包括:
直接调整所述风机转速为其最大值;或者
以预设增速调整所述风机转速为其最大值。
优选地,“调整所述阀开度为其最大值”的方法包括:
直接调整所述阀开度为其最大值;或者
以预设增速调整所述阀开度为其最大值。
优选地,响应于所述排气温度不低于所述排气阈值,先获取所述运行模式,后获取所述风机转速和所述阀开度。
另一方面,本发明还提供了一种空调器,包括压缩机、蒸发器、换热风机、电子膨胀阀和控制装置,所述压缩机与所述电子膨胀阀、所述蒸发器连接,所述换热风机和所述蒸发器适配;所述控制装置包括处理器和存储有程序代码的存储器,其中,
所述压缩机上设有用于测量排气温度的温度传感器;
所述处理器被配置为在运行所述程序代码时,执行如上述任意一项所述的空调器的控制方法。
本发明中空调器的控制方法是一种压缩机排气温度保护方法,该方法采用首先判断换热风机的风机转速和电子膨胀阀的阀开度是否为各自的最大值,若不是,将两者均调整为各自的最大值。因此,本发明的控制方法,首先排除由于风机转速和电子膨胀阀的阀开度原因造成的排气异常,可以更好地减少异常降频停机影响用户体验。此外,与调整风机转速相比,由于调节 电子膨胀阀的阀开度会改变冷媒温度;因此,在风机转速和阀开度均低于各自的最大值时,先调整风机转速为其最大值,能进一步减小对用户体验的影响。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调器的控制方法的流程图;
图2是根据本发明一个实施例的空调器的控制方法的流程图。
具体实施方式
下面参照图1至图2来描述本发明实施例的空调器的控制方法与空调器。在本实施例的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”、“固定”“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本发明中的具体含义。
此外,在本实施例的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。也即在本实施例的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上 方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”、或“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
图1是根据本发明一个实施例的空调器的控制方法的流程图。如图1所示,本发明实施例提供了一种空调器的控制方法。该空调器包括压缩机、蒸发器、换热风机和电子膨胀阀,压缩机与电子膨胀阀、蒸发器连接,换热风机和蒸发器适配。
空调器的控制方法包括:响应于压缩机的排气温度不低于排气阈值,判断换热风机的风机转速和电子膨胀阀的阀开度是否为各自的最大值,如风机转速和阀开度均低于各自的最大值,则调整风机转速为其最大值,之后判断排气温度是否仍不低于排气阈值,如是则调整阀开度为其最大值;如风机转速和阀开度中一个低于其最大值,另一个为其最大值,则调整低者为其最大值。
在本实施例中,压缩机的排气温度设定为Td,压缩机的排气阈值设定为T0,换热风机的风机转速设定为N,风机转速的最大值设定为N0,电子膨胀阀的阀开度设定为Kf,阀开度的最大值设定为K0
上述步骤具体包括:
步骤S101,在空调器启动运行后,获取压缩机的排气温度Td,并判断压缩机的排气温度Td是否不低于排气阈值T0
步骤S102,当压缩机的排气温度Td不低于排气阈值T0时,即当Td≥T0时,进入排气保护程序。
步骤S103,判断换热风机的风机转速N是否为风机转速的最大值N0,并判断电子膨胀阀的阀开度Kf是否为阀开度的最大值K0
步骤S104,根据不同的判断结果执行不同的排气保护程序,具体包括以下三种情况:
第一种情况:当N<N0且Kf<K0时,则调整风机转速N为其最大值N0,之后判断排气温度Td是否仍不低于排气阈值T0,如是则调整阀开度Kf为其最大值K0
第二种情况:当N<N0且Kf=K0时,调整风机转速N为其最大值N0
第三种情况:当N=N0且Kf<K0时,调整阀开度Kf为其最大值K0
本实施例中空调器的控制方法的设计原理为:
压缩机正常运行,排气温度不能超过排气阈值,超过之后就会导致压缩机运行异常。为了避免压缩机排气温度异常,本发明提供了一种压缩机排气温度保护方法。
在压缩机实际运行过程中,导致压缩机排气温度异常的原因可能是由于一些参数设置导致的,该参数可能包括:换热风机的风机转速、电子膨胀阀的阀开度和压缩机频率中的一种或多种。例如:室外机风机转速设置值偏低,导致室外换热器换热效率低,导致排气压力增加,从而导致压缩机排气温度异常。
现有的排气温度异常保护方法为直接降频,而引起排气温度异常的原因不一定是压缩机频率过高,因此,本发明的控制方法中先将换热风机的风机转速和电子膨胀阀的阀开度参数设置原因导致的排气温度异常的情况排除。具体地,该方法采用依次判断换热风机的风机转速和电子膨胀阀的阀开度是否为各自的最大值,若不是,将两者均调整为各自的最大值。也就是说,本发明在热保护前,先进行室内空气循环强化,先确定不是热空气在上部循环导致的排气温度异常,排除上述原因后,再进行热保护,从而确保了热保护的正确性。
因此,本发明的控制方法,首先排除由于风机转速和电子膨胀阀的阀开度原因造成的排气异常,可以更好的减少异常降频停机影响用户体验。此外,与调整风机转速相比,由于调节电子膨胀阀的阀开度会改变冷媒温度;因此,在风机转速和阀开度均低于各自的最大值时,先调整风机转速为其最大值,能进一步减小对用户体验的影响。
如图2所示,在本发明的一些可选实施例中,响应于压缩机的排气温度不低于排气阈值以及,风机转速和阀开度均为各自的最大值,控制压缩机执行降频保护机制。也就是说,当Td≥T0、N=N0且Kf=K0时,控制压缩机执行降频保护机制。
在本发明的一些可选实施例中,当风机转速或阀开度调整至最大值时,经过预设时间后,获取所述排气温度。
在本实施例中,具体包括以下几种情况:
第一种情况:当N<N0且Kf<K0时,则调整N为N0,经过预设时间后,获取Td并判断Td是否仍不低于T0,若Td≥T0则调整Kf为K0;然后经过预设时间后,获取Td,并判断Td是否仍不低于T0
第二种情况为:当N<N0且Kf=K0时,调整N为N0,经过预设时间后,获取Td,并判断Td是否仍不低于T0
第三种情况:当N=N0且Kf<K0时,调整Kf为K0,经过预设时间后,获取Td,并判断Td是否仍不低于T0
进一步优选地,在预设时间内,风机转速或阀开度保持在调整后的最大值。也就是说,在预设时间内,风机转速N保持在调整后的最大值N0;或者,在预设时间内,阀开度Kf保持在调整后最大值K0
在本发明的一些可选实施例中,“调整风机转速为其最大值”的方法为:直接调整风机转速为其最大值,即直接将N调整为N0。这样设置,可以提高风机转速的调节效率,可快速确定是否是风机转速异常导致的压缩机排气温度异常。
在本发明的一些替代性实施例中,“调整风机转速为其最大值”的方法还可以为:以预设增速调整风机转速为其最大值,也就是说,按照预设增速将风机转速增加至其最大值N0
在本发明的一些可选实施例中,“调整阀开度为其最大值”的方法为:直接调整电子膨胀阀的阀开度为其最大值。这样设置,可以提高阀开度的调节效率,可快速确定是否是阀开度异常导致的压缩机排气温度异常。
在本发明的一些替代性实施例中,“调整阀开度为其最大值”的方法还可以为:以预设增速调整阀开度为其最大值,也就是说,按照预设增速将阀开度增加至其最大值K0
在本发明的一些可选实施例中,空调器为分体式空调器,空调器还包括室内换热器、室外换热器、室内风机和室外风机,室内风机和室内换热器适配,室外风机与室外换热器适配。当空调器的运行模式为制冷或除湿模式时,蒸发器为室外换热器,换热风机为室外风机。也就是说,当空调器的运行模式为制冷或除湿模式时,判断和调节的风机转速为室外风机的风机转速。在 制冷或除湿模式时,增大室外风机转速,不会影响室内风机吹出的冷风温度,从而不会降低用户体验。
在本发明的一些可选实施例中,空调器为分体式空调器,空调器还包括室内换热器、室外换热器、室内风机和室外风机,室内风机和室内换热器适配,室外风机与室外换热器适配。当空调器的运行模式为制热模式时,蒸发器为室内换热器,换热风机为室内风机。也就是说,当空调器的运行模式为制热模式时,判断和调节风机转速为室内风机的风机转速。在制热时,增大室内风机转速,可增加室内机吹出的热风风量,从而可以提升用户体验。
在本发明的一些可选实施例中,响应于排气温度不低于排气阈值,先获取运行模式,后获取风机转速和阀开度。具体为:当压缩机的排气温度Td不低于排气阈值T0时,获取空调器的运行模式,当空调器的运行模式为制热模式时,获取室内风机的风机转速和电子膨胀阀的阀开度;当空调器的运行模式为制冷或除湿模式时,获取室外风机的风机转速和电子膨胀阀的阀开度。
在本发明的优选实施例中,压缩机的排气温度设定为Td,压缩机的排气阈值设定为T0,室外风机的风机转速设定为Ns,室外风机的风机转速的最大值设定为Ns0,电子膨胀阀的阀开度设定为Kf,阀开度的最大值设定为K0;室内风机的风机转速设定为Nr,室内风机的风机转速的最大值设定为Nr0
在本实施例中,空调器的控制方法包括:
步骤S201,在空调器启动运行后,获取压缩机的排气温度Td,并判断压缩机的排气温度Td是否不低于排气阈值T0
步骤S202,当压缩机的排气温度Td不低于排气阈值T0时,即当Td≥T0时,进入排气保护程序。
步骤S203,获取空调器的运行模式。
步骤S204,根据空调器的不同运行模式选择不同的排气保护程序,具体包括以下两种情况:
第一种情况,当空调器的运行模式为制冷或除湿模式时:
第一步,首先获取室外风机的风机转速Ns和电子膨胀阀的阀开度Kf,并判断室外风机的风机转速Ns是否为最大值Ns0,判断电子膨胀阀的阀开度Kf是否为最大值K0
第二步,根据不同的判断结果执行不同的排气保护程序,具体为:
①当Ns=Ns0且Kf=K0时,控制压缩机执行降频保护机制。
②当Ns<Ns0且Kf=K0时,调整Ns为Ns0,经过预设时间后,获取Td,并判断Td是否仍不低于T0;若Td<T0则保持Ns=Ns0和Kf=K0,若Td≥T0则控制压缩机执行降频保护机制。
③当Ns=Ns0且Kf<K0时,调整Kf为K0,经过预设时间后,获取Td,并判断Td是否仍不低于T0;若Td<T0则保持Ns=Ns0和Kf=K0;若Td≥T0,则控制压缩机执行降频保护机制。
④当Ns<Ns0且Kf<K0时,则调整Ns为Ns0,经过预设时间后,判断Td是否仍不低于T0,若Td<T0则保持Ns=Ns0和当前的Kf;若Td≥T0则调整Kf为K0,经过预设时间后,判断Td是否仍不低于T0,若Td≥T0则控制压缩机执行降频保护机制,若Td<T0,则保持当前的Ns=Ns0和Kf=K0
第二种情况,当空调器的运行模式为制热模式时:
第一步,首先获取室内风机的风机转速Nr和电子膨胀阀的阀开度Kf,并判断室内风机的风机转速Nr是否为最大值Nr0,判断电子膨胀阀的阀开度Kf是否为最大值K0
第二步,根据不同的判断结果执行不同的排气保护程序,具体为:
①当Nr=Nr0且Kf=K0时,控制压缩机执行降频保护机制。
②当Nr<Nr0且Kf=K0时,调整Nr为Nr0,经过预设时间后,获取Td,并判断Td是否仍不低于T0;若Td<T0则保持Nr=Nr0和Kf=K0;若Td≥T0则控制压缩机执行降频保护机制。
③当Nr=Nr0且Kf<K0时,调整Kf为K0,经过预设时间后,获取Td,并判断Td是否仍不低于T0;若Td<T0则保持Nr=Nr0和Kf=K0,若Td≥T0则控制压缩机执行降频保护机制。
④当Nr<Nr0且Kf<K0时,则调整Nr为Nr0,经过预设时间后,判断Td是否仍不低于T0,若Td<T0则保持Nr=Nr0和当前的Kf;若Td≥T0则调整Kf为K0,经过预设时间后,判断Td是否仍不低于T0,若Td≥T0,则控制压缩机执行降频保护机制。
本发明实施例还提供了一种空调器,该空调器包括压缩机、蒸发器、换热风机、电子膨胀阀和控制装置,压缩机与电子膨胀阀、蒸发器连接,换热风机和蒸发器适配;控制装置包括处理器和存储有程序代码的存储器,压缩机上设有用于测量排气温度的温度传感器;处理器被配置为在运行程序代码 时,执行如上述任一项实施例所述控制方法。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调器的控制方法,
    所述空调器包括压缩机、蒸发器、换热风机和电子膨胀阀,所述压缩机与所述电子膨胀阀、所述蒸发器连接,所述换热风机和所述蒸发器适配;以及
    所述控制方法包括:
    响应于所述压缩机的排气温度不低于排气阈值,判断所述换热风机的风机转速和所述电子膨胀阀的阀开度是否为各自的最大值,
    如所述风机转速和所述阀开度均低于各自的最大值,则调整所述风机转速为其最大值,之后判断所述排气温度是否仍不低于排气阈值,如是则调整所述阀开度为其最大值;
    如所述风机转速和所述阀开度中一个低于其最大值,另一个为其最大值,则调整低者为其最大值。
  2. 根据权利要求1所述的控制方法,其中,
    响应于所述压缩机的排气温度不低于排气阈值以及,所述风机转速和所述阀开度均为各自的最大值,控制所述压缩机执行降频保护机制。
  3. 根据权利要求1所述的控制方法,其中,
    所述空调器为分体式空调器,所述空调器还包括室内换热器、室外换热器、室内风机和室外风机,所述室内风机和所述室内换热器适配,所述室外风机与所述室外换热器适配;以及
    响应于所述空调器的运行模式为制冷或除湿模式,所述蒸发器为所述室外换热器,所述换热风机为所述室外风机。
  4. 根据权利要求1所述的控制方法,其中,
    所述空调器为分体式空调器,所述空调器还包括室内换热器、室外换热器、室内风机和室外风机,所述室内风机和所述室内换热器适配,所述室外风机与所述室外换热器适配;以及
    响应于所述空调器的运行模式为制热模式,所述蒸发器为所述室内换热器,所述换热风机为所述室内风机。
  5. 根据权利要求1-4中任一项所述的控制方法,其中,
    响应于所述风机转速或所述阀开度调整至最大值,经过预设时间后,获取所述排气温度。
  6. 根据权利要求5所述的控制方法,其中,
    在所述预设时间内,所述风机转速或所述阀开度保持在所述调整后的所述最大值。
  7. 根据权利要求1-4中任一项所述的控制方法,其中,
    “调整所述风机转速为其最大值”的方法包括:
    直接调整所述风机转速为其最大值;或者
    以预设增速调整所述风机转速为其最大值。
  8. 根据权利要求1-4中任一项所述的控制方法,其中,
    “调整所述阀开度为其最大值”的方法包括:
    直接调整所述阀开度为其最大值;或者
    以预设增速调整所述阀开度为其最大值。
  9. 根据权利要求3或4所述的控制方法,其中,
    响应于所述排气温度不低于所述排气阈值,先获取所述运行模式,后获取所述风机转速和所述阀开度。
  10. 一种空调器,包括压缩机、蒸发器、换热风机、电子膨胀阀和控制装置,所述压缩机与所述电子膨胀阀、所述蒸发器连接,所述换热风机和所述蒸发器适配;所述控制装置包括处理器和存储有程序代码的存储器,其中,
    所述压缩机上设有用于测量排气温度的温度传感器;
    所述处理器被配置为在运行所述程序代码时,执行如权利要求1至9任意一项所述的空调器的控制方法。
PCT/CN2023/109355 2022-11-01 2023-07-26 空调器及其控制方法 WO2024093393A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211358456.6A CN115654692A (zh) 2022-11-01 2022-11-01 空调器及其控制方法
CN202211358456.6 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024093393A1 true WO2024093393A1 (zh) 2024-05-10

Family

ID=84995738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109355 WO2024093393A1 (zh) 2022-11-01 2023-07-26 空调器及其控制方法

Country Status (2)

Country Link
CN (1) CN115654692A (zh)
WO (1) WO2024093393A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115654692A (zh) * 2022-11-01 2023-01-31 青岛海尔空调器有限总公司 空调器及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964498A (zh) * 2015-07-30 2015-10-07 珠海格力电器股份有限公司 制冷***的电子膨胀阀控制方法及制冷***
CN109612018A (zh) * 2018-11-26 2019-04-12 宁波奥克斯电气股份有限公司 一种调节空调器排气过热度的控制方法及空调器
CN112413842A (zh) * 2020-11-09 2021-02-26 珠海格力电器股份有限公司 空调控制方法、空调器
CN113063216A (zh) * 2020-01-02 2021-07-02 青岛海尔空调电子有限公司 空调外风机的转速控制方法
CN114791151A (zh) * 2022-05-16 2022-07-26 美的集团武汉暖通设备有限公司 空调器电子膨胀阀的控制方法、装置、空调器及存储介质
CN115654692A (zh) * 2022-11-01 2023-01-31 青岛海尔空调器有限总公司 空调器及其控制方法
CN115682360A (zh) * 2022-11-01 2023-02-03 青岛海尔空调器有限总公司 空调器的控制方法和空调器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531287B2 (ja) * 1990-02-06 1996-09-04 ダイキン工業株式会社 空気調和機
KR100379273B1 (ko) * 2000-10-13 2003-04-08 만도공조 주식회사 에어컨의 난방운전 중 과부하 제어방법
KR20090029515A (ko) * 2007-09-18 2009-03-23 엘지전자 주식회사 공기조화기의 제어방법
CN106091235B (zh) * 2016-05-31 2019-08-27 广东美的暖通设备有限公司 空调***的控制方法及空调控制***
CN109506328B (zh) * 2019-01-22 2021-03-19 广东美的制冷设备有限公司 空调电子膨胀阀的控制方法及空调器
CN110186149B (zh) * 2019-05-31 2021-12-07 广东美的制冷设备有限公司 运行控制方法、控制装置、空调器和计算机可读存储介质
CN112178994B (zh) * 2020-09-21 2021-11-02 珠海格力电器股份有限公司 一种热泵机组控制方法、装置及热泵机组
CN114234395A (zh) * 2021-11-25 2022-03-25 青岛海尔空调器有限总公司 用于保护盘管的方法及装置、空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964498A (zh) * 2015-07-30 2015-10-07 珠海格力电器股份有限公司 制冷***的电子膨胀阀控制方法及制冷***
CN109612018A (zh) * 2018-11-26 2019-04-12 宁波奥克斯电气股份有限公司 一种调节空调器排气过热度的控制方法及空调器
CN113063216A (zh) * 2020-01-02 2021-07-02 青岛海尔空调电子有限公司 空调外风机的转速控制方法
CN112413842A (zh) * 2020-11-09 2021-02-26 珠海格力电器股份有限公司 空调控制方法、空调器
CN114791151A (zh) * 2022-05-16 2022-07-26 美的集团武汉暖通设备有限公司 空调器电子膨胀阀的控制方法、装置、空调器及存储介质
CN115654692A (zh) * 2022-11-01 2023-01-31 青岛海尔空调器有限总公司 空调器及其控制方法
CN115682360A (zh) * 2022-11-01 2023-02-03 青岛海尔空调器有限总公司 空调器的控制方法和空调器

Also Published As

Publication number Publication date
CN115654692A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
CN109945454B (zh) 空调***压缩机控制方法、空调控制器和空调
US6996999B2 (en) Method and apparatus for controlling humidity with an air conditioner
CN111780333B (zh) 空调器的控制方法及装置、空调器设备
WO2019105028A1 (zh) 空调器及其控制方法和装置
CN108332351B (zh) 制冷控制方法及***
CN108758973B (zh) 空调器除霜控制方法
CN109028465B (zh) 空调器除霜控制方法
WO2024093393A1 (zh) 空调器及其控制方法
WO2018196578A1 (zh) 空调器制热运行控制方法
CN108692423B (zh) 空调器除霜控制方法
US11879658B2 (en) Air-conditioning ventilation system
CN108592294B (zh) 空调器除霜控制方法
CN113944983A (zh) 一种空调器的控制方法和空调器
CN109028464B (zh) 空调器除霜控制方法
CN110887178A (zh) 一种多联机空调器制热停机的控制方法、计算机可读存储介质及空调
WO2024082741A1 (zh) 空调器及其控制方法
WO2024109148A1 (zh) 空调及其控制方法
WO2023005570A1 (zh) 用于空调器的静音控制方法
CN108775741B (zh) 空调器除霜控制方法
CN111397133A (zh) 多联机空调的控制方法
JP2004225929A (ja) 空気調和装置及び空気調和装置の制御方法
CN115682360A (zh) 空调器的控制方法和空调器
KR100626425B1 (ko) 공기조화기의 운전지연 제어방법
JP5366768B2 (ja) 空気調和機の室外機
CN114543267A (zh) 一种空调器除霜控制方法、控制装置以及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884332

Country of ref document: EP

Kind code of ref document: A1