WO2021070329A1 - エレベーターシステム及びエレベーターシステムの制御方法 - Google Patents

エレベーターシステム及びエレベーターシステムの制御方法 Download PDF

Info

Publication number
WO2021070329A1
WO2021070329A1 PCT/JP2019/040035 JP2019040035W WO2021070329A1 WO 2021070329 A1 WO2021070329 A1 WO 2021070329A1 JP 2019040035 W JP2019040035 W JP 2019040035W WO 2021070329 A1 WO2021070329 A1 WO 2021070329A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
elevator
floor
distributed
unit
Prior art date
Application number
PCT/JP2019/040035
Other languages
English (en)
French (fr)
Inventor
貴大 羽鳥
知明 前原
利治 松熊
勇来 齊藤
幸一 山下
松 楊
訓 鳥谷部
颯 棚林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2019/040035 priority Critical patent/WO2021070329A1/ja
Publication of WO2021070329A1 publication Critical patent/WO2021070329A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • B66B1/14Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
    • B66B1/18Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements with means for storing pulses controlling the movements of several cars or cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Definitions

  • the present invention relates to an elevator system provided with a non-contact power supply type elevator and a control method for the elevator system.
  • the elevator car is equipped with a tail code as a power line for driving the lighting equipment and door opening / closing mechanism installed in the car. Since the tail code increases the weight of the car, a contactless power supply elevator device that eliminates the tail code has been proposed.
  • a non-contact power supply elevator a power supply device is installed in the hoistway, a power receiving device is installed in the car, and power is supplied from the power supply device to the power receiving device in a non-contact manner when the car stops on a specific power supply floor. ..
  • the car is equipped with a battery, and the electric power received by the power receiving device is stored in the battery.
  • the power supply device is equipped with an inverter. If an abnormality occurs in the power supply device, the inverter element may be damaged by heat generation. In order to prevent damage to the inverter element, a technique has been proposed in which when an abnormality in the power feeding device is detected, the amount of power supplied to the car is limited to prevent damage to the inverter element. As such a technique, for example, there is a technique described in Patent Document 1.
  • An object of the present invention is to provide an elevator system and a control method for the elevator system in which the influence on the elevator operation due to the failure of the power feeding device is suppressed.
  • the present invention is a means for setting a distributed floor in which at least one non-contact power supply type elevator is provided and a plurality of elevators are group-managed and controlled, and the plurality of elevators are placed on standby in a distributed manner.
  • a plurality of power supply floors having a power supply device are installed in the elevator, and the selection means is installed with the power supply device determined to be abnormal when the power supply device is determined to be abnormal by the abnormality detecting means.
  • the group management control is performed by excluding the non-contact power supply type elevator judged to be abnormal by the power supply device from the selection target.
  • the present invention includes a step of setting a distributed floor in which the plurality of elevators are in a distributed standby mode in a control method of an elevator system in which at least one non-contact power supply type elevator is provided and a plurality of elevators are group-managed and controlled.
  • a step of detecting an abnormality of the plurality of elevators and a step of selecting an elevator to be assigned to the distributed floor from the plurality of elevators are provided, and power supply installed on a plurality of power supply floors of the non-contact power supply type elevator is provided.
  • the non-contact power supply method in which the power supply device is determined to be abnormal. It is characterized by having a step of excluding an elevator from selection.
  • the various components of the present invention do not necessarily have to be independent of each other, and one component is composed of a plurality of members, a plurality of components are composed of one member, and a certain component is different. It is allowed that a part of one component overlaps with a part of another component.
  • FIG. 1 is a schematic view of an elevator operation management system according to an embodiment of the present invention.
  • the operation management system 100 controls group management of a plurality of elevators installed.
  • the lanterns 121a and 121b for displaying the arrival status of the elevator, the landing buttons 122a and 122b for calling the elevator, and the input information of the landing buttons 122a and 122b are operated and managed.
  • the lanterns 121a and 121b are provided with landing terminals 123a and 123b for transmitting to the system 100 and displaying that the elevator has arrived.
  • a plurality of elevators 130 (Unit 1 elevator 130a, Unit 2 elevator 130b, Unit 3 elevator 130c, Unit 4 elevator 130d) are installed in the building.
  • Cars 131a, 131b, 131c, 131d are arranged in the hoistway of each unit (Unit 1 elevator 130a, Unit 2 elevator 130b, Unit 3 elevator 130c, Unit 4 elevator 130d), respectively.
  • four elevators will be described, but the number of elevators may exceed four.
  • Power supply devices 132a, 132b, 132c are installed on the hoistway on the predetermined stop floor of the Unit 1 elevator 130a, the Unit 2 elevator 130b, and the Unit 3 elevator 130c.
  • the cars 131a, 131b, 131c of the Unit 1 elevator 130a, Unit 2 elevator 130b, and Unit 3 elevator 130c have power receiving devices 133a, 133b, 133c and power receiving devices 133a that receive power from the power feeding devices 132a, 132b, 132c. , 133b, 133c and are provided with batteries 134a, 134b, 134c for storing electricity.
  • the Unit 4 elevator 130d is provided with a tail code and is not provided with a power supply device, a power receiving device, or a battery. It may be configured to include a power receiving device and a battery. In this embodiment, at least one non-contact power supply type elevator may be provided.
  • the plurality of elevators 130 (Unit 1 elevator 130a, Unit 2 elevator 130b, Unit 3 elevator 130c, Unit 4 elevator 130d) are controlled by the Unit control devices 135a, 135b, 135c, 135d installed in each.
  • the operation management system 100 includes a landing call control unit 101, a vehicle allocation determination unit 102, a learning unit 103, a distributed control unit 104, a guidance command unit 105, a vehicle allocation command unit 106, a unit abnormality detection unit 107, and a power supply floor setting unit 108. There is.
  • the landing call control unit 101 receives the information that the landing buttons 122a and 122b are pressed from the landing terminals 123a and 123b, and registers in the operation management system 100 from which floor of the building the upper / lower landing call is requested. To do.
  • the vehicle allocation determination unit 102 determines the optimum number of vehicles to be dispatched from the floor where the landing call was made and the distributed standby floor where the vehicles 131a, 131b, 131c, 131d are waiting.
  • the learning unit 103 detects the number of people using the elevator on a daily basis and learns the congestion situation.
  • the learning unit 103 sets the congested floor by learning the traffic flow pattern and determining which mode the current traffic flow pattern is. Distributed zones and distributed floors are set according to this crowded floor.
  • the learning unit 103 includes means for setting a plurality of distributed zones and means for setting distributed floors on which elevators are placed on standby in a distributed manner.
  • the distributed control unit 104 executes a control process of allocating an elevator car in advance to a congested floor recognized by the learning unit, a set distributed zone, or a distributed floor. In this embodiment, control is performed with the power supply floor as one of the distributed floors.
  • the guidance command unit 105 lights up the lantern installed at the landing and guides the user to arrive at the elevator.
  • the guidance command unit 105 may be installed in the unit control devices 135a, 135b, 135c, 135d.
  • the vehicle dispatch command unit 106 directs the vehicle dispatch decision unit 102 to dispatch any of the car 131a, 131b, 131c, and 131d to the stop floor where the landing call is registered. Commands are output to 135a, 135b, 135c, and 135d.
  • the unit abnormality detection unit 107 receives an abnormality of each unit (unit 1 elevator 130a, unit 2 elevator 130b, unit 3 elevator 130c, unit 4 elevator 130d) from the unit control devices 135a, 135b, 135c, 135d. And detect an abnormal condition.
  • the unit determined to be abnormal by the unit abnormality detection unit 107 is excluded from the vehicle allocation target of the vehicle allocation determination unit 102.
  • the abnormality of the power feeding devices 132a, 132b, 132c is also included in the unit abnormality.
  • the stop floors (1st floor, 7th floor, 12th floor) in which the power supply devices 132a, 132b, 132c are set are referred to as power supply floors.
  • the unit abnormality detection unit 107 detects individual abnormalities of the power supply device on each of the power supply floors of the power supply devices 132a, 132b, 132c (1st floor, 7th floor, 12th floor of the power supply device 132a, power supply device). 132b 1st floor, 7th floor, 12th floor, power supply device 132c 1st floor, 7th floor, 12th floor).
  • the Unit 1 abnormality detection unit 107 in the power supply devices 132a, 132b, 132c of the Unit 1 elevator 130a, the Unit 2 elevator 130b, and the Unit 3 elevator 130c, the power supply devices installed on all floors failed. In that case, it is excluded from the target of vehicle allocation. For example, if the power supply devices 132a on all floors of the Unit 1 elevator 130a break down, it is determined that there is an abnormality, and the Unit 1 elevator 130a is excluded from the vehicle allocation target of the vehicle allocation determination unit 102.
  • the power supply floor setting unit 108 determines whether the elevator is a unit elevator that requires power supply due to the low remaining charge of the battery, and if charging is required, determines which stop floor the power supply devices 132a, 132b, 132c are set to. to decide. Further, in the power supply devices 132a, 132b, 132c of the Unit 1 elevator 130a, the Unit 2 elevator 130b, and the Unit 3 elevator 130c, which are non-contact power supply type elevators, a part of the power supply is supplied by the Unit abnormality detection unit 107 (abnormality detection means).
  • the power supply device installed on the floor is determined to be abnormal (malfunction)
  • the elevator to be assigned to the target distributed floor where the power supply devices 132a, 132b, 132c determined to be abnormal (malfunction) are installed.
  • the Unit 1 elevator 130a is excluded from the selection targets of the elevators having the 7th floor as the distributed floor. To do.
  • the 7th floor of the Unit 1 elevator 130a is excluded from the distribution floors, the elevators whose distribution floors are the 1st and 12th floors, which are other power supply floors, are selected.
  • the power supply floor setting unit 108 serves as a selection means for selecting an elevator to be assigned to a distributed floor from a plurality of elevators subject to group management control based on the detection result of the unit abnormality detection unit 107 (abnormality detection means). It has a function.
  • the power supply floor setting unit 108 excludes the Unit elevator from the vehicle allocation target when the power supply devices on all floors of the power supply floor break down.
  • FIG. 2 is a diagram showing an example of a distributed zone table when distributed zones are given to three elevators.
  • FIG. 3 is a diagram showing an example of a distributed zone table of an elevator when commuting.
  • FIG. 4 is a diagram showing an example of a distributed zone table of an elevator at lunch time.
  • FIG. 5 is a diagram showing an example of an elevator distributed zone table at the time of a meeting.
  • the elevators of Units 1 to 4 are installed in the building on the 12th floor.
  • the entrance is on the 1st floor
  • the conference room is on the 11th floor
  • the cafeteria is on the 12th floor.
  • the other blank floors are residential floors.
  • Power supply devices are installed on the 1st, 7th, and 12th floors of each unit.
  • each car will be distributed on each floor so that the cars can arrive as soon as possible in response to a call from the user.
  • the floor where the cars are distributed is called the distributed floor.
  • the distributed floors are appropriately changed according to the traffic flow pattern of the elevator. If there is no landing call, each car will stand by on its own distributed floor, which is set according to the traffic flow pattern.
  • the floor set as the distributed floor is generally assigned to the power supply floor on which the power supply device is installed. The car charges the battery while stopped on the power supply floor.
  • a distributed zone is assigned to each elevator, and when a landing call is made from the corresponding distributed zone, the car of the Unit elevator assigned to the distributed zone in preference to the other Unit elevators will be assigned. Express to the floor where you received the call.
  • the Unit 1 elevator to the Unit 3 elevator are assigned distribution zones Z1 to Z3, respectively, and correspond to a landing call.
  • the car of the Unit 1 elevator stands by on the 1st floor, which is a distributed floor, and corresponds to the landing calls on the 1st to 4th floors as the distributed zone Z1.
  • the platform of the Unit 2 elevator will be on standby on the 7th floor, and will be called as a distributed zone Z2 on the 5th to 8th floors.
  • the platform of the Unit 3 elevator will be on standby on the 12th floor, and will be called as a distributed zone Z3 on the 9th to 12th floors.
  • Fig. 3 when going to work, the passengers getting on and off the elevator change, so the settings of the distributed floors and distributed zones are changed.
  • a traffic flow pattern appears in which passengers go from the entrance on the 1st floor to the residential floor of the office, so the settings of the distributed floors and distributed zones are changed so that the elevator cars are concentrated on the 1st floor. From the traffic flow pattern in the elevator, it is judged whether or not it is time to go to work.
  • the threshold value listed below the table the value obtained by dividing the total value of the predicted number of people on each floor by the number of elevators is used. In the case of FIG. 2, the total value of the predicted number of people is 840, and this is divided by 4 of the number of elevators to calculate the threshold value 210.
  • the threshold value is used for setting the distribution floor, which will be described later.
  • the distributed floors of the elevators of Units 1 to 3 and the distributed zones Z1 to Z3 are set on the 1st floor, and the cars are distributed intensively to the 1st floor.
  • the distributed floor is set to the 7th floor, and the 3rd to 12th floors are designated as the distributed zone Z4 to correspond to the platform calls on the 3rd to 12th floors.
  • a traffic flow pattern that goes back and forth between the entrance on the first floor and the dining room floor, and between the living floor and the dining room floor appears.
  • the 1st to 11th floors will be shared by the elevators of Units 2 to 4.
  • the distributed floor is set to the 1st floor
  • the distributed zone Z1 is set to the 1st to 3rd floors to correspond to the landing calls on the 1st to 3rd floors.
  • the Unit 3 elevator has a distributed floor on the 7th floor and a distributed zone Z2 on the 4th to 7th floors, and responds to landing calls on the 4th to 7th floors.
  • the distributed floor is set to the 9th floor
  • the distributed zone Z3 is set to the 8th to 11th floors
  • the landing calls on the 8th to 11th floors are supported. Since the Unit 4 elevator is powered by the tail code, the 9th floor, which is not affected by the power supply floor, is a distributed floor.
  • a traffic flow pattern appears from the residential floor to the 11th floor where the meeting room floor is located, so for example, the 1st to 10th floors are shared by the elevators of Units 2 to 4.
  • the distributed floor is set to the 1st floor
  • the distributed zone Z1 is set to the 1st to 3rd floors to respond to landing calls on the 1st to 3rd floors.
  • the Unit 3 elevator has a distributed floor on the 7th floor and a distributed zone Z2 on the 4th to 7th floors, and responds to landing calls on the 4th to 7th floors.
  • the Unit 4 elevator has a distributed floor on the 9th floor and a distributed zone Z3 on the 8th to 10th floors, and responds to landing calls on the 8th to 10th floors.
  • the distributed floors of the Unit 1 elevator car and the distributed zone Z4 will be set on the 11th to 12th floors to prepare for the transportation of passengers who have finished the meeting.
  • FIG. 6 is a processing flow of an elevator operation management processing system according to an embodiment of the present invention.
  • the operation management system 100 sets a distributed floor from the traffic flow pattern of the elevator (step S200), grasps the failure state of each unit elevator, and sets the unit elevator to be the target of distributed control (step S300). Then, the distribution floor of the unit elevator to be the target of the distribution control is selected and set (step S400), and the distribution command is output to each unit elevator (step 500).
  • FIG. 7 is a processing flow for setting the distributed floor according to the embodiment of the present invention.
  • the learning unit 103 of the operation management system 100 determines which traffic flow mode the current traffic flow pattern corresponds to, and the number of distributed zones of the elevator to be controlled from the determined current traffic flow mode.
  • Congested floors and distributed floors are set (step S201).
  • As the traffic flow mode a plurality of combinations of the number of distributed zones, congested floors, and distributed floors are prepared, and an arbitrary traffic flow mode is selected and set from the detected traffic flow patterns.
  • the power supply floor setting unit 108 of the operation management system 100 determines whether or not there is a unit elevator (contactless power supply type) that requires power supply as the elevator to be controlled among the plurality of elevators (step S202). If there is a unit elevator that requires power supply (YES in step S202), the power supply floor is specified for each unit elevator (step S203). In step S202, if there is no unit elevator (contactless power supply type) that requires power supply (NO in step S202), the process proceeds to step S204.
  • a unit elevator contactless power supply type
  • step S204 the power supply floor setting unit 108 determines whether or not the congested floor of each distributed zone and the power supply floor match, and if they match (YES in step S204), the congested floor is set to the distributed floor.
  • the crowded floors are the 1st floor and the 12th floor, and these are the distributed floors, and the 1st floor and the 12th floor are the power supply floors, and the crowded floors and the distributed floors are the same.
  • the distributed floor is basically a power supply floor, which is a non-contact power supply type elevator and is a normal non-contact power supply type elevator or non-contact power supply type elevator. Elevators that are not contact-powered are targeted for distribution, and if there is no non-contact-powered elevator, distributed control is performed by elevators that are not contact-powered.
  • step S204 if the unit elevator (non-contact power supply type) that requires power supply does not exist, the power supply floor setting unit 108 determines that there is no power supply floor (YES in step S204), and makes the congested floor a distributed floor. (Step S205).
  • step S204 if the congested floor of each distributed zone and the power supply floor do not match (NO in step S204), the power supply floor setting unit 108 proceeds to step S206 and determines whether or not the congested floor is congested above the threshold value. To do.
  • the threshold value here is the threshold value described with reference to FIGS. 3 to 5. If the congestion floor is more than the threshold value (YES in step S206), the distribution floor in the distribution zone is designated as the floor where the power supply floor and the congestion floor match (step S207).
  • step S206 when the congestion floor is not more than the threshold value (NO in step S206), the power supply floor setting unit 108 gives priority to the storage of electricity in the battery and designates the power supply floor as the distributed floor (step S208).
  • FIG. 8 is a processing flow of the power supply floor setting unit according to the embodiment of the present invention.
  • step S210 the power supply floor setting unit 108 determines whether or not there is a unit elevator (contactless power supply type) that requires power supply because the battery charge capacity is insufficient and there is a unit elevator that requires power supply. To do.
  • a unit elevator that requires power supply
  • it is determined whether or not the power supply device is abnormal step S211).
  • the unit abnormality detection unit 107 is used to determine the abnormality of the power feeding device. For example, the unit abnormality detection unit 107 monitors the charging status of the battery when the car stops at each power supply floor and stops at each power supply floor, and if the charge amount per unit time is equal to or less than a predetermined value, the battery charge status is monitored. Judge that the power supply device on the stop floor is abnormal and store it.
  • the power supply floor setting unit 108 acquires the floor information set in advance or the power supply device is operating normally from the unit abnormality detection unit 107. Then, the floor on which the power supply device is determined to be abnormal is regarded as an abnormal floor and excluded from the target of the power supply floor (distributed floor) (step S212). That is, the non-contact power supply type elevator determined to be an abnormal floor is excluded from the selection target of the elevator that allocates this abnormal floor as a distributed floor.
  • the floor on which the power supply device is determined to be abnormal is set as the abnormal floor, and the floor on which the other power supply devices are operating normally is the target of the power supply floor (distributed floor).
  • step S210 the power supply floor setting unit 108 ends the process when the battery charge capacity is sufficient and there is no unit elevator that requires power supply (NO in step 210).
  • step S211 if there is no abnormality on the floor on which the power supply device is installed (NO in step S211), the power supply floor setting unit 108 sets in advance or provides floor information in which the power supply device is operating normally to the unit abnormality detection unit.
  • the floor obtained from 107 and determined to be normal is set as the power supply floor (distributed floor) (step S213).
  • step S213 in determining the abnormality of the power supply device, the floor where the power supply device is determined to be abnormal is set as the abnormal floor, and the floor where the other power supply devices are determined to be operating normally is set as the power supply floor (distributed floor). Includes steps.
  • a non-contact power supply elevator equipped with a power supply device when an abnormality in the power supply device is detected and the power supply device is determined to be abnormal, the target in which the power supply device determined to be abnormal is installed.
  • One of the features of selecting the elevators to be assigned to the distributed floors is that the power supply device has a process of excluding the non-contact power supply type elevators that are judged to be abnormal from the selection target.
  • the power supply floor in which the abnormality of the power supply device is detected is excluded from the selection target so that the non-contact power supply type elevator is not assigned as the distributed floor. It is possible to prevent the battery from becoming insufficiently charged.
  • FIG. 9 is a processing flow for setting the distributed target unit according to the embodiment of the present invention.
  • the power supply floor setting unit 108 sets the unit elevator that can be controlled as a dispersion target from the detection result of the unit abnormality detection unit 107 (step S301).
  • the processing of the unit abnormality detection unit 107 will be described later.
  • step S302 the power supply floor setting unit 108 determines whether or not there is a unit elevator (contactless power supply type) that requires power supply among the elevators subject to distributed control, and the unit elevator that requires power supply exists. In the case (YES in step S302), the power supply floor setting unit 108 specifies the power supply floor for each unit elevator and acquires the information of the unit unit elevator to be supplied (step S303), and for each distributed floor, The number of vehicles that can be dispatched and the number of units that can be dispatched are detected (step S304).
  • a unit elevator contactless power supply type
  • step S302 the power supply floor setting unit 108 proceeds to step S304 when there is no unit elevator (non-contact power supply type) that requires power supply among the elevators subject to distributed control (NO in step S302).
  • the processing of the power supply floor setting unit 108 is as shown in FIG. 8, and the non-contact power supply type elevator provided with the abnormal floor having an abnormality in the power supply device is excluded from the elevators to be selected having the abnormal floor as the distributed floor.
  • FIG. 10 is a processing flow of the unit abnormality detection unit according to the embodiment of the present invention.
  • the unit abnormality detection unit 107 determines whether each unit elevator is in maintenance operation or in an abnormal state (step S310). If any of the elevators is in maintenance operation or in an abnormal state (YES in step S310), the elevator determined to be abnormal is excluded from the elevators that can be dispatched (step S311). By this process, in step S301 of FIG. 9, information on the controllable unit elevator is set. Then, the power supply floor setting unit 108 (selection means) excludes the unit elevator determined to be abnormal from the unit elevators that can be dispatched based on the result of the unit abnormality detection unit 107 (abnormality detection means), and starts from the normal unit elevator. Select the No. 1 elevator that can be dispatched.
  • step S310 if any of the elevators is not in maintenance operation or in an abnormal state (NO in step S310), it is determined whether or not there is an elevator that requires power supply because the battery charge capacity is insufficient. (Step S312).
  • step S313 determines whether or not one or more power supply devices of the corresponding unit elevator are operating. If one or more power supply devices of the corresponding unit elevator are operating (YES in step S313), the process is terminated assuming that there is no unit elevator to be excluded from the unit elevators that can be dispatched. When all the power supply devices of the corresponding unit elevators are not operating (NO in step S313), the target unit elevators are excluded from the unit elevators that can be dispatched (step S311).
  • step S312 if there is no unit elevator that requires power supply (NO in step S312), the process is terminated assuming that there is no unit elevator to be excluded from the unit elevators that can be dispatched.
  • the target elevator is excluded from the elevators that can be dispatched. Therefore, it is possible to smoothly dispatch the vehicle to the floor where the landing was called by operating with the normal Unit elevator.
  • FIG. 11 is a processing flow of the distributed unit selection setting according to the embodiment of the present invention.
  • the operation management system 100 determines whether or not there are a stop unit and a planned stop unit in each distributed zone (step S401).
  • the abnormal floor with an abnormality in the power supply device of any of the multiple elevators is excluded from the selection target so that the non-contact power supply type elevator is not assigned as a distributed floor, and the multiple elevators.
  • the elevators of which one of the units is in maintenance operation, is in an abnormal state, or all of the power supply devices are out of order are excluded from the targets of the units that can be dispatched.
  • the learning unit 103 determines whether or not there is a unit elevator stopped and a unit elevator scheduled to be stopped in each distributed zone (step S401).
  • step S401 when there is a unit elevator stopped in each distributed zone and a unit elevator scheduled to be stopped (YES in step S401), the distributed floors in each distributed zone are excluded (step S402).
  • step S403 it is determined whether or not the distributed floor exists (step S403), and if the distributed floor already exists (YES in step S403), the stopped unit elevator and the unit elevator scheduled to be stopped are distributed. Exclude from the target unit elevator (step S404).
  • step S405 it is determined whether or not there are a plurality of distributed floors (step S405), and if there are already a plurality of distributed floors (YES in step S405), the stopped unit elevator and the unit elevator scheduled to be stopped are determined. Exclude from the unit elevators to be dispersed (step S406). After that, the main process of selecting the distributed unit is executed (step S407).
  • the vehicle allocation determination unit 102 determines whether or not all the distributed floors have been selected (step S408), and if the selection of the distributed floors has been completed (YES in step S408), ends the process and selects the distributed floors. If is not completed (NO in step S408), the process is repeated until the selection of the distributed floor is completed.
  • step S403 if the distributed floor does not exist (NO in step S403), the process ends.
  • step S405 when a plurality of distributed floors do not exist (NO in step S405), the main process of selecting the distributed unit is executed (step S407).
  • FIG. 12 is a main processing flow for selecting a distributed unit according to an embodiment of the present invention.
  • the power supply floor setting unit 108 of the operation management system 100 determines whether or not there is a unit elevator (contactless power supply type) that requires power supply as the elevator to be controlled among the plurality of elevators (step S410).
  • a unit elevator that requires power supply
  • the vehicle allocation determination unit 102 performs the vehicle allocation determination process from the unit elevator to be distributed (step S412). Basically, if there is a Unit elevator (contactless power supply type) that requires power supply, the distributed floor is treated as a power supply floor.
  • the vehicle allocation determination unit 102 performs vehicle allocation determination processing from the unit elevator to be distributed (step S412).
  • step S411 when the distributed floor is not the power supply floor (NO in step S411), the power supply floor setting unit 108 stops the distributed floor at the unit elevator to be fed according to the pre-registration status from the current position.
  • the predicted battery value at the time is calculated (step S413), and it is determined whether or not the predicted battery value is equal to or greater than the threshold value (step S414).
  • step S414 when the power supply floor setting unit 108 determines that the predicted battery value is equal to or higher than the threshold value (YES in step S414), the vehicle allocation determination unit 102 performs vehicle allocation determination processing from the unit elevator to be distributed (step S412). ).
  • step S414 when the power supply floor setting unit 108 determines that the predicted battery value is equal to or higher than the threshold value (NO in step S414), the movement time to the nearest power supply floor, the charging time, and the dispersion in the corresponding unit elevator. The time to move to the floor is added to the penalty (step S415).
  • the vehicle allocation decision unit 102 performs the vehicle allocation decision process, and based on this decision, the vehicle allocation command unit 106 outputs the vehicle allocation command to each unit elevator.
  • 100 Operation management system, 101 ... Landing call control unit, 102 ... Vehicle allocation decision unit, 103 ... Learning unit, 104 ... Distributed control unit, 105 ... Guidance command unit, 106 ... Vehicle allocation command unit, 107 ... Unit abnormality detection unit, 108 ... Power supply floor setting unit, 120a, 120b ... Elevator landing, 121a, 121b ... Lantern, 122a, 122a ... Landing button, 123a, 123b ... Landing terminal, 130a ... Unit 1 elevator, 130b ... Unit 2 elevator, 130c ... Unit 3 elevator , 130d ... Unit 4 elevator, 131a, 131b, 131c, 131d ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)

Abstract

複数台のエレベーター130のうち、非接触給電方式のエレベーター130a、130b、130cを少なくとも1台備えている。学習部103は、複数の分散ゾーン、複数台のエレベーター130を分散待機させる分散階を設定する。号機異常検出部107は複数台のエレベーターの異常を検出する。給電階設定部108は、複数台のエレベーター130から分散階に割り当てるエレベーターを選択する。非接触給電方式のエレベーター130a、130b、130cの任意の停止階には、給電装置を有する複数の給電階が設置される。給電階設定部108は、号機異常検出部107により給電装置が異常と判断された際に、異常と判断された給電装置が設置されている対象の分散階に割り当てるエレベーターを選択するにあたっては、給電装置が異常と判断された非接触給電方式エレベーター130a、130b、130cを選択対象から除外して群管理制御を行う。

Description

エレベーターシステム及びエレベーターシステムの制御方法
 本発明は、非接触給電方式エレベーターを備えたエレベーターシステム及びエレベーターシステムの制御方法に関する。
 エレベーターの乗りかごには、乗りかご内に設置された照明機器やドア開閉機構を駆動するための電力線として、テールコードが備えられている。テールコードは、乗りかごの重量増加をもたらすため、テールコードを排除した非接触給電のエレベーター装置が提案されている。非接触給電エレベーターでは、昇降路内に給電装置を設置し、乗りかごに受電装置を設置し、乗りかごが特定の給電階に停止した時に給電装置から受電装置へ非接触で電力が給電される。乗りかごにはバッテリが備えられ、受電装置で受電した電力をバッテリに蓄電する。
 給電装置にはインバータが備えられている。給電装置に異常が発生した場合には、発熱によってインバータの素子が破損する可能性がある。インバータ素子の破損を防止するために、給電装置の異常を検出した場合には、乗りかごへの給電量を制限してインバータの素子破損を防止する技術が提案されている。このような技術として、例えば特許文献1に記載の技術がある。
特開2018-162113号公報
 特許文献1に記載の技術においては、給電量が制限された状態でエレベーターを使用すると、乗りかごに設置されたバッテリが十分に蓄電されず、電力不足となり、照明器具やドア開閉機構の動作に影響を与える可能性があった。特に、給電装置が給電できない故障時には、バッテリの充電に顕著に影響を与える。
 エレベーターが複数台設置され、群管理制御が行われている場合、給電装置の故障によるバッテリ充電不足が原因でエレベーターを計画通りに運行出来ず、エレベーターの運行管理に影響を与える虞があった。特許文献1では、給電装置の故障の対処法については全く考慮されていなかった。
 本発明の目的は、給電装置の故障によるエレベーター運行への影響を抑制したエレベーターシステム及びエレベーターシステムの制御方法を提供することにある。
 上記目的を達成するために本発明は、非接触給電方式エレベーターを少なくとも1台備え、複数台のエレベーターを群管理制御するエレベーターシステムにおいて、前記複数台のエレベーターを分散待機させる分散階を設定する手段と、前記複数台のエレベーターの異常を検出する異常検出手段と、前記複数台のエレベーターから前記分散階に割り当てるエレベーターを選択する選択手段と、を備え、前記非接触給電方式エレベーターの任意の停止階には、給電装置を有する複数の給電階が設置され、前記選択手段は、前記異常検出手段により前記給電装置が異常と判断された際に、異常と判断された前記給電装置が設置されている対象の前記分散階に割り当てるエレベーターを選択するにあたっては、前記給電装置が異常と判断された非接触給電方式エレベーターを選択対象から除外して群管理制御を行うことを特徴とする。
 また、本発明は、非接触給電方式エレベーターを少なくとも1台備え、複数台のエレベーターを群管理制御するエレベーターシステムの制御方法において、前記複数台のエレベーターを分散待機させる分散階を設定するステップと、前記複数台のエレベーターの異常を検出するステップと、前記複数台のエレベーターから前記分散階に割り当てるエレベーターを選択するステップと、を備え、前記非接触給電方式エレベーターの複数の給電階に設置された給電装置が異常と判断され際に、異常と判断された前記給電装置が設置されている対象の前記分散階に割り当てるエレベーターを選択するにあたっては、前記給電装置が異常と判断された前記非接触給電方式エレベーターを選択対象から除外するステップを有することを特徴とする。
 本発明によれば、給電装置の故障によるエレベーター運行への影響を抑制したエレベーターシステム及びエレベーターシステムの制御方法を提供することができる。
本発明の実施例に係るエレベーターの運行管理システムの概略図である。 3台のエレベーターに分散ゾーンが与えられた場合における分散ゾーンテーブルの一例を示す図である。 出勤時におけるエレベーターの分散ゾーンテーブルの一例を示す図である。 昼食時におけるエレベーターの分散ゾーンテーブルの一例を示す図である。 会議時におけるエレベーターの分散ゾーンテーブルの一例を示す図である。 本発明の実施例に係るエレベーターの運行管理処理システムの処理フローである。 本発明の実施例に係る分散階設定の処理フローである。 本発明の実施例に係る給電階設定部の処理フローである。 本発明の実施例に係る分散対象号機設定の処理フローである。 本発明の実施例に係る号機異常検出部の処理フローである。 本発明の実施例に係る分散号機選択設定の処理フローである。 は本発明の実施例に係る分散号機選択のメイン処理フローである。
 以下、本発明の実施例について添付の図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。
 本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素が別の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複すること、などを許容する。
 図1は本発明の実施例に係るエレベーターの運行管理システムの概略図である。運行管理システム100は複数台設置されたエレベーターの群管理制御を行うものである。建屋の各階におけるそれぞれのエレベーター乗場120a,120bには、エレベーターの到着状況を表示するランタン121a,121bと、エレベーターの呼び出しを行う乗場釦122a,122bと、乗場釦122a,122bの入力情報を運行管理システム100へ送信すると共に、エレベーターが到着したことをランタン121a,121bに表示させる乗場端末123a,123bが備えられている。
 本実施例では、建屋内に複数のエレベーター130(1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130c、4号機エレベーター130d)が設置されている。各号機(1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130c、4号機エレベーター130d)の昇降路内には乗りかご131a,131b,131c,131dがそれぞれ配置されている。本実施例では、4台のエレベーターで説明するが、エレベーターは4台を超える台数であっても構わない。
 1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130cの所定の停止階における昇降路には、給電装置132a,132b,132cが設置されている。1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130cの乗りかご131a,131b,131cには、給電装置132a,132b,132cからの電力を受電する受電装置133a,133b,133cと、受電装置133a,133b,133cと接続され、蓄電するバッテリ134a,134b,134cが備えられている。本実施例においては、4号機エレベーター130dはテールコードを備えており、給電装置、受電装置、バッテリを備えていないが、1号機エレベーター~3号機エレベーターと同様に、非接触給電方式とし給電装置、受電装置、バッテリを備えるように構成しても良い。本実施例では、非接触給電方式のエレベーターを少なくとも1台備えていれば良い。
 複数のエレベーター130(1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130c、4号機エレベーター130d)は、それぞれに設置された号機制御装置135a,135b,135c,135dによって制御される。
 運行管理システム100は、乗場呼び制御部101、配車決定部102、学習部103、分散制御部104、案内指令部105、配車指令部106、号機異常検出部107、給電階設定部108を備えている。
 乗場呼び制御部101は、乗場釦122a,122bが押下された情報を乗場端末123a,123bから受信し、建屋のどの階から上/下の乗場呼びの要求があったかを運行管理システム100内に登録する。
 配車決定部102は、乗場呼びがあった階、及び乗りかご131a,131b,131c,131dが待機している分散待機階からどの号機の乗りかごを配車するのか、最適な号機を決定する。
 学習部103は、日々のエレベーター利用人数を検出し、混雑状況を学習する。学習部103では、交通流パターンを学習し、現在の交通流パターンがどのモードか判定することで、混雑階を設定する。この混雑階に合わせ、分散ゾーン、分散階を設定する。この学習部103は、複数の分散ゾーンを設定する手段と、エレベーターを分散待機させる分散階を設定する手段を備える。
 分散制御部104は、学習部にて認識した混雑階や、設定された分散ゾーン、分散階に、エレベーターの乗りかごを事前に配車する制御処理を実行する。本実施例では、給電階を分散階の一つとして、制御を実施する。
 案内指令部105は、乗場呼びが登録され、最適なエレベーターが確定した場合、乗場に設置されたランタンを点灯させ、利用者にエレベーター到着の案内を実施する。案内指令部105は、号機制御装置135a,135b,135c,135dに設置するようにしても良い。
 配車指令部106は、配車決定部102によって決定した当該号機に対して、乗場呼びが登録された停止階に乗りかご131a,131b,131c,131dの何れかを配車するよう、該当する号機制御装置135a,135b,135c,135dに指令を出力する。
 号機異常検出部107(異常検出手段)は、各号機(1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130c、4号機エレベーター130d)の異常を号機制御装置135a,135b,135c,135dから受信し、異常状態を検出する。号機異常検出部107によって異常と判断された号機は、配車決定部102の配車対象から除外される。本実施例においては、給電装置132a,132b,132cの異常も号機異常に含んでいる。給電装置132a,132b,132cが設定されている停止階(1階、7階、12階)を給電階と称する。号機異常検出部107(異常検出手段)は、給電装置132a,132b,132cのそれぞれの給電階における給電装置の個々の異常を検出する(給電装置132aの1階,7階,12階、給電装置132bの1階,7階,12階、給電装置132cの1階,7階,12階)。号機異常検出部107(異常検出手段)は、1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130cのそれぞれの給電装置132a,132b,132cにおいて、全ての階に設置された給電装置が故障した場合、配車の対象から除外する。例えば、1号機エレベーター130aおいて全階の給電装置132aが故障した場合、異常と判断し、1号機エレベーター130aを配車決定部102の配車対象から除外する。
 給電階設定部108は、バッテリの蓄電残量が少なく、給電が必要な号機エレベーターかどうかを判断し、充電が必要な場合、どの停止階に給電装置132a,132b,132cが設定されているかを判断する。また、非接触給電方式エレベーターである1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130cのそれぞれの給電装置132a,132b,132cにおいて、号機異常検出部107(異常検出手段)により一部の給電階に設置された給電装置が異常(故障)と判断された際に、異常(故障)と判断された給電装置132a,132b,132cが設置されている対象の分散階に割り当てるエレベーターを選択するにあたっては、給電装置132a,132b,132cが異常と判断された1号機エレベーター130a,2号機エレベーター130b,3号機エレベーター130cを選択対象から除外する。例えば、非接触給電方式エレベーターである1号機エレベーター130aおいて7階の給電装置132aが異常(故障)と判断された場合、1号機エレベーター130aは7階を分散階とするエレベーターの選択対象から除外する。ただし、1号機エレベーター130aは、7階が分散階の対象から除外されるが、他の給電階である1階、12階を分散階とするエレベーターの選択対象となる。
 給電階設定部108は、号機異常検出部107(異常検出手段)の検出結果に基づき、群管理制御の対象となる複数台のエレベーターの中から、分散階に割り当てるエレベーターを選択する選択手段としての機能を有している。
 また、給電階設定部108(選択手段)は、給電階の全ての階における給電装置が故障した場合には、その号機エレベーターを配車対象から除外する。
 次に図2~図5を用いて、エレベーターの分散待機について説明する。図2は3台のエレベーターに分散ゾーンが与えられた場合における分散ゾーンテーブルの一例を示す図である。図3は出勤時におけるエレベーターの分散ゾーンテーブルの一例を示す図である。図4は昼食時におけるエレベーターの分散ゾーンテーブルの一例を示す図である。図5は会議時におけるエレベーターの分散ゾーンテーブルの一例を示す図である。
 図2~図5において、本実施例では12階の建屋に1号機~4号機(4台)のエレベーターが設置されている。1階はエントランスであり、11階には会議室、12階には食堂が設置されている。その他の空白の階は居住階となっている。各号機の1階、7階、12階には給電装置が設置されている。
 複数台のエレベーターが設置された建屋では、利用者による乗場呼びに応じて、できるだけ早い時間で乗りかごが到着できるよう、複数台の乗りかごが各階に分散されて配置される。乗りかごが分散配置される階を分散階と称する。分散階は、エレベーターの交通流パターンに応じて適宜変更される。乗場呼びが無い場合、各乗りかごは交通流パターンに応じて設定されたそれぞれの分散階で待機する。非接触給電方式のエレベーターの場合、分散階として設定される階は、一般的に給電装置が設置された給電階が割り当てられる。給電階に停止した状態で乗りかごはバッテリに充電を行う。また、各エレベーターには分散ゾーンが割り当てられており、該当する分散ゾーンから乗場呼びがあった場合には、他の号機エレベーターに優先して分散ゾーンに割り充てられた号機エレベーターの乗りかごが、乗場呼びを受けた階に急行する。
 図2において、各階の予想人数が均等に割り当てられた状況においては、4台のエレベーターのうち、3台のエレベーターが分散制御の対象として分散ゾーンZ1~Z3が割り当てられており、1台については分散ゾーンが割り当てられていない。例えば、1号機エレベーター~3号機エレベーターはそれぞれ分散ゾーンZ1~Z3が割り当てられており、乗場呼びに対応する。図2では、1号機エレベーターの乗りかごは分散階である1階で待機し、分散ゾーンZ1として1階~4階の乗場呼びに対応する。2号機エレベーターの乗りかごは7階で待機し、分散ゾーンZ2として5階~8階の乗場呼びに対応する。3号機エレベーターの乗りかごは12階で待機し、分散ゾーンZ3として9階~12階の乗場呼びに対応する。
 図3において、出勤時においては、エレベーターの乗客の乗降が変化するので、分散階、分散ゾーンの設定が変更される。出勤時には、乗客が1階エントランスから執務場所の居住階に向かう交通流パターンが出現するので、1階にエレベーターの乗りかごを集中的に配車するよう分散階、分散ゾーンの設定が変更される。エレベーターにおける交通流パターンから、出勤時であるか否かを判断する。表の下に記載された閾値は、各階の予測人数の合計値をエレベーターの台数で除算した値を用いる。図2の場合、予測人数の合計値が840であり、これをエレベーター台数の4で除算し、閾値210を算出する。閾値は、後述する分散階の設定に用いる。
 図3に示す出勤時は、1号機エレベーター~3号機エレベーターの乗りかごの分散階、分散ゾーンZ1~Z3を1階に設定し、乗りかごを1階に集中的に配車する。4号機エレベーターの乗りかごは分散階を7階に設定し、3階~12階を分散ゾーンZ4として3階~12階の乗場呼びに対応する。
 図4に示す昼食時は、1階エントランスと食堂階、居住階と食堂階との間を行き来する交通流パターンが出現するので、例えば1号機エレベーターの乗りかごの分散階、分散ゾーンZ4を12階に設定し、食事を終えた乗客の輸送に備える。1階~11階は2号機エレベーター~4号機エレベーターの乗りかごで分担する。2号機エレベーターの乗りかごは分散階を1階に設定、分散ゾーンZ1を1階~3階に設定し、1階~3階の乗場呼びに対応する。3号機エレベーターは分散階を7階に設定、分散ゾーンZ2を4階~7階に設定し、4階~7階の乗場呼びに対応する。4号機エレベーターの乗りかごは分散階を9階に設定し、分散ゾーンZ3を8階~11階に設定し、8階~11階の乗場呼びに対応する。4号機エレベーターはテールコードによる給電が行われるので、給電階の影響を受けない9階を分散階としている。
 図5に示す会議時は、居住階から会議室階がある11階へ向かう交通流パターンが出現するので、例えば1階~10階は2号機エレベーター~4号機エレベーターの乗りかごで分担する。2号機エレベーターは分散階を1階に設定、分散ゾーンZ1を1階~3階に設定し、1階~3階の乗場呼びに対応する。3号機エレベーターは分散階を7階に設定、分散ゾーンZ2を4階~7階に設定し、4階~7階の乗場呼びに対応する。4号機エレベーターは分散階を9階に設定、分散ゾーンZ3を8階~10階に設定し、8階~10階の乗場呼びに対応する。1号機エレベーターの乗りかごの分散階、分散ゾーンZ4を11階~12階に設定し、会議を終えた乗客の輸送に備える。
 次に分散階の設定方法について図6~図12を用いて説明する。図6は本発明の実施例に係るエレベーターの運行管理処理システムの処理フローである。図6において、運行管理システム100は、エレベーターの交通流パターンから分散階を設定(ステップS200)し、各号機エレベーターの故障状態を把握して分散制御の対象となる号機エレベーターを設定(ステップS300)し、分散制御の対象となる号機エレベーターの分散階を選択設定(ステップS400)し、各号機エレベーターに分散指令を出力する(ステップ500)。
 次に各ステップS200~S500の詳細について、図7~図12を用いて説明する。図7は本発明の実施例に係る分散階設定の処理フローである。図7において、運行管理システム100の学習部103は、現在の交通流パターンがどの交通流モードに該当するかを判定し、判定された現在の交通流モードから制御対象とするエレベーターの分散ゾーン数、混雑階、分散階を設定する(ステップS201)。交通流モードは、分散ゾーン数、混雑階、分散階の組み合わせが複数組用意されており、検出された交通流パターンから任意の交通流モードを選択して設定する。
 次に、運行管理システム100の給電階設定部108は、複数台のエレベーターのうち、制御対象のエレベーターとして給電が必要な号機エレベーター(非接触給電式)が有るか否かを判断(ステップS202)し、給電が必要な号機エレベーターが有る場合(ステップS202のYES)には、各号機エレベーターについて給電階を指定する(ステップS203)。ステップS202において、給電が必要な号機エレベーター(非接触給電式)が存在しない場合(ステップS202のNO)には、ステップS204に進む。
 ステップS204において、給電階設定部108は、各分散ゾーンの混雑階と給電階が一致しているか否かを判断し、一致していれば(ステップS204のYES)、混雑階を分散階にする(ステップS205)。例えば、図4において、混雑階が1階と12階となっており、これらを分散階とする、1階と12階は給電階となっており、混雑階と分散階が一致している。本実施例では、非接触給電方式エレベーター(給電が必要な号機エレベーター)が有る場合、基本的に分散階は給電階とし、非接触給電方式エレベーターで、且つ正常な非接触給電方式エレベーター、或いは非接触給電方式ではないエレベーターを分散対象とし、非接触給電方式エレベーターが無しの場合は非接触給電方式ではないエレベーターによる分散制御を実施する。
 ステップS204において、給電階設定部108は、給電が必要な号機エレベーター(非接触給電式)が存在しない場合は、給電階が無いと判断(ステップS204のYES)し、混雑階を分散階にする(ステップS205)。
 ステップS204において、給電階設定部108は、各分散ゾーンの混雑階と給電階が一致していない場合(ステップS204のNO)、ステップS206に進み、混雑階が閾値以上の混雑か否かを判定する。ここでの閾値は、図3~図5で説明した閾値である。混雑階が閾値以上の混雑であれば(ステップS206のYES)、分散ゾーンにおける分散階を、給電階及び混雑階が一致した階に指定する(ステップS207)。
 ステップS206において、給電階設定部108は、混雑階が閾値以上の混雑でない場合(ステップS206のNO)、バッテリへの蓄電を優先させ、給電階を分散階に指定する(ステップS208)。
 次にステップS203における給電階設定部108の処理について図8を用いて説明する。図8は本発明の実施例に係る給電階設定部の処理フローである。
 ステップS210において、給電階設定部108は、給電が必要な号機エレベーター(非接触給電式)のうち、バッテリの充電容量が不十分であり、給電が必要な号機エレベーターが存在するか否かを判断する。給電が必要な号機エレベーターが存在する場合(ステップS210のYES)、給電装置が異常か否かを判断する(ステップS211)。給電装置の異常の判断は、号機異常検出部107を用いる。例えば、号機異常検出部107は乗りかごが各給電階に停止した際、各給電階に停止した際におけるバッテリの充電状況を監視し、単位時間あたりの充電量が所定値以下であれば、その停止階の給電装置を異常と判断し、記憶しておく。
 給電階設定部108は、ある停止階の給電装置が異常と判断された場合(ステップS211のYES)、事前に設定或いは給電装置が正常に動作している階情報を号機異常検出部107から取得し、給電装置が異常と判断された階を異常階として給電階(分散階)の対象から除外する(ステップS212)。すなわち、異常階と判断された非接触給電方式のエレベーターは、この異常階を分散階として割り当てるエレベーターの選択対象から除外される。ステップS211における給電装置の異常判断にあたっては、給電装置が異常と判断された階を異常階とし、その他の給電装置が正常の動作している階を給電階(分散階)の対象とする。
 ステップS210において、給電階設定部108は、バッテリの充電容量が十分であり、給電が必要な号機エレベーターが存在しない場合(ステップ210のNO)には、処理を終了する。
 ステップS211において、給電階設定部108は、給電装置が設置された階に異常が無い場合(ステップS211のNO)、事前に設定或いは給電装置が正常に動作している階情報を号機異常検出部107から取得し、正常と判断された階を給電階(分散階)として設定する(ステップS213)。ステップS213には、給電装置の異常判断にあたり、給電装置が異常と判断された階を異常階とし、その他の給電装置が正常動作していると判断された階は給電階(分散階)とするステップを含んでいる。
 本実施例においては、給電装置を備えた非接触給電エレベーターにおいて、給電装置の異常を検出し、給電装置が異常と判断された際に、異常と判断された給電装置が設置されている対象の分散階に割り当てるエレベーターを選択するにあたっては、給電装置が異常と判断された非接触給電方式エレベーターを選択対象から除外する処理を備えたことを特徴の一つとしている。本実施例によれば、給電装置の異常が検出された給電階には、分散階として非接触給電方式エレベーターが割り当てられることが無いように選択対象から除外するようにしているので、乗りかごのバッテリが充電不足に陥ることを抑制することができる。
 次に分散対象号機設定のステップS300について説明する。図9は本発明の実施例に係る分散対象号機設定の処理フローである。図9において、給電階設定部108は、号機異常検出部107の検出結果から、分散対象として制御可能な号機エレベーターを設定する(ステップS301)。号機異常検出部107の処理については、後述する。
 ステップS302において、給電階設定部108は、分散制御対象のエレベーターのうち、給電が必要な号機エレベーター(非接触給電式)が存在するか否かを判断し、給電が必要な号機エレベーターが存在する場合(ステップS302のYES)には、給電階設定部108は各号機エレベーターについて給電階を指定すると共に、給電対象となる号機エレベーターの情報を取得(ステップS303)し、各分散階に対して、配車可能号機、及び配車可能号機数を検出する(ステップS304)。
 ステップS302において、給電階設定部108は、分散制御対象のエレベーターのうち、給電が必要な号機エレベーター(非接触給電式)が存在しない場合(ステップS302のNO)には、ステップS304に進む。給電階設定部108の処理については図8の通りであり、給電装置に異常がある異常階を備えた非接触給電方式エレベーターは、異常階を分散階とする選択対象のエレベーターから除かれる。
 次に号機異常検出部107の処理について説明する。図10は本発明の実施例に係る号機異常検出部の処理フローである。
 号機異常検出部107は、各号機エレベーターが保守運転、或いは異常状態であるか判断する(ステップS310)。エレベーターの何れかの号機エレベーターが保守運転、或いは異常状態であれば(ステップS310のYES)、異常と判断された号機エレベーターを配車可能な号機エレベーターから除外する(ステップS311)。この処理により、図9のステップS301において、制御可能な号機エレベーターの情報が設定される。そして、給電階設定部108(選択手段)は、号機異常検出部107(異常検出手段)の結果に基づき、異常と判断された号機エレベーターを配車可能な号機エレベーターから除外し、正常な号機エレベーターから配車可能な号機エレベーターを選択する。
 ステップS310において、エレベーターの何れかの号機が保守運転、或いは異常状態でなければ(ステップS310のNO)、バッテリの充電容量が不足であり、給電が必要な号機エレベーターが存在するか否かを判断する(ステップS312)。
 ステップS312において、給電が必要な号機エレベーターが存在する場合(ステップS312のYES)は、ステップS313に進み、該当する号機エレベーターの給電装置が1個以上動作しているか否か判断する。該当する号機エレベーターの給電装置が1個以上動作していれば(ステップS313のYES)、配車可能な号機エレベーターから、除外する号機エレベーターが無いとして処理を終了する。該当する号機エレベーターの給電装置が全て動作していない場合(ステップS313のNO)、配車可能な号機エレベーターから対象号機エレベーターを除外する(ステップS311)。
 ステップS312において、給電が必要な号機エレベーターが存在しない場合(ステップS312のNO)は、配車可能な号機エレベーターから、除外する号機エレベーターが無いとして処理を終了する。
 本実施例によれば、複数のエレベーターのうち何れかの号機エレベーターが保守運転、或いは異常状態、給電装置の全てが故障しているのであれば、配車可能な号機エレベーターから、対象号機エレベーターを除外するようにしているので、正常な号機エレベーターによる運転により、乗場呼びがあった階へスムーズに配車することができる。
 次に分散号機選択設定のステップS400について説明する。図11は本発明の実施例に係る分散号機選択設定の処理フローである。
 運行管理システム100は、各分散ゾーンに停止号機、及び停止予定号機が存在するか否か判断する(ステップS401)。
 上述した処理により、複数のエレベーターのうち何れかの号機エレベーターの給電装置に異常がある異常階は分散階として非接触給電方式エレベーターが割り当てられることが無いように選択対象から除外され、複数のエレベーターのうち何れかの号機エレベーターが保守運転、或いは異常状態、給電装置の全てが故障している号機エレベーターは、配車可能号機の対象から除外される。
 学習部103は、各分散ゾーンに停止している号機エレベーター、及び停止予定の号機エレベーターが存在するかどうかを判断する(ステップS401)。ステップS401において、各分散ゾーンに停止している号機エレベーター、及び停止予定の号機エレベーターが存在している場合(ステップS401のYES)、各分散ゾーンにおける分散階を除外する(ステップS402)。次に分散階が存在しているか否かを判断(ステップS403)し、分散階が既に存在している場合(ステップS403のYES)、停止している号機エレベーター、及び停止予定の号機エレベーターを分散対象の号機エレベーターから除外する(ステップS404)。さらに分散階が複数存在しているか否かを判断(ステップS405)し、既に分散階が複数存在している場合(ステップS405のYES)、停止している号機エレベーター、及び停止予定の号機エレベーターを分散対象の号機エレベーターから除外する(ステップS406)。その後、分散号機選択のメイン処理を実行する(ステップS407)。
 配車決定部102は、分散階が全て選択完了であるか否かを判断(ステップS408)し、分散階の選択が完了していれば(ステップS408のYES)処理を終了し、分散階の選択が完了していなければ(ステップS408のNO)、分散階の選択が完了するまで、処理を繰り返す。
 ステップS403において、分散階が存在していない場合(ステップS403のNO)、処理を終了する。
 ステップS405において、分散階が複数存在していない場合(ステップS405のNO)、分散号機選択のメイン処理を実行する(ステップS407)。
 次にステップS407における分散号機選択メイン処理について説明する。図12は本発明の実施例に係る分散号機選択のメイン処理フローである。
 運行管理システム100の給電階設定部108は、複数台のエレベーターのうち、制御対象のエレベーターとして給電が必要な号機エレベーター(非接触給電式)が存在するか否かを判断(ステップS410)し、給電が必要な号機エレベーターが存在する場合(ステップS410のYES)には、給電が必要な号機エレベーターの分散階が給電階であるか否かを判断する(ステップS411)。ステップS411において、分散階が給電階である場合(ステップS411のYES)には、配車決定部102は、分散対象となる号機エレベーターから配車決定処理を行う(ステップS412)。基本的に、給電が必要な号機エレベーター(非接触給電式)が存在する場合には、分散階は給電階として処理を行う。また、ステップS410において、給電が必要な号機エレベーターが存在しない場合(ステップS410のNO)には、配車決定部102は、分散対象となる号機エレベーターから配車決定処理を行う(ステップS412)。
 ステップS411において、分散階が給電階で無い場合(ステップS411のNO)には、給電階設定部108は、給電対象となる号機エレベーターにて、現在位置からの予備登録状況に応じて分散階停止時における予測バッテリ値を算出(ステップS413)し、予測バッテリ値が閾値以上あるか否かを判断する(ステップS414)。
 ステップS414において、給電階設定部108は、予測バッテリ値が閾値以上あると判断した場合(ステップS414のYES)、配車決定部102は、分散対象となる号機エレベーターから配車決定処理を行う(ステップS412)。
 また、ステップS414において、給電階設定部108は、予測バッテリ値が閾値以上あると判断した場合(ステップS414のNO)、該当する号機エレベーターにおいて最寄りの給電階への移動時間、及び充電時間、分散階への移動時間をペナルティと加算する(ステップS415)。
 以上の処理により、配車決定部102によって配車決定処理が行われ、この決定に基づいて、配車指令部106が各号機エレベーターに配車指令を出力する。
 本実施例によれば、給電装置の故障によるエレベーター運行への影響を抑制したエレベーターシステム及びエレベーターシステムの制御方法を提供することができる。
 なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。
 100…運行管理システム、101…乗場呼び制御部、102…配車決定部、103…学習部、104…分散制御部、105…案内指令部、106…配車指令部、107…号機異常検出部、108…給電階設定部、120a,120b…エレベーター乗場、121a,121b…ランタン、122a,122a…乗場釦、123a,123b…乗場端末、130a…1号機エレベーター、130b…2号機エレベーター、130c…3号機エレベーター、130d…4号機エレベーター、131a,131b,131c,131d…乗りかご、132a,132b,132c…給電装置、133a,133b,133c…受電装置、134a,134b,134c…バッテリ、135a,135b,135c,135d…号機制御装置

Claims (9)

  1.  非接触給電方式エレベーターを少なくとも1台備え、複数台のエレベーターを群管理制御するエレベーターシステムにおいて、
     前記複数台のエレベーターを分散待機させる分散階を設定する手段と、
     前記複数台のエレベーターの異常を検出する異常検出手段と、
     前記複数台のエレベーターから前記分散階に割り当てるエレベーターを選択する選択手段と、を備え、
     前記非接触給電方式エレベーターの任意の停止階には、給電装置を有する複数の給電階が設置され、
     前記選択手段は、前記異常検出手段により前記給電装置が異常と判断された際に、異常と判断された前記給電装置が設置されている対象の前記分散階に割り当てるエレベーターを選択するにあたっては、前記給電装置が異常と判断された非接触給電方式エレベーターを選択対象から除外して群管理制御を行うことを特徴とするエレベーターシステム。
  2.  請求項1において、
     前記選択手段は、前記複数の給電階に設置された前記給電装置の全てが前記異常検出手段により異常と判断された場合には、エレベーターの配車対象から除外して群管理制御を行うことを特徴とするエレベーターシステム。
  3.  請求項1において、
     前記選択手段は、前記複数の給電階のうち、前記分散階から除外された以外の他の給電階を前記分散階として群管理制御を行うことを特徴とするエレベーターシステム。
  4.  請求項1において、
     前記選択手段は、前記複数台のエレベーターから前記非接触給電方式エレベーターが有るか否かを判断する機能を備え、
     前記非接触給電方式エレベーターが有りの場合、前記分散階を前記給電階とし、前記非接触給電方式エレベーターで、且つ正常な前記非接触給電方式エレベーター、或いは非接触給電方式ではないエレベーターを分散対象とし、
     前記非接触給電方式エレベーターが無しの場合は前記非接触給電方式ではないエレベーターによる分散制御を実施することを特徴とするエレベーターシステム。
  5.  請求項2において、
     前記異常検出手段は、前記複数台のエレベーターのうち、保守運転のエレベーターを配車対象から除外して群管理制御を行うことを特徴とするエレベーターシステム。
  6.  非接触給電方式エレベーターを少なくとも1台備え、複数台のエレベーターを群管理制御するエレベーターシステムの制御方法において、
     前記複数台のエレベーターを分散待機させる分散階を設定するステップと、
     前記複数台のエレベーターの異常を検出するステップと、
     前記複数台のエレベーターから前記分散階に割り当てるエレベーターを選択するステップと、を備え、
     前記非接触給電方式エレベーターの複数の給電階に設置された給電装置が異常と判断された際に、異常と判断された前記給電装置が設置されている対象の前記分散階に割り当てるエレベーターを選択するにあたっては、前記給電装置が異常と判断された前記非接触給電方式エレベーターを選択対象から除外するステップを有することを特徴とするエレベーターシステムの制御方法。
  7.  請求項6において、
     前記複数の給電階に設置された前記給電装置の全てが異常と判断された場合には、エレベーターの配車から除外するステップを有することを特徴とするエレベーターシステムの制御方法。
  8.  請求項6において、
     前記複数の給電階のうち、前記分散階から除外された以外の他の給電階を前記分散階とするステップを有することを特徴とするエレベーターシステムの制御方法。
  9.  請求項6において、
     前記複数台のエレベーターの異常を検出するステップには、保守運転を含むことを特徴とするエレベーターシステムの制御方法。
PCT/JP2019/040035 2019-10-10 2019-10-10 エレベーターシステム及びエレベーターシステムの制御方法 WO2021070329A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040035 WO2021070329A1 (ja) 2019-10-10 2019-10-10 エレベーターシステム及びエレベーターシステムの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040035 WO2021070329A1 (ja) 2019-10-10 2019-10-10 エレベーターシステム及びエレベーターシステムの制御方法

Publications (1)

Publication Number Publication Date
WO2021070329A1 true WO2021070329A1 (ja) 2021-04-15

Family

ID=75438148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040035 WO2021070329A1 (ja) 2019-10-10 2019-10-10 エレベーターシステム及びエレベーターシステムの制御方法

Country Status (1)

Country Link
WO (1) WO2021070329A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294568A (ja) * 1992-04-22 1993-11-09 Hitachi Ltd エレベータ乗かごの電力供給装置
JP2013060262A (ja) * 2011-09-13 2013-04-04 Toshiba Elevator Co Ltd エレベータ
JP2013071804A (ja) * 2011-09-27 2013-04-22 Toshiba Elevator Co Ltd エレベータの非接触給電システム
US20150314984A1 (en) * 2014-05-05 2015-11-05 Witricity Corporation Wireless power transmission systems for elevators
JP2017057054A (ja) * 2015-09-16 2017-03-23 東芝エレベータ株式会社 エレベータの非接触給電システム
JP2017137151A (ja) * 2016-02-01 2017-08-10 株式会社日立製作所 非接触給電装置及びエレベーター
JP2018177407A (ja) * 2017-04-06 2018-11-15 株式会社日立製作所 エレベーター及び制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294568A (ja) * 1992-04-22 1993-11-09 Hitachi Ltd エレベータ乗かごの電力供給装置
JP2013060262A (ja) * 2011-09-13 2013-04-04 Toshiba Elevator Co Ltd エレベータ
JP2013071804A (ja) * 2011-09-27 2013-04-22 Toshiba Elevator Co Ltd エレベータの非接触給電システム
US20150314984A1 (en) * 2014-05-05 2015-11-05 Witricity Corporation Wireless power transmission systems for elevators
JP2017057054A (ja) * 2015-09-16 2017-03-23 東芝エレベータ株式会社 エレベータの非接触給電システム
JP2017137151A (ja) * 2016-02-01 2017-08-10 株式会社日立製作所 非接触給電装置及びエレベーター
JP2018177407A (ja) * 2017-04-06 2018-11-15 株式会社日立製作所 エレベーター及び制御方法

Similar Documents

Publication Publication Date Title
CN100522780C (zh) 单井道多轿厢方式电梯的控制装置
KR100428726B1 (ko) 엘리베이터 군관리 제어장치
US20120152661A1 (en) Double-deck elevator group controller
CN112693980A (zh) 机器人乘梯控制方法、***、电梯和机器人***及存储介质
US9126806B2 (en) Elevator system with distributed dispatching
CN100503409C (zh) 电梯组群管理控制装置
JPH0772059B2 (ja) エレベータの群管理装置
WO2019087249A1 (ja) エレベーター運行管理システムおよびエレベーター運行管理方法
CN100447066C (zh) 电梯组群管理控制装置
JP6054493B1 (ja) エレベータの非接触給電システム
JP6629370B2 (ja) エレベータの非接触給電システム
US10099892B2 (en) Elevator group controller with wear based call allocation of elevators
JPH0712891B2 (ja) エレベータの群管理装置
JP6139746B1 (ja) エレベータ群管理制御装置
JP3650150B2 (ja) 瞬時的なセクタ割り付け方法
JP2012197142A (ja) エレベータシステム
EP3380424A1 (en) Control method for an elevator control system
EP3835246A1 (en) Improved passenger interface for shuttle elevator system
JP6321241B1 (ja) 群管理制御装置
WO2021070329A1 (ja) エレベーターシステム及びエレベーターシステムの制御方法
JPWO2007066403A1 (ja) エレベータの群管理制御装置
EP3424857B1 (en) Emergency elevator power management
JP5738634B2 (ja) エレベータシステム
JP3378368B2 (ja) ダブルデッキエレベータの運転制御装置
JP5656813B2 (ja) エレベーターの群管理制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP