WO2021068449A1 - 能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用 - Google Patents

能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用 Download PDF

Info

Publication number
WO2021068449A1
WO2021068449A1 PCT/CN2020/076726 CN2020076726W WO2021068449A1 WO 2021068449 A1 WO2021068449 A1 WO 2021068449A1 CN 2020076726 W CN2020076726 W CN 2020076726W WO 2021068449 A1 WO2021068449 A1 WO 2021068449A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnf
modified
preparation
nitrophenol
cuo
Prior art date
Application number
PCT/CN2020/076726
Other languages
English (en)
French (fr)
Inventor
林兆云
杨桂花
陈嘉川
和铭
戢德贤
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Priority to JP2021517357A priority Critical patent/JP7132663B2/ja
Publication of WO2021068449A1 publication Critical patent/WO2021068449A1/zh

Links

Classifications

    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4007Regeneration or reactivation of catalysts containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/403Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the technical field of nano cellulose fiber catalysts, in particular to a modified nano cellulose fiber membrane capable of catalytically degrading 4-nitrophenol, and a preparation method and application thereof.
  • 4-Nitrophenol is a stubborn water impurity, widely derived from dyes, pesticides and pharmaceutical industries, and is a toxic organic pollutant.
  • the conversion of 4-nitrophenol to 4-aminophenol can not only reduce the toxicity of 4-nitrophenol, but also 4-aminophenol, as a fine organic chemical intermediate with a wide range of applications, can be used in the pharmaceutical industry to synthesize paracetamol, etc. It can also be used to prepare products such as developers, antioxidants and petroleum additives.
  • Photocatalytic degradation is mainly when semiconductors (such as nano TiO 2 , nano ZnO, etc.) are irradiated by ultraviolet light with a wavelength of less than 387.5 nm, the electrons in the valence band are excited, and the transition enters the conduction band, thus generating negative charge on the conduction band electronic high activity (E -), leaving a hole in the valence band of positively charged (h +), under the action of the electric field, electrons and holes are separated and migrate to different parts of the surface of the particle, form an oxidation - reduction
  • 4-nitrophenol is used as a sacrificial agent to be catalytically reduced.
  • the technical problems to be solved/objectives achieved by the present invention include at least: (1) Preparation of a green and renewable catalyst capable of treating 4-nitrophenol (such as in wastewater); (2) High catalytic efficiency; (3) Recycling The catalytic efficiency is high; in order to reduce the problem of large usage of the degrading 4-nitrophenol chemicals in the existing method, and the unsatisfactory treatment effect.
  • the present invention provides a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol and a preparation method and application thereof; the present invention uses nano cellulose fibers (CNF) as raw materials, and nano CuO particles are grown in situ On the nano-cellulose fiber, and the surface of the nano-cellulose fiber is coupled and grafted with amine groups, so that it has the ability to catalyze the degradation of 4-nitrophenol, and is mixed with polyvinyl alcohol to form a film for sewage treatment, and it can be recycled , Which can provide a new direction for the industrial application of CNF.
  • CNF nano cellulose fibers
  • the present invention provides a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol, comprising: nano cellulose fibers (CNF) and nano CuO particles, the nano CuO particles being grown in situ on the nano cellulose fibers , And the surface of the nanocellulose fiber is coupled and grafted with an amine group; the amine group is an alcohol amine group.
  • CNF nano cellulose fibers
  • nano CuO particles being grown in situ on the nano cellulose fibers
  • the surface of the nanocellulose fiber is coupled and grafted with an amine group; the amine group is an alcohol amine group.
  • the mass ratio of the CNF and the nano CuO particles is 1:1-2.
  • the amine group in the nanocellulose fiber is provided by glycol amine.
  • the CNF has a length of 500-2000 nm and a diameter of 10-50 nm.
  • the present invention also provides a method for preparing the above-mentioned modified nano-cellulose fiber membrane, which includes the following steps:
  • step (2) After mixing the CNF treated in step (1), the water-soluble copper source, and the lye, the reaction is carried out under stirring conditions until black appears to obtain CNF@CuO;
  • a suspension of CNF is prepared by a sulfuric acid method, and ultrasonic treatment is performed.
  • the addition ratio of the CNF suspension and the hydrogen peroxide-ammonia mixed liquid is 1 to 2 g: 10 mL.
  • the mass ratio of the two in the hydrogen peroxide-ammonia mixture is 1:1-2.
  • the water-soluble copper source includes any one of copper sulfate, copper nitrate and copper chloride.
  • the lye is an aqueous sodium hydroxide solution or ammonia water.
  • the stirring temperature is 60-90°C.
  • the temperature of the water bath is 50-85°C.
  • the mass ratio of CNF@CuO and the silane coupling agent is 10-5:1.
  • the silane coupling agent includes 3-aminopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane and ⁇ -(2,3-cyclic Any one of oxypropoxy)propyltrimethoxysilane.
  • the method for removing oxygen in the reaction system is to continuously pass nitrogen into the reaction system.
  • the amount of glycol amine is 1-30 wt%.
  • the amount of glycol amine is 5-20 wt%.
  • the temperature of the water bath is 45-60°C.
  • the volume ratio of the modified nanocellulose fiber suspension grafted with amine groups to the polyvinyl alcohol is 2 to 4:1.
  • the concentration of the modified nanocellulose fiber suspension grafted with amine groups is 1.0 wt%, 1.2 wt% or 1.5 wt%.
  • the present invention also provides a method for catalytic degradation of 4-nitrophenol: adding the modified nano cellulose fiber membrane to the 4-nitrophenol solution, and at the same time adding NaBH 4 for stirring, to catalytically degrade the 4-nitrophenol. ⁇ phenol.
  • the mass ratio of the modified nanocellulose fiber membrane to NaBH 4 is 1-10:6.
  • the modified nanocellulose fiber membrane is recovered by centrifugal separation.
  • the modified nano cellulose membrane obtained after the recovery is used to catalyze the degradation of 4-nitrophenol.
  • the invention also provides the application of the modified nano cellulose fiber in the fields of environment, chemical industry and medicine.
  • the present invention has achieved the following beneficial effects:
  • the present invention uses CNF as a raw material, and the modification is carried out under water system conditions, so that it has the advantages of green, environmental protection and renewable.
  • the modified CNF membrane of the present invention has excellent catalytic degradation ability for degradable 4-nitrophenol, the degradation rate can reach more than 94% when used for the first time, and it can efficiently catalyze and degrade 4-nitrophenol in a short time.
  • the high-efficiency catalytic degradation ability of the present invention enables the modified CNF membrane of the present invention to significantly reduce the dosage compared with the traditional chemical treatment of 4-nitrophenol.
  • the modified CNF membrane of the present invention can convert 4-nitrophenol into 4-aminophenol, not only can reduce the toxicity of 4-nitrophenol, but also 4-aminophenol can be used as a fine organic chemical intermediate.
  • the modified CNF membrane of the present invention can be recovered by washing with deionized water, which is a clean product; and after multiple use-recovery-use, the degradation rate of 4-nitrophenol still remains above 85% .
  • the preparation method of the present invention is simple, has strong degradation ability, strong practicability, and is easy to popularize.
  • the present invention provides a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol and a preparation method thereof.
  • the present invention provides a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol, comprising: nano cellulose fibers and nano CuO particles, the nano CuO particles are grown in situ on the nano cellulose fibers, and The surface of the nano cellulose fiber is coupled and grafted with an amine group.
  • the CNF in the modified nanocellulose fiber membrane has a length of 500-2000 nm and a diameter of 10-50 nm;
  • the mass ratio of CNF and nano CuO particles in the modified nanocellulose fiber membrane is 1:1 to 2, and an excessive amount of nano CuO particles will cause nano CuO particles dispersed in the CNF network structure Increase and loss in the washing process.
  • the amine group in the modified nanocellulose fiber membrane is provided by glycol amine.
  • the present invention also provides a method for preparing the modified nanocellulose fiber membrane, which is characterized in that it comprises the following steps:
  • step (2) After mixing the nanocellulose fibers treated in step (1), the water-soluble copper source and the lye, the reaction is carried out under stirring conditions until black appears, and CNF@CuO is obtained;
  • a suspension of CNF is prepared by a sulfuric acid method, and ultrasonic treatment is performed.
  • the addition ratio of the CNF suspension and the hydrogen peroxide-ammonia mixed liquid is 1 to 2 g: 10 mL.
  • the mass ratio of the two in the hydrogen peroxide ammonia water mixture is 1:1-2.
  • the main purpose of adding the hydrogen peroxide-ammonia mixture is to remove the sulfonic acid groups attached to the surface of the CNF and increase the hydroxyl content, thereby increasing the surface activity of the CNF, which is beneficial to the subsequent modification process.
  • the water-soluble copper source includes copper sulfate, copper nitrate or copper chloride.
  • the lye in the step (2), is an aqueous sodium hydroxide solution or ammonia water.
  • the stirring temperature is 60-90°C.
  • the temperature of the water bath is 50-85°C.
  • the mass ratio of CNF@CuO and the silane coupling agent is 10-5:1.
  • the silane coupling agent is mainly grafted on the surface of CNF to improve its hydrophobicity, and the silane coupling agent can be coupled and grafted with glycol amine, but the mass ratio of CNF@CuO and silane coupling agent exceeding 5:1 will cause The hydrophobicity of CNF is obviously increased, which is not conducive to the catalytic degradation of modified CNF membrane in water.
  • the silane coupling agent includes 3-aminopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane and ⁇ -(2 Any one of ,3-glycidoxy)propyltrimethoxysilane.
  • the method for removing oxygen in the reaction system is to continuously pass nitrogen into the reaction system.
  • the amount of the glycol amine is 1-30 wt%.
  • the main purpose of adding glycol amine is to graft the catalytically active alcohol amine group to replace -Cl on the silane group.
  • the amount of the glycol amine is 5-20 wt%. Further research of the present invention found that when the amount of glycolamine is less than 5wt%, the modified CNF membrane has a poor catalytic degradation effect on 4-nitrophenol; when the amount of glycolamine is greater than 20wt%, continue to increase the amount of glycol amine The amount of amine has little effect on the catalytic degradation of 4-nitrophenol.
  • the temperature of the water bath is 45-60°C.
  • the volume ratio of the modified nanocellulose fiber suspension grafted with amine groups to the polyvinyl alcohol is 2 to 4:1.
  • the concentration of the modified nanocellulose fiber suspension grafted with amine groups is 1.0 wt%, 1.2 wt%, or 1.5 wt%.
  • the present invention also provides a method for catalytic degradation of 4-nitrophenol: adding the modified nano cellulose fiber membrane to the 4-nitrophenol solution, and at the same time adding NaBH 4 for stirring, to catalytically degrade the 4-nitrophenol. ⁇ phenol.
  • the mass ratio of the modified CNF membrane to NaBH 4 in the method for catalytic degradation of 4-nitrophenol is 1-10:6, and the removal rate of 4-nitrophenol is improved by more than 10:6. Not obvious.
  • the modified nanocellulose membrane can be recovered by centrifugal separation; or the modified CNF membrane can be recovered by washing with deionized water and reused for 4-nitro Catalytic degradation of phenol.
  • the invention also provides the application of the modified nano cellulose fiber in the fields of environment, chemical industry and medicine.
  • a modified nano-cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step c) Take 10g of step c) CNF suspension was placed in three-necked flask, was added 100mLH 2 O 2 and NH 3 ⁇ H 2 O mixed solution (mass ratio 1: 1), stirred at room temperature mechanical IH, deionized water, centrifugation Wash to neutral, collect the precipitate and measure the moisture.
  • step e) Take 8g of CNF treated in step d) in a three-necked flask, disperse 0.2M CuSO 4 and 1.0M NaOH in 100mL deionized water and transfer to a three-necked flask, stir at 60°C for 4h until the solution turns black. Get CNF@CuO, where the mass ratio of CNF to CuO is 1:1.
  • step f) Take 6g of CNF@CuO-APTS of step f) in a three-necked flask, add 1wt% glycol amine (relative to CNF@CuO-APTS of step f)), and continue to pour in nitrogen, and react in a 45°C water bath 12h, centrifuge and wash until the filtrate does not contain chloride ions, and collect the precipitate to obtain the modified CNF suspension;
  • step g) The modified CNF suspension (concentration of 1.0 wt%) of step g) is mixed with polyvinyl alcohol according to a volume of 4:1, and cast into a film to obtain it.
  • modified CNF membrane Take 50mL of 1mmol/L 4-nitrophenol and place it in a beaker, add 100mg of modified CNF membrane and 600mg of NaBH 4 at the same time, stir mechanically for 5 minutes, centrifuge to recover the modified CNF membrane, and collect the upper liquid and spectroscopy it under UV-visible light Scan under a photometer, record the absorbance at a wavelength of 400nm, and calculate its concentration.
  • the modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step c) Take 10g of step c) CNF suspension was placed in three-necked flask, was added 100mLH 2 O 2 and NH 3 ⁇ H 2 O mixed solution (mass ratio 1: 1), stirred at room temperature mechanical IH, deionized water, centrifugation Wash to neutral, collect the precipitate and measure the moisture.
  • step e) Take 8g of CNF treated in step d) in a three-necked flask, disperse 0.2M CuSO 4 and 1.0M NaOH in 100mL deionized water and transfer to a three-necked flask, stir at 60°C for 4h until the solution turns black.
  • the obtained precipitate is CNF@CuO, and the mass ratio of CNF to CuO is 1:1.
  • step g) The modified CNF suspension (concentration of 1.0 wt%) of step g) is mixed with polyvinyl alcohol according to a volume of 4:1, and cast into a film to obtain it.
  • modified CNF membrane Take 50mL of 1mmol/L 4-nitrophenol and place it in a beaker, add 100mg of modified CNF membrane and 600mg of NaBH 4 at the same time, stir mechanically for 5 minutes, centrifuge and wash to recover the modified CNF membrane, and collect the upper liquid and apply it to UV-visible light. Scan under a spectrophotometer, record the absorbance at a wavelength of 400nm, and calculate its concentration. The modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step c) Take 10g of step c) CNF suspension was placed in three-necked flask, was added 100mLH 2 O 2 and NH 3 ⁇ H 2 O mixed solution (mass ratio 1: 1), stirred at room temperature mechanical IH, deionized water, centrifugation Wash to neutral, collect the precipitate and measure the moisture.
  • step e Take 8g of the nanocellulose fiber treated in step d) and place it in a three-necked flask. Disperse 0.2M CuSO 4 and 1.0M NaOH in 100mL deionized water and transfer to a three-necked flask. Stir at 60°C for 4h. The solution is black, and the resulting precipitate is CNF@CuO, where the mass ratio of CNF to CuO is 1:1.
  • step g) The modified CNF suspension (concentration of 1.2 wt%) of step g) is mixed with polyvinyl alcohol according to a volume of 4:1, and cast into a film to obtain it.
  • modified CNF membrane Take 50mL of 1mmol/L 4-nitrophenol and place it in a beaker, add 100mg of modified CNF membrane and 600mg of NaBH 4 at the same time, stir mechanically for 5 minutes, centrifuge and wash to recover the modified CNF membrane, and collect the upper liquid and apply it to UV-visible light. Scan under a spectrophotometer, record the absorbance at a wavelength of 400nm, and calculate its concentration. The modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step e Take 8g of CNF treated in step d) and place it in a three-necked flask. Disperse 0.2M CuCl 2 and 1.0M NaOH in 100mL deionized water and transfer to a three-necked flask. Stir at 70°C for 4h until the solution turns black. , The resulting precipitate is CNF@CuO, where the mass ratio of CNF to CuO is 1:2.
  • modified CNF membrane Take 50mL of 1mmol/L 4-nitrophenol into a beaker, add 100mg of modified CNF membrane, and at the same time add 200mg of NaBH 4 , mechanically stir for 5 minutes, centrifuge to wash and recover the modified CNF membrane, and collect the upper liquid and spectroscopy it under UV-visible light. Scan under a photometer, record the absorbance at a wavelength of 400nm, and calculate its concentration. The modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step c) Take 20g of step c) CNF suspension was placed in three-necked flask, was added 100mLH 2 O 2 and NH 3 ⁇ H 2 O mixed solution (mass ratio 1: 2) at room temperature with mechanical stirring IH, deionized water, centrifugation Wash to neutral, collect the precipitate and measure the moisture.
  • step e Take 8g of CNF treated in step d) and place it in a three-necked flask. Disperse 0.2M CuCl 2 and 1.0M NaOH in 100mL deionized water and transfer to a three-necked flask. Stir at 70°C for 4h until the solution turns black. , The resulting precipitate is CNF@CuO, where the mass ratio of CNF to CuO is 1:2.
  • step g) The modified CNF suspension (concentration of 1.0 wt%) of step g) is mixed with polyvinyl alcohol in a volume of 3:1, and cast into a film to obtain.
  • modified CNF membrane Take 50mL of 1mmol/L 4-nitrophenol and place it in a beaker, add 200mg of modified CNF membrane and 200mg of NaBH 4 at the same time, mechanically stir for 5 min, centrifuge to wash and recover the modified CNF membrane, and collect the upper liquid and spectroscopy in UV-visible light. Scan under a photometer, record the absorbance at a wavelength of 400nm, and calculate its concentration.
  • the modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step c) Take 20g of step c) CNF suspension was placed in three-necked flask, was added 100mLH 2 O 2 and NH 3 ⁇ H 2 O mixed solution (mass ratio 1: 2) at room temperature with mechanical stirring IH, deionized water, centrifugation Wash to neutral, collect the precipitate and measure the moisture.
  • step e Take 8g of CNF treated in step d) and place it in a three-necked flask. Disperse 0.2M CuCl 2 and 1.0M NaOH in 100mL deionized water and transfer to a three-necked flask. Stir at 70°C for 4h until the solution turns black. , The resulting precipitate is CNF@CuO, where the mass ratio of CNF to CuO is 1:2.
  • step g) The modified CNF suspension (concentration of 1.0 wt%) of step g) is mixed with polyvinyl alcohol in a volume of 3:1, and cast into a film to obtain.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step c) Take 10g of step c) CNF suspension was placed in three-necked flask, was added 100mLH 2 O 2 and NH 3 ⁇ H 2 O mixed solution (mass ratio 1: 1), stirred at room temperature mechanical IH, deionized water, centrifugation Wash to neutral, collect the precipitate and measure the moisture.
  • step d) Take 8g of CNF processed in step d) and place it in a three-necked flask. Disperse 0.2M Cu(NO 3 ) 2 and 1.0M NaOH in 100mL deionized water and transfer to a three-necked flask. Stir at 80°C for 4h Until the solution turns black, the resulting precipitate is CNF@CuO, where the mass ratio of CNF to CuO is 1:1.
  • step g) The modified CNF suspension (concentration of 1.0 wt%) of step g) is mixed with polyvinyl alcohol according to a volume of 2:1, and cast into a film to obtain it.
  • modified CNF membrane Take 50mL of 1mmol/L 4-nitrophenol and place it in a beaker, add 400mg of modified CNF membrane and 100mg of NaBH 4 at the same time, mechanically stir for 5 min, centrifuge and wash to recover the modified CNF membrane, and collect the upper liquid and spectroscopy it under UV-visible light. Scan under a photometer, record the absorbance at a wavelength of 400nm, and calculate its concentration. The modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step c) Take 10g of step c) CNF suspension was placed in three-necked flask, was added 100mLH 2 O 2 and NH 3 ⁇ H 2 O mixed solution (mass ratio 1: 1), stirred at room temperature mechanical IH, deionized water, centrifugation Wash to neutral, collect the precipitate and measure the moisture.
  • step d) Take 8g of CNF processed in step d) and place it in a three-necked flask, disperse 0.2M Cu(NO 3 ) 2 and 1.0M NH 3 ⁇ H 2 O in 100 mL deionized water and transfer to the three-necked flask, Stir at 80°C for 4h until the solution turns black.
  • the resulting precipitate is CNF@CuO, where the mass ratio of CNF to CuO is 1:1.
  • step g) The modified CNF suspension (concentration of 1.5 wt%) of step g) is mixed with polyvinyl alcohol according to a volume of 2:1, and cast into a film to obtain.
  • modified CNF membrane Take 50mL of 1.5mmol/L 4-nitrophenol and place it in a beaker, add 200mg of modified CNF membrane and 100mg of NaBH 4 at the same time, mechanically stir for 5min, centrifuge and wash to recover the modified CNF membrane, and collect the upper layer liquid and apply it to ultraviolet visible light. Scan under a spectrophotometer, record the absorbance at a wavelength of 400nm, and calculate its concentration. The modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step c) Take 10g of step c) CNF suspension was placed in three-necked flask, was added 100mLH 2 O 2 and NH 3 ⁇ H 2 O mixed solution (mass ratio 1: 1), stirred at room temperature mechanical IH, deionized water, centrifugation Wash to neutral, collect the precipitate and measure the moisture.
  • step d) Take 8g of CNF processed in step d) and place it in a three-necked flask, disperse 0.2M Cu(NO 3 ) 2 and 1.0M NH 3 ⁇ H 2 O in 100 mL deionized water and transfer to the three-necked flask, Stir at 80°C for 4h until the solution turns black.
  • the resulting precipitate is CNF@CuO, where the mass ratio of CNF to CuO is 1:1.
  • modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step d) Take 20g of the CNF suspension of step c) and place it in a three-necked flask, add 100 mL of a mixture of H 2 O 2 and NH 3 ⁇ H 2 O (mass ratio 1:2), mechanically stir for 1 hour at room temperature, deionized water Centrifuge and wash until neutral, collect the precipitate and measure the moisture.
  • step d) Take 8g of CNF processed in step d) and place it in a three-necked flask, disperse 0.2M CuSO 4 and 1.0M NH 3 ⁇ H 2 O in 100mL deionized water and transfer to the three-necked flask, stir at 90 °C 4h until the solution turns black, the precipitate obtained is CNF@CuO, and the mass ratio of CNF to CuO is 1:2.
  • modified CNF membrane Take 50mL of 2.5mmol/L 4-nitrophenol and place it in a beaker, add 200mg of modified CNF membrane and 60mg of NaBH 4 at the same time, stir mechanically for 5 minutes, centrifuge and wash to recover the modified CNF membrane, and collect the upper layer liquid and apply it to ultraviolet visible light. Scan under a spectrophotometer, record the absorbance at a wavelength of 400nm, and calculate its concentration. The modified CNF membrane is recovered by washing with deionized water and reused.
  • a modified nano cellulose fiber membrane capable of catalytic degradation of 4-nitrophenol the specific steps are as follows:
  • step d) Take 20g of the CNF suspension of step c) and place it in a three-necked flask, add 100 mL of a mixture of H 2 O 2 and NH 3 ⁇ H 2 O (mass ratio 1:2), mechanically stir for 1 hour at room temperature, deionized water Centrifuge and wash until neutral, collect the precipitate and measure the moisture.
  • step d) Take 8g of CNF treated in step d) and place it in a three-necked flask, disperse 0.2M CuSO 4 and 1.0M NH 3 ⁇ H 2 O in 100 mL of deionized water and transfer to the three-necked flask, stir at 90°C for 4h Until the solution turns black, the precipitate obtained is CNF@CuO, and the mass ratio of CNF to CuO is 1:2.
  • modified CNF membrane Place 50mL of 3mmol/L 4-nitrophenol in a beaker, add 200mg of modified CNF membrane and 60mg of NaBH 4 at the same time, stir mechanically for 5 minutes, centrifuge and wash to recover the modified CNF membrane, and collect the upper liquid and spectroscopy it under UV-visible light. Scan under a photometer, record the absorbance at a wavelength of 400nm, and calculate its concentration.
  • the modified CNF membrane is recovered by washing with deionized water and reused.
  • the concentration of 4-nitrophenol in the filtrate after the 4-nitrophenol was treated with the modified nanocellulose filaments prepared in Examples 1-11 was measured.
  • the test method is: configure the 4-nitrophenol standard samples of 0.005g/L, 0.001g/L, 0.0015g/L, 0.002g/L, 0.0025g/L, and place them in an ultraviolet-visible spectrophotometer to measure the absorbance. And determine the standard curve, as shown in Table 1.
  • Example number 1 2 3 4 5 Absorbance/T% 0.14632 0.12931 0.07269 0.06153 0.05425 Concentration/mmol/L 0.05651 0.04883 0.02462 0.01985 0.01674 Removal rate/% 94.35 95.12 97.54 98.02 98.33 Reuse times 25 25 25 25 25 Removal rate after reuse/% 85.08 85.46 86.12 88.15 88.67
  • Example number 6 7 8 9 10 11 Absorbance/T% 0.03260 0.01611 0.06780 0.11058 0.25929 0.36335 Concentration/mmol/L 0.00748 0.00443 0.02253 0.04082 0.10440 0.14889 Removal rate/% 99.26 99.56 98.50 97.96 95.83 95.04 Reuse times 25 25 25 25 25 25 25 25 Removal rate after reuse/% 89.88 90.12 89.75 89.53 89.42 89.13

Abstract

本发明涉及纳米纤维素纤维膜催化剂技术领域,尤其涉及能够催化降解4-硝基苯酚的改性CNF膜及其制备方法和应用。所述改性CNF膜包括:纳米纤维素纤维和纳米CuO颗粒,所述纳米CuO颗粒原位生长在纳米纤维素纤维上,且纳米纤维素纤维表面接枝有胺基。本发明的改性CNF膜对可降解4-硝基苯酚具有优异的催化降解能力,并且可以在短时间内高效的催化降解4-硝基苯酚。

Description

能够催化降解4-硝基苯酚的改性CNF膜及其制备方法和应用
本申请要求于2019年10月09日提交中国专利局、申请号为CN201910954943.0、发明名称为“能够催化降解4-硝基苯酚的改性CNF膜及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及纳米纤维素纤维催化剂技术领域,尤其涉及一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜及其制备方法和应用。
背景技术
本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
4-硝基苯酚是一种顽固的水杂质,广泛来源于染色剂、农药和制药行业,是一种有毒有机污染物。将4-硝基苯酚转化成4-氨基苯酚不仅可以降低4-硝基苯酚的毒性,而且4-氨基苯酚作为一种应用较广泛的精细有机化工中间体,在医药工业可用于合成扑热息痛等,也可用于制备显影剂、抗氧剂和石油添加剂等产品。
目前,对于4-硝基苯酚的催化降解主要有光催化降解法和纳米贵金属颗粒催化降解法两种方法。光催化降解主要是当半导体(例如纳米TiO 2、纳米ZnO等)受到波长小于387.5nm的紫外光照射时,其价带上的电子被激发,跃迁进入导带,因而在导带上产生带负电的高活性电子(e -),在价带上留下带正电荷的空穴(h +),在电场的作用下,电子和空穴分离并迁移到粒子表面的不同部位,形成氧化-还原体系,4-硝基苯酚作为牺牲剂被催化还原。然而,半导体材料价格较高,且光催化对条件要求较为严格,反应较慢,不可工业化。贵金属颗粒粒径较小,表面原子占有比较高,具有独特的量子尺寸效应、表面效应以及宏观量子隧道效应等使其产生了许多特有的光学、电学、催化性能等,具有极高的比表面积和表面活性,可高效催化降解4-硝基苯酚,但是贵金属成本较高,经济实用性较低。另外,光催化降解法与纳米贵金属颗粒降解法中的催化剂均 较难回收。
发明内容
本发明要解决的技术问题/达到的目的至少包括:(1)制备绿色可再生的能够处理4-硝基苯酚(如废水中)的催化剂;(2)催化效率高;(3)重复利用时催化效率高;以减少现有方法中降解4-硝基苯酚化学药品使用量大,且处理效果不理想等问题。
为此,本发明提供一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜及其制备方法和应用;本发明以纳米纤维素纤维(CNF)为原料,纳米CuO颗粒原位生长在纳米纤维素纤维上,且纳米纤维素纤维表面偶联接枝有胺基,使其具有催化降解4-硝基苯酚的能力,并与聚乙烯醇混合成膜用于污水处理,并且可回收,可为CNF的产业化应用提供新的方向。
为实现上述目的,本发明公开了下述技术方案:
本发明提供一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,包括:纳米纤维素纤维(CNF)和纳米CuO颗粒,所述纳米CuO颗粒原位生长在纳米纤维素纤维上,且所述纳米纤维素纤维表面偶联接枝有胺基;所述胺基为醇胺基。
优选的,所述CNF和纳米CuO颗粒的质量比为1:1~2。
优选的,所述纳米纤维素纤维中的胺基由乙二醇胺提供。
优选的,所述CNF的长度为500~2000nm,直径为10~50nm。
本发明还提供上述改性纳米纤维素纤维膜的制备方法,包括如下步骤:
(1)将CNF的悬浮液和过氧化氢-氨水混合液混合搅拌均匀,然后离心,将得到的CNF洗涤至中性,备用;
(2)将步骤(1)处理的CNF、水溶性铜源和碱液混合后,在搅拌条件下进行反应至出现黑色,得到CNF@CuO;
(3)将所述CNF@CuO重新分散并加入硅烷偶联剂中,在水浴条件下进行反应,所述反应完成后,对反应液进行离心、洗涤和收集沉淀,得到疏水改性的CNF@CuO;
(4)将所述疏水改性的CNF@CuO加入乙二醇胺,除去反应体系中氧气,在水浴条件下进行反应,所述反应完成后,对反应液进行离心,洗涤和收集沉淀,得到所述接枝有胺基的改性纳米纤维素纤维悬浮液;
(5)将所述接枝有胺基的改性纳米纤维素纤维悬浮液与聚乙烯醇混合,流延成膜,得到所述改性纳米纤维素纤维膜。
优选的,所述步骤(1)中,采用硫酸法制备CNF的悬浮液,并进行超声处理。
优选地,所述步骤(1)中,CNF的悬浮液、过氧化氢-氨水混合液的添加比例为1~2g:10mL。
优选地,所述步骤(1)中,过氧化氢-氨水混合液中两者质量比为1:1~2。
优选地,所述步骤(2)中,水溶性铜源包括硫酸铜、硝酸铜和氯化铜中的任意一种。
优选地,所述步骤(2)中,所述碱液为氢氧化钠水溶液或氨水。
优选地,所述步骤(2)中,所述搅拌的温度为60~90℃。
优选的,所述步骤(3)中,所述水浴的温度为50~85℃。
优选地,所述步骤(3)中,CNF@CuO和硅烷偶联剂质量比为10~5:1。
优选地,所述步骤(3)中,硅烷偶联剂包括3-氨丙基三乙氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷和γ-(2,3-环氧丙氧)丙基三甲氧基硅烷中的任意一种。
优选地,所述步骤(4)中,除去反应体系中氧气的方法为向反应体系中持续通入氮气。
优选地,所述步骤(4)中,乙二醇胺的用量为1~30wt%。
优选地,所述步骤(4)中,乙二醇胺的用量为5~20wt%。
优选地,所述步骤(4)中,所述水浴的温度为45~60℃。
优选地,所述步骤(5)中,接枝有胺基的改性纳米纤维素纤维悬浮液与聚乙烯醇的体积比为2~4:1。
优选的,所述步骤(5)中,接枝有胺基的改性纳米纤维素纤维悬浮 液的浓度为1.0wt%、1.2wt%或1.5wt%。
本发明还提供了一种催化降解4-硝基苯酚的方法:将所述改性纳米纤维素纤维膜加入4-硝基苯酚溶液中,同时加入NaBH 4进行搅拌,催化降解所述4-硝基苯酚。
优选地,所述改性纳米纤维素纤维膜与NaBH 4的质量比为1~10:6。
优选的,所述催化降解完成后,通过离心分离,回收所述改性纳米纤维素纤维膜。
优选地,所述回收后得到的改性纳米纤维素膜用于催化降解4-硝基苯酚。
本发明还提供了所述的改性纳米纤维素纤维在环境、化工和医药领域中的应用。
与现有技术相比,本发明取得了以下有益效果:
(1)本发明以CNF为原料,改性是在水系条件下进行,使其具有绿色环保、可再生的优点。
(2)本发明的改性CNF膜对可降解4-硝基苯酚具有优异的催化降解能力,首次使用时降解率可达94%以上,并且可以在短时间内高效的催化降解4-硝基苯酚,高效的催化降解能力使得本发明的改性CNF膜用量相对传统的化学药品处理4-硝基苯酚而言,能够显著降低用量。
(3)本发明的改性CNF膜能够将4-硝基苯酚转化成4-氨基苯酚,不仅可以降低4-硝基苯酚的毒性,而且4-氨基苯酚可以作为精细有机化工中间体被利用。
(4)本发明的改性CNF膜可通过去离子水洗涤回收,是一种清洁产品;而且经过多次使用-回收-使用后,对4-硝基苯酚的降解率依然保持在85%以上。
(5)本发明制备方法简单、降解能力强、实用性强,易于推广。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如,在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如前文所述,结合绿色可再生材料处理废水中的4-硝基苯酚,减少化学药品的使用,提高处理效率等是实现4-硝基苯酚降解的重要途径。因此,本发明提出了一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜及其制备方法。
本发明提供了能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,包括:纳米纤维素纤维和纳米CuO颗粒,所述纳米CuO颗粒原位生长在所述纳米纤维素纤维上,且所述纳米纤维素纤维表面偶联接枝有胺基。
在一些典型实施方式中,所述改性纳米纤维素纤维膜中CNF长度为500~2000nm,直径为10~50nm;
在一些典型实施方式中,所述改性纳米纤维素纤维膜中CNF和所述纳米CuO颗粒的质量比为1:1~2,过量的纳米CuO颗粒会导致CNF网络结构中分散的纳米CuO颗粒增加,并损失在洗涤过程中。
在一些典型实施方式中,所述改性纳米纤维素纤维膜中的胺基由乙二醇胺提供。
本发明还提供了所述的改性纳米纤维素纤维膜的制备方法,其特征在于,包括如下步骤:
(1)将CNF的悬浮液和过氧化氢-氨水混合液混合搅拌均匀,然后离心,将得到的CNF洗涤至中性,备用;
(2)将步骤(1)处理的纳米纤维素纤维、水溶性铜源和碱液混合后,在搅拌条件下进行反应至出现黑色,得到CNF@CuO;
(3)将所述CNF@CuO重新分散并加入硅烷偶联剂中,在水浴条件下进行反应,所述反应完成后,对反应液进行离心、洗涤和收集沉淀,得到疏水改性的CNF@CuO;
(4)将所述疏水改性的CNF@CuO中加入乙二醇胺,除去反应体系 中氧气,在水浴条件下进行反应,所述反应完成后,对反应液进行离心,洗涤和收集沉淀,得到接枝有胺基的改性纳米纤维素纤维悬浮液;
(5)将所述接枝有胺基的改性纳米纤维素纤维悬浮液与聚乙烯醇混合,流延成膜,得到所述改性纳米纤维素纤维膜。
在一些典型实施方式中,所述步骤(1)中,采用硫酸法制备CNF的悬浮液,并进行超声处理。
在一些典型实施方式中,所述步骤(1)中,CNF的悬浮液和过氧化氢-氨水混合液的添加比例为1~2g:10mL。
在一些典型实施方式中,所述步骤(1)中,过氧化氢氨水混合液中两者质量比为1:1~2。加入过氧化氢-氨水混合液的主要目的是脱除CNF表面附着的磺酸基团,增大羟基含量,从而提高CNF的表面活性,有利于后续改性过程。
在一些典型实施方式中,所述步骤(2)中,水溶性铜源包括硫酸铜、硝酸铜或氯化铜。
在一些典型实施方式中,所述步骤(2)中,所述碱液为氢氧化钠水溶液或氨水。
在一些典型实施方式中,所述步骤(2)中,所述搅拌的温度为60~90℃。
在一些典型实施方式中,所述步骤(3)中,所述水浴的温度为50~85℃。
在一些典型实施方式中,所述步骤(3)中,CNF@CuO和硅烷偶联剂的质量比为10~5:1。硅烷偶联剂主要接枝在CNF表面用于提高其疏水性,且硅烷偶联剂可偶联接枝乙二醇胺,但CNF@CuO和硅烷偶联剂的质量比超过5:1会导致CNF疏水性明显增大,不利于改性CNF膜在水中的催化降解作用。
在一些典型实施方式中,所述步骤(3)中,硅烷偶联剂包括3-氨丙基三乙氧基硅烷,γ-甲基丙烯酰氧基丙基三甲氧基硅烷和γ-(2,3-环氧丙氧)丙基三甲氧基硅烷中的任意一种。
在一些典型实施方式中,所述步骤(4)中,除去反应体系中氧气的方法为向反应体系中持续通入氮气。
在一些典型实施方式中,所述步骤(4)中,所述乙二醇胺的用量为1~30wt%。加入乙二醇胺的主要目的是接枝具有催化活性的醇胺基团,取代硅烷基团上的-Cl。
在一些典型实施方式中,所述步骤(4)中,所述乙二醇胺的用量为5~20wt%。本发明进一步研究发现,当乙二醇胺用量小于5wt%时,改性CNF膜对4-硝基苯酚的催化降解效果不佳;当乙二醇胺用量大于20wt%,继续增大乙二醇胺用量对4-硝基苯酚的催化降解效果影响不大。
在一些典型实施方式中,所述步骤(4)中,所述水浴的温度为45~60℃。
在一些典型实施方式中,所述步骤(5)中,接枝有胺基的改性纳米纤维素纤维悬浮液与聚乙烯醇的体积比为2~4:1。
在一些典型实施方式中,所述步骤(5)中,接枝有胺基的改性纳米纤维素纤维悬浮液的浓度为1.0wt%、1.2wt%或1.5wt%。
本发明还提供了一种催化降解4-硝基苯酚的方法:将所述改性纳米纤维素纤维膜加入4-硝基苯酚溶液中,同时加入NaBH 4进行搅拌,催化降解所述4-硝基苯酚。
在一些典型实施方式中,所述催化降解4-硝基苯酚的方法中改性CNF膜与NaBH 4的质量比为1~10:6,超过10:6对4-硝基苯酚的去除率提高不明显。
在一些典型实施方式中,所述催化降解完成后,通过离心分离,回收所述改性纳米纤维素膜;或通过去离子水洗涤即可回收改性CNF膜,并重新用于4-硝基苯酚的催化降解。
本发明还提供了所述改性纳米纤维素纤维在环境、化工和医药领域中的应用。
现结合具体实施方式对本发明进一步进行说明。
实施例1
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步 骤如下:
(1)CNF悬浮液的制备:
a)将桉木浆板置于去离子水中浸泡至完全疏解,打浆至打浆度为48°SR,脱水处理并密封平衡12h后测定水分备用。
b)取适量浆料(相比于绝干浆)置于三口烧瓶中,以酸浆比18:1加入适量64%的浓硫酸,于50℃水浴中酸水解反应1h,反应完成后加入去离子水终止反应,离心洗涤至上清液pH为3,沉淀置换透析至透析液呈中性。
c)取出沉淀,置于超声波细胞粉碎机中以1200W功率处理30min,再经高压匀质机一级阀压强80bar,二级阀压强350bar均质15min,得到CNF悬浮液。
(2)改性CNF膜的制备:
d)取10g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:1),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF于三口烧瓶中,将0.2M的CuSO 4与1.0M的NaOH分散在100mL去离子水中并转移至三口烧瓶中,60℃下搅拌4h至溶液呈黑色,得到CNF@CuO,其中CNF与CuO的质量比为1:1。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入0.8g 3-氨丙基三乙氧基硅烷,于50℃水浴中搅拌6h,离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取6g步骤f)的CNF@CuO-APTS于三口烧瓶中,加入1wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,45℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液;
h)将步骤g)的改性CNF的悬浮液(浓度为1.0wt%)与聚乙烯醇按照体积4:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取1mmol/L的4-硝基苯酚50mL置于烧杯中,加入100mg改性CNF膜,同时加入600mg NaBH 4,机械搅拌5min,离心回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例2
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取10g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:1),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF于三口烧瓶中,将0.2M的CuSO 4与1.0M的NaOH分散在100mL去离子水中并转移至三口烧瓶中,60℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:1。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入0.8gγ-甲基丙烯酰氧基丙基三甲氧基硅烷,于50℃水浴中搅拌6h,水乙醇离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g步骤f)的CNF@CuO-MPS于三口烧瓶中,加入5wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,45℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液;
h)将步骤g)的改性CNF的悬浮液(浓度为1.0wt%)与聚乙烯醇按照体积4:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取1mmol/L的4-硝基苯酚50mL置于烧杯中,加入100mg改性CNF膜,同时加入600mg NaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例3
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取10g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:1),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的纳米纤维素纤置于三口烧瓶中,将0.2M的CuSO 4与1.0M的NaOH分散在100mL去离子水中并转移至三口烧瓶中,60℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:1。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入0.8gγ-甲基丙烯酰氧基丙基三甲氧基硅烷,于50℃水浴中搅拌6h,水乙醇离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g上述的CNF@CuO-MPS于三口烧瓶中,加入5wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,45℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液;
h)将步骤g)的改性CNF的悬浮液(浓度为1.2wt%)与聚乙烯醇按照体积4:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取1mmol/L的4-硝基苯酚50mL置于烧杯中,加入100mg改性CNF膜,同时加入600mg NaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例4
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取20g上述纳米纤维素纤丝的悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:2),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF置于三口烧瓶中,将0.2M的CuCl 2与1.0M的NaOH分散在100mL去离子水中并转移至三口烧瓶中,70℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:2。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入1.0gγ-(2,3-环氧丙烷)丙基三甲氧基硅烷,于60℃水浴中搅拌6h,水乙醇离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g上述的CNF@CuO-EPPM置于三口烧瓶中,加入10wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,50℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液;
h)将所述改性CNF膜的悬浮液(浓度为1.5wt%)与聚乙烯醇按照体积3:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取1mmol/L的4-硝基苯酚50mL置于烧杯中,加入100mg改性CNF膜,同时加入200mgNaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例5
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取20g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:2),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF置于三口烧瓶中,将0.2M的CuCl 2与1.0M的NaOH分散在100mL去离子水中并转移至三口烧瓶中,70℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:2。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入1.0g 3-氨丙基三乙氧基硅烷,于60℃水浴中搅拌6h,水乙醇离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g步骤f)的CNF@CuO-APTS置于三口烧瓶中,加入10wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,50℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液;
h)将步骤g)的改性CNF的悬浮液(浓度为1.0wt%)与聚乙烯醇按照体积3:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取1mmol/L的4-硝基苯酚50mL置于烧杯中,加入200mg改性CNF 膜,同时加入200mgNaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例6
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取20g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:2),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF置于三口烧瓶中,将0.2M的CuCl 2与1.0M的NaOH分散在100mL去离子水中并转移至三口烧瓶中,70℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:2。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入1.0gγ-甲基丙烯酰氧基丙基三甲氧基硅烷,于60℃水浴中搅拌6h,水乙醇离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g上述的CNF@CuO-MPS于三颈烧瓶中,加入10wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,50℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液;
h)将步骤g)的改性CNF的悬浮液(浓度为1.0wt%)与聚乙烯醇按照体积3:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取1mmol/L的4-硝基苯酚50mL置于烧杯中,加入300mg改性CNF 膜,同时加入200mgNaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例7
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取10g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:1),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF置于三口烧瓶中,将0.2M的Cu(NO 3) 2与1.0M的NaOH分散在100mL去离子水中并转移至三口烧瓶中,80℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:1。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入1.3g 3-氨丙基三乙氧基硅烷,于70℃水浴中搅拌6h,水乙醇离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g步骤f)的CNF@CuO-APTS于三颈烧瓶中,加入15wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,55℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液;
h)将步骤g)的改性CNF的悬浮液(浓度为1.0wt%)与聚乙烯醇按照体积2:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取1mmol/L的4-硝基苯酚50mL置于烧杯中,加入400mg改性CNF膜,同时加入100mgNaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜, 并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例8
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取10g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:1),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF置于三口烧瓶中,将0.2M的Cu(NO 3) 2与1.0M的NH 3·H 2O分散在100mL去离子水中并转移至三口烧瓶中,80℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:1。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入1.3gγ-甲基丙烯酰氧基丙基三甲氧基硅烷,于70℃水浴中搅拌6h,水乙醇离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g上述的CNF@CuO-MPS于三颈烧瓶中,加入15wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,55℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液;
h)将步骤g)的改性CNF的悬浮液(浓度为1.5wt%)与聚乙烯醇按照体积2:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取1.5mmol/L的4-硝基苯酚50mL置于烧杯中,加入200mg改性CNF膜,同时加入100mgNaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜, 并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例9
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取10g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mLH 2O 2与NH 3·H 2O混合液(质量比为1:1),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF置于三口烧瓶中,将0.2M的Cu(NO 3) 2与1.0M的NH 3·H 2O分散在100mL去离子水中并转移至三口烧瓶中,80℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:1。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入1.3g 3-氨丙基三乙氧基硅烷,于70℃水浴中搅拌6h,水乙醇离心法洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g上述的CNF@CuO-APTS于三颈烧瓶中,加入15wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,55℃水浴中反应12h,离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液膜;
h)将所述改性CNF膜的悬浮液(浓度为1.0wt%)与聚乙烯醇按照体积2:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取2mmol/L的4-硝基苯酚50mL置于烧杯中,加入200mg改性CNF膜,同时加入100mgNaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm 波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
实施例10
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取20g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mL H 2O 2与NH 3·H 2O混合液(质量比为1:2),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF置于三口烧瓶中,将0.2M的CuSO 4与1.0M的NH 3·H 2O分散在100mL去离子水中并转移至三口烧瓶中,90℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:2。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入1.6gγ-甲基丙烯酰氧基丙基三甲氧基硅烷,于85℃水浴中搅拌6h,离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g上述的CNF@CuO-MPS于三颈烧瓶中,加入20wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,60℃水浴中反应12h,水乙醇离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液膜;
h)将所述改性CNF膜的悬浮液(浓度为1.0wt%)与聚乙烯醇按照体积2:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取2.5mmol/L的4-硝基苯酚50mL置于烧杯中,加入200mg改性CNF膜,同时加入60mgNaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行 回用。
实施例11
1、一种能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,具体步骤如下:
(1)CNF的制备:同实施例1。
(2)改性CNF膜的制备:
d)取20g步骤c)的CNF悬浮液置于三口烧瓶中,加入100mL H 2O 2与NH 3·H 2O混合液(质量比为1:2),室温下机械搅拌1h,去离子水离心洗涤至中性,收集沉淀并测量水分。
e)取8g经过步骤d)处理的CNF置于三口烧瓶中,将0.2M的CuSO 4与1.0M的NH 3·H 2O散在100mL去离子水中并转移至三口烧瓶中,90℃下搅拌4h至溶液呈黑色,得到的沉淀即为CNF@CuO,其中CNF与CuO的质量比为1:2。
f)取8g步骤e)的CNF@CuO,加入160mL水乙醇(水和乙醇的质量比为1:3)重新分散,并加入1.6gγ-(2,3-环氧丙氧)丙基三甲氧基硅烷,于85℃水浴中搅拌6h,水乙醇离心洗涤至滤液中不含氯离子,收集沉淀并测量水分。得到的沉淀即为疏水改性的CNF@CuO(CNF@CuO-APTS)。
g)取上述6g上述的CNF@CuO-EPPM于三颈烧瓶中,加入30wt%乙二醇胺(相对于步骤f)的CNF@CuO-APTS),并持续通入氮气,60℃水浴中反应12h,水乙醇离心洗涤至滤液不含氯离子,收集沉淀,即得改性CNF悬浮液膜;
h)将所述改性CNF膜的悬浮液(浓度为1.0wt%)与聚乙烯醇按照体积2:1混合,流延成膜,即得。
2、改性CNF膜催化降解4-硝基苯酚测试:
取3mmol/L的4-硝基苯酚50mL置于烧杯中,加入200mg改性CNF膜,同时加入60mgNaBH 4,机械搅拌5min,离心洗涤回收改性CNF膜,并将上层液体收集并于紫外可见光分光光度计下进行扫描,记录在400nm波长出的吸收率,计算出其浓度。去离子水洗涤回收改性CNF膜并进行回用。
性能测试:
以滤液中的4-硝基苯酚的浓度为性能测试指标,测定实施例1~11制备的改性纳米纤维素纤丝处理4-硝基苯酚后的滤液浓度。测试方法为:分别配置0.005g/L、0.001g/L、0.0015g/L、0.002g/L、0.0025g/L的4-硝基苯酚标样,置于紫外可见光分光光度计中测定吸光度,并确定标准曲线,如表1所示。
分别将滤液置于紫外可见光分光光度计中测定吸光度,并根据标准曲线计算其浓度,测试结果如表2和3所示。
表1 4-硝基苯酚标样紫外可见光吸光度
4-硝基苯酚浓度/g/L 0.0005 0.001 0.0015 0.002 0.0025
吸光度/T% 0.02286 0.03559 0.04033 0.04875 0.05715
根据计算,可知标准曲线为y=16.827x+0.0151;其中,x为4-硝基苯酚浓度,g/L;y为紫外可见光吸光度,T%。
表2实施例1~5制备的改性纳米纤维素纤丝对4-硝基苯酚后的去除率
实施例序号 1 2 3 4 5
吸光度/T% 0.14632 0.12931 0.07269 0.06153 0.05425
浓度/mmol/L 0.05651 0.04883 0.02462 0.01985 0.01674
去除率/% 94.35 95.12 97.54 98.02 98.33
回用次数 25 25 25 25 25
回用之后去除率/% 85.08 85.46 86.12 88.15 88.67
表3实施例6~11制备的改性纳米纤维素纤丝对4-硝基苯酚后的去除率
实施例序号 6 7 8 9 10 11
吸光度/T% 0.03260 0.01611 0.06780 0.11058 0.25929 0.36335
浓度/mmol/L 0.00748 0.00443 0.02253 0.04082 0.10440 0.14889
去除率/% 99.26 99.56 98.50 97.96 95.83 95.04
回用次数 25 25 25 25 25 25
回用之后去除率/% 89.88 90.12 89.75 89.53 89.42 89.13
从表2和表3可以看出,采用本发明的方法对CNF进行改性之后,可以在短时间内高效的催化降解4-硝基苯酚,去离子多次洗涤回收后仍 然具有优异的4-硝基苯酚去除能力。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (25)

  1. 能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜,其特征在于,包括:纳米纤维素纤维和纳米CuO颗粒,所述纳米CuO颗粒原位生长在所述纳米纤维素纤维上,且所述纳米纤维素纤维表面偶联接枝有胺基;所述胺基为醇胺基。
  2. 如权利要求1所述的改性纳米纤维素纤维膜,其特征在于,所述纳米纤维素纤维和所述纳米CuO颗粒的质量比为1:1~2。
  3. 如权利要求1所述的改性纳米纤维素纤维膜,其特征在于,所述纳米纤维素纤维中的胺基由乙二醇胺提供。
  4. 如权利要求1~3任一项所述的改性纳米纤维素纤维膜,其特征在于,所述纳米纤维素纤维的长度为500~2000nm,直径为10~50nm。
  5. 能够催化降解4-硝基苯酚的改性纳米纤维素纤维膜的制备方法,其特征在于,包括如下步骤:
    (1)将CNF的悬浮液和过氧化氢-氨水混合液混合搅拌均匀,然后离心,将得到的CNF洗涤至中性,备用;
    (2)将步骤(1)处理的纳米纤维素纤维、水溶性铜源和碱液混合后,在搅拌条件下进行反应至出现黑色,得到CNF@CuO;
    (3)将所述CNF@CuO重新分散并加入硅烷偶联剂中,在水浴条件下进行反应,所述反应完成后,对反应液进行离心、洗涤收集沉淀,得到疏水改性的CNF@CuO;
    (4)将所述疏水改性的CNF@CuO中加入乙二醇胺,除去反应体系中氧气,在水浴条件下进行反应,所述反应完成后,反应液进行离心,洗涤收集沉淀,得到接枝有胺基的改性纳米纤维素纤维悬浮液;
    (5)将所述接枝有胺基的改性纳米纤维素纤维悬浮液与聚乙烯醇混合,流延成膜,得到所述改性纳米纤维素纤维膜。
  6. 如权利要求5所述的制备方法,其特征在于,所述步骤(1)中,采用硫酸法制备CNF的悬浮液,并进行超声处理。
  7. 如权利要求5所述的制备方法,其特征在于,所述步骤(1)中, CNF的悬浮液和过氧化氢-氨水混合液的添加比例为1~2g:10mL。
  8. 如权利要求5所述的制备方法,其特征在于,所述步骤(1)中,过氧化氢-氨水混合液中两者质量比为1:1~2。
  9. 如权利要求5所述的制备方法,其特征在于,所述步骤(2)中,水溶性铜源包括硫酸铜、硝酸铜和氯化铜中的任意一种。
  10. 如权利要求5所述的制备方法,其特征在于,所述步骤(2)中,碱液为氢氧化钠水溶液或氨水。
  11. 如权利要求5所述的制备方法,其特征在于,所述步骤(2)中,搅拌的温度为60~90℃。
  12. 如权利要求5所述的制备方法,其特征在于,所述步骤(3)中,水浴的温度为50~85℃。
  13. 如权利要求5所述的制备方法,其特征在于,所述步骤(3)中,CNF@CuO和硅烷偶联剂质量比为10~5:1。
  14. 如权利要求5所述的制备方法,其特征在于,所述步骤(3)中,硅烷偶联剂包括3-氨丙基三乙氧基硅烷,γ-甲基丙烯酰氧基丙基三甲氧基硅烷和γ-(2,3-环氧丙氧)丙基三甲氧基硅烷中的任意一种。
  15. 如权利要求5所述的制备方法,其特征在于,所述步骤(4)中,除去反应体系中氧气的方法为向反应体系中持续通入氮气。
  16. 如权利要求5所述的制备方法,其特征在于,所述步骤(4)中,所述乙二醇胺的用量为1~30wt%。
  17. 如权利要求16所述的制备方法,其特征在于,所述步骤(4)中,所述乙二醇胺的用量为5~20wt%。
  18. 如权利要求5所述的制备方法,其特征在于,所述步骤(4)中,水浴的温度为45~60℃。
  19. 如权利要求5所述的制备方法,其特征在于,所述步骤(5)中,接枝有胺基的改性纳米纤维素纤维悬浮液与聚乙烯醇的体积比为2~4:1。
  20. 如权利要求19所述的制备方法,其特征在于,所述步骤(5)中,接枝有胺基的改性纳米纤维素纤维悬浮液的浓度为1.0wt%、1.2wt%或1.5wt%。
  21. 一种催化降解4-硝基苯酚的方法:将权利要求1~4任一项所述的改性纳米纤维素纤维膜或由权利要求5~20任一项所述的方法制备得到的改性纳米纤维素纤维膜加入4-硝基苯酚溶液中,同时加入NaBH 4进行搅拌,催化降解所述4-硝基苯酚。
  22. 如权利要求21所述的方法,其特征在于,所述改性纳米纤维素纤维膜与NaBH 4的质量比为1~10:6。
  23. 如权利要求21所述的方法,其特征在于,所述催化降解完成后,通过离心分离,回收所述改性纳米纤维素膜。
  24. 如权利要求23所述的方法,其特征在于,所述回收后得到的改性纳米纤维素膜用于催化降解4-硝基苯酚。
  25. 权利要求1~4任一项所述的改性纳米纤维素纤维膜和/或权利要求5~20任一项所述的方法制备的改性纳米纤维素纤维膜在环境、化工和医药领域中的应用。
PCT/CN2020/076726 2019-10-09 2020-02-26 能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用 WO2021068449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021517357A JP7132663B2 (ja) 2019-10-09 2020-02-26 4-ニトロフェノールの触媒分解が可能な変性cnf膜とその調製方法及び応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910954943.0A CN110681415B (zh) 2019-10-09 2019-10-09 能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用
CN201910954943.0 2019-10-09

Publications (1)

Publication Number Publication Date
WO2021068449A1 true WO2021068449A1 (zh) 2021-04-15

Family

ID=69111829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076726 WO2021068449A1 (zh) 2019-10-09 2020-02-26 能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用

Country Status (3)

Country Link
JP (1) JP7132663B2 (zh)
CN (1) CN110681415B (zh)
WO (1) WO2021068449A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055208A (zh) * 2022-06-24 2022-09-16 安庆市长三角未来产业研究院 两相流催化膜的制备方法、两相流催化膜及其应用
CN115055208B (zh) * 2022-06-24 2024-05-10 安庆市长三角未来产业研究院 两相流催化膜的制备方法、两相流催化膜及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681415B (zh) * 2019-10-09 2021-10-15 齐鲁工业大学 能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用
CN111974359B (zh) * 2020-09-01 2022-10-25 齐鲁工业大学 具有吸附性和原位催化性的纳米纤维素/层状双金属氢氧化物复合材料的制备及其应用
CN112156810B (zh) * 2020-09-17 2023-04-07 齐鲁工业大学 可催化降解4-硝基苯酚的纳米纤维素膜及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492486A (zh) * 2014-12-22 2015-04-08 中国科学院化学研究所 一种生物质负载型纳米金属催化剂及其制备方法与应用
CN106512876A (zh) * 2016-11-17 2017-03-22 陕西盛迈石油有限公司 碳化细菌纤维素包裹铜的制备方法
CN110227509A (zh) * 2019-06-24 2019-09-13 中北大学 一种高效还原对硝基苯酚的碳点/氧化铜/介孔羟基磷灰石催化材料的制备方法
CN110681415A (zh) * 2019-10-09 2020-01-14 齐鲁工业大学 能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418063B (zh) * 2008-12-08 2010-12-22 中国热带农业科学院农产品加工研究所 一种利用原位接枝聚合制备天然橡胶-二氧化硅纳米复合材料的方法
CN103642062B (zh) 2013-12-05 2016-04-27 江南大学 一种高催化活性氧化亚铜/再生纤维素复合薄膜的制备方法
WO2015135068A1 (en) * 2014-03-11 2015-09-17 Les Innovations Materium Inc. Processes for preparing silica-carbon allotrope composite materials and using same
US10017689B2 (en) * 2014-08-25 2018-07-10 Halliburton Energy Services, Inc. Crush-resistant proppant particulates for use in subterranean formation operations
CN107185591B (zh) * 2017-05-16 2019-09-06 郑州轻工业学院 一种可循环使用的纤维素纸基纳米银催化材料的制备方法及其应用
CN107213916B (zh) * 2017-06-27 2019-10-01 广西大学 改性木质纤维素酯基类芬顿催化剂的制备方法及其应用
CN108940268B (zh) 2018-07-27 2021-06-01 信阳师范学院 一种石墨烯/Pt纳米复合气凝胶材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492486A (zh) * 2014-12-22 2015-04-08 中国科学院化学研究所 一种生物质负载型纳米金属催化剂及其制备方法与应用
CN106512876A (zh) * 2016-11-17 2017-03-22 陕西盛迈石油有限公司 碳化细菌纤维素包裹铜的制备方法
CN110227509A (zh) * 2019-06-24 2019-09-13 中北大学 一种高效还原对硝基苯酚的碳点/氧化铜/介孔羟基磷灰石催化材料的制备方法
CN110681415A (zh) * 2019-10-09 2020-01-14 齐鲁工业大学 能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BENDI RAMARAJU, IMAE TOYOKO: "Renewable catalyst with Cu nanoparticles embedded into cellulose nano-fiber film", RSC ADVANCES, vol. 3, no. 37, 1 January 2013 (2013-01-01), pages 16279, XP055800768, DOI: 10.1039/c3ra42689k *
JIANG HONG, SUN XIAOXU, DU YAN, CHEN RIZHI, XING WEIHONG: "Catalytic activity of palladium nanoparticles immobilized on an amino-functionalized ceramic membrane support", CHINESE JOURNAL OF CATALYSIS / DALIAN INSTITUTE OF CHEMICAL PHYSICS, ELSEVIER, AMSTERDAM, NL, vol. 35, no. 12, 1 December 2014 (2014-12-01), AMSTERDAM, NL, pages 1990 - 1996, XP055800767, ISSN: 1872-2067, DOI: 10.1016/S1872-2067(14)60190-X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055208A (zh) * 2022-06-24 2022-09-16 安庆市长三角未来产业研究院 两相流催化膜的制备方法、两相流催化膜及其应用
CN115055208B (zh) * 2022-06-24 2024-05-10 安庆市长三角未来产业研究院 两相流催化膜的制备方法、两相流催化膜及其应用

Also Published As

Publication number Publication date
JP2022512559A (ja) 2022-02-07
CN110681415A (zh) 2020-01-14
CN110681415B (zh) 2021-10-15
JP7132663B2 (ja) 2022-09-07

Similar Documents

Publication Publication Date Title
Adnan et al. Mitigation of pollutants by chitosan/metallic oxide photocatalyst: a review
WO2021068449A1 (zh) 能够催化降解4-硝基苯酚的改性cnf膜及其制备方法和应用
Zhou et al. Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production
Vincent et al. Chitosan-supported palladium catalyst. 1. Synthesis procedure
Liu et al. High-efficient catalytic reduction of 4-nitrophenol based on reusable Ag nanoparticles/graphene-loading loofah sponge hybrid
Wang et al. Construction of β-FeOOH@ tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties
Duan et al. Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@ MOF‐199s nanocatalysts for catalytic reduction of 4‐nitrophenol
EP2921456A2 (en) Material used in the removal of contaminants from liquid matrices
Yang et al. Carbon doped Fe3O4 peroxidase-like nanozyme for mitigating the membrane fouling by NOM at neutral pH
CN110240723B (zh) 一种紫外高屏蔽纤维素膜及其制备方法与应用
Faraji et al. Enhanced photocatalytic activity by synergic action of ZIF-8 and NiFe2O4 under visible light irradiation
CN104399535A (zh) 一种磁性配合物基催化剂的制备方法和应用
Wang et al. Enhanced performance of β-cyclodextrin modified Cu2O nanocomposite for efficient removal of tetracycline and dyes: Synergistic role of adsorption and photocatalysis
CN113731395A (zh) 一种富含氧空位的锡酸锌光催化剂、制备方法及应用
Wang et al. Stable construction of layered reduced grapheme oxide/copper sulfide composites on cellulose fibers with hyperbranched polyamide-amine for efficient photocatalytic degradation of organic dyes
Xue et al. Preparation of g-C3N4 (Ag)/Gr/TiO2 Z-scheme photocatalyst with enhanced reduction property and the efficient degradation of rhodamine B
CN112973744B (zh) 一种光电催化剂及其制备方法
CN103331174A (zh) 一种负载钯的硫化镉可见光催化剂及其制备方法
CN113198515B (zh) 一种三元光催化剂及其制备方法与应用
CN112827366B (zh) 一种基于纳米零价铜改性碳纳米管滤膜的制备及其应用
CN109759135B (zh) 一种去除再生水中重金属/疏水性ppcps的复合材料的制备方法
CN110871099A (zh) 一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
Cao et al. Complecting the BiOCl nano-roundels based hollow microbasket induced by chitosan for dramatically enhancing photocatalytic activity
CN107999072A (zh) 一种光热催化剂、其制备方法和催化环己烷氧化的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517357

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874702

Country of ref document: EP

Kind code of ref document: A1