WO2021045528A1 - 에어로겔 블랭킷 제조방법 - Google Patents

에어로겔 블랭킷 제조방법 Download PDF

Info

Publication number
WO2021045528A1
WO2021045528A1 PCT/KR2020/011859 KR2020011859W WO2021045528A1 WO 2021045528 A1 WO2021045528 A1 WO 2021045528A1 KR 2020011859 W KR2020011859 W KR 2020011859W WO 2021045528 A1 WO2021045528 A1 WO 2021045528A1
Authority
WO
WIPO (PCT)
Prior art keywords
blanket
sol
substrate
catalyzed
airgel
Prior art date
Application number
PCT/KR2020/011859
Other languages
English (en)
French (fr)
Inventor
강태경
백세원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022504203A priority Critical patent/JP7320664B2/ja
Priority to US17/614,164 priority patent/US20220227635A1/en
Priority to EP20859770.8A priority patent/EP4026802A4/en
Priority to CN202080037036.0A priority patent/CN113853361B/zh
Publication of WO2021045528A1 publication Critical patent/WO2021045528A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/155Preparation of hydroorganogels or organogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/064Silica aerogel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method of manufacturing an airgel blanket, and more particularly, to a method of manufacturing an airgel blanket including the process of recovering and reusing the sol not impregnated in the blanket during manufacturing the airgel blanket.
  • Aerogel is an ultra-porous, high specific surface area ( ⁇ 500 m 2 /g) material with a porosity of about 90 to 99.9% and a pore size in the range of 1 to 100 nm. Since it is a material having an airgel material, as well as research on the development of aerogel material, application research as a transparent insulation material and environment-friendly high-temperature insulation material, ultra-low dielectric thin film for highly integrated devices, catalyst and catalyst carrier, electrode for super capacitor, and electrode material for seawater desalination are also actively progressing. .
  • airgel is super-insulation, which has a thermal conductivity of 0.300 W/m ⁇ K or less, which is lower than that of organic insulation materials such as conventional styrofoam, and that it prevents fire vulnerability, which is a fatal weakness of organic insulation materials, and harmful gas generation in case of fire. Is that it can be solved.
  • an airgel is manufactured by preparing a hydrogel from a precursor material and removing a liquid component inside the hydrogel without destroying the microstructure.
  • Typical forms of airgel can be divided into three types: powder, granule, and monolith, and are generally manufactured in the form of powder.
  • the powder it is possible to commercialize it in a form such as an airgel blanket or an airgel sheet by compounding it with fibers, and the blanket or sheet has flexibility, so it can be bent, folded or cut in any size or shape.
  • the blanket or sheet has flexibility, so it can be bent, folded or cut in any size or shape.
  • a house such as an apartment, when airgel is used not only on the roof or floor, but also on the fire door, there is a great effect in preventing fire.
  • the airgel blanket is made of an airgel physically bonded to and impregnated with a blanket substrate such as fibers, and is prepared by mixing a sol with a blanket substrate, impregnating the sol into the blanket substrate, and then gelling.
  • a blanket substrate such as fibers
  • the insulation performance of the blanket is deteriorated, and there may be a problem that the hydrophobic properties are also deteriorated.
  • the sol is used in excess, thereby generating non-impregnated sol, which is discarded, resulting in a treatment problem due to waste generation and an increase in raw material costs. Will result.
  • An object to be solved of the present invention is to provide a method of manufacturing an airgel blanket that can be reused by recovering the sol not impregnated in the blanket substrate generated in the step of impregnating the sol into the blanket substrate during the manufacturing process of the airgel blanket. .
  • the present invention comprises the steps of: 1) impregnating a sol catalyzed into a substrate for a blanket; And 2) gelling the catalyzed sol to produce a wet gel-blanket composite, comprising: A) recovering the unimpregnated catalyzed sol after the impregnating step and introducing a solvent. Diluting to stop gelation of the recovered sol; And B) reusing the recovered sol from which gelation is stopped in the step of preparing a catalyzed sol, wherein the catalyzed sol prepared through step B) is used to obtain the recovered sol from which the gelation is stopped. It provides a method for manufacturing an airgel blanket comprising to 50% by weight.
  • the manufacturing method of the present invention recovers the non-impregnated catalyzed sol in the step of impregnating the catalyst substrate with the blanket substrate to stop the gelation of the catalyzed sol, and this in the subsequent step of preparing the catalyzed sol.
  • it is possible to reuse the unimpregnated catalyzed sol that was previously discarded.
  • the recovered unimpregnated catalyzed sol is reused to produce a new catalyzed sol, so that the silica network contained in the recovered unimpregnated catalyzed sol is Since it helps gelation and can exert an effect of enhancing the structure of the airgel and improving the physical properties, it can be usefully used in the manufacture of an airgel blanket.
  • FIG. 1 is a perspective view of an airgel blanket manufacturing apparatus that can be used to manufacture an airgel blanket according to an example of the present invention.
  • the method for producing an airgel blanket of the present invention comprises the steps of: 1) impregnating a substrate for a blanket with a catalyzed sol; And 2) gelling the catalyzed sol to produce a wet gel-blanket composite, comprising: A) recovering the unimpregnated catalyzed sol after the impregnating step, and adding a solvent And diluting to stop the gelation of the recovered sol; And B) reusing the recovered sol from which gelation is stopped in the production step of the catalyzed sol, and the catalyzed sol prepared through step B) contains 5 to 50 recovered sols whose gelation is stopped. It is characterized in that it contains% by weight.
  • the airgel blanket manufacturing method of the present invention is divided into a process of manufacturing an airgel blanket and a process of recovering and reusing the unimpregnated catalyzed sol generated through the sol impregnation step and the gelling step during the manufacturing process of the airgel blanket.
  • the process of reusing the non-impregnated catalyzed sol may additionally include manufacturing an airgel blanket.
  • step 1) in the method for manufacturing an airgel blanket of the present invention as a step of preparing to form an airgel blanket, a process of impregnating the sol catalyzed into the substrate for the blanket is performed.
  • the term “impregnation” used in the present invention may be achieved by introducing a catalyzed sol having fluidity into the blanket substrate, and may indicate penetration of the catalyzed sol into pores inside the blanket substrate.
  • the catalyzed sol may be prepared by mixing a sol and a base catalyst.
  • the base catalyst may exert an effect of promoting gelation in step 2) by increasing the pH of the sol.
  • the sol is not limited as long as it is a material capable of forming a porous gel through a sol-gel reaction, and may specifically include an inorganic sol, an organic sol, or a combination thereof.
  • Inorganic sols may include zirconia, yttrium oxide, hafnia, alumina, titania, ceria, silica, magnesium oxide, calcium oxide, magnesium fluoride, calcium fluoride, and combinations thereof
  • the organic sol is polyacrylate, Polyolefin, polystyrene, polyacrylonitrile, polyurethane, polyimide, polyfurfural alcohol, phenol furfuryl alcohol, melamine formaldehyde, resorcinol formaldehyde, cresol formaldehyde, phenol formaldehyde, polyvinyl alcohol dialdehyde, polycylate Anurates, polyacrylamides, various epoxies, agar, agarose, and combinations thereof.
  • the sol may be a silica sol.
  • a silica sol When a silica sol is used as the sol, it exhibits excellent miscibility with a substrate for a blanket, and when a gel is formed using it, it may have more porosity, and an airgel blanket having low thermal conductivity may be manufactured.
  • the sol may include a sol precursor, water, and an organic solvent, and the sol may be prepared by mixing a sol precursor, water, and an organic solvent.
  • the sol catalyzed in step 1) may be prepared by mixing a silica sol and a base catalyst, and the silica sol is a silica precursor and It can be prepared by mixing water and an organic solvent.
  • the silica sol may be hydrolyzed at a low pH to facilitate gelation, in which case an acid catalyst may be used to lower the pH.
  • the silica precursor that can be used for the preparation of the silica sol may be a silicon-containing alkoxide-based compound, specifically tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), and methyl trioxide.
  • TMOS tetramethyl orthosilicate
  • TEOS tetraethyl orthosilicate
  • methyl trioxide tetramethyl orthosilicate
  • Ethyl orthosilicate dimethyl diethyl orthosilicate, tetrapropyl orthosilicate, tetraisopropyl orthosilicate, tetrabutyl orthosilicate orthosilicate), tetra secondary butyl orthosilicate, tetra tertiary butyl orthosilicate, tetrahexyl orthosilicate, tetracyclohexyl orthosilicate ), tetradodecyl orthosilicate, and the like.
  • the silica precursor according to an embodiment of the present invention may be tetraethyl orthosilicate (TEOS).
  • the silica precursor may be used in an amount such that the content of silica (SiO 2 ) contained in the silica sol is 3% by weight to 30% by weight. If the content of the silica is less than 3% by weight, the content of the silica airgel in the final manufactured blanket may be too low, resulting in a problem that the desired level of insulation effect cannot be expected. There is a concern that the mechanical properties of the blanket, especially the flexibility, are deteriorated due to formation.
  • the organic solvent that can be used in the preparation of the sol of the present invention can be used without limitation as long as it has excellent compatibility with the sol precursor and water, and specifically, a polar organic solvent can be used, and more specifically, an alcohol can be used.
  • the alcohol is a monohydric alcohol such as methanol, ethanol, isopropanol, butanol;
  • it may be a polyhydric alcohol such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol, and any one or a mixture of two or more of them may be used.
  • it may be a monohydric alcohol having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, butanol, and the like.
  • the organic solvent as described above may be used in an appropriate amount in consideration of the content of the finally produced airgel.
  • the silica sol according to an embodiment of the present invention may include a silica precursor and water in a molar ratio of 1:4 to 1:1.
  • the silica precursor and the organic solvent may be included in a weight ratio of 1:2 to 1:9, and preferably may be included in a weight ratio of 1:4 to 1:6.
  • the yield of airgel production may be further increased, and thus an improvement effect may be exhibited in terms of thermal insulation performance.
  • the acid catalyst that may be further included in the sol according to an embodiment of the present invention may be used without limitation as long as the acid catalyst has a pH of 3 or less, and hydrochloric acid, nitric acid, or sulfuric acid may be used as an example.
  • the acid catalyst may be added in an amount such that the sol pH is 3 or less, and may be added in the form of an aqueous solution dissolved in an aqueous medium.
  • the base catalyst usable in the catalyzed sol according to an embodiment of the present invention includes inorganic bases such as sodium hydroxide and potassium hydroxide; Or an organic base such as ammonium hydroxide.
  • the base catalyst is sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca(OH) 2 ), ammonia (NH 3 ), ammonium hydroxide (NH 4 OH; aqueous ammonia), tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), methylamine, ethylamine, isopropylamine, monoisopropylamine, di Ethylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, triisopropylamine, tribut
  • the base catalyst may be included in an amount such that the pH of the sol is 7 to 11. If the pH of the sol is out of the above range, there is a risk that the gelation in step 2) described later is not easily performed, or the gelation rate is too slow, thereby deteriorating fairness.
  • the base since the base may be precipitated when added in a solid phase, specifically, it may be added in the form of an aqueous medium or a solution diluted with the above-described organic solvent. In this case, the dilution ratio of the base catalyst and the organic solvent, specifically alcohol, may be 1:4 to 1:100 based on volume.
  • the catalyzed sol may further include additives as needed, and in this case, all known additives that may be added when preparing an aerogel may be applied, for example, an opacifying agent. , Additives such as flame retardants may be used.
  • the substrate for a blanket according to an example of the present invention may be specifically a porous substrate in terms of improving the thermal insulation properties of the airgel blanket.
  • a porous blanket substrate When a porous blanket substrate is used, the catalyzed sol easily penetrates into the substrate, and thus the airgel blanket formed uniformly forms the airgel inside the blanket substrate, so that the manufactured airgel blanket can have excellent thermal insulation properties.
  • the blanket substrate that can be used according to an embodiment of the present invention may be a film, sheet, net, fiber, foam, nonwoven fabric, or a laminate of two or more layers thereof.
  • the surface roughness may be formed or patterned on the surface.
  • the blanket substrate may be a fiber capable of further improving thermal insulation performance by including spaces or voids in which the airgel can be easily inserted into the blanket substrate.
  • the blanket substrate is polyamide, polybenzimidazole, polyaramid, acrylic resin, phenolic resin, polyester, polyetheretherketone (PEEK), polyolefin (e.g., polyethylene, polypropylene or a copolymer thereof Etc.), cellulose, carbon, cotton, wool, hemp, non-woven fabric, glass fiber or ceramic wool, etc.
  • the substrate for the blanket may be glass fiber (glass felt, glass fiber).
  • the catalyzed sol is added in an amount of 100 to 170%, specifically 110% to 160%, and more specifically 115 to 155% based on the volume of the blanket substrate. Can be.
  • the aerogel blanket produced by more evenly impregnating the catalyzed sol into the blanket substrate may have more uniform physical properties. Since the sol can be impregnated as much as possible into the blanket substrate, loss of raw materials can be prevented and the problem of gelation of the catalyzed sol alone can be prevented.
  • step 2) the catalyzed sol is gelled to prepare a wet gel-blanket composite.
  • the gelation may be the formation of a network structure from a catalyzed sol, and the network structure is a specific polygon having one or more kinds of atomic arrangement. It may represent a structure in the form of a flat net or a structure that forms a three-dimensional skeleton structure by sharing the vertices, edges, and faces of a specific polyhedron.
  • step 2) may be initiated after step 1) is completed, and thus step 1) and step 2) may be performed sequentially. Further, according to another embodiment of the present invention, before step 1) is completed, the execution of step 2) may be started. When the performance of step 2) is started before the completion of step 1), the step of impregnating the substrate for blanket with the catalyzed sol may be completed before the gelation is completed.
  • the steps of 1) impregnating a substrate for blanket with a catalyzed sol and 2) gelling the catalyzed sol to prepare a wet gel-blanket composite include: A roll-to-roll method of gelling while continuously moving the moving element by applying the catalyzed sol to the blanket substrate, or, as described later, by putting both the catalyzed sol and the blanket substrate into a reaction vessel and gelling it. It can be carried out by a method of manufacturing an airgel blanket.
  • the step of impregnating the sol catalyzed into the blanket substrate of step 1) may be performed by introducing the catalyst sol and the blanket substrate into a reaction vessel in a half-use container.
  • the order of addition of the blanket substrate and the catalyzed sol to be introduced into the reaction vessel is not particularly limited.
  • step 1) is a method of introducing a substrate for blanket into a reaction vessel and then introducing a catalyzed sol, a method of introducing a substrate for blanket after introducing the catalyst into a reaction vessel, and catalyzing a reaction vessel. It may be carried out by any one of the methods of injecting the blanket substrate while injecting the sol.
  • a method of introducing a substrate for a blanket and then introducing a catalyzed sol to achieve a more uniform impregnation may be specifically used.
  • the blanket substrate is first added, since the blanket substrate can be rotated when the catalyzed sol is added, more uniform impregnation can be induced.
  • the impregnation in step 1) may be performed while rotating the substrate for the blanket.
  • the sol catalyzed uniformly contacts all surfaces of the blanket substrate, thereby exerting an effect of inducing uniform impregnation.
  • the blanket substrate may be introduced in an appropriate form for easy injection according to the shape of the reaction vessel.
  • the blanket substrate may be put into a reaction vessel while being wound around a bobbin.
  • the blanket substrate may be rotated by rotating the bobbin, and the blanket substrate may be rotated by rotating the bobbin, and the catalyzed sol may be impregnated.
  • the blanket substrate may be introduced into the reaction vessel while being wound around a bobbin in the form of a roll to facilitate rotation.
  • the bobbin may be a shaft capable of rotating the substrate for a blanket, and anything that can be wound around the substrate for a blanket may be applied without limitation.
  • a polygonal cylindrical column having a size that can fit inside the reaction vessel, preferably a cylindrical column may be used.
  • the bobbin may include a winding rod capable of winding a blanket substrate in a roll form, and a support plate supporting a side portion so that the blanket substrate wound around the winding rod does not separate during rotation. .
  • a plurality of hollows may be formed in the winding rod so that the catalyzed sol is easily impregnated inside the blanket substrate.
  • the support plate may use a mesh type or may include a plurality of hollows so that the sol catalyzed to the side of the blanket substrate can flow.
  • the material of the bobbin may be any material having sufficient strength to support the blanket, and specifically stainless steel, PE, PP, Teflon, etc. may be used.
  • the bobbin After winding the substrate for a blanket on the bobbin and placing it in a reaction vessel, a process of fixing the bobbin to the reaction vessel may be performed.
  • the bobbin can be fixed to any position of the reaction vessel, but in terms of increasing production efficiency by putting a lot of substrates for a blanket in the reaction vessel of the same volume, specifically, the bobbin will be fixed to the center of the reaction vessel. I can.
  • the bobbin may be positioned so that the long axis of the bobbin and the long axis of the reaction vessel are parallel to each other.
  • the reaction vessel may be a reaction vessel for performing gelation, and if a vessel forming a space so that the blanket substrate impregnated with the catalyzed sol can rotate, a polygonal cylinder, a cylindrical shape, etc. Any shape of the container can be used, but it is preferable to have a cylindrical shape in terms of facilitating the introduction of the blanket substrate wound in a roll form, and the rotation of the blanket substrate impregnated with the catalyzed sol during the gelation reaction.
  • a reaction vessel can be used.
  • the blanket base material When the sol catalyzed in step 1) is added, the blanket base material may be lightly pressed so as to be sufficiently impregnated in order to improve the bonding between the blanket base material and the catalyzed sol. After that, by pressing the substrate for the blanket to a predetermined thickness with a constant pressure to remove excess sol, it is also possible to reduce the drying time.
  • the catalyzed sol and the substrate for the blanket may be added to the volume of the reaction vessel, specifically, a total of 1 to 100% of the internal volume of the reaction vessel, shortening the gelation time in step 3) and the inside of the blanket substrate
  • it may be preferably added to an amount of 1 to 60%, more preferably 10 to 60%, and even more preferably 30 to 60% of the volume of the reaction vessel. have.
  • step 2) when step 2) is performed before the completion of step 1), the sol catalyzed until the gelation is completed in step 2), specifically, the gelation is completed. It can all be put into this reaction vessel.
  • the gelation in step 2) may be performed by rotating the substrate for a blanket impregnated with the catalyzed sol.
  • any method and apparatus can be used as long as the catalyst for the blanket substrate impregnated with the catalyzed sol is rotated while gelling in the reaction vessel.
  • the blanket substrate is wound around a bobbin in step 1).
  • the substrate for blanket impregnated with the catalyzed sol exists in the reaction vessel while being wound around the bobbin, so that the substrate for blanket impregnated with the catalyzed sol is rotated by rotating the bobbin. I can.
  • the gelling reaction may proceed.
  • the long axis may be disposed in a transverse direction, that is, a horizontal direction, so that rotation may be performed. If the reaction vessel (body) is a cylindrical reaction vessel, the cylindrical reaction vessel can be laid down and rotated. That is, the rotation axis of the reaction vessel of the present invention may be in a horizontal direction, but is not limited thereto.
  • the type is not limited.
  • any known device may be used as long as it is a device capable of rotating.
  • any known device may be used as long as the position of the bobbin can be fixed to the reaction vessel and the position of the bobbin is rotated.
  • An example of an apparatus for manufacturing an airgel blanket applicable in the present invention will be described later.
  • the rotation speed is a rotation speed that enables the aerogel in the blanket to be uniformly formed.
  • Surface can be applied without limitation, for example, 1 rpm to 300 rpm, preferably 5 rpm to 150 rpm, 5 rpm to 100 rpm, more preferably to perform gelation while rotating at a rotation speed of 10 rpm to 30 rpm. have.
  • the sol in the blanket substrate may be evenly impregnated, so that the aerogel is formed more evenly during gelation, and thus, very uniform thermal conductivity can be secured throughout the airgel blanket and the reaction
  • the reaction vessel satisfies the above range of rotational speed
  • the sol in the blanket substrate may be evenly impregnated, so that the aerogel is formed more evenly during gelation, and thus, very uniform thermal conductivity can be secured throughout the airgel blanket and the reaction
  • an aerogel blanket When manufacturing an aerogel blanket by putting both the catalytic sol and the blanket substrate in the reaction vessel and making it gel, it does not require a separate moving element such as a conveyor belt compared to the roll-to-roll method, which greatly saves the space used during manufacturing. Can have.
  • the roll-to-roll gelation is performed sequentially according to the passage of time while continuously supplying the blanket substrate and the catalyzed sol.
  • the longer the blanket substrate is the longer the gelling process time is in order to achieve sufficient gelation throughout the blanket substrate.
  • the manufacturing time can be significantly reduced, and the length and thickness of the blanket substrate do not affect the gelation time, so a long blanket substrate is used. Even so, the manufacturing time can be significantly reduced to maximize process efficiency.
  • an airgel blanket in which the airgel is more uniformly dispersed can be manufactured.
  • the thickness of the airgel blanket to be produced is the same as or very similar to the thickness of the substrate for the blanket, and there is an effect of excellent thermal insulation properties.
  • the method of manufacturing an airgel blanket according to an example of the present invention may further include 3) aging the gelled wet gel-blanket composite, and 4) surface-modifying the gelled wet gel-blanket composite. have.
  • the aging step may be performed by leaving the gelled wet gel blanket composite at an appropriate temperature so that the chemical change is made completely, and the formed network structure can be formed more firmly through the aging step, the present invention It is possible to enhance the mechanical stability of the airgel blanket manufactured by the manufacturing method of.
  • the aging step is by adding a solution obtained by diluting a basic catalyst such as sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), triethylamine, and pyridine in an organic solvent to a concentration of 1 to 10%,
  • a basic catalyst such as sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonium hydroxide (NH 4 OH), triethylamine, and pyridine
  • an organic solvent may be the aforementioned alcohol (polar organic solvent), and specifically, may include ethanol.
  • the aging step should be carried out in an appropriate temperature range for reinforcing the optimal pore structure.
  • the aging step of the present invention may be carried out by allowing it to stand at a temperature of 30 to 70° C. for 1 to 10 hours. If the aging temperature is less than 30 °C, there may be a problem that the aging time is too long, leading to an increase in the overall process time, resulting in a decrease in productivity. If the aging temperature is more than 70 °C, it is out of the boiling point of ethanol, so the solvent by evaporation There may be a problem of increasing the loss of raw materials and increasing the cost of raw materials.
  • a process of substituting a hydrophilic functional group with a hydrophobic functional group is performed, and when the hydrophilic functional group present on the surface of the airgel is substituted with a hydrophobic functional group,
  • the airgel is dried, shrinkage of pores due to the surface tension of the solvent can be minimized.
  • the dried airgel maintains low thermal conductivity immediately after drying, but the hydroxy functional groups present on the surface of the airgel, for example, if the airgel is a silica airgel, the hydrophilic silanol group (Si-OH) present on the silica surface absorbs water in the air.
  • Si-OH hydrophilic silanol group
  • the surface modification may be performed by a surface modifier including a polar solvent and an organosilane compound.
  • the polar solvent may be methanol, ethanol, or isopropyl alcohol
  • the organosilane compound may be trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), or methyltrimethoxysilane.
  • TMCS trimethylchlorosilane
  • HMDS hexamethyldisilazane
  • TMCS trimethylchlorosilane
  • HMDS hexamethyldisilazane
  • methyltrimethoxysilane Trimethylethoxysilane, ethyltriethoxysilane, or phenyltriethoxysilane may be used, and specifically, hexamethyldisilazane may be used.
  • the aging solvent may be mixed in a volume ratio of 1 to 10 times the gel, and the organosilane compound may be mixed in a volume ratio of 0.1 to 10 times the gel.
  • the volume ratio of the organosilane compound is less than 0.1 times, the reaction time becomes too long and the surface modification efficiency may be deteriorated. If the volume ratio of the organosilane compound is more than 10 times, there is a problem of cost increase, and when the unreacted surface modifier is dried May cause contraction.
  • the aging step and the surface modification step may be performed in a separate reaction vessel after recovering the gelled silica wet gel blanket, or may be performed inside the reaction vessel in which the gelling was performed, specifically, the efficiency of the process and
  • the aging and surface modification steps may be performed in the reaction vessel performed in terms of the simplification of the equipment.
  • the wet gel-blanket composite prepared in step 3 can be rotated, and when aging and surface modification are performed while rotating, the aging solvent And the surface modifier may be more penetrated, and after the aging solvent and the surface modifier are penetrated, dispersion may be made better in the wet gel blanket composite, so there is an advantage that the aging efficiency and the surface modification efficiency are greatly improved.
  • a hydrophobic wet gel blanket composite may be obtained.
  • the method of manufacturing an airgel blanket of the present invention may further include the step of 5) drying the wet gel blanket.
  • the wet gel blanket composite may be dried to prepare an airgel blanket.
  • the manufacturing method according to an embodiment of the present invention may further perform the step of washing before drying.
  • the washing removes impurities (sodium ions, unreacted products, by-products, etc.) generated during the reaction and residual ammonia, which may react with CO 2 during supercritical drying to generate ammonium carbonate, to obtain a high purity hydrophobic silica airgel. It can be carried out by a dilution process or an exchange process using a non-polar organic solvent.
  • the drying step may be performed through a process of removing the solvent while maintaining the pore structure of the aged gel, and the drying step may be performed by a supercritical drying or atmospheric drying process. .
  • the supercritical drying process may be performed using supercritical carbon dioxide.
  • Carbon dioxide (CO 2 ) is in a gaseous state at room temperature and pressure, but when it exceeds the limit of a certain temperature and high pressure called the supercritical point, the evaporation process does not occur, and it becomes a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in the state is called supercritical carbon dioxide.
  • supercritical carbon dioxide Although supercritical carbon dioxide has a molecular density close to that of a liquid, its viscosity is low, it has a property close to that of a gas, has a fast diffusion and has high thermal conductivity, high drying efficiency, and can shorten a drying process time.
  • a wet gel blanket that has been aged in a supercritical drying reactor is placed, and then a liquid CO 2 is filled and the alcohol solvent in the wet gel is replaced with CO 2.
  • a pressure equal to or higher than the pressure at which carbon dioxide becomes a supercritical state, specifically 100 bar to 150 bar
  • carbon dioxide becomes supercritical at a temperature of 31°C and a pressure of 73.8 bar.
  • Carbon dioxide is maintained at a constant temperature and pressure at a supercritical state for 2 to 12 hours, more specifically for 2 to 6 hours, and then the pressure is gradually removed to complete the supercritical drying process to manufacture an airgel blanket. I can.
  • the normal pressure drying process it may be performed according to conventional methods such as hot air drying and IR drying under a temperature of 70 to 200° C. and atmospheric pressure (1 ⁇ 0.3 atm).
  • the silica aerogel according to an embodiment of the present invention has excellent physical properties with high hydrophobicity, particularly low tap density and high porosity, and the silica airgel-containing blanket including the same has low thermal conductivity and excellent mechanical flexibility.
  • a pressing process to adjust the thickness before or after the drying process and to make the internal structure and surface shape of the blanket uniform, a molding process to have an appropriate shape or morphology according to the use, or a lamination process of laminating a separate functional layer And the like may be further performed.
  • step A after the step of gelling in step 2), the unimpregnated catalyzed sol is recovered and diluted by adding a solvent to stop the gelation of the recovered sol.
  • the sol catalyzed in the step of impregnating the substrate for blanket is added in an excess amount compared to the substrate for blanket so that it can be sufficiently impregnated with the substrate for blanket, and thus, is not impregnated with the substrate for blanket.
  • the remaining unimpregnated sol is generated.
  • the unimpregnated sol left without being impregnated in the blanket substrate is catalyzed, so it will gel if there is no other measure. Therefore, in the present invention, the unimpregnated sol is recovered, and the recovered sol by lowering the concentration of the precursor and the catalyst to a level where gelation is difficult to be achieved by diluting it by introducing a solvent before the recovered unimpregnated sol is gelled. The process of stopping the gelation of is carried out.
  • the process of stopping the gelation of the recovered sol by adding the solvent and diluting it can be achieved by specifically measuring the viscosity of the recovered sol and making the recovered sol at a certain level or less. I can.
  • the solvent may be added when the recovered sol has a viscosity of 2 to 10 cp, specifically 4 to 10 cp, and more specifically 7 to 10 cp.
  • the viscosity of the recovered sol satisfies the above range
  • the recovered sol may be properly mixed with the added solvent and diluted to a concentration that does not undergo gelation, and the network included in the recovered sol is seeded.
  • the sol recovered through the dilution of step A) may have a viscosity of 10 cp or less, specifically 1 to 5 cp, and more specifically 1 to 3 cp.
  • the network included in the recovered sol The recovered sol can be diluted to the extent that it helps the gelation of the new catalyzed sol, enhances the structure of the aerogel and improves the physical properties, and the recovered sol is the upper limit of the range. If it has a viscosity within the range, gelation of the properly recovered sol may be stopped.
  • the solvent may be a solvent used to prepare the sol catalyzed in step 1), and specifically may be an organic solvent.
  • the organic solvent may be used without limitation as long as it has excellent compatibility with a sol precursor and water, and may be specifically a polar organic solvent, and more specifically may be an alcohol.
  • the alcohol is a monohydric alcohol such as methanol, ethanol, isopropanol, butanol; Alternatively, it may be a polyhydric alcohol such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol, and any one or a mixture of two or more of them may be used.
  • a monohydric alcohol having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, butanol, etc. may be used in consideration of miscibility with the produced aerogel.
  • the catalyzed sol and the blanket substrate were added to the reaction vessel in step 1) to impregnate the catalyst substrate with the blanket substrate, and the blanket substrate was sufficiently impregnated. This can be done when the liquid level in the reaction vessel no longer changes. Specifically, when the liquid level in the reaction vessel does not change after the impregnation step, the unimpregnated catalyzed sol remaining in the reaction vessel may be recovered.
  • a drain valve for recovering the non-impregnated catalyzed sol may be connected to the reaction vessel, and the non-impregnated catalyzed sol may be recovered by opening the drain valve. have.
  • the recovered non-impregnated catalyzed sol may be transferred to a separate container, and specifically, a sol tank included in a separate aerogel blanket manufacturing apparatus in which the recovered non-impregnated catalyzed sol is reused. ) Can be transferred. Accordingly, the step A), that is, the process of recovering the non-impregnated catalyzed sol and diluting it by introducing a solvent may be performed in a sol tank of a separate aerogel blanket manufacturing apparatus.
  • step B a process of reusing the recovered sol from which gelation is stopped is used in the step of preparing the catalyzed sol is performed.
  • the catalyzed sol may be prepared by mixing a sol and a base catalyst, and the components and the base catalyst included in the sol are as described above in step 1).
  • the reuse may be achieved by a method of adding a sol and a base catalyst used in the preparation of the catalyzed sol to the recovered sol from which gelation is stopped, or a catalyst separately prepared in the recovered sol from which gelation is stopped. It may be carried out by a method of mixing the sol, specifically, a method of adding a base catalyst after adding the sol to the recovered sol in which the gelling has stopped may be performed sequentially. Through this, the concentration of the sol and the base catalyst contained in the recovered sol from which the gelation was stopped is matched with the concentration of the sol and the base catalyst contained in the catalyzed sol before the dilution of step A) is made, and the step 2 ) Can be made to have the same gelation time as the gelation time.
  • the process of step A) may be performed in a sol tank included in an additional airgel blanket manufacturing apparatus other than the airgel blanket manufacturing apparatus in which the steps 1) and 2) are performed, and the process of step A) is performed by the gelling process.
  • a method of injecting a sol and a base catalyst used for preparing the catalyzed sol into a sol tank into which the stopped recovered sol is added, or a catalyzed sol separately prepared in a sol tank into which the recovered sol from which gelation is stopped is added.
  • the sol may be added to the sol tank in which the recovered sol from which the gelation is stopped is added, and then the base catalyst may be sequentially performed.
  • the sol tank is not particularly limited as long as it is a container capable of holding the recovered sol and a process of producing the catalyzed sol.
  • the sol may include a sol precursor, water and an organic solvent, and may be prepared by mixing them.
  • the sol may be used in the form of a separately prepared sol, or a component for preparing the sol including a sol precursor, water and an organic solvent may be used by a method in which the gelling is stopped and the recovered sol.
  • the sol precursor may be used in a form hydrolyzed by an acid catalyst, and the acid catalyst is as described above in step 1).
  • the catalyzed sol prepared through step B) may contain 5 to 50% by weight, specifically 7 to 40% by weight, and more specifically 10 to 35% by weight of the recovered sol in which the gelation is stopped.
  • the recovered sol from which gelation is stopped may include gelling particles that have been partially gelled, and the previously formed gelled particles are included in the newly prepared catalyzed sol to serve as a seed to facilitate gelation. can do. Accordingly, when the recovered sol whose gelation is stopped is used in the preparation of the catalyzed sol, gelation of the catalyzed sol can be easily achieved, and effects of reinforcing the structure and improving physical properties of the produced aerogel blanket can be obtained. have.
  • the effect of strengthening the structure and improving physical properties of the airgel blanket can be more appropriately exerted, and when the content is insufficient, the effect of improving physical properties is difficult to exert, and its content If this is excessive, the delay in gelation is not sufficiently expressed, and thus the gelation of the catalyzed sol prepared before the appropriate time point may proceed.
  • the method of manufacturing an airgel blanket according to an example of the present invention may include manufacturing an airgel blanket using the catalyzed sol prepared in step B).
  • the step of manufacturing an airgel blanket using the catalyzed sol prepared in step B) may be performed by the same method as described above for steps 1) and 2), as well as further processes that may be performed thereafter.
  • a substrate for a blanket is placed on a moving element, and the catalyst prepared in step B) is placed on the substrate for a blanket.
  • the roll-to-roll method of gelling while continuing to move the moving elements by applying the sol, or by putting the substrate for blanket and the catalyzed sol prepared in step B) into a separate second reaction vessel and step B to the substrate for blanket.
  • the step of gelling may include the step of gelling while rotating the substrate for a blanket impregnated with the catalyzed sol.
  • a process of recovering the non-impregnated catalyzed sol again and reusing it when preparing the catalyzed sol may be performed. May be repeated several times or more. That is, the process of recovering the non-impregnated catalyzed sol and reusing it for production of the catalyzed sol may be repeated one or more times, and the recovery is not particularly limited, but, for example, 1 to 20 times, specifically 2 It can be repeated once to 10 times.
  • the above-described method of manufacturing an airgel blanket of the present invention provides an airgel blanket having a uniform thermal conductivity and having a uniform thermal conductivity within the blanket, thereby greatly improving thermal insulation properties as a whole.
  • the catalyzed sol prepared by reusing the recovered unimpregnated sol can be easily gelled, and the effect of reinforcing the structure and improving physical properties of the produced airgel blanket can be obtained. Therefore, the airgel blanket manufactured through the process of recovering the non-impregnated catalyzed sol and reusing it for production of the catalyzed sol may exhibit more improved thermal conductivity characteristics.
  • the airgel blanket includes an airgel and a substrate for a blanket, and specifically, the airgel may be formed inside and on the surface of the blanket substrate, for example, inside and on the surface of the blanket substrate.
  • a large amount of airgel particles may be formed evenly, and the airgel blanket may have an improved thermal conductivity of 10 to 20 mW/mK.
  • the thermal conductivity is a value measured at room temperature (23 ⁇ 5°C) according to the heat flow method using a HFM 436 Lambda equipment of NETZSCH company.
  • the airgel blanket of the present invention can be usefully used as a thermal insulation material, a thermal insulation material, or a non-combustible material, such as an aircraft, ship, automobile, building structure, as well as a plant facility for thermal insulation such as pipes or industrial furnaces of various industrial facilities.
  • the manufacturing apparatus in which the method of manufacturing an airgel blanket according to an embodiment of the present invention can be performed is a bobbin 100 on which a blanket is wound, and accommodating the bobbin 100 as shown in FIG. 1.
  • the blanket may mean a blanket substrate before the catalyzed sol is introduced, a blanket substrate impregnated with the catalyzed sol, and/or a wet gel blanket after gelation. It can be interpreted appropriately according to.
  • the bobbin is for winding the blanket in a roll-shape, and includes a winding rod on which the blanket is wound in a roll shape, and a support plate coupled to both ends of the winding rod and supporting the sides of the blanket wound on the winding rod.
  • the winding rod has a cylindrical shape in which a hollow penetrated in the longitudinal direction is formed, and a blanket in the form of a long sheet is wound in a roll shape on an outer circumferential surface.
  • the outside of the blanket wound on the winding rod can be quickly impregnated with the catalyzed sol, so that the catalyst can be stably gelled, but the inside of the blanket has a problem that it takes a lot of time to impregnate the catalyst.
  • the outer circumferential surface of the winding rod includes a plurality of connection holes connected to the hollow.
  • the winding rod has a hollow inside so as to introduce the catalyzed sol injected into the gelation tank, and the catalyzed sol introduced into the hollow flows out of the winding rod and impregnates the inside of the blanket wound on the winding rod.
  • a plurality of connection holes so as to be formed are formed. Accordingly, the outer and inner sides of the blanket can be gelled by simultaneously impregnating the catalyzed sol, and as a result, the time required for gelling of the blanket can be greatly shortened, and as a result, the entire blanket can be uniformly gelled. .
  • the plurality of connection holes have a diameter of 3 to 5 mm, and are formed at regular intervals on the outer circumferential surface of the winding rod. Accordingly, the sol catalyzed uniformly can be supplied to the entire blanket wound on the outer circumferential surface of the winding rod, and accordingly, the entire inner side of the blanket can be uniformly gelled.
  • the support plate supports the blanket wound around the winding rod so that it is not wound irregularly, has a disk shape, is coupled to both ends of the winding rod, and supports side portions of the blanket wound around the winding rod.
  • the support plate includes a fastening groove to which an end of the winding rod is coupled, and a fastening hole formed on a bottom surface of the fastening groove. That is, the support plate may be coupled to the end of the winding rod through the fastening groove.
  • the support plate has a plurality of open holes, and the plurality of open holes can introduce the catalyzed sol to the side of the blanket wound on the winding rod, thereby stably gelling the side of the blanket.
  • the bobbin includes a winding rod and a support plate, and accordingly, the blanket can be wound in a roll form.
  • the body is provided with a gelling tank accommodating a bobbin, and includes a gelling tank and a first installation member 220 on which the gelling tank is installed.
  • the gelling tank is for gelling the blanket contained in the bobbin, and includes a gelling chamber provided inside and accommodating the bobbin, an outlet provided at the outer lower end and connected to the gelling chamber, and an inlet provided at the outer upper end and connected to the gelling chamber do.
  • the gelation chamber of the gelation tank has a U'-shaped cross-sectional shape with a curvature corresponding to that of the blanket wound on the winding rod and the upper part of the gelation chamber opened by the cover.
  • the contact force of the blanket can be increased, and as a result, the gelation of the blanket can be increased.
  • the gelation tank is provided on both walls of the gelation chamber, and is coupled to both ends of the bobbin and includes a rotating member for rotatably installing the bobbin in the gelation chamber.
  • the rotating member is rotatably installed in through-holes formed on both walls of the gelling chamber, and ends of the bobbin accommodated in the gelling chamber are installed to transmit power.
  • a straight coupling protrusion is formed on one surface of the rotating member, and a straight coupling groove to which the coupling protrusion is coupled is formed at an end of the bobbin. That is, the bobbin can be rotated in the same direction when the rotating member is rotated through the coupling of the coupling protrusion and the coupling groove. As a result, the bobbin can be installed rotatably inside the gelation tank.
  • the main body further includes a second installation member 230 in which a catalyzed sol supply member is installed, and the second installation member is installed on the bottom piece 231 and on the top of the bottom piece to supply the catalyzed sol.
  • It includes an installation table 232 installed so that the member is positioned higher than the gelation tank, and a staircase 233 installed at one end of the bottom piece.
  • the gelation tank includes a rotation handle that rotates the bobbin while being coupled with the other rotation member provided in the gelation tank, and the rotation handle may manually rotate the bobbin from the outside.
  • a maturing member, a surface modifying member, and a drying member are further installed on the mounting table of the second installation member.
  • the driving member is for rotating the bobbin accommodated in the gelling tank, and is connected to the other rotating member provided in the gelling tank so as to transmit power. That is, when the driving member rotates the rotating member, the bobbin accommodated in the gelling tank can be rotated in conjunction with the rotating member.
  • the catalyzed sol supply member is for gelling the blanket by impregnating the blanket wound on the bobbin by injecting silica sol into the gelation tank.It is installed on the mounting table, and the catalyzed sol is gelled through the inlet of the gelling tank. Supply to the Japanese style room.
  • the aging member is for aging the blanket wound on the bobbin by injecting the aging solution into the gelation tank, and is installed on the mounting table, and supplies the aging solution to the gelation chamber through the inlet of the gelation tank.
  • the surface modifying member is for modifying the surface of the blanket wound on the bobbin by injecting a surface modifying agent into the gelling tank, installed on the mounting table, and supplying the surface modifying agent to the gelling chamber through the inlet of the gelling tank.
  • the drying member is for drying the blanket wound on the bobbin by supplying high-temperature hot air to the gelling tank, and is installed on the mounting table and drying the blanket accommodated in the gelling tank by increasing the temperature of the gelling tank.
  • the airgel blanket manufacturing apparatus can greatly shorten the manufacturing time of the airgel blanket, greatly increase the productivity of the airgel blanket, and as a result, mass-produce the airgel blanket.
  • the airgel blanket manufacturing apparatus can induce stable gelation regardless of the thickness and length of the blanket by rotating the blanket, and since the bobbin rotates, the entire blanket wound around the bobbin is uniformly Gelation is possible, and the shape of the gelation tank is not limited because only the bobbin rotates without rotating the gelation tank.
  • the gelation chamber of the gelation tank is formed in a'U' cross-sectional shape, the blanket wound around the bobbin can be gelled more effectively.
  • the airgel blanket manufacturing apparatus includes a bobbin on which a blanket is wound, and the bobbin may include a winding rod and a support plate.
  • the outer circumferential surface of the winding rod may include a fixing clip that is inserted and fixed at the winding point of the blanket.
  • the fixing clip has a pin shape having an elastic restoring force, one end is fixed to the outer circumferential surface of the winding rod and the other end is elastically supported on the outer circumferential surface of the winding rod. Accordingly, when the starting point of the blanket is inserted between the other end of the fixing clip and the winding rod, the blanket can be fixed to the starting point of the winding rod by the elastic force of the fixing clip, and as a result, the blanket can be easily wound on the outer circumferential surface of the winding rod.
  • a silica sol precursor was prepared by mixing tetraethylorthosilicate (TEOS) and water at a molar ratio of 1:4, and adding TEOS and ethanol having a weight ratio of 1:1.
  • TEOS tetraethylorthosilicate
  • hydrochloric acid was added so that the silica sol had a pH of 3 or less, and stirred for 2 hours or more to prepare a hydrated tetraethylorthosilicate solution.
  • a silica sol was prepared by adding ethanol to the hydrated tetraethylorthosilicate solution in a weight ratio of 1:4.
  • a silica sol was prepared by mixing 0.2 parts by weight of TiO 2 as an opacifying agent and 0.2 parts by weight of Ultracarb (LKAB) as a flame retardant based on 100 parts by weight of the silica sol and stirring for 30 minutes to prepare a silica sol.
  • Base catalyst solution was prepared. The silica sol and the base catalyst solution were mixed in a volume ratio of 9:1 to prepare a catalyzed sol.
  • a bobbin wound with 10 T (10 mm) glass fibers was fixed to the reaction vessel of the first gelling device.
  • 45L of the catalyzed sol prepared in Preparation Example 1 (150% of the volume of the glass fiber) was added to the reaction vessel, and the bobbin wound around the glass fiber was rotated to proceed with gelation. All of the catalyzed sol was allowed to be added before the gelation was completed.
  • the remaining unimpregnated sol (15L) was recovered by opening the drain valve coupled to the reaction vessel.
  • the recovered sol was transferred to a sol tank of a second gelling device. Before the viscosity of the recovered sol exceeded 10 cp, ethanol was added to dilute the recovered sol to stop gelation. TEOS solution, ethanol, and additives were added to the diluted recovered sol, and a base catalyst solution was added to prepare 45 L of catalyzed sol.
  • the TEOS solution, ethanol, additive, and base catalyst solution were the same as those used in Preparation Example, and the ratio of the silica sol and the base catalyst solution, and the concentration of each component contained in the catalyzed sol were the same as in Preparation Example 1. Adjusted.
  • the wet gel blanket obtained in each gelling process was aged for 20 hours at a temperature of 65°C in 40 L of a basic aging solution, which is an ethanol dilution of 10 vol% TMES (trimethylethoxysilane), and then subjected to supercritical drying.
  • a silica airgel blanket was prepared.
  • a silica airgel blanket was manufactured by performing the same procedure as in Example 1, except that only 7.5 L, not 15 L, was recovered when the unimpregnated sol was recovered.
  • a silica airgel blanket was prepared by performing the same procedure as in Example 1, except that only 5 L, not 15 L, was recovered when the unimpregnated sol was recovered.
  • the wet gel blanket obtained in each gelling process was aged for 20 hours at a temperature of 65° C. without a separate aging solution, and then supercritical drying was performed to prepare a silica airgel blanket.
  • a silica airgel blanket was manufactured by performing the same procedure as in Example 1, except that only 2.5 L, not 15 L, was recovered when the unimpregnated sol was recovered.
  • the use and manufacture of the catalyzed sol was 51 L (170% of the glass fiber volume) instead of 45 L (150% of the glass fiber volume), and 21 L instead of 15 L was recovered when the unimpregnated sol was recovered. Except that, a silica airgel blanket was manufactured by performing the same process as in Example 1.
  • the wet gel blanket obtained in each gelling process was aged for 20 hours at a temperature of 65°C in 40 L of a basic aging solution, which is an ethanol dilution of 10 vol% TMES (trimethylethoxysilane), and then subjected to supercritical drying.
  • a silica airgel blanket was prepared.
  • a silica airgel blanket was manufactured by performing the same procedure as in Example 1, except that only 1.5 L, not 15 L, was recovered when the unimpregnated sol was recovered.
  • Example 1 the gelation time was shortened as the number of sol reuse increased, so that after 4 sol reuse, 9 minutes or 9.5 minutes of gelation time was required. As the sol was reused, it was confirmed that gelation was smooth.
  • Comparative Example 1 when the amount of the non-impregnated sol was only 1.5 L (3.3%) of 45 L of the total catalyzed sol, it was confirmed that the effect of reducing the thermal conductivity at room temperature was not exhibited, and the gelation time It was confirmed that the shortening effect was also not obtained.
  • a silica airgel blanket was prepared by performing the same procedure as in Example 1, except that ethanol was added to dilute the recovered sol to stop gelation when the recovered sol had a viscosity of 15 cp.
  • support plate 200 main body
  • first installation member 230 second installation member
  • bottom part 232 mounting table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Catalysts (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

본 발명의 제조방법은 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계에서 미함침된 촉매화된 졸을 회수하여 촉매화된 졸의 겔화를 정지시킨 후 이를 이후의 촉매화된 졸의 제조 단계에서 사용함으로써, 기존에 폐기되던 미함침된 촉매화 된 졸을 재사용할 수 있다.

Description

에어로겔 블랭킷 제조방법
[관련출원과의 상호인용]
본 출원은 2019년 9월 3일자 한국 특허출원 제10-2019-0109158호 및 2019년 9월 30일자 한국 특허출원 제10-2019-0121147호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 에어로겔 블랭킷(aerogel blanket)의 제조방법에 관한 것으로 구체적으로는 에어로겔 블랭킷 제조시 블랭킷에 미함침된 졸을 회수하여 재사용하는 과정을 포함하는 에어로겔 블랭킷의 제조방법에 관한 것이다.
에어로겔(aerogel)은 90~99.9% 정도의 기공율과 1~100 nm 범위의 기공크기를 갖는 초다공성의 고비표면적(≥500 m2/g) 물질로서, 뛰어난 초경량/초단열/초저유전 등의 특성을 갖는 재료이기 때문에 에어로겔 소재 개발연구는 물론 투명단열재 및 환경 친화적 고온형 단열재, 고집적 소자용 극저유전 박막, 촉매 및 촉매 담체, 슈퍼 커패시터용 전극, 해수 담수화용 전극 재료로서의 응용연구도 활발히 진행되고 있다.
에어로겔의 가장 큰 장점은 종래 스티로폼 등의 유기 단열재보다 낮은 0.300 W/m·K 이하의 열전도율을 보이는 슈퍼단열성(super-insulation)인 점과 유기 단열재의 치명적인 약점인 화재 취약성과 화재시 유해가스 발생을 해결할 수 있다는 점이다.
일반적으로 에어로겔은 전구체 물질로부터 하이드로겔을 제조하고, 하이드로겔 내부의 액체성분을 미세구조 파괴 없이 제거하여 제조된다. 대표적인 에어로겔의 형태는 분말, 과립, 모노리스의 세 가지로 나눌 수 있으며, 일반적으로는 분말의 형태로 제조된다.
상기 분말의 경우 섬유와 복합화하여 에어로겔 블랭킷(blanket) 또는 에어로겔 시트(sheet) 등과 같은 형태로의 제품화가 가능하며, 블랭킷 또는 시트의 경우 유연성을 가지고 있어 임의의 크기나 형태로 굽히거나, 접거나 자를 수 있다. 이에, LNG 선의 단열패널, 공업용 단열재와 우주복, 교통 및 차량, 전력생산용 단열재 등과 같은 공업용으로의 응용뿐 아니라 재킷이나 운동화류 등과 같은 생활용품에도 적용이 가능하다. 또한, 아파트와 같은 주택에서 지붕이나 바닥뿐만 아니라 방화문에서 에어로겔을 사용할 경우 화재 예방에 큰 효과가 있다.
에어로겔 블랭킷은 섬유 등과 같은 블랭킷용 기재에 물리적으로 결합되고 함침된 에어로겔로 이루어져 있으며, 블랭킷용 기재에 졸을 혼합하여 블랭킷용 기재에 졸을 함침시킨 후 겔화시켜 제조된다. 에어로겔 블랭킷이 목적하는 물성을 발휘할 수 있으려면 충분한 양의 졸을 블링킷용 기재에 함침시킨 후 겔화를 진행하는 것이 중요하며, 블랭킷용 기재의 부피에 비해 적은 양의 졸이 함침되는 경우에는 제조된 에어로겔 블랭킷의 단열 성능이 저하되고, 소수 특성 역시 저하되는 문제가 발생될 수 있다. 이를 방지하기 위하여, 에어로겔 블랭킷의 제조 과정 중 블랭킷용 기재에 졸을 함침시키는 단계에서 졸이 과량으로 사용되는데, 이에 따라 미함침되는 졸이 발생하며, 이는 폐기되므로 폐기물 발생에 따른 처리 문제 및 원재료비 상승을 초래하게 된다.
따라서, 종래 블랭킷용 기재에 졸을 함침시키는 단계에서 과량으로 투입된 후 블랭킷용 기재에 미함침되어 폐기되던 졸을 재활용할 수 있는 기술의 개발이 요구되고 있다.
본 발명의 해결하고자 하는 과제는 에어로겔 블랭킷의 제조 과정 중 블랭킷용 기재에 졸을 함침시키는 단계에서 발생되는 블랭킷용 기재에 미함침된 졸을 회수하여 재사용할 수 있는 에어로겔 블랭킷의 제조방법을 제공하는 것이다.
본 발명은 상기 과제를 해결하기 위하여, 1) 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계; 및 2) 상기 촉매화된 졸을 겔화시켜 습윤겔-블랭킷 복합체를 제조하는 단계를 포함하는 에어로겔 블랭킷 제조방법으로서, A) 상기 함침시키는 단계 이후 미함침된 촉매화 된 졸을 회수하고 용매를 투입하여 희석시켜, 회수된 졸의 겔화를 정지시키는 단계; 및 B) 상기 겔화가 정지된 회수된 졸을 촉매화된 졸의 제조 단계에 재사용하는 단계를 포함하고, 상기 단계 B)를 통해 제조된 촉매화된 졸은 상기 겔화가 정지된 회수된 졸을 5 내지 50 중량% 포함하는 에어로겔 블랭킷 제조방법을 제공한다.
본 발명의 제조방법은 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계에서 미함침된 촉매화된 졸을 회수하여 촉매화된 졸의 겔화를 정지시킨 후 이를 이후의 촉매화된 졸의 제조 단계에서 사용함으로써, 기존에 폐기되던 미함침된 촉매화 된 졸을 재사용할 수 있다. 또한, 본 발명의 제조방법에 의하면 회수된 미함침된 촉매화된 졸을 재사용하여 새로운 촉매화된 졸을 제조함으로써 회수된 미함침된 촉매화된 졸에 포함된 실리카 네트워크가 새로운 촉매화된 졸의 겔화를 돕고, 에어로겔의 구조 강화 및 물성을 향상시키는 효과를 발휘할 수 있으므로, 에어로겔 블랭킷의 제조에 유용하게 사용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일례에 따른 에어로겔 블랭킷의 제조에 사용될 수 있는 에어로겔 블랭킷 제조장치의 사시도이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 에어로겔 블랭킷 제조방법은 1) 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계; 및 2) 상기 촉매화된 졸을 겔화시켜 습윤겔-블랭킷 복합체를 제조하는 단계를 포함하는 에어로겔 블랭킷의 제조방법으로서, A) 상기 함침시키는 단계 이후 미함침된 촉매화 된 졸을 회수하고 용매를 투입하여 희석시켜, 회수된 졸의 겔화를 정지시키는 단계; 및 B) 상기 겔화가 정지된 회수된 졸을 촉매화된 졸의 제조 단계에 재사용하는 포함하고, 상기 단계 B)를 통해 제조된 촉매화된 졸은 상기 겔화가 정지된 회수된 졸을 5 내지 50 중량% 포함하는 것을 특징으로 하는 것이다.
본 발명의 에어로겔 블랭킷 제조방법은 에어로겔 블랭킷을 제조하는 과정과, 에어로겔 블랭킷의 제조과정 중 졸의 함침 단계 및 겔화 단계를 통하여 발생되는 미함침된 촉매화된 졸을 회수하여 이를 재사용하는 과정으로 나누어질 수 있으며, 미함침된 촉매화된 졸을 재사용하는 과정은 추가적으로 에어로겔 블랭킷을 제조하는 과정을 포함할 수 있다.
이하에서는 상기 에어로겔 블랭킷을 제조하는 과정을 각 단계별로 상세히 설명한다.
단계 1
본 발명의 에어로겔 블랭킷 제조방법에서 상기 단계 1)에서는 에어로겔 블랭킷을 형성하기 위해 준비하는 단계로서, 블랭킷용 기재에 촉매화된 졸을 함침시키는 과정이 이루어진다.
본 발명에서 사용되는 용어 “함침”은 블랭킷용 기재에 유동성이 있는 촉매화된 졸을 투입함으로써 이루어질 수 있는 것으로, 블랭킷용 기재 내부 기공에 촉매화된 졸이 침투하는 것을 나타내는 것일 수 있다.
본 발명에서 상기 촉매화된 졸은 졸과 염기 촉매를 혼합하여 제조될 수 있다. 상기 염기 촉매는 졸의 pH를 증가시켜 단계 2)에서의 겔화를 촉진하는 효과를 발휘할 수 있다.
상기 졸은 졸-겔 반응으로 다공성의 겔을 형성할 수 있는 물질이라면 제한하지 않으며, 구체적으로 무기 졸, 유기 졸 또는 이들의 조합을 포함할 수 있다. 무기 졸은 지르코니아, 산화이트륨, 하프니아, 알루미나, 티타니아, 세리아, 실리카, 산화 마그네슘, 산화칼슘, 플루오르화 마그네슘, 플루오르화 칼슘 및 이들의 조합물을 포함할 수 있고, 유기 졸은 폴리아크릴레이트, 폴리올레핀, 폴리스틸렌, 폴리아크릴로니트릴, 폴리우레탄, 폴리이미드, 폴리푸르푸랄 알콜, 페놀 푸르푸릴 알콜, 멜라민 포름알데히드, 레조르시놀 포름알데히드, 크레졸 포름알데히드, 페놀 포름알데히드, 폴리비닐 알콜 디알데히드, 폴리시아누레이트, 폴리아크릴아미드, 다양한 에폭시, 한천, 아가로스 및 이들의 조합물을 포함할 수 있다. 또한, 구체적으로 상기 졸은 실리카 졸일 수 있다. 상기 졸로서 실리카 졸이 사용될 경우, 블랭킷용 기재와의 우수한 혼화성을 발휘하고, 이를 이용하여 겔을 형성할 경우 더욱 다공성을 가질 수 있으며, 또한 낮은 열전도도를 가지는 에어로겔 블랭킷이 제조될 수 있다.
본 발명의 일례에 있어서, 상기 졸은 졸 전구체, 물 및 유기용매를 포함할 수 있으며, 상기 졸은 졸 전구체, 물 및 유기용매를 혼합하여 제조될 수 있다. 본 발명의 일 실시예에 따른 촉매화된 졸이 촉매화된 실리카 졸인 경우, 상기 단계 1)에서 촉매화된 졸은 실리카 졸과 염기 촉매를 혼합하여 제조될 수 있으며, 상기 실리카 졸은 실리카 전구체와 물, 유기용매를 혼합하여 제조될 수 있다. 또한, 실리카 졸은 겔화를 용이하게 하기 위해 낮은 pH에서 가수분해될 수 있으며, 이 때 pH를 낮추기 위해 산 촉매가 사용될 수 있다.
상기의 실리카 졸의 제조에 사용 가능한 실리카 전구체는 실리콘 함유 알콕사이드계 화합물일 수 있으며, 구체적으로는 테트라메틸 오르소실리케이트(tetramethyl orthosilicate; TMOS), 테트라에틸 오르소실리케이트(tetraethyl orthosilicate; TEOS), 메틸트리에틸 오르소실리케이트(methyl triethyl orthosilicate), 디메틸디에틸 오르소실리케이트(dimethyl diethyl orthosilicate), 테트라프로필 오르소실리케이트(tetrapropyl orthosilicate), 테트라이소프로필 오르소실리케이트(tetraisopropyl orthosilicate), 테트라부틸 오르소실리케이트 (tetrabutyl orthosilicate), 테트라세컨드리부틸 오르소실리케이트(tetra secondary butyl orthosilicate), 테트라터셔리부틸 오르소실리케이트 (tetra tertiary butyl orthosilicate), 테트라헥실오르소실리케이트(tetrahexyl orthosilicate), 테트라시클로헥실 오르소실리케이트(tetracyclohexyl orthosilicate), 테트라도데실 오르소실리케이트(tetradodecyl orthosilicate) 등과 같은 테트라알킬 실리케이트일 수 있다. 이 중에서도 보다 구체적으로 본 발명의 일 실시예에 따른 상기 실리카 전구체는 테트라에틸 오르소실리케이트(TEOS)일 수 있다.
상기 실리카 전구체는 실리카 졸 내 포함되는 실리카(SiO2)의 함량이 3 중량% 내지 30 중량%가 되도록 하는 양으로 사용될 수 있다. 상기 실리카의 함량이 3 중량% 미만이면 최종 제조되는 블랭킷에서의 실리카 에어로겔의 함량이 지나치게 낮아 목적하는 수준의 단열 효과를 기대할 수 없는 문제가 발생할 수 있으며, 30 중량%를 초과할 경우 과도한 실리카 에어로겔의 형성으로 블랭킷의 기계적 물성, 특히 유연성이 저하될 우려가 있다.
또한, 본 발명의 졸의 제조에 사용 가능한 유기용매는 졸 전구체 및 물과의 상용성이 우수한 것이라면 제한 없이 사용 가능하며, 구체적으로는 극성 유기용매가 사용될 수 있으며, 더욱 구체적으로는 알코올이 사용될 수 있다. 상기 알코올은 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 1가 알코올; 또는 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 및 솔비톨 등과 같은 다가 알코올일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이 중에서도 물 및 향후 제조되는 에어로겔과의 혼화성을 고려할 때 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 탄소수 1 내지 6의 1가 알코올일 수 있다.
상기와 같은 유기용매는 최종 제조되는 에어로겔의 함량을 고려하여 적절한 함량으로 사용될 수 있다.
본 발명의 일 실시예에 따른 실리카 졸은 실리카 전구체와 물을 1:4 내지 1:1의 몰비로 포함할 수 있다. 또한, 실리카 전구체와 유기용매가 1:2 내지 1:9의 중량비로 포함될 수 있으며, 바람직하게는 1:4 내지 1:6의 중량비로 포함될 수 있다. 실리카 전구체가 물 및 유기용매와 상기 몰비 또는 중량비를 만족할 경우 에어로겔 생산 수율이 더욱 높아질 수 있으므로 단열 성능의 측면에서 개선 효과를 발휘할 수 있다.
또한, 본 발명의 일 실시예에 따른 졸에서 더 포함될 수 있는 산 촉매는 pH를 3 이하가 되도록 하는 산 촉매라면 제한 없이 사용 가능하며 일례로 염산, 질산 또는 황산이 사용될 수 있다. 이때 산 촉매는 졸의 pH가 3 이하가 되도록 하는 양이 첨가될 수 있으며, 수용매에 용해시킨 수용액 상태로 첨가될 수 있다.
또한, 본 발명의 일 실시예에 따른 촉매화된 졸에서 사용 가능한 염기 촉매로는 수산화나트륨, 수산화칼륨 등의 무기 염기; 또는 수산화암모늄과 같은 유기 염기를 들 수 있다. 구체적으로,상기 염기 촉매는 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화칼슘(Ca(OH)2), 암모니아(NH3), 수산화암모늄(NH4OH; 암모니아수), 테트라메틸암모늄 히드록시드(TMAH), 테트라에틸암모늄 히드록시드(TEAH), 테트라프로필암모늄 히드록시드(TPAH), 테트라부틸암모늄 히드록시드(TBAH), 메틸아민, 에틸아민, 이소프로필아민, 모노이소프로필아민, 디에틸아민, 디이소프로필아민, 디부틸아민, 트리메틸아민, 트리에틸아민, 트리이소프로필아민, 트리부틸아민, 콜린, 모노에탄올아민, 디에탄올아민, 2-아미노에탄올, 2-(에틸 아미노)에탄올, 2-(메틸 아미노)에탄올, N-메틸 디에탄올아민, 디메틸아미노에탄올, 디에틸아미노에탄올, 니트릴로트리에탄올, 2-(2-아미노에톡시)에탄올, 1-아미노-2-프로판올, 트리에탄올아민, 모노프로판올아민, 디부탄올아민 및 피리딘으로 이루어진 군으로부터 선택되는 1 종 이상일 수 있으며, 바람직하게는 수산화나트륨, 암모니아, 수산화암모늄 또는 이들의 혼합물일 수 있다.
상기 염기 촉매는 졸의 pH가 7 내지 11이 되도록 하는 양으로 포함될 수 있다. 상기 졸의 pH가 상기 범위를 벗어날 경우 후술하는 단계 2)의 겔화가 용이하게 이루어지지 않거나, 겔화 속도가 지나치게 느려져 공정성이 저하될 우려가 있다. 또한, 상기 염기는 고체상으로 투입 시 석출될 우려가 있으므로, 구체적으로는 수용매 또는 상기한 유기용매에 의해 희석된 용액상으로 첨가될 수 있다. 이때 상기 염기 촉매 및 유기용매, 구체적으로 알코올의 희석 비율은 부피 기준으로 1:4 내지 1:100일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매화된 졸은 필요에 따라 첨가제를 더 포함할 수 있으며 이 때 첨가제는 에어로겔을 제조할 때 첨가될 수 있는 공지의 첨가제가 모두 적용될 수 있고, 예컨대 불투명화제, 난연제 등의 첨가제가 사용될 수 있다.
또한, 본 발명의 일례에 따른 블랭킷용 기재는 에어로겔 블랭킷의 단열성을 개선하는 측면에서 구체적으로는 다공질(porous) 기재일 수 있다. 다공질의 블랭킷용 기재를 사용하면 촉매화된 졸이 기재 내부로 침투가 용이하여 블랭킷용 기재 내부에서 균일하게 에어로겔을 형성함에 따라 제조된 에어로겔 블랭킷이 우수한 단열성을 가질 수 있다.
본 발명의 일 실시예에 따라 사용할 수 있는 블랭킷용 기재는 필름, 시트, 네트, 섬유, 발포체, 부직포체 또는 이들의 2층 이상의 적층체일 수 있다. 또한, 용도에 따라 그 표면에 표면조도가 형성되거나 패턴화된 것일 수도 있다. 보다 구체적으로는 상기 블랭킷용 기재는 블랭킷용 기재 내로 에어로겔의 삽입이 용이한 공간 또는 공극을 포함함으로써 단열 성능을 보다 향상시킬 수 있는 섬유일 수 있다. 또, 상기 블랭킷용 기재는 낮은 열전도도를 갖는 것이 바람직할 수 있다.
구체적으로 상기 블랭킷용 기재는 폴리아미드, 폴리벤즈이미다졸, 폴리아라미드, 아크릴수지, 페놀수지, 폴리에스테르, 폴리에테르에테르케톤(PEEK), 폴리올레핀(예를 들면, 폴리에틸렌, 폴리프로필렌 또는 이들의 공중합체 등), 셀룰로오스, 카본, 면, 모, 마, 부직포, 유리 섬유 또는 세라믹 울 등일 수 있으며, 보다 구체적으로 본 발명에 있어서 상기 블랭킷용 기재는 유리 섬유(glass felt, glass fiber)일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매화된 졸은 상기 블랭킷용 기재 부피를 기준으로 100 내지 170%, 구체적으로 110% 내지 160%, 더욱 구체적으로 115 내지 155 %가 되는 비율의 양으로 투입될 수 있다.
상기 촉매화된 졸이 블랭킷용 기재 부피 대비 투입 비율(투입량)을 만족하는 경우 촉매화된 졸이 블랭킷용 기재에 더욱 고르게 함침되어 제조되는 에어로겔 블랭킷이 더욱 균일한 물성을 가질 수 있으며, 촉매화된 졸이 블랭킷용 기재에 최대한 함침될 수 있으므로 원재료의 손실을 막고 촉매화된 졸이 단독으로 겔화되는 문제를 방지할 수 있다.
단계 2)
단계 2)에서는 상기 촉매화된 졸을 겔화시켜 습윤겔-블랭킷 복합체를 제조하는 과정이 이루어진다.
본 발명에 있어서, 상기 겔화(gelation)란 촉매화된 졸로부터 망상 구조를 형성시키는 것일 수 있으며, 상기 망상 구조(network structure)는 원자 배열이 1 종 혹은 그 이상의 종류로 되어 있는 어떤 특정한 다각형이 이어진 평면 그물 모양의 구조 또는 특정 다면체의 정점, 모서리, 면 등을 공유하여 3 차원 골격구조를 형성하고 있는 구조를 나타내는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 단계 1)을 완료한 이후에 상기 단계 2)가 개시될 수 있으며, 따라서 상기 단계 1) 및 상기 단계 2)는 순차적으로 수행될 수 있다. 또한, 본 발명의 다른 일 실시예에 따르면, 상기 단계 1)이 완료되기 이전에 상기 단계 2)의 수행이 시작될 수 있다. 상기 단계 1)이 완료되기 이전에 상기 단계 2)의 수행이 시작될 경우, 상기 겔화가 완료되기 이전에 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계가 완료될 수 있다.
본 발명의 일례에 있어서, 상기 1) 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계 및 2) 상기 촉매화된 졸을 겔화시켜 습윤겔-블랭킷 복합체를 제조하는 단계는 이동 요소에 블랭킷용 기재를 배치하고 상기 블랭킷용 기재에 촉매화된 졸을 도포하여 이동 요소를 계속하여 이동시키면서 겔화시키는 롤투롤 방법, 또는 후술하는 바와 같이, 반응 용기에 상기 촉매화된 졸과 블랭킷용 기재를 모두 넣고 겔화시켜 에어로겔 블랭킷을 제조하는 방법에 의해 수행될 수 있다.
본 발명의 일례에 있어서, 상기 단계 1)의 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계는 반용 용기에 촉매화된 졸 및 블랭킷용 기재를 반응 용기에 투입하여 수행될 수 있다. 또한, 상기 반응 용기에 투입되는 블랭킷용 기재와 촉매화된 졸의 투입 순서는 특별히 제한되지 않는다. 구체적으로 상기 단계 1)은 반응 용기에 블랭킷용 기재를 투입한 후 촉매화된 졸을 투입하는 방법, 반응 용기에 촉매화된 졸을 투입한 후 블랭킷용 기재를 투입하는 방법 및 반응 용기에 촉매화된 졸을 투입하면서 블랭킷용 기재를 투입하는 방법 중 어느 하나의 방법에 의해 수행될 수 있다. 이 중에서도 더욱 균일한 함침이 되도록 블랭킷용 기재를 투입한 후 촉매화된 졸을 투입하는 방법이 구체적으로 사용될 수 있다. 블랭킷용 기재를 먼저 투입하는 경우에는 촉매화된 졸을 투입할 때 블랭킷용 기재를 회전시킬 수 있기 때문에 더욱 균일한 함침이 유도될 수 있다.
본 발명의 일례에 의하면, 단계 1)에서 상기 함침은, 상기 블랭킷용 기재를 회전시키며 수행될 수 있다. 블랭킷용 기재를 회전시키며 함침을 수행하는 경우 블랭킷용 기재의 모든 면에 균일하게 촉매화된 졸이 접촉하여 균일한 함침을 유도할 수 있는 효과를 발휘할 수 있다.
상기 블랭킷용 기재는 반응 용기의 형상에 따라 투입하기 용이한 적절한 형태로 투입될 수 있다. 본 발명의 일례에 있어서, 상기 블랭킷용 기재는 보빈에 감은 상태로 반응 용기에 투입될 수 있다. 상기 보빈을 회전시켜 상기 블랭킷용 기재를 회전시킬 수 있으며, 상기 보빈을 회전시켜 상기 블랭킷용 기재를 회전시키며 상기 촉매화된 졸을 함침시킬 수 있다. 구체적으로, 상기 블랭킷용 기재는 회전이 용이하도록 보빈에 롤(roll) 형태로 감은 상태로 반응 용기에 투입될 수 있다.
상기 보빈은 블랭킷용 기재를 회전시킬 수 있는 축이 될 수 있고, 블랭킷용 기재를 감을 수 있는 것이라면 어떤 것도 제한 없이 적용 가능하다. 일례로, 반응 용기 내부에 들어갈 수 있는 크기의 다각통형 기둥, 바람직하게는 원통형 기둥이 사용될 수 있다. 또한, 본 발명의 일 실시예에 따르면, 상기 보빈은 블랭킷용 기재를 롤 형태로 감을 수 있는 권취봉과, 권취봉에 감긴 블랭킷용 기재가 회전 시 이탈하지 않도록 측부를 지지하는 지지판을 포함할 수 있다. 이때 촉매화된 졸이 블랭킷용 기재의 내측에도 함침되기 쉽도록 권취봉에 다수의 중공이 형성되어 있을 수 있다. 한편, 블랭킷용 기재의 측부로 촉매화된 졸이 유입할 수 있도록 지지판은 메쉬 타입을 사용하거나 다수의 중공을 포함할 수 있다. 보빈의 재질은 블랭킷을 지지할 수 있는 충분한 강도를 갖는 어떤 재질이라도 사용이 가능하며 구체적으로 스테인리스 스틸, PE, PP, 테플론 등이 사용될 수 있다.
상기 보빈에 블랭킷용 기재를 감은 후 반응 용기에 이를 넣은 후에는 상기 보빈을 반응 용기에 고정하는 과정이 이루어질 수 있다. 이때, 상기 보빈은 반응 용기의 어떤 위치에도 고정이 가능하나, 동일한 부피의 반응 용기 내에 블랭킷용 기재를 많이 투입하여 생산 효율을 높일 수 있다는 측면에서, 구체적으로 상기 보빈은 반응 용기의 중심부에 고정될 수 있다. 또한, 상기 보빈의 장축과 반응 용기의 장축이 서로 평행되도록 보빈을 위치시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 반응 용기는 겔화를 수행하기 위한 반응 용기일 수 있으며, 촉매화된 졸이 함침된 블랭킷용 기재가 회전할 수 있도록 공간을 형성하는 용기라면 다각통형, 원통형 등 어떤 형상의 용기라도 사용이 가능하나, 롤 형태로 감긴 블랭킷용 기재의 투입도 용이하게 하고, 겔화 반응 시 촉매화된 졸이 함침된 블랭킷용 기재의 회전이 용이하게 이루어지는 측면에서 바람직하게는 원통형의 반응 용기가 사용될 수 있다.
상기 단계 1)에서 촉매화된 졸을 투입할 때, 블랭킷용 기재와 촉매화된 졸의 결합을 좋게 하기 위해 블랭킷용 기재를 가볍게 눌러 충분히 함침되도록 할 수 있다. 이후 일정한 압력으로 블랭킷용 기재를 일정 두께로 가압하여 잉여의 졸을 제거하여 건조 시간을 줄일 수도 있다.
또한, 상기 촉매화된 졸 및 블랭킷용 기재는 반응 용기의 부피, 구체적으로 반응 용기 내부 부피의 총 1 내지 100 %가 되도록 각각 투입될 수 있으며, 단계 3)에서 겔화 시간을 단축하고 블랭킷용 기재 내부에 균일하게 에어로겔을 형성하는 측면에서 바람직하게는 반응 용기 부피의 1 내지 60 %가 되는 양, 더욱 바람직하게는 10 내지 60 %, 보다 더 바람직하게는 30 내지 60%가 되는 양이 되도록 투입될 수 있다.
한편, 본 발명의 일례에 있어서, 상기 단계 1)의 완료 이전에 단계 2)의 수행이 이루어지는 경우에는 상기 단계 2)에서 겔화가 완료될 때까지, 구체적으로는 겔화가 완료되기 전까지 촉매화된 졸이 반응 용기에 전부 투입될 수 있다.
본 발명의 일례에 있어서, 상기 단계 2)에서의 겔화는 상기 촉매화된 졸이 함침된 블랭킷용 기재를 회전시키며 이루어질 수 있다.
상기 촉매화된 졸이 함침된 블랭킷용 기재의 회전은 반응 용기 내에서 겔화하는 동안 회전하도록 하는 방법이라면 어떠한 방법 및 장치도 사용이 가능하며, 구체적으로 상기 단계 1)에서 블랭킷용 기재를 보빈에 감은 상태로 투입하고 고정시키는 경우 상기 촉매화된 졸이 함침된 블랭킷용 기재가 보빈에 감긴 상태로 반응 용기에 존재하기 때문에, 보빈을 회전함으로써 촉매화된 졸이 함침된 블랭킷용 기재가 회전되도록 하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 촉매화된 졸 및 블랭킷용 기재를 투입한 반응 용기를 밀봉한 후 겔화반응이 진행될 수 있다. 또한, 본 발명의 일 실시예에 따르면 장축은 횡방향 즉, 수평방향으로 배치되어 회전이 이루어질 수 있다. 만약, 반응 용기(본체)가 원통형의 반응 용기인 경우 원통형의 반응 용기를 눕혀서 회전시킬 수 있다. 즉, 본 발명의 반응 용기의 회전축은 수평 방향일 수 있으나 이에 제한되지 않는다.
본 발명의 일 실시예에 따르면 상기 반응 용기(본체)를 포함하고, 상기 반응 용기에 존재하는 촉매화된 졸이 함침된 블랭킷용 기재를 회전시킬 수 있는 에어로겔 블랭킷의 제조장치라면 그 종류가 제한되지 않고, 회전시킬 수 있는 장치라면 공지된 어떤 장치라도 사용할 수 있다. 구체적으로, 반응 용기에 보빈의 위치를 고정시킬 수 있고, 위치가 고정된 보빈을 회전하도록 하는 장치라면 공지된 어떤 장치라도 사용할 수 있다. 본 발명에서 적용 가능한 에어로겔 블랭킷의 제조장치의 일 예시는 후술한다.
본 발명의 일 실시예에 따르면 상기 단계 2)의 겔화가 상기 촉매화된 졸이 함침된 블랭킷용 기재를 회전시키며 이루어질 경우, 상기 회전 속도는, 블랭킷 내 에어로겔이 균일하게 형성될 수 있도록 하는 회전 속도면 제한 없이 적용 가능하며, 일례로 1 rpm 내지 300 rpm, 바람직하게는 5 rpm 내지 150 rpm, 5 rpm 내지 100rpm, 보다 바람직하게는 10 rpm 내지 30 rpm의 회전 속도로 회전시키면서 겔화를 실시하는 것일 수 있다. 반응 용기가 상기 범위의 회전속도를 충족하는 경우 블랭킷용 기재 내 졸이 고르게 함침될 수 있으므로 겔화 시 에어로겔이 더욱 균일하게 형성되며, 이에 따라 에어로겔 블랭킷 전체에서 매우 균일한 열전도도를 확보할 수 있고 반응 용기 및 이를 회전시키는 장치의 안정성을 높여 에어로겔 블랭킷 제조 공정의 안전성을 높이는 이점이 있다.
반응 용기에 촉매화된 졸과 블랭킷용 기재를 모두 넣고 겔화시켜 에어로겔 블랭킷을 제조할 경우, 롤투롤 공법에 비해 컨베이어 벨트와 같은 이동 요소가 별도로 필요하지 않아 제조 시 사용 공간을 크게 절약할 수 있는 이점을 가질 수 있다. 또한, 반응 용기에 촉매화된 졸과 블랭킷용 기재를 모두 넣고 겔화시켜 에어로겔 블랭킷을 제조할 경우, 연속적으로 블랭킷용 기재 및 촉매화된 졸을 공급하면서, 시간적 흐름에 따라 순차적으로 겔화가 이루어지는 롤투롤 공법에 비해 동일한 두께 및 길이를 가지는 블랭킷용 기재 사용시 더욱 짧은 시간 내에 에어로겔 블랭킷을 제조할 수 있는 장점이 있다. 특히, 블랭킷용 기재가 길어질수록 블랭킷용 기재 전체적으로 충분한 겔화가 이루어지기 위해서는 겔화 공정 시간이 더욱 길어지게 되는데, 반응 용기에 촉매화된 졸과 블랭킷용 기재를 모두 넣고 겔화시켜 에어로겔 블랭킷을 제조하는 방법에 의할 경우, 블랭킷용 기재 전체에서 졸의 겔화가 동시에 이루어지기 때문에 제조시간을 현저하게 줄일 수 있고, 또한 블랭킷용 기재의 길이 및 두께가 겔화 시간에 영향을 미치지 않으므로 길이가 긴 블랭킷용 기재를 사용하더라도 제조시간을 현저하게 낮춰 공정 효율을 극대화 할 수 있다.
또한, 반응 용기를 회전시키면서 겔화를 수행하여 원심력과 구심력이 작용하기 때문에 반응 용기를 회전시키지 않거나, 이동 요소 상에서 겔화시키는 롤투롤 공법에 비해 에어로겔이 더욱 균일하게 분산된 에어로겔 블랭킷을 제조할 수 있어, 제조되는 에어로겔 블랭킷의 두께가 블랭킷용 기재의 두께와 동일 또는 극히 유사한 수준이며, 단열성이 우수한 효과가 있다.
한편, 본 발명의 일례에 따른 에어로겔 블랭킷의 제조방법은 3) 상기 겔화된 습윤겔-블랭킷 복합체를 숙성하는 단계, 및 4) 상기 겔화된 습윤겔-블랭킷 복합체를 표면 개질하는 단계를 더 포함할 수 있다.
상기 숙성하는 단계는 상기 겔화된 습윤겔 블랭킷 복합체를 적당한 온도에서 방치하여 화학적 변화가 완전히 이루어지도록 하여 수행될 수 있으며, 상기 숙성 단계를 통하여 상기 형성된 망상구조를 더 견고하게 형성시킬 수 있어, 본 발명의 제조방법에 의해 제조되는 에어로겔 블랭킷의 기계적 안정성을 강화시킬 수 있다.
상기 숙성 단계는 수산화나트륨(NaOH), 수산화칼륨(KOH), 수산화암모늄(NH4OH), 트리에틸아민, 피리딘 등의 염기성 촉매를 유기 용매에 1 내지 10 % 농도로 희석시킨 용액을 첨가함으로써, 에어로겔 내에 Si-O-Si 결합을 최대한으로 유도하여 실리카겔의 망상 구조를 더욱 견고하게 만들어 이후 수행될 빠른 건조 공정에서 기공 구조의 유지를 더욱 용이하게 하는 효과가 있다. 이 때 유기 용매는 전술한 알코올(극성 유기 용매)일 수 있으며, 구체적으로는 에탄올을 포함할 수 있다.
또한, 상기 숙성 단계는 최적의 기공 구조 강화를 위하여 적절한 온도 범위에서 수행되어야 하는데 본 발명의 숙성 단계는 30 내지 70 ℃ 온도에서 1 내지 10 시간 동안 방치시켜 수행될 수 있다. 숙성 온도가 30 ℃ 미만인 경우, 숙성 시간이 지나치게 길어져 전체 공정 시간의 증가로 이어져 생산성이 감소하는 문제가 있을 수 있으며, 숙성 온도가 70 ℃ 초과인 경우, 에탄올의 끓는점을 벗어나므로, 증발에 의한 용매의 손실이 커져, 원재료 비용이 증가하는 문제가 있을 수 있다.
상기 겔화된 습윤겔-블랭킷 복합체를 표면 개질하는 단계에서는 친수성 작용기를 소수성 작용기로 치환하는 과정이 이루어지며, 에어로겔의 표면에 존재하는 친수성 작용기를 소수성 작용기로 치환하는 경우 소수성 작용기들 사이의 반발력에 의해 에어로겔의 건조 시 용매의 표면장력에 의한 기공의 수축을 최소화할 수 있다. 건조된 에어로겔은 건조 직후에는 낮은 열전도율을 유지하지만, 에어로겔의 표면에 존재하는 하이드록시 작용기, 예컨대 상기 에어로겔이 실리카 에어로겔인 경우 실리카 표면에 존재하는 친수성의 실라놀기(Si-OH)가 공기 중의 물을 흡수함으로써 열전도율이 점차 높아지는 단점이 있다. 따라서, 낮은 열전도율을 유지하기 위해서는 에어로겔 표면을 소수성으로 개질할 필요가 있다.
따라서, 본 발명의 일례에 있어서 상기 표면개질은 극성 용매 및 유기실란 화합물을 포함하는 표면개질제에 의해 이루어질 수 있다.
상기 극성 용매는 메탄올, 에탄올 또는 이소프로필알코올 등을 사용할 수 있으며, 상기 유기실란 화합물은 트리메틸클로로실란(Trimethylchlorosilane, TMCS), 헥사메틸디실라잔(hexamethyldisilazane, HMDS), 메틸트리메톡시실란(methyltrimethoxysilane), 트리메틸에톡시실란(trimethylethoxysilane), 에틸트리에톡시실란(ethyltriethoxysilane), 또는 페닐트리에톡시실란(phenyltriethoxysilane) 등이 사용될 수 있으며, 구체적으로는 헥사메틸디실라잔이 사용될 수 있다.
상기 표면개질시 상기 숙성 용매는 겔에 대하여 1 내지 10배의 부피비로 혼합될 수 있고, 상기 유기실란 화합물은 겔에 대하여 0.1 내지 10배의 부피비로 혼합될 수 있다. 상기 유기실란 화합물의 부피비가 0.1배 미만일 때는 반응시간이 지나치게 길어지며 표면개질 효율이 떨어질 수 있고, 유기 실란 화합물의 부피비가 10배 초과일 때는 원가 상승의 문제가 있고, 미반응 표면개질제가 건조 시 수축을 유발할 수 있다.
상기 숙성 단계 및 표면개질 단계는 겔화가 완료된 실리카 습윤겔 블랭킷을 회수한 후 별도의 반응 용기에서 수행될 수 있고, 또는 겔화가 수행된 반응 용기 내부에서 수행될 수 있으며, 구체적으로는 공정의 효율 및 장비의 간소화 측면에서 수행된 상기의 반응 용기에서 숙성 및 표면개질 단계가 수행될 수 있다. 또한 겔화가 수행된 상기의 반응 용기에서 숙성 및 표면개질 단계를 수행할 때, 상기 단계 3)에서 제조된 습윤겔-블랭킷 복합체는 회전될 수 있고, 회전하면서 숙성 및 표면개질을 수행하는 경우 숙성 용매 및 표면개질제가 더욱 잘 침투될 수 있으며, 숙성 용매 및 표면개질제가 침투된 이후 습윤겔 블랭킷 복합체 내에서 분산이 더욱 잘 이루어질 수 있으므로 숙성 효율 및 표면개질 효율이 크게 개선되는 이점이 있다.
상기의 표면개질 단계를 수행한 이후에는 소수성의 습윤겔 블랭킷 복합체를 얻을 수 있다.
또한, 본 발명의 에어로겔 블랭킷 제조방법은 5) 상기 습윤겔 블랭킷을 건조하는 단계를 더 포함할 수 있다. 상기 습윤겔 블랭킷 복합체를 건조하여 에어로겔 블랭킷을 제조할 수 있다.
한편, 본 발명의 일 실시예에 따른 제조방법은 상기 건조 전 세척하는 단계를 더 수행할 수 있다. 상기 세척은 반응 중 발생된 불순물(나트륨 이온, 미반응물, 부산물 등) 및 초임계 건조 중 CO2와 반응하여 탄산암모늄 염을 발생할 수 있는 잔류 암모니아 등을 제거하여, 고순도의 소수성의 실리카 에어로겔을 얻기 위한 것으로 비극성 유기용매를 이용한 희석공정 또는 교환공정으로 수행할 수 있다.
본 발명의 일 실시예에 있어서 상기 건조 단계는 숙성된 겔의 기공구조를 그대로 유지하면서 용매를 제거하는 공정을 통해 수행될 수 있으며, 상기 건조 단계는 초임계 건조 또는 상압 건조 공정에 의할 수 있다.
상기 초임계 건조 공정은 초임계 이산화탄소를 이용하여 수행될 수 있다. 이산화탄소(CO2)는 상온 및 상압에서는 기체 상태이지만 임계점(supercritical point)이라고 불리는 일정한 온도 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는, 임계 상태가 되며, 이 임계 상태에 있는 이산화탄소를 초임계 이산화탄소라고 한다.
초임계 이산화탄소는 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가지며, 확산이 빠르고 열전도성이 높아 건조 효율이 높고, 건조 공정 시간을 단축시킬 수 있다.
구체적으로, 상기 초임계 건조 공정은 초임계 건조 반응기 안에 숙성된 습윤겔 블랭킷을 넣은 다음, 액체 상태의 CO2를 채우고 습윤겔 내부의 알코올 용매를 CO2로 치환하는 용매치환 공정을 수행한다. 그 후에 일정 승온 속도, 구체적으로는 0.1 ℃/min 내지 1 ℃/min의 속도로, 40 내지 70 ℃로 승온시킨 후, 이산화탄소가 초임계 상태가 되는 압력 이상의 압력, 구체적으로는 100 bar 내지 150 bar의 압력을 유지하여 이산화탄소의 초임계 상태에서 일정 시간, 구체적으로는 20 분 내지 1 시간 동안 유지한다. 일반적으로 이산화탄소는 31℃의 온도, 73.8 bar의 압력에서 초임계 상태가 된다. 이산화탄소가 초임계 상태가 되는 일정 온도 및 일정 압력에서 2 시간 내지 12 시간, 보다 구체적으로는 2 시간 내지 6 시간 동안 유지한 다음, 서서히 압력을 제거하여 초임계 건조 공정을 완료하여 에어로겔 블랭킷을 제조할 수 있다.
또한, 상압 건조 공정의 경우, 70 내지 200 ℃ 온도 및 상압(1±0.3 atm) 하에서 열풍건조, IR drying 등의 통상의 방법에 따라 수행될 수 있다.
상기와 같은 건조 공정의 결과로, 나노 크기의 기공을 갖는 다공성 에어로겔을 포함하는 블랭킷이 제조될 수 있다. 특히, 본 발명의 일 실시예에 따른 실리카 에어로겔은 높은 소수화도와 함께 우수한 물성적 특성, 특히 낮은 탭밀도와 높은 기공율을 가지며, 이를 포함하는 실리카 에어로겔 함유 블랭킷은 낮은 열전도도와 함께 우수한 기계적 유연성을 갖는다.
또한, 상기 건조 공정 전 또는 후에 두께 조절 및 블랭킷의 내부조직과 표면형상을 균일하게 하기 위한 압착 공정, 용도에 따라 적절한 형태 또는 모폴로지를 갖도록 하기 위한 성형 공정, 또는 별도의 기능층을 적층하는 적층 공정 등이 더 수행될 수도 있다.
이하에서는 상기 단계 1) 및 2)에서 발생한 미함침된 촉매화된 졸을 회수하여 이를 재사용하는 과정을 각 단계별로 상세히 설명한다.
단계 A
상기 단계 A)에서는 상기 단계 2)의 겔화시키는 단계 이후, 미함침된 촉매화 된 졸을 회수하고 용매를 투입하여 희석시켜, 회수된 졸의 겔화를 정지시키는 과정이 이루어진다.
상기 단계 1)의 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계에서 촉매화된 졸은 블랭킷용 기재에 충분히 함침될 수 있도록 블랭킷용 기재에 비해 과량으로 투입되며, 따라서 블랭킷용 기재에 함침되지 않고 남게 되는 미함침된 졸이 발생하게 된다.
상기 블랭킷용 기재에 함침되지 않고 남게 되는 미함침된 졸은 촉매화된 것이므로 별도의 조치가 없을 경우 겔화되게 된다. 따라서, 본 발명에서는 상기 미함침된 졸을 회수하고, 우선적으로 회수된 미함침된 졸이 겔화되기 전에 용매를 투입하여 이를 희석함으로써 겔화가 이루어지기 어려운 수준으로 전구체 및 촉매의 농도를 낮추어 회수된 졸의 겔화를 정지시키는 과정이 수행된다.
본 발명의 일례에 있어서, 상기 용매를 투입하여 희석시켜 회수된 졸의 겔화를 정지시키는 과정은 구체적으로 상기 회수된 졸의 점도를 측정하고 상기 회수된 졸의 점도가 일정 수준 이하가 되도록 함으로써 달성될 수 있다.
상기 단계 A)에서 용매의 투입은 상기 회수된 졸의 점도가 2 내지 10 cp일 때 이루어질 수 있고, 구체적으로 4 내지 10 cp, 더욱 구체적으로 7 내지 10 cp일 때 이루어질 수 있다. 상기 회수된 졸의 점도가 상기 범위를 만족할 경우, 회수된 졸이 투입되는 용매와 원활히 섞여 겔화가 진행되지 않는 농도로 적절히 희석될 수 있으며, 또한 회수된 졸에 포함되어 있는 네트워크가 씨드(seed) 역할을 수행하여 새로운 촉매화된 졸의 겔화를 돕고 에어로겔의 구조 강화 및 물성을 향상시키는 효과가 적절히 발휘될 수 있다. 상기 회수된 졸의 점도가 10 cp를 초과했을 때 용매를 투입하는 경우, 회수된 졸의 겔화가 일정 수준 이상 진행되어 회수된 졸이 투입된 용매와 원활히 섞이지 않으며 겔화된 입자가 침전을 형성할 수 있으며, 상기 회수된 졸의 점도가 2 cp 미만일 경우는 블랭킷용 기재에 촉매화된 졸의 겔화가 진행되지 않았음을 의미하므로, 회수된 미함침 졸이 새로이 제조되는 촉매화된 졸에 포함되어 있는 네트워크가 발휘할 수 있는 상기 효과를 기대하기 어려울 수 있다.
상기 단계 A)의 희석을 통하여 회수된 졸은 10 cp 이하, 구체적으로 1 내지 5 cp, 더욱 구체적으로 1 내지 3 cp의 점도를 가질 수 있다. 상기 회수된 졸이 상기 용매의 투입을 위하여 상기 범위의 하한 이상의 점도를 가지게 될 경우, 상기 회수된 졸을 이후 단계에서 촉매화된 졸의 제조 단계에서 재사용했을 때, 상기 회수된 졸에 포함된 네트워크가 새로운 촉매화된 졸의 겔화를 돕고, 에어로겔의 구조 강화 및 물성을 향상시키는 효과가 적절히 발휘될 수 있는 정도로 상기 회수된 졸이 희석될 수 있으며, 상기 희석을 통하여 회수된 졸이 상기 범위의 상한 이내의 점도를 가지게 될 경우 적절히 회수된 졸의 겔화가 정지될 수 있다.
상기 용매는 상기 단계 1)에서 촉매화된 졸의 제조에 사용된 용매일 수 있고, 구체적으로 유기용매일 수 있다.
상기 유기용매는 졸 전구체 및 물과의 상용성이 우수한 것이라면 제한 없이 사용 가능하며, 구체적으로는 극성 유기용매일 수 있고, 더욱 구체적으로는 알코올일 수 있다. 상기 알코올은 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 1가 알코올; 또는 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 및 솔비톨 등과 같은 다가 알코올일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이 중에서도 물 및 이후 회수된 미함침된 졸을 이용하여 에어로겔을 제조할 때, 제조되는 에어로겔과의 혼화성을 고려할 때 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 탄소수 1 내지 6의 1가 알코올이 사용될 수 있다.
상기 미함침된 촉매화된 졸의 회수는, 상기 단계 1)에서 반응 용기에 촉매화된 졸 및 블랭킷용 기재를 투입하여 블랭킷용 기재에 촉매화된 졸을 함침시키고, 블랭킷용 기재가 충분히 함침되어 더 이상 반응 용기 내 액위가 변하지 않을 때 이루어질 수 있다. 구체적으로, 상기 함침시키는 단계 이후 반응 용기 내 액위가 변하지 않을 때 상기 반응 용기 내에 남아 있는 미함침된 촉매화된 졸을 회수할 수 있다. 상기 반응 용기에는 상기 미함침된 촉매화된 졸을 회수하기 위한 드레인 벨브(drain valve)가 연결되어 있을 수 있고, 상기 드레인 밸브(drain valve)를 열어 상기 미함침된 촉매화된 졸을 회수할 수 있다.
상기 회수된 미함침된 촉매화된 졸은 별도의 용기에 옮겨질 수 있으며, 구체적으로 상기 회수된 미함침된 촉매화된 졸의 재사용이 이루어지는 별도의 에어로겔 블랭킷 제조 장치에 포함된 졸 탱크(sol tank)로 옮겨질 수 있다. 따라서, 상기 단계 A), 즉 미함침된 촉매화 된 졸을 회수하고 용매를 투입하여 희석시키는 과정은 별도의 에어로겔 블랭킷 제조 장치의 졸 탱크에서 이루어질 수 있다.
단계 B
상기 단계 B)에서는 상기 겔화가 정지된 회수된 졸을 촉매화된 졸의 제조 단계에 재사용하는 과정이 이루어진다.
상기 촉매화된 졸은 졸과 염기 촉매를 혼합하여 제조될 수 있으며, 상기 졸이 포함하는 성분 및 염기 촉매는 상기 단계 1)에서 전술한 바와 같다.
상기 재사용은 상기 겔화가 정지된 회수된 졸에 상기 촉매화된 졸의 제조에 사용되는 졸과 염기 촉매를 첨가하는 방법에 의해 이루어질 수 있고, 또는 상기 겔화가 정지된 회수된 졸에 별도로 제조된 촉매화된 졸을 혼합하는 방법에 의해 이루어질 수도 있으며, 구체적으로 상기 겔화가 정지된 회수된 졸에 졸을 첨가한 후 염기 촉매를 첨가하는 방법이 순차적으로 이루어질 수 있다. 이를 통해, 상기 겔화가 정지된 회수된 졸에 포함된 졸 및 염기 촉매의 농도를 상기 단계 A)의 희석이 이루어지기 전의 촉매화된 졸에 포함된 졸 및 염기 촉매의 농도와 맞춰, 상기 단계 2)에서의 겔화 시간과 동일한 겔화 시간을 가질 수 있도록 할 수 있다.
예컨대, 상기 단계 A)의 과정은 상기 단계 1) 및 2)가 이루어지는 에어로겔 블랭킷 제조 장치가 아닌 별도의 추가 에어로겔 블랭킷 제조 장치에 포함된 졸 탱크서 이루어질 수 있으며, 단계 A)의 과정은 상기 겔화가 정지된 회수된 졸이 투입된 졸 탱크에 상기 촉매화된 졸의 제조에 사용되는 졸과 염기 촉매를 투입하는 방법, 또는 상기 겔화가 정지된 회수된 졸이 투입된 졸 탱크에 별도로 제조된 촉매화된 졸을 투입하는 방법에 의해 수행될 수 있으며, 구체적으로는 상기 겔화가 정지된 회수된 졸이 투입된 졸 탱크에 졸을 투입한 다음, 염기 촉매를 투입하는 과정이 순차적으로 이루어질 수 있다. 상기 졸 탱크는 회수된 졸을 담을 수 있고, 상기 촉매화된 졸의 제조 과정이 이루어질 수 있는 용기라면 특별히 제한되지 않는다.
상기 졸은 졸 전구체, 물 및 유기용매를 포함할 수 있으며, 이들을 혼합하여 제조될 수 있다. 상기 졸은 별도로 제조된 졸 형태로 사용될 수 있고, 또는 졸 전구체, 물 및 유기용매를 포함하는 상기 졸을 제조하기 위한 성분이 상기 겔화가 정지된 회수된 졸에 첨가되는 방법에 의해 사용될 수도 있다. 이때, 상기 졸 전구체는 산 촉매에 의해 가수분해된 형태로 사용될 수 있으며, 상기 산 촉매는 상기 단계 1)에서 전술한 바와 같다.
상기 단계 B)를 통해 제조되는 촉매화된 졸은 상기 겔화가 정지된 회수된 졸을 5 내지 50 중량%, 구체적으로 7 내지 40 중량%, 더욱 구체적으로 10 내지 35 중량% 포함할 수 있다. 상기 겔화가 정지된 회수된 졸은 일부 겔화가 진행되어 기 형성된 겔화 입자를 포함할 수 있으며, 상기 기 형성된 겔화 입자는 새로이 제조되는 촉매화된 졸에 포함되어 겔화를 원활하게 하는 씨드(seed) 역할을 할 수 있다. 이에 따라, 촉매화된 졸의 제조시 상기 겔화가 정지된 회수된 졸을 사용할 경우, 촉매화된 졸의 겔화가 용이하게 이루어질 수 있고, 제조된 에어로겔 블랭킷의 구조 강화 및 물성 향상 효과가 얻어질 수 있다. 상기 겔화가 정지된 회수된 졸의 함량이 상기 범위를 만족할 경우, 에어로겔 블랭킷의 구조 강화 및 물성 향상 효과가 더욱 적절히 발휘될 수 있으며, 그 함량이 과소할 경우 물성 향상 효과가 발휘되기 어렵고, 그 함량이 과대할 경우에는 겔화의 지연이 충분히 발현되지 않아 적절 시점 이전에 제조되는 촉매화된 졸의 겔화가 진행될 수 있다.
또한, 본 발명의 일례에 따른 에어로겔 블랭킷 제조방법은 상기 단계 B)에서 제조된 촉매화된 졸을 이용한 에어로겔 블랭킷 제조 단계를 포함할 수 있다.
상기 단계 B)에서 제조된 촉매화된 졸을 이용한 에어로겔 블랭킷 제조 단계는 상기 단계 1) 및 2), 그리고 이후의 추가로 이루어질 수 있는 과정에 대하여 전술한 것과 같은 방법에 의해 이루어질 수 있다. 예컨대, 본 발명의 일례에 있어서, 상기 단계 B)에서 제조된 촉매화된 졸을 이용한 에어로겔 블랭킷 제조 단계는 이동 요소에 블랭킷용 기재를 배치하고 상기 블랭킷용 기재에 상기 단계 B)에서 제조된 촉매화된 졸을 도포하여 이동 요소를 계속하여 이동시키면서 겔화시키는 롤투롤 방법, 또는 별도의 제 2 반응 용기에 블랭킷용 기재 및 상기 단계 B)에서 제조된 촉매화된 졸을 투입하여 블랭킷용 기재에 단계 B)에서 제조된 촉매화된 졸을 함침시키고, 겔화시키는 단계를 포함할 수 있다. 본 발명의 일례에 있어서, 상기 겔화시키는 단계는 상기 촉매화된 졸이 함침된 블랭킷용 기재를 회전시키며 겔화시키는 단계를 포함할 수 있다.
또한, 상기 단계 B)에서 제조된 촉매화된 졸을 이용한 에어로겔 블랭킷 제조 단계에 있어서, 또 다시 미함침된 촉매화된 졸을 회수하고 이를 촉매화된 졸 제조시 재사용하는 과정이 이루어질 수 있으며, 이는 수회 이상 반복될 수 있다. 즉, 상기 미함침된 촉매화된 졸을 회수하고 이를 촉매화된 졸의 제조에 재사용하는 과정은 1회 이상 반복될 수 있으며, 그 회수에는 특별한 제한은 없으나 예컨대 1회 내지 20회, 구체적으로 2회 내지 10회 반복될 수 있다.
전술한 본 발명의 에어로겔 블랭킷의 제조방법은 균일한 열전도도를 가지고, 블랭킷 내 균일한 열전도도의 형성으로 전체적으로 단열성이 크게 개선된 에어로겔 블랭킷을 제공한다. 또한, 본 발명의 에어로겔 블랭킷의 제조방법에 의하면 회수된 미함침된 졸을 재사용하여 제조된 촉매화된 졸은 겔화가 용이하게 이루어질 수 있고, 제조된 에어로겔 블랭킷의 구조 강화 및 물성 향상 효과가 얻어질 수 있으므로, 상기 미함침된 촉매화된 졸을 회수하고 이를 촉매화된 졸의 제조에 재사용하는 과정을 통해 제조된 에어로겔 블랭킷은 더욱 향상된 열전도도 특성을 발휘할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷은 에어로겔 및 블랭킷용 기재를 포함하는 것이며, 구체적으로 블랭킷용 기재 내부 및 표면에 에어로겔이 형성된 것일 수 있고, 일례로 블랭킷용 기재 내부 및 표면에 다량의 에어로겔 입자가 고루 형성된 것일 수 있으며, 상기 에어로겔 블랭킷은 10 내지 20 mW/mK의 개선된 열 전도도를 가질 수 있다.
상기의 열 전도도는, NETZSCH社의 HFM 436 Lambda장비를 이용하여 열유속법(heat flow method)에 따라 상온 (23±5℃)에서 측정한 값이다.
이에 따라, 본 발명의 에어로겔 블랭킷은 각종 산업용 설비의 배관이나 공업용 로와 같은 보온보냉용 플랜트 시설은 물론, 항공기, 선박, 자동차, 건축 구조물 등의 단열재, 보온재, 또는 불연재로서 유용하게 사용될 수 있다.
이하에서는 본 발명의 일례에 따른 에어로겔 블랭킷의 제조방법이 수행될 수 있는 에어로겔 블랭킷 제조 장치에 대해 설명한다.
본 발명의 일 실시예에 따른 에어로겔 블랭킷의 제조방법이 수행될 수 있는 제조장치는 도 1에 도시되어 있는 것과 같이, 블랭킷(blanket)이 권취되는 보빈(100), 상기 보빈(100)을 수용하는 겔화탱크(210)가 구비된 본체(200), 상기 겔화탱크(210)에 수용된 보빈(100)을 회전시키는 구동부재(300), 및 상기 겔화탱크(210)에 촉매화된 졸을 주입하는 촉매화된 졸 공급부재(400), 상기 겔화탱크(210)에 숙성용액을 주입하는 숙성부재(도시하지 않음), 상기 겔화탱크(210)에 표면개질제를 주입하는 표면개질제부재(도시하지 않음), 및 상기 겔화탱크(210)의 온도를 상승시켜서 블랭킷을 건조하는 건조부재(도시하지 않음)를 포함한다.
여기에서 블랭킷은 촉매화된 졸이 투입되기 전인 블랭킷용 기재, 촉매화된 졸이 함침된 블랭킷용 기재 및/또는 겔화 이후 습윤겔 블랭킷을 의미하는 것일 수 있고, 각 단계 별로 블랭킷용 기재의 상태에 따라 적절하게 해석될 수 있다.
보빈
보빈은 블랭킷을 롤-형태로 권취하기 위한 것으로, 블랭킷이 롤 형태로 권취되는 권취봉과, 상기 권취봉의 양쪽 단부에 각각 결합되고 상기 권취봉에 권취된 블랭킷의 측부를 지지하는 지지판을 포함한다.
상기 권취봉은 길이방향으로 관통되는 중공이 형성된 원통 형태를 가지며, 외주면에 긴 시트 형태의 블랭킷이 롤 형태로 권취된다.
한편, 권취봉에 권취된 블랭킷의 외측은 촉매화된 졸을 빠르게 함침시킬 수 있어 안정적으로 겔화시킬 수 있지만, 블랭킷의 내측은 촉매화된 졸이 함침되는데 많은 시간이 소요되는 문제점이 있다. 이를 방지하기 위해 권취봉의 외주면에는 중공과 연결되는 복수개의 연결구멍을 포함한다.
즉, 상기 권취봉은 상기 겔화탱크에 주입된 촉매화된 졸을 유입하도록 내부에 중공이 형성되고, 상기 중공에 유입된 촉매화된 졸이 권취봉 밖으로 유출되어 권취봉에 권취된 블랭킷의 내측에 함침되도록 하는 복수개의 연결구멍이 형성된다. 이에 따라 블랭킷의 외측과 내측을 동시에 촉매화된 졸을 함침시킴에 따라 겔화시킬 수 있으며, 그 결과 블랭킷의 겔화시키는데 소요되는 시간을 크게 단축할 수 있고, 그 결과 블랭킷 전체를 균일하게 겔화시킬 수 있다.
한편, 상기 복수개의 연결구멍의 직경은 3~5mm를 가지며, 권취봉의 외주면에 규칙적인 간격으로 형성된다. 이에 따라 권취봉의 외주면에 권취된 블랭킷 전체에 균일하게 촉매화된 졸을 공급할 수 있고, 그에 따라 블랭킷 내측 전체를 균일하게 겔화시킬 수 있다.
상기 지지판는 권취봉에 권취된 블랭킷이 불규칙하게 권취되지 않도록 지지하는 것으로, 원판 형태를 가지며, 상기 권취봉의 양쪽 단부에 각각 결합되고 상기 권취봉에 권취된 블랭킷의 측부를 지지한다.
한편, 지지판은 상기 권취봉의 단부가 결합되는 체결홈과, 상기 체결홈의 바닥면에 형성되는 체결구멍을 포함한다. 즉, 지지판은 체결홈을 통해 권취봉의 단부에 결합할 수 있다.
한편, 지지판은 복수개의 개방구멍이 형성되며, 복수개의 개방구멍은 권취봉에 권취된 블랭킷의 측부로 촉매화된 졸을 유입할 수 있고, 이에 따라 블랭킷 측부를 안정적으로 겔화시킬 수 있다.
따라서 상기 보빈은 권취봉과 지지판을 포함하며, 이에 따라 블랭킷을 롤형태로 권취할 수 있다.
본체
본체는 보빈을 수용하는 겔화탱크가 설치되는 것으로, 겔화탱크, 및 상기 겔화탱크가 설치되는 제1 설치부재(220)를 포함한다.
상기 겔화탱크는 보빈에 수용된 블랭킷을 겔화시키기 위한 것으로, 내부에 구비되고 상기 보빈을 수용하는 겔화실, 외부 하단에 구비되고 겔화실과 연결되는 배출부, 외부 상단에 구비되고 겔화실과 연결되는 유입부를 포함한다.
특히 겔화탱크의 겔화실은 상부가 덮개에 의해 개방되고, 하부가 권취봉에 권취된 블랭킷과 대응하는 곡률을 가진 U'자 단면 형상을 가지며, 이에 따라 겔화실에 실리카졸이 유입될 경우 실리카졸과 블랭킷의 접촉력을 높일 수 있고, 그 결과 블랭킷의 겔화를 높일 수 있다.
한편, 상기 겔화탱크는 상기 겔화실의 양쪽 벽면에 구비되고, 상기 보빈의 양쪽 끝단에 결합되면서 상기 보빈을 상기 겔화실에 회전 가능하게 설치하는 회전부재를 포함한다.
상기 회전부재는 상기 겔화실의 양쪽 벽면에 형성된 관통홀에 회전 가능하게 설치되고, 겔화실에 수용된 보빈의 단부가 동력 전달 가능하게 설치된다.
일례로, 회전부재의 일면에 일자 형태의 결합돌기가 형성되고, 보빈의 단부에 상기 결합돌기가 결합되는 일자 형태의 결합홈이 형성된다. 즉, 결합돌기와 결합홈의 결합을 통해 회전부재 회전시 보빈을 동일 방향으로 회전시킬 수 있다. 그 결과 겔화탱크 내부에 보빈을 회전 가능하게 설치할 수 있다.
한편, 본체는 촉매화된 졸 공급부재가 설치되는 제2 설치부재(230)가 더 포함되며, 상기 제2 설치부재는 바닥편(231)과, 상기 바닥편의 상부에 설치되고 촉매화된 졸 공급부재가 겔화탱크 보다 높게 위치하도록 설치되는 설치대(232), 및 상기 바닥편의 일측 단부에 설치되는 계단(233)을 포함한다.
한편, 상기 겔화탱크는 상기 겔화탱크에 구비된 나머지 하나의 회전부재와 결합되면서 상기 보빈을 회전시키는 회전핸들을 포함하며, 회전핸들은 외부에서 보빈을 수동으로 회전시킬 수 있다.
한편, 상기 제2 설치부재의 설치대에는 숙성부재, 표면개질부재 및 건조부재가 더 설치된다.
구동부재
구동부재는 상기 겔화탱크에 수용된 보빈을 회전시키기 위한 것으로, 상기 겔화탱크에 구비된 다른 하나의 회전부재와 동력 전달 가능하게 연결된다. 즉, 구동부재는 회전부재를 회전시키면, 회전부재와 연동하여 겔화탱크에 수용된 보빈을 회전시킬 수 있다.
촉매화된 졸 공급부재
촉매화된 졸 공급부재는 겔화탱크에 실리카졸을 주입하여 보빈에 권취된 블랭킷을 함침시킴에 따라 블랭킷을 겔화시키기 위한 것으로, 상기 설치대에 설치되고, 촉매화된 졸을 겔화탱크의 유입부를 통해 겔화실에 공급한다.
숙성부재
숙성부재는 겔화탱크에 숙성용액을 주입하여 보빈에 권취된 블랭킷을 숙성하기 위한 것으로, 상기 설치대에 설치되고, 숙성용액을 겔화탱크의 유입부를 통해 겔화실에 공급한다.
표면개질부재
표면개질부재는 겔화탱크에 표면개질제를 주입하여 보빈에 권취된 블랭킷의 표면을 개질하기 위한 것으로, 상기 설치대에 설치되고, 표면개질제를 겔화탱크의 유입부를 통해 겔화실에 공급한다.
건조부재
건조부재는 겔화탱크에 고온의 열풍을 공급하여 보빈에 권취된 블랭킷을 건조하기 위한 것으로, 상기 설치대에 설치되고 겔화탱크의 온도를 상승시켜서 겔화탱크에 수용된 블랭킷을 건조한다
따라서 본 발명의 일 실시예에 따른 에어로겔 블랭킷 제조장치는 에어로겔 블랭킷의 제조시간을 크게 단축시킬 수 있고, 에어로겔 블랭킷의 생산성을 크게 높일 수 있으며, 그 결과 에어로겔 블랭킷을 대량생산할 수 있다.
특히 본 발명의 일 실시예에 따른 에어로겔 블랭킷 제조장치는 블랭킷을 회전시킴에 따라 블랭킷의 두께 및 길이에 상관없이 안정적인 겔화를 유도할 수 있고, 보빈이 회전하기 때문에 보빈에 권취된 블랭킷 전체를 균일하게 겔화시킬 수 있으며, 겔화탱크를 회전하지 않고 보빈만 회전하기 때문에 겔화탱크의 형태가 제한되지 않는다. 또한, 겔화탱크의 겔화실을 'U'자 단면형태로 형성함에 따라 보빈에 권취된 블랭킷을 보다 효과적으로 겔화시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷 제조장치는 블랭킷(blanket) 이 권취되는 보빈을 포함하되, 상기 보빈은 권취봉과 지지판을 포함할 수 있다.
여기서 상기 권취봉의 외주면에는 블랭킷의 권취 시잠점이 끼워져 고정되는 고정클립을 포함할 수 있다.
즉, 고정클립은 탄성복원력을 가진 핀 형태를 가지고, 일단이 권취봉의 외주면에 고정되고 타단이 권취봉의 외주면에 탄력적으로 지지된다. 이에 따라 고정클립의 타단과 권취봉 사이에 블랭킷의 시작점을 삽입하면 고정클립의 탄성력에 의해 블랭킷을 권취봉의 시작점을 고정할 수 있고, 그 결과 권취봉의 외주면에 블랭킷을 간편하게 권취할 수 있다.
실시예
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1: 촉매화된 졸의 제조
테트라에틸오르소실리케이트(TEOS)와 물을 1:4의 몰비로 혼합하고 TEOS와 1:1의 중량비를 갖는 에탄올을 첨가하여 실리카 졸 전구체를 제조하였다. 가수분해를 촉진하기 위해 실리카 졸의 pH가 3 이하가 되도록 염산을 첨가하고 2시간 이상 교반하여 수화된 테트라에틸오르소실리케이트 용액을 제조하였다. 수화된 테트라에틸오르소실리케이트 용액에 에탄올을 1:4의 중량비가 되도록 첨가하여 실리카 졸을 제조하였다. 실리카 졸 100 중량부 대비 0.2 중량부의 불투명화제인 TiO2와 0.2 중량부의 난연제인 Ultracarb (LKAB 社)를 혼합하고 30분 간 교반하여 실리카 졸을 제조하고, 이와는 별개로 1 부피%의 암모니아 에탄올 용액(염기 촉매 용액)을 제조하였다. 상기 실리카 졸과 염기 촉매 용액을 9:1의 부피비로 혼합하여 촉매화된 졸을 제조하였다.
제조예 2: 촉매화된 졸의 제조
상기 제조예 1에서 제조된 수화된 테트라에틸오르소실리케이트 용액에 에탄올을 1:4의 중량비가 되도록 첨가한 뒤, 테트라에틸오르소실리케이트와 동일한 몰수의 트리메틸에톡시실란을 첨가하여 실리카 졸을 제조하였다. 이후, 상기 제조예 1과 동일한 과정을 통해 촉매화된 졸을 제조하였다.
실시예 1
(1) 제 1 겔화장치의 반응 용기에 10 T(10 mm) 유리 섬유(Glass fiber)가 감긴 보빈을 고정하였다. 상기 제조예 1에서 제조된 촉매화된 졸 45L(유리 섬유 부피의 150%)를 반응 용기에 투입하고 유리 섬유가 감긴 보빈을 회전시키며 겔화를 진행하였으며, 이때 촉매화된 졸의 투입 속도를 조절하여 겔화가 완료되기 전에 촉매화된 졸이 모두 투입될 수 있도록 하였다. 섬유가 충분히 함침되어 더 이상 반응 용기 내 액위가 변하지 않으면, 남아 있는 미함침된 졸(15L)을 반응 용기에 결합된 드래인 밸브를 열어 회수하였다.
(2) 회수된 졸은 제 2 겔화장치의 졸 탱크(sol tank)로 이송시켰다. 상기 회수된 졸의 점도가 10 cp를 초과하기 전 에탄올을 첨가하여 상기 회수된 졸을 희석시켜 겔화가 정지되도록 하였다. 상기 희석시킨 회수된 졸에 TEOS 용액, 에탄올, 첨가제를 투입하고 염기 촉매 용액을 첨가하여 45L의 촉매화된 졸을 제조하였다. 상기 TEOS 용액, 에탄올, 첨가제, 및 염기 촉매 용액은 제조예에서 사용된 것과 같으며, 실리카 졸과 염기 촉매 용액의 비율, 촉매화된 졸에 포함된 각 성분의 농도는 상기 제조예 1과 같도록 조절하였다.
(3) 제 2 겔화장치의 반응 용기에 10 T(10 mm) 유리 섬유(Glass fiber)가 감긴 보빈을 고정하였다. 상기 (2)에서 제조된 촉매화된 졸을 반응 용기에 투입하고 유리 섬유가 감긴 보빈을 회전시키며 겔화를 진행하였으며, 이때 촉매화된 졸의 투입 속도를 조절하여 겔화가 완료되기 전에 촉매화된 졸이 모두 투입될 수 있도록 하였다. 섬유가 충분히 함침되어 더 이상 반응 용기 내 액위가 변하지 않으면, 남아 있는 미함침된 졸(15 L)을 반응 용기에 결합된 드래인 밸브를 열어 회수하였다.
(4) 상기 (2)의 촉매화된 졸의 제조과정 및 (3)의 겔화 과정과 미함침된 졸의 회수 과정을 반복하였으며, 상기 회수된 미함침된 졸을 이용한 촉매화된 졸의 제조과정과 이를 이용한 겔화 과정이 총 10회 이루어지면 반복을 멈추었다.
각각의 겔화 과정에서 얻어진 습윤겔 블랭킷은 10 부피%의 TMES(트리메틸에톡시실란)의 에탄올 희석액인 염기성의 숙성 용액 40 L에서 65℃의 온도로 20시간 동안 숙성되었으며, 이후 초임계 건조를 진행하여 실리카 에어로겔 블랭킷을 제조하였다.
실시예 2
미함침된 졸의 회수시 15 L가 아닌 7.5 L만 회수한 것을 제외하고는, 상기 실시예 1과 같은 과정을 수행하여 실리카 에어로겔 블랭킷을 제조하였다.
실시예 3
미함침된 졸의 회수시 15 L가 아닌 5 L만 회수한 것을 제외하고는, 상기 실시예 1과 같은 과정을 수행하여 실리카 에어로겔 블랭킷을 제조하였다.
실시예 4
제조예 1에서 제조된 촉매화된 졸을 대신하여 제조예 2에서 제조된 촉매화된 졸을 사용하고, 회수된 미함침된 졸을 이용하여 촉매화된 졸 제조시 테트라에틸오르소실리케이트와 동일 몰수의 트리메틸에톡시실란을 사용한 것을 제외하고는, 실시예 1과 마찬가지로 상기 (1) 내지 (4)의 과정을 반복하였다.
각각의 겔화 과정에서 얻어진 습윤겔 블랭킷을 별도의 숙성 용액 없이 65℃의 온도로 20시간 동안 숙성시켰으며, 이후 초임계 건조를 진행하여 실리카 에어로겔 블랭킷을 제조하였다.
실시예 5
미함침된 졸의 회수시 15 L가 아닌 2.5 L만 회수한 것을 제외하고는, 상기 실시예 1과 같은 과정을 수행하여 실리카 에어로겔 블랭킷을 제조하였다.
실시예 6
촉매화된 졸의 사용 및 제조를 45 L(유리섬유 부피의 150%)가 아닌 51 L(유리섬유 부피의 170%)로 하고, 미함침된 졸의 회수시 15 L가 아닌 21 L를 회수한 것을 제외하고는, 상기 실시예 1과 같은 과정을 수행하여 실리카 에어로겔 블랭킷을 제조하였다.
실시예 7
(1) 컨베이어 벨트의 앞 단에 설치된 함침조에 상기 제조예 1에서 제조된 촉매화된 졸 45 L를 일정 유량 1.32 L/min으로 도입하면서 10 T(10 mm) 유리 섬유(Glass fiber)가 0.15 m/min의 일정한 속도로 컨베이어 벨트를 타고 이동하면서 함침조에서 2분간 졸에 함침되도록 하였다. 함침조에서 나온 섬유는 벨트를 타고 이동하며 겔화가 진행되고, 벨트 끝단에서 겔화가 완료된 섬유를 보빈에 롤 형태로 권취하였다. 45L의 롤이 모두 투입된 뒤 함침조에 남은 미함침 졸 5 L를 회수하였다.
(2) 회수된 졸은 별도의 졸 탱크에 투입하고 상기 회수된 졸의 점도가 10 cp를 초과하기 전 에탄올을 첨가하여 상기 회수된 졸을 희석시켜 겔화가 정지되도록 하였다. 상기 희석시킨 회수된 졸에 TEOS 용액, 에탄올, 첨가제를 투입하고 염기 촉매 용액을 첨가하여 45L의 촉매화된 졸을 제조하였다. 상기 TEOS 용액, 에탄올, 첨가제, 및 염기 촉매 용액은 제조예에서 사용된 것과 같으며, 실리카 졸과 염기 촉매 용액의 비율, 촉매화된 졸에 포함된 각 성분의 농도는 상기 제조예 1과 같도록 조절하였다.
(3) 상기 (1)에서와는 별도의 컨베이어 벨트의 앞 단에 설치된 함침조에 상기 (2)에서 제조된 촉매화된 졸 45 L를 일정 유량 1.32 L/min으로 도입하면서 10 T(10 mm) 유리 섬유(Glass fiber)가 0.15 m/min의 일정한 속도로 컨베이어 벨트를 타고 이동하면서 함침조에서 2분간 졸에 함침되도록 하였다. 함침조에서 나온 섬유는 벨트를 타고 이동하며 겔화가 진행되고, 벨트 끝단에서 겔화가 완료된 섬유를 보빈에 롤 형태로 권취하였다. 45L의 롤이 모두 투입된 뒤 함침조에 남은 미함침 졸 5 L를 회수하였다.
(4) 상기 (2)의 촉매화된 졸의 제조과정 및 (3)의 겔화 과정과 미함침된 졸의 회수 과정을 반복하였으며, 상기 회수된 미함침된 졸을 이용한 촉매화된 졸의 제조과정과 이를 이용한 겔화 과정이 총 10회 이루어지면 반복을 멈추었다.
각각의 겔화 과정에서 얻어진 습윤겔 블랭킷은 10 부피%의 TMES(트리메틸에톡시실란)의 에탄올 희석액인 염기성의 숙성 용액 40 L에서 65℃의 온도로 20시간 동안 숙성되었으며, 이후 초임계 건조를 진행하여 실리카 에어로겔 블랭킷을 제조하였다.
비교예 1
미함침된 졸의 회수시 15 L가 아닌 1.5 L만 회수한 것을 제외하고는, 상기 실시예 1과 같은 과정을 수행하여 실리카 에어로겔 블랭킷을 제조하였다.
비교예 2
촉매화된 졸의 사용 및 제조를 45 L(유리섬유 부피의 150%)가 아닌 66 L(유리섬유 부피의 220%)로 하고, 미함침된 졸의 회수시 15 L가 아닌 36 L를 회수한 것을 제외하고는, 상기 실시예 1과 같은 과정을 수행하여 실리카 에어로겔 블랭킷을 제조하였다.
실험예
1) 상온 열전도도 측정(mW/mK)
각 실시예 및 비교예에서 제조된 에어로겔 블랭킷에서 30 cm X 30 cm 크기를 가지는 샘플을 각 블랭킷 당 5개씩 준비하고, 샘플에 대해 NETZSCH社의 HFM 436 Lambda장비를 이용하여 상온(23±5℃) 열전도도를 측정하였다. 이 때 5개의 샘플은 각 실시예 및 비교예에서 제조한 에어로겔 블랭킷 롤의 최내측부터 최외측까지 50 cm의 일정한 간격으로 재단하여 수득하였다. 5개의 샘플의 열전도도를 각각 측정한 후 그 값을 비교하여 열전도도의 최고값 및 최저값을 나타내었다.
2) 겔화시간 측정
각 실시예 및 비교예에서 겔화에 소요된 시간을 측정하였으며, 실시예 1 및 비교예 1의 졸 재사용 회수에 따른 겔화시간을 표 2에 나타내었다.
미함침 졸 사용량 (중량%) 상온 열전도도(mW/mK)
졸 재사용 회수 0회 1회 2회 3회 4회 5회 6회 7회 8회 9회 10회
실시예 1 33 18.5 17.4 17.3 17.2 17.0 16.4 16.2 16.6 16.6 16.5 16.1
실시예 2 16.7 19.0 17.9 17.6 17.8 17.8 17.5 17.3 17.6 17.1 17.6 17.0
실시예 3 11.1 18.6 17.8 17.7 17.5 17.3 17.4 17.6 16.9 16.9 17.2 17.1
실시예 4 33 19.1 17.5 17.3 17.1 17.3 17.2 16.8 16.9 16.6 16.8 16.7
실시예 5 5.6 18.2 17.8 17.7 17.5 17.6 17.3 17.4 17.4 17.5 17.2 17.4
실시예 6 41.2 18.5 17.6 17.2 17.4 17.3 17.4 17.5 17.6 17.5 17.4 17.6
실시예 7 11.1 18.8 18.1 17.9 17.6 17.5 17.3 17.2 17.4 17.3 17.3 17.2
비교예 1 3.3 18.5 18.6 18.4 18.8 19.1 18.6 18.7 18.5 18.9 18.6 18.8
비교예 2 54.5 18.3 18.5 18.6 에어로겔 블랭킷 제조불가
겔화 소요 시간 (분)
졸 재사용 회수 0회 1회 2회 3회 4회 5회 6회 7회 8회 9회 10회
실시예 1 11.5 10.5 10 10 9 9.5 9 9 9 9.5 9
비교예 1 11.5 11.5 11 11.5 11 11 11.5 11 11 11 11.5
상기 표 1에서 확인할 수 있는 바와 같이, 실시예 1 내지 7의 경우 미함침된 졸을 회수하여 촉매화된 졸의 제조에 사용하는 회수가 증가할 수록 이를 이용하여 제조된 실리카 에어로겔 블랭킷의 상온 열전도도가 감소하는 추세를 나타내는 것을 확인할 수 있다. 이는 미함침된 졸내에서 기 형성된 실리카 입자들이 씨드(seed) 역할을 하여 겔화가 원활해지고 이에 따라 물성이 향상되기 때문인 것으로 분석된다. 겔화가 원활해짐은 겔화에 소요되는 시간을 통해 확인할 수 있으며, 미함침된 졸을 사용하기 전에는 겔화에 11 내지 12분이 소요되었으나 미함침된 졸을 사용시 겔화시간은 9 내지 10분으로 단축되었다. 구체적으로, 상기 표 2를 통해 확인할 수 있는 바와 같이, 실시예 1의 경우 졸 재사용회수가 증가할수록 겔화시간이 단축되어 4회의 졸 재사용 후에는 9분 또는 9.5분의 겔화 시간이 소요되어 미함침된 졸을 재사용함예 따라 겔화가 원활해짐을 확인할 수 있었다.
반면, 비교예 1을 참조하면, 미함침된 졸의 사용량이 전체 촉매화된 졸 45 L 중 1.5 L(3.3%)에 불과한 경우 상온 열전도도 감소 효과가 발휘되지 않음을 확인할 수 있었으며, 또한 겔화시간 단축 효과 역시 얻어지지 않았음을 확인할 수 있었다.
한편, 비교예 2의 경우는 회수된 미함침된 졸이 과량으로 사용됨에 따라, 상기 회수된 미함침된 졸에 대해 에탄올을 이용하여 희석 과정이 이루어 졌음에도 겔화가 완전히 멈추어지지 않아 재사용 회수에 따라 졸의 점도가 증가하여 3회째의 재사용부터는 섬유에 함침이 어려운 정도까지 점도가 지나치게 증가하여 에어로겔 블랭킷의 제조가 불가하였다.
한편, 아래와 같이 미함침된 졸의 회수시 점도에 따른 영향을 확인하기 위한 추가 실험을 실시하였다.
참고예 1
회수된 졸의 점도가 15 cp일 때 에탄올을 첨가하여 상기 회수된 졸을 희석시켜 겔화가 정지되도록 한 것을 제외하고는 실시예 1과 같은 과정을 수행하여 실리카 에어로겔 블랭킷을 제조하였다.
상온 열전도도(mW/mK)
졸 재사용 회수 0회 1회 2회 3회 4회 5회 6회 7회 8회 9회 10회
실시예 1 18.5 17.4 17.3 17.2 17.0 16.4 16.2 16.6 16.6 16.5 16.1
실시예 2 19.0 17.9 17.6 17.8 17.8 17.5 17.3 17.6 17.1 17.6 17.0
실시예 3 18.6 17.8 17.7 17.5 17.3 17.4 17.6 16.9 16.9 17.2 17.1
실시예 4 19.1 17.5 17.3 17.1 17.3 17.2 16.8 16.9 16.6 16.8 16.7
실시예 5 18.2 17.8 17.7 17.5 17.6 17.3 17.4 17.4 17.5 17.2 17.4
실시예 6 18.5 17.6 17.2 17.4 17.3 17.4 17.5 17.6 17.5 17.4 17.6
실시예 7 18.8 18.1 17.9 17.6 17.5 17.3 17.2 17.4 17.3 17.3 17.2
참고예 1 18.5 18.6 18.4 18.8 19.1 18.6 18.7 18.5 18.9 18.6 18.8
상기 표 3에서 참고예 1을 통하여, 미함침 졸의 점도가 너무 높을 때 용매를 첨가하여 희석할 경우에는 미함침 졸을 회수하여 촉매화된 졸의 제조에 사용하는 회수가 증가할 수록 이를 이용하여 제조된 실리카 에어로겔 블랭킷의 상온 열전도도가 오히려 증가함을 확인할 수 있다. 이는 미함침 졸의 겔화가 일정 수준 이상 진행되어 한계를 넘었을 때는 희석을 위해 투입된 용매와 미함침 졸이 원활히 섞이지 않고, 실리카 입자가 침전을 형성하게 되어 재활용 회수의 증가에 따라 침전의 양이 증가하며 제조된 실리카 에어로겔 블랭킷의 물성에 악영향을 끼쳤기 때문인 것으로 분석된다.
[부호의 설명]
100: 보빈 110: 권취봉
120: 지지판 200: 본체
210: 겔화탱크 212: 배출부
213: 유입부 214: 덮개
215: 회전부재 216: 회전핸들
220: 제1 설치부재 230: 제2 설치부재
231: 바닥편 232: 설치대
233: 계단 300: 구동부재
400: 촉매화된 졸 공급부재

Claims (15)

1) 블랭킷용 기재에 촉매화된 졸을 함침시키는 단계; 및
2) 상기 촉매화된 졸을 겔화시켜 습윤겔-블랭킷 복합체를 제조하는 단계를 포함하는 에어로겔 블랭킷 제조방법으로서,
A) 상기 함침시키는 단계 이후 미함침된 촉매화 된 졸을 회수하고 용매를 투입하여 희석시켜, 회수된 졸의 겔화를 정지시키는 단계; 및
B) 상기 겔화가 정지된 회수된 졸을 촉매화된 졸의 제조 단계에 재사용하는 단계를 포함하고,
상기 단계 B)를 통해 제조된 촉매화된 졸은 상기 겔화가 정지된 회수된 졸을 5 내지 50 중량% 포함하는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
상기 단계 A)에서 용매의 투입은 상기 회수된 졸의 점도가 2 내지 10 cp일 때 이루어지는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
상기 단계 A)의 희석을 통하여 회수된 졸은 1 cp 내지 5 cp의 점도를 가지는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
상기 단계 B)를 통해 제조된 촉매화된 졸은 상기 겔화가 정지된 회수된 졸을 7 내지 40 중량% 포함하는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
상기 촉매화된 졸은 블랭킷용 기재 부피 기준으로 100% 내지 170%의 부피가 되도록 투입되는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
상기 단계 1)의 완료 이전에 상기 단계 2)의 수행이 시작되는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
3) 상기 겔화된 습윤겔-블랭킷 복합체를 숙성하는 단계, 및
4) 상기 겔화된 습윤겔-블랭킷 복합체를 표면 개질하는 단계를 더 포함하는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
5) 상기 습윤겔 블랭킷을 건조하는 단계를 더 포함하며,
상기 건조는 초임계 건조, 또는 1±0.3 atm 압력 및 70℃ 내지 200℃의 온도에서의 상압 건조 공정에 의해 수행되는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
상기 단계 1)에서 함침은 상기 블랭킷용 기재가 회전하면서 수행되는 것인 에어로겔 블랭킷 제조방법.
제 9 항에 있어서,
상기 블랭킷용 기재의 회전은 1 rpm 내지 300 rpm의 회전 속도를 가지는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서
상기 단계 1)은,
상기 블랭킷용 기재를 보빈에 감은 상태로 반응 용기에 투입한 후,
상기 보빈을 회전시켜 상기 블랭킷용 기재를 회전시키며 상기 촉매화된 졸을 함침시키는 과정에 의해 수행되는 에어로겔 블랭킷 제조방법.
제 11 항에 있어서
상기 단계 1)은 반응 용기에 블랭킷용 기재를 투입한 후 촉매화된 졸을 투입하는 방법, 반응 용기에 촉매화된 졸을 투입한 후 블랭킷용 기재를 투입하는 방법 및 반응 용기에 촉매화된 졸을 투입하면서 블랭킷용 기재를 투입하는 방법 중 어느 하나의 방법에 의해 수행되는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서
상기 단계 2)에서 겔화는 상기 촉매화된 졸이 함침된 블랭킷용 기재를 회전시키며 이루어지는 에어로겔 블랭킷 제조방법.
제 1 항에 있어서,
상기 단계 B)에서 제조된 촉매화된 졸을 별도의 블랭킷용 기재에 함침시키고,
상기 촉매화된 졸이 함침된 블랭킷용 기재를 회전시키며 겔화시키는 단계를 추가로 포함하는 에어로겔 블랭킷 제조방법.
제 7 항에 있어서,
상기 숙성 및 표면 개질은 상기 단계 2)에서 제조된 습윤겔-블랭킷 복합체가 회전하면서 수행되는 에어로겔 블랭킷 제조방법.
PCT/KR2020/011859 2019-09-03 2020-09-03 에어로겔 블랭킷 제조방법 WO2021045528A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022504203A JP7320664B2 (ja) 2019-09-03 2020-09-03 エアロゲルブランケットの製造方法
US17/614,164 US20220227635A1 (en) 2019-09-03 2020-09-03 Method for producing aerogel blanket
EP20859770.8A EP4026802A4 (en) 2019-09-03 2020-09-03 PROCESS FOR MAKING AN AIRGEL COVER
CN202080037036.0A CN113853361B (zh) 2019-09-03 2020-09-03 制造气凝胶毡的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0109158 2019-09-03
KR20190109158 2019-09-03
KR10-2019-0121147 2019-09-30
KR20190121147 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021045528A1 true WO2021045528A1 (ko) 2021-03-11

Family

ID=74852122

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2020/011808 WO2021045514A1 (ko) 2019-09-03 2020-09-03 에어로겔 블랭킷 및 이의 제조방법
PCT/KR2020/011859 WO2021045528A1 (ko) 2019-09-03 2020-09-03 에어로겔 블랭킷 제조방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011808 WO2021045514A1 (ko) 2019-09-03 2020-09-03 에어로겔 블랭킷 및 이의 제조방법

Country Status (6)

Country Link
US (3) US20220204350A1 (ko)
EP (3) EP3901093B1 (ko)
JP (3) JP7209852B2 (ko)
KR (5) KR102581268B1 (ko)
CN (3) CN113423676B (ko)
WO (2) WO2021045514A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882214B1 (en) * 2019-09-03 2023-11-08 LG Chem, Ltd. Apparatus and method for manufacturing aerogel blanket
KR102581268B1 (ko) * 2019-09-03 2023-09-22 주식회사 엘지화학 에어로겔 블랭킷 제조방법
CN114736400B (zh) * 2022-05-20 2024-02-02 武汉理工大学 一种可陶瓷化酚醛气凝胶及其制备方法
CN115716758B (zh) * 2022-10-26 2023-08-01 江苏脒诺甫纳米材料有限公司 一种硅基陶瓷气凝胶制备工艺
CN117552201A (zh) * 2023-11-10 2024-02-13 广东埃力生科技股份有限公司 气凝胶毡的制备***及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532898A (ja) * 2005-03-09 2008-08-21 デグサ ノヴァラ テクノロジー ソチエタ ペル アツィオーニ ゾルゲル法によるモノリスの製造方法
KR20110126381A (ko) * 2010-05-17 2011-11-23 주식회사 화인텍 소수성 실리카 에어로젤 복합체의 제조방법
KR101176137B1 (ko) * 2012-04-03 2012-08-22 주식회사 동양 소수성 실리카 에어로겔을 함유하는 단열패딩 제조시스템 및 단열패딩 제조방법
KR20170112985A (ko) * 2016-03-28 2017-10-12 주식회사 엘지화학 저분진 고단열 에어로겔 블랭킷의 제조방법
KR101953349B1 (ko) * 2016-02-22 2019-02-28 주식회사 엘지화학 에어로겔 시트용 제조장치
KR20190109158A (ko) 2018-03-16 2019-09-25 최용식 소음 저감 기능을 갖는 황토패널의 제조장치 및 상기 제조장치에 의해서 제조되는 황토패널
KR20190121147A (ko) 2018-08-16 2019-10-25 삼성전기주식회사 전자 부품

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196024A (ja) * 1987-10-08 1989-04-14 Seiko Epson Corp ガラスの製造方法
JPH06191822A (ja) * 1992-12-22 1994-07-12 Matsushita Electric Works Ltd エアロゲル複合材料の製造方法
ITNO990004A1 (it) 1999-03-08 2000-09-08 Gel Design And Engineering S R Processo sol-gel per la produzione di manufatti contenenti e aderentiad un inserto cilindrico incomprimibile e manufatti cosi' ottenuti.
KR100710887B1 (ko) * 2006-04-21 2007-04-27 요업기술원 에어로젤 블랑켓트의 제조 방법
KR101079308B1 (ko) * 2008-11-12 2011-11-04 한국세라믹기술원 에어로젤 블랑켓의 제조방법
KR101047965B1 (ko) * 2009-06-11 2011-07-12 한국에너지기술연구원 에어로겔 매트, 이의 제조방법 및 제조장치
KR20110087966A (ko) * 2010-01-28 2011-08-03 김철수 미립 천매암 분말을 이용한 수지 조성물
JP2011190136A (ja) * 2010-03-12 2011-09-29 Asahi Kagaku Kk エアロゲルシート製造装置
KR20120070948A (ko) 2010-12-22 2012-07-02 주식회사 화인텍 단열 성능을 지닌 소수성 실리카 에어로젤 분말의 제조방법
CN103910516A (zh) 2012-12-31 2014-07-09 上海新安纳电子科技有限公司 一种废弃硅溶胶回收再利用的方法
CN104164758B (zh) * 2013-03-12 2017-08-25 Ykk株式会社 染色机
SG11201702138XA (en) 2014-10-03 2017-04-27 Aspen Aerogels Inc Improved hydrophobic aerogel materials
KR101748527B1 (ko) * 2015-04-14 2017-06-19 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
DE102015207939A1 (de) * 2015-04-29 2016-11-03 Wacker Chemie Ag Verfahren zur Herstellung organisch modifizierter Aerogele
CN107849764A (zh) * 2015-07-15 2018-03-27 国际粉末冶金与新材料先进技术研究中心 高效隔热的二氧化硅气凝胶产品的改进生产工艺
KR101748532B1 (ko) * 2016-01-19 2017-06-19 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치
KR101774140B1 (ko) * 2016-01-19 2017-09-01 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치
US20170210092A1 (en) * 2016-01-27 2017-07-27 W. L. Gore & Associates, Inc. Insulating structures
KR101953347B1 (ko) * 2016-02-16 2019-05-22 주식회사 엘지화학 에어로겔 시트용 제조기
WO2017145359A1 (ja) * 2016-02-26 2017-08-31 ニチアス株式会社 複合体及びその製造方法、筒状体
KR102113324B1 (ko) * 2016-09-23 2020-05-20 주식회사 엘지화학 초고온용 실리카 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
JPWO2018061211A1 (ja) * 2016-09-30 2019-07-11 日立化成株式会社 エアロゲル複合体の製造方法、エアロゲル複合体及び被断熱体
CN108689678B (zh) * 2017-04-10 2020-04-07 航天海鹰(镇江)特种材料有限公司 一种表面无气凝胶大颗粒附着的纤维增强气凝胶毡及其制备方法
CN107129262A (zh) * 2017-04-10 2017-09-05 航天海鹰(镇江)特种材料有限公司 一种超薄气凝胶复合材料及其制备方法
KR102148388B1 (ko) * 2017-05-12 2020-08-26 주식회사 엘지화학 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
KR102377622B1 (ko) * 2017-08-24 2022-03-24 주식회사 엘지화학 실리카 에어로겔 블랑켓 제조방법 및 이의 제조장치
KR102037425B1 (ko) * 2017-12-27 2019-10-28 에스케이씨 주식회사 에어로겔 복합체 제조방법 및 이를 위한 제조장치
CN108821741A (zh) * 2018-07-27 2018-11-16 徐渊 一种气凝胶毡的制备方法
JP7071542B2 (ja) * 2018-11-27 2022-05-19 エルジー・ケム・リミテッド エアロゲルブランケットの製造方法
CN109437832A (zh) * 2018-12-18 2019-03-08 贵州航天乌江机电设备有限责任公司 一种自疏水型二氧化硅气凝胶复合材料的制备方法
WO2021045483A1 (ko) * 2019-09-03 2021-03-11 주식회사 엘지화학 에어로겔 블랭킷 제조방법
KR102581268B1 (ko) * 2019-09-03 2023-09-22 주식회사 엘지화학 에어로겔 블랭킷 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532898A (ja) * 2005-03-09 2008-08-21 デグサ ノヴァラ テクノロジー ソチエタ ペル アツィオーニ ゾルゲル法によるモノリスの製造方法
KR20110126381A (ko) * 2010-05-17 2011-11-23 주식회사 화인텍 소수성 실리카 에어로젤 복합체의 제조방법
KR101176137B1 (ko) * 2012-04-03 2012-08-22 주식회사 동양 소수성 실리카 에어로겔을 함유하는 단열패딩 제조시스템 및 단열패딩 제조방법
KR101953349B1 (ko) * 2016-02-22 2019-02-28 주식회사 엘지화학 에어로겔 시트용 제조장치
KR20170112985A (ko) * 2016-03-28 2017-10-12 주식회사 엘지화학 저분진 고단열 에어로겔 블랭킷의 제조방법
KR20190109158A (ko) 2018-03-16 2019-09-25 최용식 소음 저감 기능을 갖는 황토패널의 제조장치 및 상기 제조장치에 의해서 제조되는 황토패널
KR20190121147A (ko) 2018-08-16 2019-10-25 삼성전기주식회사 전자 부품

Also Published As

Publication number Publication date
EP3901093B1 (en) 2023-05-10
CN113423676A (zh) 2021-09-21
JP7209852B2 (ja) 2023-01-20
JP2022542868A (ja) 2022-10-07
CN113853361A (zh) 2021-12-28
KR20210028131A (ko) 2021-03-11
EP3901094B1 (en) 2024-06-26
KR102583201B1 (ko) 2023-09-27
EP3901094A4 (en) 2022-02-23
WO2021045514A1 (ko) 2021-03-11
EP3901093A1 (en) 2021-10-27
JP2022518787A (ja) 2022-03-16
KR20210028132A (ko) 2021-03-11
EP4026802A1 (en) 2022-07-13
CN113423677A (zh) 2021-09-21
KR20210028083A (ko) 2021-03-11
US20220080377A1 (en) 2022-03-17
US20220204350A1 (en) 2022-06-30
EP4026802A4 (en) 2022-11-02
CN113423676B (zh) 2023-03-07
JP2022518064A (ja) 2022-03-11
KR20210028129A (ko) 2021-03-11
US20220227635A1 (en) 2022-07-21
JP7320664B2 (ja) 2023-08-03
CN113423677B (zh) 2023-07-11
EP3901093A4 (en) 2022-02-23
EP3901094A1 (en) 2021-10-27
KR102581268B1 (ko) 2023-09-22
KR20210028081A (ko) 2021-03-11
KR102574283B1 (ko) 2023-09-05
KR102622331B1 (ko) 2024-01-09
JP7229371B2 (ja) 2023-02-27
CN113853361B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2021045528A1 (ko) 에어로겔 블랭킷 제조방법
WO2021045483A1 (ko) 에어로겔 블랭킷 제조방법
WO2015119431A1 (ko) 소수성 실리카 에어로겔의 제조방법
WO2018056626A1 (ko) 초고온용 실리카 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2019039841A1 (ko) 실리카 에어로겔 블랑켓 제조방법 및 이의 제조장치
WO2020111763A1 (ko) 에어로겔 블랭킷의 제조방법
WO2018070755A1 (ko) 저분진 고단열 에어로겔 블랭킷 및 이의 제조방법
WO2021045533A1 (ko) 에어로겔 블랭킷
WO2021045484A1 (ko) 에어로겔 블랭킷
WO2018208005A1 (ko) 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
WO2021054644A1 (ko) 에어로겔 블랑켓 및 이의 제조방법
WO2019107706A1 (ko) 에어로겔을 포함한 복합 단열 시트
WO2020111765A1 (ko) 전가수분해된 폴리실리케이트의 합성방법
US6558755B2 (en) Plasma curing process for porous silica thin film
WO2017078294A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
US20030175535A1 (en) Plasma curing process for porous silica thin film
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
WO2017155311A1 (ko) 에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓
WO2016133328A1 (ko) 미세 분말 함침 부직포 및 이의 제조 방법
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2014196789A1 (en) Water-dispersed hydrophobic powder composition and method for preparing pulp paper and glass fiber using the same
WO2021029624A1 (ko) 습윤겔 블랭킷의 건조방법 및 이를 이용한 에어로겔 블랭킷의 제조방법
WO2020130353A1 (ko) 실리카 습윤겔 블랭킷의 초임계 건조 방법
WO2018074889A2 (ko) 그라파이트 시트의 제조방법
WO2020122664A1 (ko) 실리카 습윤겔 블랭킷의 초임계 건조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020859770

Country of ref document: EP

Effective date: 20220404