WO2018208005A1 - 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷 - Google Patents

실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷 Download PDF

Info

Publication number
WO2018208005A1
WO2018208005A1 PCT/KR2018/003389 KR2018003389W WO2018208005A1 WO 2018208005 A1 WO2018208005 A1 WO 2018208005A1 KR 2018003389 W KR2018003389 W KR 2018003389W WO 2018208005 A1 WO2018208005 A1 WO 2018208005A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica airgel
waste liquid
supercritical
airgel blanket
silica
Prior art date
Application number
PCT/KR2018/003389
Other languages
English (en)
French (fr)
Inventor
김미리
이제균
오경실
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18798320.0A priority Critical patent/EP3453676B1/en
Priority to US16/304,637 priority patent/US11142463B2/en
Priority to CN201880002449.8A priority patent/CN109415214B/zh
Priority to JP2019535744A priority patent/JP6757855B2/ja
Publication of WO2018208005A1 publication Critical patent/WO2018208005A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention claims the benefit of priority based on Korean Patent Application No. 10-2017-0059587 filed on May 12, 2017, and includes all contents disclosed in the literature of the Korean Patent Application as part of the present specification.
  • the present invention relates to a method for preparing a silica airgel blanket and a silica airgel blanket prepared therefrom, and to a method for producing a silica airgel blanket for reusing and reusing supercritical wastewater generated in the method for preparing a silica airgel blanket and a silica airgel prepared therefrom. It is about a blanket.
  • the airgels developed so far include organic airgels such as resorcinol-formaldehyde or melamine-formaldehyde airgel particles, and inorganic airgels including metal oxides such as silica, alumina, titania or carbon airgel.
  • silica airgel is a highly porous material, and has high porosity, specific surface area, and low thermal conductivity, and is expected to be applied in various fields such as insulation, catalyst, sound absorbing material, and interlayer insulating material of semiconductor circuits. have.
  • the speed of commercialization is very slow due to complex manufacturing process and low mechanical strength, the steady research results are showing early application products and the market of application products including insulation is expanding rapidly.
  • Silica aerogels have low mechanical strength due to their porous structure. For this reason, silica aerogels are usually compounded with substrates such as glass fibers, ceramic fibers, or polymer fibers, and are commercialized in the form of airgel blankets or airgel sheets.
  • a silica sol is prepared through a preparation step, a gelling step, a aging step, a surface modification step, and a supercritical drying step. Since the silica airgel blanket described above uses an excess of organic solvent during the manufacturing process, the organic solvent occupies a high proportion of the manufacturing cost of the silica airgel blanket. In addition, the cost of treating the used organic solvent, that is, the waste liquid is very high.
  • the present invention provides a method for producing a silica airgel blanket, the step of recovering the supercritical waste liquid generated after the supercritical drying step; Regenerating by adding acid to the recovered supercritical waste liquid; And it provides a method for producing a silica airgel blanket comprising the step of reusing the recycled supercritical waste liquid.
  • the present invention also provides a silica airgel blanket prepared by the method for producing the silica airgel blanket.
  • the manufacturing method of the silica airgel blanket according to the present invention by regenerating the supercritical waste liquid generated in the manufacturing method of the silica airgel blanket, the amount of the first used solvent is reduced to reduce the manufacturing cost.
  • the manufacturing method of the silica airgel blanket according to the present invention can reuse not only the supercritical waste liquid, but also the aged waste liquid and the surface modified waste liquid, thereby reducing the amount of use of the surface modifying agent as well as the first used solvent, thereby further reducing manufacturing costs.
  • silica airgel blanket according to the present invention may be implemented at the same or similar level as the silica airgel blanket prepared only with the first solvent, despite the reuse of the waste liquid generated in the method for preparing the silica airgel blanket.
  • the present invention is a method for manufacturing a silica airgel blanket, by recovering the supercritical waste liquid generated after the supercritical drying step, and then neutralized, regenerated and reused, the amount of the first solvent used is reduced to reduce the manufacturing cost of the silica airgel blanket can do.
  • silica airgel blanket according to the present invention can be implemented at the same or similar level as the silica airgel blanket prepared by using only the first solvent even though the waste liquid generated in the method for preparing the silica airgel blanket is reused.
  • the method for producing a silica airgel blanket comprises the steps of: recovering a supercritical waste liquid generated after the supercritical drying step (step 1); Regenerating by adding acid to the recovered supercritical waste liquid (step 2); And reusing the regenerated supercritical waste liquid (step 3).
  • step 1 is a method of manufacturing a silica airgel blanket, recovering the supercritical waste liquid generated after the supercritical drying step.
  • the supercritical waste liquid may be a waste liquid generated after a general method of preparing a silica airgel is performed.
  • the method of manufacturing the silica airgel blanket may be a general method of manufacturing the silica airgel blanket, preparing a silica sol (step 1-1); Immersing the blanket substrate in the silica sol, and then adding a base and gelling to prepare a wet gel-based composite (step 1-2); Aging the wet gel-based composite (steps 1-3); Surface modifying the aged wet gel-based composite (steps 1-4); And supercritical drying the surface modified wet gel-based composite to prepare a silica airgel blanket (steps 1-5).
  • the silica sol may be prepared by mixing a silica precursor, water, and a polar organic solvent.
  • an acid catalyst such as hydrochloric acid may be optionally used.
  • the silica precursor may be a silicon-containing alkoxide-based compound, more specifically tetraalkyl silicate.
  • the tetraalkyl silicate is tetramethoxy silane (TMOS), tetraethoxy silane (TEOS), methyl triethyl orthosilicate, dimethyl diethyl orthosilicate , Tetrapropyl orthosilicate, tetraisopropyl orthosilicate, tetrabutyl orthosilicate, tetra secondary butyl orthosilicate, tetra tertiary butyl
  • the silica precursor is hydrolyzed by water and a polar organic solvent and as a result can produce silica (SiO 2 ).
  • pre-hydrolysis of the compounds described above may be used.
  • a directly prepared or commercially available material can be used.
  • direct preparation for example, a prehydrolyzate which is hydrolyzed by adding TEOS and an alcohol and then adding an acidic aqueous solution may be used.
  • the polar organic solvent used to prepare the silica sol may be an alcohol solvent.
  • the alcohol solvent is specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol and the like; Or a polyhydric alcohol such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol, and the like.
  • the polar organic solvent may be a monohydric alcohol solvent. It is preferable.
  • the blanket substrate may be a film, sheet, net, fiber, porous body, foam, nonwoven fabric or a laminate of two or more thereof.
  • the surface roughness may be formed or patterned.
  • the blanket base material may be a fiber which can further improve the thermal insulation performance by including a space or a space in which an airgel is easily inserted.
  • the said base material for blankets has low thermal conductivity.
  • the blanket substrate is not particularly limited, but polyamide, polybenzimidazole, polyaramid, acrylic resin, phenol resin, polyester, polyether ether ketone (PEEK), polyolefin (for example, polyethylene, polypropylene Or copolymers thereof), cellulose, carbon, cotton, wool, hemp, nonwoven fabric, glass fiber and ceramic wool, and may include one or more selected from among them, and in the group consisting of glass fiber and polyethylene It is preferable to include 1 or more types selected.
  • the base is an inorganic base such as sodium hydroxide, potassium hydroxide;
  • the organic base may be an organic base such as ammonium hydroxide, but in the case of the inorganic base, since the metal ion contained in the compound may be coordinated with the Si—OH compound, the organic base is preferable.
  • the organic base is ammonium hydroxide (NH 4 OH), tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH) ), Methylamine, ethylamine, isopropylamine, monoisopropylamine, diethylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, choline, monoethanol Amine, diethanol amine, 2-aminoethanol, 2- (ethyl amino) ethanol, 2- (methyl amino) ethanol, N-methyl diethanolamine, dimethylaminoethanol, diethylaminoethanol, nitrilotriethanol, 2- ( 2-aminoethoxy) ethanol, 1-amino-2-propanol, tri
  • the base may be precipitated when it is added in a solid state, it is preferably added in a solution state diluted with the polar organic solvent.
  • the aging step of Steps 1-3 is a process for leaving the wet gel-based composite at a suitable temperature so that the chemical change is made completely.
  • the mesh structure inside the wet gel is obtained.
  • the moisture inside the wet gel may be substituted with a polar organic solvent during the aging process, and as a result, it is possible to prevent the pore structure deformation and reduction of the silica gel due to evaporation of the moisture inside the wet gel in a subsequent supercritical drying process.
  • the aging step may be performed until the chemical change in the wet gel-based composite is completed.
  • the aging step may be performed by immersing the wet gel-based composite in a aging solution for 1 hour to 6 hours at 50 °C to 80 °C or 2 hours to 4 hours at 60 °C to 75 °C, of which 60 to It is preferably carried out by immersing in a aging solution for 2 to 4 hours at 75 °C.
  • the aging reaction can sufficiently occur while minimizing energy consumption.
  • the aging solution may be a polar organic solvent, the description of the polar organic solvent is as described above.
  • the aging waste liquid generated in the aging step may be recovered and reused, which will be described later.
  • Steps 1-4 may be performed for 1 to 6 hours at 40 ° C. to 80 ° C. or 2 to 5 hours at 50 to 80 ° C. after immersing the matured wet gel-based composite in a surface modification solution. Of these, it is preferably carried out at 50 to 80 °C for 2 to 5 hours.
  • the surface modification reaction can sufficiently occur while minimizing energy consumption.
  • the surface modification solution is composed of hexamethyldisilazane (HMDS), trimethyl chlorosilane (TMSCL), silicone oil (silicone oil), amino silane (amino silane), alkyl silane (alkyl silane), polydimethyl siloxane (PDMS) and dimethyl dichlorosilane (DDS). It may be a solution containing at least one member selected from the group and a polar organic solvent. Description of the polar organic solvent is as described above.
  • the surface modification waste liquid generated in the surface modification step may be recovered and reused, and will be described in detail later.
  • step 1-5 may be a supercritical drying step using supercritical carbon dioxide.
  • Carbon dioxide (CO 2 ) is a gaseous state at room temperature and atmospheric pressure, but if it exceeds a certain temperature and high pressure limit called a supercritical point, the evaporation process does not occur, and this state becomes a critical state indistinguishable from gas and liquid.
  • the carbon dioxide in is called supercritical carbon dioxide.
  • Supercritical carbon dioxide has a molecular density close to a liquid, but has a low viscosity, close to a gas, high diffusion efficiency, high drying efficiency, and short drying time.
  • the supercritical drying step the supercritical drying the surface-modified wet gel in the reactor into the substrate composite, and then, filling up the CO 2 in a liquid state to perform the solvent substitution step of substituting the solvent in the inside of silica airgel as a CO 2 have.
  • the supercritical drying step by maintaining a sufficiently high temperature and pressure from the start of the supercritical drying to the end, it is possible to sufficiently remove the organic solvent present in the inside of the wet gel by increasing the CO 2 penetration rate to the inside of the wet gel.
  • the pressure above the pressure at which carbon dioxide becomes a supercritical state specifically, Is maintained at a pressure of 100 to 200 bar can be maintained for a predetermined time, specifically 20 minutes to 10 hours in the supercritical state of carbon dioxide.
  • a blanket including a porous silica airgel having nano-sized pores can be prepared.
  • the silica airgel has high hydrophobicity and excellent physical properties, especially high porosity, and the silica airgel blanket including the same may have excellent mechanical flexibility with low thermal conductivity.
  • step 1 the supercritical waste liquor is recovered while performing the supercritical drying step or after the supercritical drying step is completed.
  • the supercritical waste solution may be a solution including a solution generated by the solution existing in the wet gel by CO 2 and a surface modified waste solution remaining in the surface-modified wet gel-based composite.
  • the solution and the surface modification waste solution present in the wet gel may undergo a supercritical drying step, and ammonia, which is a reaction by-product of the surface modifier present on the surface of the wet gel, may react with CO 2 to generate ammonium carbonate.
  • the ammonium carbonate may be partially removed from the filter in the supercritical equipment, but may also serve to increase the pH of the waste liquid by remaining in the supercritical waste liquid.
  • step 2 is a step of neutralizing and regenerating by adding acid to the recovered supercritical waste liquid.
  • the recovered supercritical waste liquor can be reused in the preparation of silica sol to be described later due to neutralization.
  • the silica sol prepared from the supercritical waste liquid recovered by the neutralization may realize storage stability at the same or similar level as that of the silica sol prepared only with the polar organic solvent used for the first time. For this reason, when the silica sol prepared as the recovered supercritical waste liquid is applied to mass production, process efficiency may not be reduced.
  • the silica sol prepared from the recovered supercritical waste solution may be gelled for a desired time point and a desired time using a base, thereby preparing a silica airgel blanket having uniform physical properties.
  • the silica sol prepared with the unneutralized supercritical waste solution may be gelled without a catalyst, and thus, the gelation process is difficult to control, and thus, a good quality silica airgel blanket cannot be prepared. .
  • the acid may be acetic acid or hydrochloric acid, and may be added in an amount of 0.2 to 1.5 parts by weight based on 100 parts by weight of the recovered supercritical waste solution.
  • the acid is acetic acid
  • 0.5 to 1.3 parts by weight, specifically 0.6 to 1.1 parts by weight may be added.
  • the acid is hydrochloric acid
  • 0.2 to 0.7 parts by weight more specifically 0.3 to 0.6 parts by weight may be added.
  • the recovered supercritical waste liquid can be neutralized without deteriorating the physical properties.
  • the acid may be added in an acidic solution containing water and a polar organic solvent.
  • the weight ratio of the acid, the polar organic solvent and the water in the acidic solution may be 1: (50 to 200): (5 to 20), specifically 1: (100 to 150): (10 to 15).
  • the pH of the regenerated supercritical waste liquid may be 2 or more and less than 7.5.
  • the pH of the supercritical waste solution neutralized with acetic acid may be 6 or more and less than 7.5, specifically pH 6 to 6.5.
  • the supercritical waste solution neutralized with hydrochloric acid may have a pH of 2 to 3, specifically, a pH of 2 to 2.5.
  • the storage stability of the same or similar level as that of the silica sol prepared with the polar organic solvent used for the first time can be realized, and the wet gel-based composite
  • the gelation time of can be controlled through the base.
  • the process efficiency can be increased and the gelation time can be controlled, so that the physical properties of the final product of the silica aerogel blanket can be maintained uniformly.
  • ammonium ions may be present in the regenerated supercritical waste fluid.
  • step 3 is a step of reusing the regenerated supercritical waste liquid.
  • the regenerated supercritical waste solution may be reused in the step of preparing the silica sol in the method of manufacturing the silica airgel blanket.
  • step 3-1 The step of preparing the silica sol (step 3-1) is the same as step 1-1 except for mixing the silica precursor, water, the regenerated supercritical waste liquid and the polar organic solvent.
  • the polar organic solvent used in the step 3-1 means the polar organic solvent used for the first time, the description of the polar organic solvent is as described above.
  • the regenerated supercritical waste liquid is less than 80% by weight, specifically 10 to 10% by weight of the total polar organic solvent used in the silica sol manufacturing step, that is, the total weight of the regenerated supercritical waste liquid and the first polar organic solvent used. 75 wt%, more specifically 50 to 75 wt%.
  • a silica airgel blanket having the same or similar level of appearance and physical properties can be prepared as compared to the silica airgel blanket prepared only with the polar organic solvent used for the first time. In addition, it is possible to reduce manufacturing costs and waste liquid treatment costs.
  • Step 3-2 is the same as Step 1-2, except that the regenerated supercritical waste fluid is used.
  • step 3-2 any one or more of the stabilization step and pre-aging step described in step 1 may be further performed.
  • step 3-3 of aging the wet gel-based composite may be performed.
  • step 3-3 only the first aging solution used may be used, or the aging waste solution generated in steps 1-3 may be reused.
  • step 3-3 and step 1-3 may be the same.
  • the supercritical waste fluid may be a supercritical waste fluid generated in the step 1-5.
  • step 1-3 the first description of the aging solvent is used as described above in step 1-3.
  • the aging waste liquid is specifically 90% by weight relative to the total aging solution used in the above step 3-3, that is, at least one total weight selected from the group consisting of the aging waste solution, the first aging solution and the supercritical waste solution. As mentioned above, more specifically, it can use in 95 weight% or more.
  • the number of reuse of the aging waste liquid is not particularly limited, and a silica airgel blanket having a similar or similar level of appearance and physical properties may be prepared as compared to a silica airgel blanket prepared only with a aging solution first used even when the aging waste liquid is reused. can do.
  • the aging waste liquid can be reused without additional processing, because no additional additives are added to the aging solution in the aging step, and the inside of the wet gel-based composite is filled with an alcohol solvent containing a small amount of water. This is because the water content of the aging solution does not rise above a certain level. Therefore, the composition of the aging waste liquid is maintained at a substantially constant value, and thus, even the aging waste liquid may not contain much impurities affecting the aging stage.
  • a surface modification of the aged wet gel-based composite (step 3-4) may be performed.
  • step 3-4 only the surface modification solution used for the first time may be used, or the surface modification waste solution generated in step 1-4 may be reused.
  • step 3-4 and step 1-4 may be the same.
  • the supercritical waste fluid may be a supercritical waste fluid generated in the step 1-5.
  • the surface modification waste liquid is 80 weight based on the total surface modification solution used in the above steps 3-4, that is, at least one total weight selected from the group consisting of the surface modification waste solution, the surface modification solution used for the first time, and the supercritical waste solution. % Or more, specifically 90% or more, and more specifically 95% or more can be used.
  • the content of the surface modifier in the first surface modification solution used in the step 3-4 is 60 to 100% by weight, specifically the content of the surface modifier in the first surface modification solution used in the step 1-4 80 to 100% by weight, more specifically 80 to 90% by weight may be included.
  • the content of the surface modifier and the surface modifier derived by-products in the surface modified waste liquid can be kept constant.
  • the number of reuse of the surface modification waste liquid is not particularly limited, and even when the surface modification waste liquid is reused, silica having equivalent or similar levels of appearance and physical properties as compared to the silica airgel blanket prepared only with the surface modification solution used for the first time. Aerogel blankets can be prepared.
  • the surface modification waste solution can also be reused without further processing because the inside of the matured wet gel-based composite is filled with an alcohol solvent containing a small amount of water, so that the water content of the surface modification solution becomes higher than a certain level. Because it does not.
  • the surface modifier modifies the surface of the wet gel and generates by-products, the reaction is a reversible reaction affected by the moisture content in the solution. Equilibrium is at the level. Therefore, the composition of the surface modification waste liquid is maintained at a substantially constant value, so that even if the surface modification waste liquid may not contain much impurities affecting the surface modification step.
  • the method may further include filtering to remove solid impurities such as silica remaining in the aged waste liquid and the surface modified waste liquid.
  • the surface-modified wet gel-based composite may be supercritically dried to prepare a silica airgel blanket (steps 3-5).
  • the supercritical waste fluid generated in the above step 3-5 may be recovered using a separate separator, and the supercritical waste fluid is a solution and surface-modified wet gel- which are generated by replacing the solution existing in the wet gel by CO 2- . It may be a solution comprising the surface modification waste liquid remaining in the substrate composite.
  • the solution and the surface modification waste solution present in the wet gel may undergo a supercritical drying step, and ammonia, which is a reaction by-product of the surface modifier present on the surface of the wet gel, may react with CO 2 to generate ammonium carbonate.
  • the ammonium carbonate may be partially removed from the filter in the supercritical equipment, but may also serve to increase the pH of the waste liquid by remaining in the supercritical waste liquid.
  • the solution generated by the substitution by CO 2 may include a solution derived from a solution selected from the group consisting of aging waste, surface modified waste and supercritical waste.
  • Silica airgel blanket according to another embodiment of the present invention is prepared by a method for producing a silica airgel blanket according to an embodiment of the present invention.
  • Silica airgel blanket according to another embodiment of the present invention may have a thermal conductivity of 16 to 21mW / mK, the carbon content may be 8 to 12% by weight relative to the total weight of the silica airgel. If the above-described range is satisfied, the silica airgel blanket prepared only with the solvent used for the first time may have the same or similar physical properties.
  • the total weight of the silica airgel as a reference of the carbon content means that the weight of the blanket substrate is excluded from the total weight of the silica airgel blanket.
  • a hydrochloric acid solution (concentration: 0.15 wt%) diluted in water was added so that the pH of the mixed solution was 1
  • an ammonia catalyst was added to the silica sol in a volume ratio of 100: 0.5 (silica sol: ammonia catalyst), and glass fibers were deposited and gelled to prepare a wet gel-based composite.
  • the wet gel-based composite was immersed in ethanol, and then aged in an oven at 70 ° C. for 2 hours. The aged waste liquid generated during the ripening was recovered.
  • the aged wet gel-based complex was surface modified at 70 ° C. for 5 hours using a surface modification solution which is a mixture of ethanol and HMDS (volume ratio of ethanol: HMDS: 1:19).
  • the surface modification waste liquid generated at the time of surface modification was recovered.
  • the surface-modified wet gel-based composite was placed in an extractor in a supercritical equipment, supercritical drying was performed using supercritical CO 2 , and dried at 150 ° C. and atmospheric pressure for 1 hour to prepare a silica airgel blanket. .
  • regenerated supercritical waste solution ethanol, water, and TEOS were mixed to prepare regenerated silica sol (weight ratio of the regenerated supercritical waste solution, ethanol, water, and SiO 2 in the regenerated silica sol: 11: 4.5: 0.8: 1).
  • ethanol is ethanol first used
  • the pH of Comparative Preparation Example 1 means the pH of the recovered supercritical waste liquid.
  • An ammonia catalyst was added to the regenerated silica sol of Preparation Example 8 in a volume ratio of 100: 0.5 (silica sol: ammonia catalyst), and glass fibers were deposited and gelated to prepare a wet gel-based composite. Thereafter, the wet gel-based composite was immersed in ethanol used for the first time, and then aged in an oven at 70 ° C for 2 hours. The aged wet gel-based composite was surface modified at 70 ° C. for 5 hours using a surface modification solution which was a mixture of ethanol and HMDS initially used (volume ratio of ethanol: HMDS: 1:19).
  • the surface-modified wet gel-based composite was placed in an extractor in a supercritical equipment, supercritical drying was performed using supercritical CO 2 , and dried at 150 ° C. and atmospheric pressure for 1 hour to prepare a silica airgel blanket. .
  • a silica airgel blanket was prepared in the same manner as in Example 1 except that the regenerated silica sol of Preparation Example 6 was used.
  • a silica sol was prepared by mixing, and the surface modification was carried out using a solution in which the aging waste liquid recovered in Example 3 and the supercritical waste liquid (not acid treated) recovered in Example 3 were mixed in a weight ratio of 95: 5.
  • Silica was prepared in the same manner as in Example 3, except that the surface modified waste liquid recovered in Example 3 and the supercritical waste liquid (not acid treated) recovered in Example 3 were mixed in a weight ratio of 95: 5.
  • An airgel blanket was prepared.
  • the supercritical waste liquid (recovered supercritical waste liquid and acetic acid weight ratio: 100: 0.8) and the first-used ethanol, water, and SiO2 11: 4.5: 0.8: 1 were mixed in the supercritical waste liquid recovered in Example 4
  • a silica sol using a mixed solution of the aging waste liquid recovered in Example 4 in the aging step and a weight ratio of supercritical waste liquid (no acid treatment) 95: 5 recovered in Example 4, and in the surface modification step Silica airgel blanket in the same manner as in Example 3, except that the surface modified waste liquid recovered in Example 4 and the supercritical waste liquid (not acid treated) recovered in Example 4 were mixed in a weight ratio of 95: 5.
  • a silica sol using a mixed solution of the aging waste liquid recovered in Example 4 in the aging step and a weight ratio of supercritical waste liquid (no acid treatment) 95: 5 recovered in Example 4, and in the surface modification step Silica airgel blanket in the same manner as in Example 3, except that the surface modified waste liquid recovered in Example 4 and the supercritical waste liquid
  • Silica sol gel blanket was prepared by the method described in Comparative Example 1, except that the regenerated silica sol of Comparative Preparation Example 1 was used and the supercritical waste solution was not recovered to prepare the silica sol. Gelation of the soot was started too early to produce a silica aerogel blanket.
  • a silica airgel blanket was prepared in the same manner as in Example 1 except for using only the silica sol of Comparative Preparation Example 2 and a aging solution, a surface modification solution, and a supercritical solution first used.
  • Example 1 Trimethylsilanol (% by weight) Hexamethyldisiloxane (% by weight) Trimethylethoxysilane (wt%) Total (% by weight)
  • Example 1 1.33 0.02 0.34 1.69
  • Example 2 1.35 0.02 0.33 1.70
  • Example 3 2.20 0.04 0.71 2.95
  • Example 4 2.80 0.10 0.98 3.88
  • Example 5 3.20 0.09 1.30 4.59 Comparative Example 2 1.30 0.01 0.30 1.61
  • Thickness and Insulation Evaluation Method Measured using NETZSCH HFM436 Lambda equipment.
  • Example 1 10.6 18.9 10.9
  • Example 2 10.8 19.2 10.8
  • Example 3 10.9 19.4 10.8
  • Example 4 11.0 19.6 11.1
  • Example 5 10.7 19.3 11.2 Comparative Example 2 10.9 19.0 9.8
  • the silica airgel blanket of Examples 1 to 5 implements similar levels of thickness, heat insulation, and hydrophobicity as compared to the silica airgel blanket of Comparative Example 2 using only a solvent used for the first time. According to the present invention from the results it can be seen that the manufacturing cost can be reduced without changing the appearance and physical properties of the silica airgel blanket of the final product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

본 발명은 실리카 에어로겔 블랭킷의 제조방법에 있어서, 상기 초임계 건조 단계 후 발생하는 초임계 폐액을 회수하는 단계; 상기 회수된 초임계 폐액에 산을 첨가하여 중화시켜 재생하는 단계; 및 상기 재생된 초임계 폐액을 재사용하는 단계를 포함하는 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷에 관한 것이다.

Description

실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
[관련출원과의 상호인용]
본 발명은 2017.05.12에 출원된 한국 특허 출원 제10-2017-0059587호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷에 관한 것으로서, 실리카 에어로겔 블랑킷의 제조방법에서 발생된 초임계 폐액을 재생하여 재사용하는 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷에 관한 것이다.
최근 들어 산업기술이 첨단화되면서 단열특성이 뛰어난 에어로겔에 대한 관심이 증대되고 있다. 지금까지 개발된 에어로겔은 레졸시놀-포름알데하이드 또는 멜라민-포름알데하이드 에어로겔 입자 등의 유기 에어로겔과, 실리카, 알루미나, 티타니아 또는 탄소 에어로겔 등의 금속 산화물을 포함하는 무기 에어로겔이 있다.
이 중에서도 실리카 에어로겔은 고다공성 물질로서, 높은 기공률(porosity)과 비표면적, 그리고 낮은 열전도도(thermal conductivity)를 가져 단열재, 촉매, 흡음재, 반도체 회로의 층간 절연물질 등 다양한 분야에서의 응용이 기대되고 있다. 비록 복잡한 제조공정과 낮은 기계적 강도 등으로 인해 상업화 속도는 매우 느리지만, 꾸준한 연구 결과로 초기적인 응용상품들이 출시되고 있으며, 단열재를 비롯한 응용상품들의 시장이 빠르게 확대되고 있다.
실리카 에어로겔은 다공성 구조로 인해 낮은 기계적 강도를 갖는다. 이 때문에, 실리카 에어로겔은 통상 유리섬유, 세라믹 섬유, 또는 고분자 섬유 등의 기재와 함께 복합화하여 에어로겔 블랭킷 또는 에어로겔 시트 등과 같은 형태로 제품화되고 있다.
일례로, 실리카 에어로겔을 이용한 실리카 에어로겔 블랭킷의 경우, 실리카졸의 제조단계, 겔화 단계, 숙성 단계, 표면 개질 단계 및 초임계 건조 단계를 통해 제조된다. 상술한 실리카 에어로겔 블랭킷은 제조공정 중에 과량의 유기용매를 사용하므로, 유기용매가 실리카 에어로겔 블랭킷의 제조원가 중 높은 비중을 차지한다. 그리고, 사용된 유기용매, 즉 폐액의 처리비용이 매우 높다.
이에 따라 실리카 에어로겔 블랭킷의 제조원가를 절감하기 위하여, 유기용매의 사용량을 줄이거나, 폐액을 재사용하여 폐액 발생량을 낮추는 방안이 필요하다.
본 발명의 목적은 실리카 에어로겔 블랭킷의 제조방법 중 초임계 건조 단계 후 발생된 초임계 폐액을 재생한 후 재사용함으로써, 제조원가를 절감할 수 있는 실리카 에어로겔 블랭킷의 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 초임계 폐액을 재생하여 재사용함에도 외관과 물성이 최초 사용 용매로만 제조되는 실리카 에어로겔 블랭킷과 동등 또는 유사 수준으로 구현 가능한 실리카 에어로겔 블랭킷을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 실리카 에어로겔 블랭킷의 제조방법에 있어서, 초임계 건조 단계 후 발생하는 초임계 폐액을 회수하는 단계; 상기 회수된 초임계 폐액에 산을 첨가하여 중화시켜 재생하는 단계; 및 상기 재생된 초임계 폐액을 재사용하는 단계를 포함하는 실리카 에어로겔 블랭킷의 제조방법을 제공한다.
또한, 본 발명은 상기 실리카 에어로겔 블랭킷의 제조방법으로 제조된 실리카 에어로겔 블랭킷을 제공한다.
본 발명에 따른 실리카 에어로겔 블랭킷의 제조방법은 실리카 에어로겔 블랭킷의 제조방법에서 발생된 초임계 폐액을 재생함으로써, 최초 사용 용매의 사용량이 절감되어 제조원가를 절감할 수 있다.
또한, 본 발명에 따른 실리카 에어로겔 블랭킷의 제조방법은 초임계 폐액 뿐만 아니라, 숙성 폐액 및 표면 개질 폐액을 재사용할 수 있으므로, 최초 사용 용매뿐만 아니라 표면 개질제의 사용량도 절감되어 제조원가를 보다 절감할 수 있다.
또한, 본 발명에 따른 실리카 에어로겔 블랭킷은 실리카 에어로겔 블랭킷의 제조방법에서 발생된 폐액을 재사용하였음에도 불구하고, 외관 및 물성이 최초 사용 용매로만 제조되는 실리카 에어로겔 블랭킷과 동등 또는 유사 수준으로 구현될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 실리카 에어로겔 블랭킷의 제조방법에 있어서, 초임계 건조 단계 후 발생하는 초임계 폐액을 회수한 후, 중화시켜 재생하고 재사용함으로써, 최초 사용 용매의 사용량이 절감되어 실리카 에어로겔 블랭킷의 제조 원가를 절감할 수 있다.
또한 본 발명에 따른 실리카 에어로겔 블랭킷은 실리카 에어로겔 블랭킷의 제조방법에서 발생된 폐액을 재사용하였음에도 외관과 물성이 최초 사용 용매만으로 제조되는 실리카 에어로겔 블랭킷과 동등 또는 유사 수준으로 구현할 수 있다.
구체적으로, 본 발명의 일실시예에 따른 실리카 에어로겔 블랭킷의 제조방법은 실리카 에어로겔 블랭킷의 제조방법에 있어서, 초임계 건조 단계 후 발생하는 초임계 폐액을 회수하는 단계(단계 1); 상기 회수된 초임계 폐액에 산을 첨가하여 중화시켜 재생하는 단계(단계 2); 및 상기 재생된 초임계 폐액을 재사용하는 단계(단계 3)를 포함하는 실리카 에어로겔 블랭킷의 제조방법을 제공한다.
이하 각 단계별로 상세히 설명한다.
본 발명의 일실시예에 따른 실리카 에어로겔 블랭킷의 제조방법에 있어서, 단계 1은 실리카 에어로겔 블랭킷의 제조방법에 있어서, 초임계 건조 단계 후 발생하는 초임계 폐액을 회수하는 단계이다.
상기 초임계 폐액은 일반적인 실리카 에어로겔의 제조방법이 수행된 이후 발생하는 폐액일 수 있다.
상기 실리카 에어로겔 블랭킷의 제조방법은 일반적인 실리카 에어로겔 블랭킷의 제조방법일 수 있으며, 실리카졸을 제조하는 단계(단계 1-1); 상기 실리카졸에 블랭킷용 기재를 침지시킨 후, 염기를 첨가하고 겔화시켜 습윤겔-기재 복합체를 준비하는 단계(단계 1-2); 상기 습윤겔-기재 복합체를 숙성하는 단계(단계 1-3); 상기 숙성된 습윤겔-기재 복합체를 표면 개질하는 단계(단계 1-4); 및 상기 표면 개질된 습윤겔-기재 복합체를 초임계 건조하여 실리카 에어로겔 블랭킷을 제조하는 단계(단계 1-5)를 포함할 수 있다.
상기 단계 1-1에서 상기 실리카졸은 실리카 전구체, 물 및 극성 유기용매를 혼합함으로써 제조할 수 있다. 상기 실리카졸 제조 시 선택적으로 염산 등의 산 촉매를 이용할 수 있다.
상기 실리카 전구체는 실리콘 함유 알콕사이드계 화합물일 수 있으며, 보다 구체적으로는 테트라알킬 실리케이트일 수 있다. 상기 테트라알킬 실리케이트는 테트라메톡시실란(tetramethoxy silane; TMOS), 테트라에톡시실란(tetraethoxy silane; TEOS), 메틸트리에틸 오르소실리케이트(methyl triethyl orthosilicate), 디메틸디에틸 오르소실리케이트(dimethyl diethyl orthosilicate), 테트라프로필 오르소실리케이트(tetrapropyl orthosilicate), 테트라이소프로필 오르소실리케이트(tetraisopropyl orthosilicate), 테트라부틸 오르소실리케이트 (tetrabutyl orthosilicate), 테트라 세컨드리부틸 오르소실리케이트(tetra secondary butyl orthosilicate), 테트라 터셔리부틸 오르소실리케이트 (tetra tertiary butyl orthosilicate), 테트라헥실 오르소실리케이트(tetrahexyl orthosilicate), 테트라시클로헥실 오르소실리케이트(tetracyclohexyl orthosilicate) 및 테트라도데실 오르소실리케이트(tetradodecyl orthosilicate)로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 테트라메틸 오르소실리케이트(TMOS) 및 테트라에틸 오르소실리케이트(TEOS)로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
상기 실리카 전구체는 물 및 극성 유기용매에 의해 가수분해되며 그 결과로 실리카(SiO2)를 생성할 수 있다.
한편, 상기 실리카 전구체로서, 상기한 화합물들의 전-가수분해물(pre-hydrolysis)이 사용될 수도 있다. 이와 같은 전-가수분해물의 경우, 직접 제조하거나 시판되는 물질을 사용할 수 있다. 직접 제조할 경우, 일례로 TEOS과 알코올을 혼합한 후, 산성 수용액을 첨가하여 가수분해시킨 전가수분해물이 사용될 수 있다.
또, 상기 실리카졸 제조에 이용되는 극성 유기용매는 알코올계 용매일 수 있다. 상기 알코올계 용매는 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 1가 알코올; 또는 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 및 솔비톨 등과 같은 다가 알코올일 수 있으며, 물 및 에어로겔과의 혼화성을 고려할 때 상기 극성 유기용매는 1가 알코올계 용매를 사용하는 것이 바람직하다.
상기 단계 1-2에서, 상기 블랭킷용 기재는 필름, 시트, 네트, 섬유, 다공질체, 발포체, 부직포체 또는 이들의 2층 이상의 적층체일 수 있다. 또한, 용도에 따라 그 표면에 표면조도가 형성되거나 패턴화된 것일 수도 있다. 보다 구체적으로는 상기 블랭킷용 기재는 내부로 에어로겔의 삽입이 용이한 공간 또는 공극을 포함함으로써 단열 성능을 보다 향상시킬 수 있는 섬유일 수 있다. 또, 상기 블랭킷용 기재는 낮은 열전도도를 갖는 것이 바람직하다.
구체적으로 상기 블랭킷용 기재는 특별히 한정하지 않으나, 폴리아미드, 폴리벤즈이미다졸, 폴리아라미드, 아크릴수지, 페놀수지, 폴리에스테르, 폴리에테르에테르케톤(PEEK), 폴리올레핀(예를 들면, 폴리에틸렌, 폴리프로필렌 또는 이들의 공중합체 등), 셀룰로오스, 카본, 면, 모, 마, 부직포, 유리섬유 및 세라믹울로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있고, 이 중 유리섬유 및 폴리에틸렌으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것이 바람직하다.
상기 단계 1-2에서, 상기 염기는 수산화나트륨, 수산화칼륨 등의 무기염기; 또는 수산화암모늄과 같은 유기염기일 수 있으나, 무기염기의 경우 화합물 내 포함된 금속이온이 Si-OH 화합물에 배위(coordination)될 우려가 있으므로, 유기염기가 바람직하다.
상기 유기염기는 수산화암모늄(NH4OH), 테트라메틸암모늄 히드록시드(TMAH), 테트라에틸암모늄 히드록시드(TEAH), 테트라프로필암모늄 히드록시드(TPAH), 테트라부틸암모늄 히드록시드(TBAH), 메틸아민, 에틸아민, 이소프로필아민, 모노이소프로필아민, 디에틸아민, 디이소프로필아민, 디부틸아민, 트리메틸아민, 트리에틸아민, 트리이소프로필아민, 트리부틸아민, 콜린, 모노에탄올아민, 디에탄올 아민, 2-아미노에탄올, 2-(에틸 아미노)에탄올, 2-(메틸 아미노)에탄올, N-메틸 디에탄올아민, 디메틸아미노에탄올, 디에틸아미노에탄올, 니트릴로트리에탄올, 2-(2-아미노에톡시)에탄올, 1-아미노-2-프로판올, 트리에탄올아민, 모노프로판올아민 및 디부탄올아민로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중, 수산화암모늄(NH4OH)이 바람직하다.
상기 염기는 고체 상태로 투입 시 석출될 우려가 있으므로, 상기 극성 유기용매에 의해 희석된 용액 상태으로 첨가되는 것이 바람직하다.
상기 단계 1-3인 숙성 단계는 상기 습윤겔-기재 복합체를 적당한 온도에서 방치하여 화학적 변화가 완전히 이루어지도록 하기 위한 공정으로서, 습윤겔-기재 복합체에 대한 숙성 공정에 의해, 습윤겔 내부의 망목 구조를 강화시킬 수 있다. 또한, 숙성 공정 동안에 습윤겔 내부의 수분이 극성 유기용매로 치환될 수 있으며, 그 결과 후속의 초임계 건조 공정에서 습윤겔 내부의 수분 증발에 따른 실리카겔의 기공 구조 변형 및 감소를 방지할 수 있다.
상기 숙성 단계는 상기 습윤겔-기재 복합체 내 화학적 변화가 완료될 때까지 수행될 수 있다.
상기 숙성 단계는 상기 습윤겔-기재 복합체를 50℃ 내지 80℃로 1시간 내지 6시간 또는 60 ℃ 내지 75 ℃로 2시간 내지 4시간 동안 숙성 용액에 침지시킴으로써 수행될 수 있고, 이 중 60 ℃ 내지 75 ℃로 2시간 내지 4시간 동안 숙성 용액에 침지시킴으로써 수행하는 것이 바람직하다.
상술한 조건을 만족하면, 숙성 반응이 충분히 일어날 수 있으면서, 에너지 소비를 최소화할 수 있다.
상기 숙성 용액은 극성 유기용매일 수 있으며, 상기 극성 유기용매에 대한 설명은 상술한 바와 같다.
상기 숙성 단계에서 발생한 숙성 폐액은 회수되어 재사용될 수 있으며, 자세한 설명은 후술할 예정이다.
상기 단계 1-4는 상기 숙성된 습윤겔-기재 복합체를 표면 개질 용액에 침지시킨 후, 40℃ 내지 80℃로 1 내지 6시간 동안 또는 50 내지 80℃로 2 내지 5 시간 동안 수행될 수 있고, 이 중 50 내지 80℃로 2 내지 5 시간 동안 수행되는 것이 바람직하다.
상술한 조건을 만족하면, 표면 개질 반응이 충분히 일어날 수 있으면서, 에너지 소비를 최소화할 수 있다.
상기 표면 개질 용액은 HMDS(hexamethyldisilazane), TMSCL(trimethyl chlorosilane), 실리콘 오일(silicone oil), 아미노 실란(amino silane), 알킬 실란(alkyl silane), PDMS(polydimethyl siloxane) 및 DDS(dimethyl dichlorosilane)로 이루어진 군에서 선택되는 1종 이상과 극성 유기용매를 포함하는 용액일 수 있다. 상기 극성 유기용매에 대한 설명은 상술한 바와 같다.
상기 표면 개질 단계에서 발생한 표면 개질 폐액은 회수되어 재사용될 수 있으며, 자세한 설명은 후술할 예정이다.
상기 단계 1-5에서 초임계 이산화탄소를 이용한 초임계 건조 단계일 수 있다.
이산화탄소(CO2)는 상온 및 상압에서는 기체 상태이지만 임계점(supercritical point)이라고 불리는 일정한 온도 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는 임계 상태가 되며, 이 임계 상태에 있는 이산화탄소를 초임계 이산화탄소라고 한다. 초임계 이산화탄소는 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가지며, 확산이 빠르고 열전도성이 높아 건조 효율이 높고, 건조 공정 시간을 단축시킬 수 있다.
한편, 상기 초임계 건조 단계는 초임계 건조 반응기 안에 표면 개질된 습윤겔-기재 복합체를 넣은 다음, 액체 상태의 CO2를 채우고 실리카 에어로겔 내부의 용매를 CO2로 치환하는 용매치환 공정을 수행할 수 있다.
상기 초임계 건조 단계에서는 초임계 건조 시작부터 종료 시까지 충분히 높은 온도 및 압력을 유지함으로써 습윤겔 내부까지 CO2 침투율을 높여 습윤겔의 내부에 존재하는 유기용매를 충분히 제거할 수 있다.
따라서, 초임계 건조 공정이 수행되는 반응기를 일정한 승온 속도, 구체적으로는 0.1 내지 10 ℃ /min의 속도로, 40 내지 90℃로 승온시킨 후, 이산화탄소가 초임계 상태가 되는 압력 이상의 압력, 구체적으로는 100 내지 200 bar의 압력을 유지하여 이산화탄소의 초임계 상태에서 일정 시간, 구체적으로는 20분 내지 10시간 동안 유지할 수 있다.
상술한 조건을 만족하면, 짧은 시간 안에 겔 내부의 기공이 파괴되지 않은 우수한 물성의 에어로겔 블랭킷을 얻을 수 있다
상기와 같은 초임계 건조 공정의 결과로, 나노 크기의 기공을 갖는 다공성 실리카 에어로겔을 포함하는 블랭킷이 제조될 수 있다. 상기 실리카 에어로겔은 높은 소수화도와 함께 우수한 물성적 특성, 특히 높은 기공율을 가지며, 이를 포함하는 실리카 에어로겔 블랭킷은 낮은 열전도도와 함께 우수한 기계적 유연성을 가질 수 있다.
상기 단계 1에서는 상기 초임계 폐액을 상기 초임계 건조 단계를 수행하면서 또는 초임계 건조 단계가 완료된 후 회수한다.
상기 초임계 폐액은 습윤겔 내에 존재하던 용액이 CO2에 의해 치환됨으로써 발생되는 용액과 표면 개질된 습윤겔-기재 복합체에 잔류하는 표면 개질 폐액을 포함하는 용액일 수 있다. 상기 습윤겔 내에 존재하던 용액과 표면 개질 폐액은 초임계 건조 단계를 거치면서, 상기 습윤겔의 표면에 존재하는 표면 개질제의 반응 부산물인 암모니아가 CO2와 반응하여 탄산암모늄을 생성할 수 있다. 상기 탄산암모늄은 초임계 장비 내 필터에서 일부 제거될 수는 있으나, 초임계 폐액에도 잔류하여 폐액의 pH를 높이는 역할을 할 수 있다.
본 발명의 일실시예에 따른 실리카 에어로겔 블랭킷의 제조방법에 있어서, 단계 2는 상기 회수된 초임계 폐액에 산을 첨가하여 중화시켜 재생하는 단계이다.
상기 회수된 초임계 폐액은 중화로 인해 후술할 실리카졸의 제조에 재사용될 수 있다. 상기 중화로 상기 회수된 초임계 폐액으로 제조된 실리카졸은 최초 사용되는 극성 유기용매로만 제조된 실리카졸과 동등 또는 유사수준의 저장 안정성을 구현할 수 있다. 이로 인해 상기 회수된 초임계 폐액으로 제조된 실리카졸이 양산에 적용되었을 때 공정 효율이 저하되지 않을 수 있다. 또한, 상기 회수된 초임계 폐액으로 제조된 실리카졸은 염기를 이용하여 원하는 시점 및 원하는 시간 동안 겔화가 진행될 수 있으며, 이로 인해 균일한 물성을 갖는 실리카 에어로겔 블랭킷을 제조할 수 있다.
만약, 상기 회수된 초임계 폐액을 중화하지 않는다면, 중화되지 않은 초임계 폐액으로 제조된 실리카졸은 촉매 없이도 겔화가 진행될 수 있으므로, 겔화공정의 제어가 어려워 우수한 품질의 실리카 에어로겔 블랭킷을 제조할 수 없다.
상기 산은 아세트산 또는 염산일 수 있으며, 상기 회수된 초임계 폐액 100중량부에 대하여, 0.2 내지 1.5 중량부로 첨가될 수 있다.
구체적으로 상기 산이 아세트산일 경우, 0.5 내지 1.3 중량부, 구체적으로는 0.6 내지 1.1 중량부로 첨가될 수 있다.
상기 산이 염산일 경우, 구체적으로는 0.2 내지 0.7 중량부, 보다 구체적으로는 0.3 내지 0.6 중량부로 첨가될 수 있다.
상술한 범위를 만족하면, 상기 회수된 초임계 폐액의 물성 저하 없이 중화시킬 수 있다. 그리고, 상기 재생된 초임계 폐액이 지나치게 산성화되는 것을 방지할 수 있고, 잔류 산이 겔화 촉매와 반응하여 불필요한 염이 발생하는 것을 방지할 수 있다.
상기 산은 물 및 극성 유기용매를 포함하는 산성 용액 상태로 첨가될 수 있다.
상기 산성 용액 내 산과 극성 유기용매와 물의 중량비는 1:(50~200):(5~20), 구체적으로는 1:(100~150):(10~15)일 수 있다.
상술한 범위를 만족하면, 초임계 폐액의 중화 과정에서 발생되는 가스를 최소화할 수 있다.
상기 극성 유기용매에 대한 설명은 상술한 바와 같다.
상기 재생된 초임계 폐액의 pH는 2 이상 7.5 미만일 수 있다.
아세트산으로 중화되어 재생된 초임계 폐액의 pH는 6 이상 7.5 미만, 구체적으로는 pH가 6 내지 6.5일 수 있다.
염산으로 중화되어 재생된 초임계 폐액은 pH가 2 내지 3, 구체적으로는 pH가 2 내지 2.5일 수 있다.
상술한 범위를 만족하면, 재생된 초임계 폐액을 이용하여 실리카졸을 제조 시, 최초 사용되는 극성 유기용매로 제조된 실리카졸과 동등 또는 유사 수준의 저장 안정성을 구현할 수 있으며, 습윤겔-기재 복합체의 겔화 시간을 염기를 통하여 조절할 수 있다. 또한, 실리카졸이 염기 없이는 겔화가 진행되지 않으므로, 공정 효율이 증대되고, 겔화 시간을 조절할 수 있으므로, 최종생산품인 실리카 에어로겔 블랭킷의 물성이 균일하게 유지될 수 있다.
한편, 상기 재생된 초임계 폐액 내에는 암모늄 이온이 존재할 수 있다.
본 발명의 일실시예에 따른 실리카 에어로겔 블랭킷의 제조방법에 있어서, 단계 3은 상기 재생된 초임계 폐액을 재사용하는 단계이다.
구체적으로, 상기 재생된 초임계 폐액은 실리카 에어로겔 블랭킷의 제조방법 중 실리카졸을 제조하는 단계에서 재사용될 수 있다.
이하, 회수 및 재생된 초임계 폐액을 사용하여 실리카 에어로겔 블랭킷을 제조하는 방법은 단계 3-1 내지 단계 3-5로 구체적으로 설명한다.
상기 실리카졸을 제조하는 단계(단계 3-1)는 실리카 전구체, 물, 상기 재생된 초임계 폐액 및 극성 유기용매를 혼합하는 것을 제외하고는 단계 1-1과 동일하다.
상기 단계 3-1에서 사용되는 극성 유기용매는 최초 사용되는 극성 유기용매를 의미하며, 극성 유기용매에 대한 설명은 상술한 바와 같다.
상기 재생된 초임계 폐액은 상기 실리카졸 제조 단계에서 이용되는 전체 극성 유기용매, 즉 상기 재생된 초임계 폐액과 최초 사용되는 극성 유기용매의 총 중량에 대하여, 80중량% 미만, 구체적으로는 10 내지 75 중량%, 보다 구체적으로는 50 내지 75 중량%로 이용할 수 있다.
상술한 범위를 만족한다면, 최초 사용되는 극성 유기용매로만 제조된 실리카 에어로겔 블랭킷과 비교하여, 동등 또는 유사 수준의 외관 및 물성을 갖는 실리카 에어로겔 블랭킷을 제조할 수 있다. 또한, 제조원가 및 폐액처리 비용 등을 절감할 수 있다.
이어서, 상기 재생된 초임계 폐액을 이용하여 제조된 실리카졸에 블랭킷용 기재를 침지시킨 후, 염기를 첨가하고 겔화시켜 습윤겔-기재 복합체를 준비하는 단계(단계 3-2)를 수행할 수 있다. 상기 단계 3-2는 상기 재생된 초임계 폐액을 이용한 것을 제외하고는 상술한 단계 1-2와 동일하다.
상기 단계 3-2를 수행한 후, 상기 단계 1에서 기재한 안정화 단계와 선-숙성 단계 중 어느 하나 이상의 단계를 더 수행할 수 있다.
이어서, 상기 습윤겔-기재 복합체를 숙성하는 단계(단계 3-3)를 수행할 수 있다. 상기 단계 3-3에서는 최초 사용되는 숙성 용액만을 이용하거나, 상기 단계 1-3에서 발생한 숙성 폐액을 재사용할 수 있다.
상기 단계 3-3에서 최초 사용되는 숙성 용액만 이용할 경우, 상기 단계 3-3과 상기 단계 1-3은 동일할 수 있다.
상기 단계 1-3에서 발생한 숙성 폐액을 재사용할 경우, 상기 숙성 폐액과 최초 사용되는 숙성 용액 및 초임계 폐액으로 이루어진 군에서 선택되는 1종 이상을 혼합하여 사용할 수 있다. 이때 상기 초임계 폐액은 상기 단계 1-5에서 발생한 초임계 폐액일 수 있다.
한편, 상기 최초 사용되는 숙성 용매에 대한 설명은 상기 단계 1-3에서 상술한 바와 같다.
상기 숙성 폐액은 상기 단계 3-3에서 이용되는 전체 숙성 용액, 즉 상기 숙성 폐액과 최초 사용되는 숙성 용액 및 초임계 폐액으로 이루어진 군에서 선택되는 1종 이상의 총 중량에 대하여, 구체적으로는 90 중량% 이상, 보다 구체적으로는 95 중량% 이상으로 이용할 수 있다.
상술한 범위를 만족한다면, 최초 사용되는 숙성 용액으로만 제조된 실리카 에어로겔 블랭킷과 비교하여, 동등 또는 유사 수준의 외관 및 물성을 갖는 실리카 에어로겔 블랭킷을 제조할 수 있다. 또한, 제조원가 및 폐액처리 비용 등을 절감할 수 있다.
상기 숙성 폐액의 재사용 횟수는 특별히 한정하지 않으며, 상기 숙성 폐액을 재사용하여도 최초 사용되는 숙성 용액으로만 제조된 실리카 에어로겔 블랭킷과 비교하여, 동등 또는 유사 수준의 외관 및 물성을 갖는 실리카 에어로겔 블랭킷을 제조할 수 있다.
상기 숙성 폐액은 별도의 가공 없이 재사용될 수 있는데, 그 이유는 상기 숙성 단계에서 숙성 용액에 별도의 첨가물이 추가되지 않고, 상기 습윤겔-기재 복합체 내부는 소량의 물을 함유한 알코올 용매로 채워져 있으므로 숙성 용액의 함수율도 일정수준 이상으로 높아지지 않기 때문이다. 따라서 숙성 폐액의 조성은 거의 일정한 값으로 유지되고, 이로 인해 숙성 폐액이라도 숙성 단계에서 영향을 미치는 불순물이 많이 포함되지 않을 수 있다.
이어서, 상기 숙성된 습윤겔-기재 복합체를 표면 개질하는 단계(단계 3-4)를 수행할 수 있다.
상기 단계 3-4에서는 최초 사용되는 표면 개질 용액만을 이용하거나, 상기 단계 1-4에서 발생한 표면 개질 폐액을 재사용할 수 있다.
상기 단계 3-4에서 최초 사용되는 표면 개질 용액만 이용할 경우, 상기 단계 3-4와 상기 단계 1-4는 동일할 수 있다.
상기 단계 1-4에서 발생한 표면 개질 폐액을 재사용할 경우, 상기 표면 개질 폐액과 최초 사용되는 숙성 용액 및 초임계 폐액으로 이루어진 군에서 선택되는 1종 이상을 혼합하여 사용할 수 있다. 이때 상기 초임계 폐액은 상기 단계 1-5에서 발생한 초임계 폐액일 수 있다.
상기 표면 개질 폐액은 상기 단계 3-4에서 이용되는 전체 표면 개질 용액, 즉 상기 표면 개질 폐액과 최초 사용되는 표면 개질 용액 및 초임계 폐액으로 이루어진 군에서 선택되는 1종 이상의 총 중량에 대하여, 80중량% 이상, 구체적으로는 90 중량% 이상, 보다 구체적으로는 95 중량% 이상으로 이용할 수 있다.
상술한 범위를 만족한다면, 최초 사용되는 표면 개질 용액으로만 제조된 실리카 에어로겔 블랭킷과 비교하여, 동등 또는 유사 수준의 외관 및 물성을 갖는 실리카 에어로겔 블랭킷을 제조할 수 있다. 또한, 제조원가 및 폐액처리 비용 등을 절감할 수 있다.
상기 단계 3-4에서 이용되는 최초 사용되는 표면 개질 용액 내 표면 개질제의 함량은 상기 단계 1-4에서 이용되는 최초 사용되는 표면 개질 용액 내 표면 개질제의 함량에 대하여 60 내지 100중량%, 구체적으로는 80 내지 100중량%, 보다 구체적으로는 80 내지 90중량%로 포함될 수 있다.
상술한 범위를 만족하면, 표면 개질 폐액의 재사용 횟수가 증가하더라도, 표면 개질 폐액 내 표면 개질제 및 표면 개질제 유래 부산물의 함량은 일정하게 유지될 수 있다.
상기 표면 개질 폐액의 재사용 횟수는 특별히 한정하지 않으며, 상기 표면 개질 폐액을 재사용하여도, 최초 사용되는 표면 개질 용액으로만 제조된 실리카 에어로겔 블랭킷과 비교하여, 동등 또는 유사 수준의 외관 및 물성을 갖는 실리카 에어로겔 블랭킷을 제조할 수 있다.
상기 표면 개질 폐액도 별도의 가공 없이 재사용될 수 있는데, 그 이유는 상기 숙성된 습윤겔-기재 복합체 내부는 소량의 물을 함유한 알코올 용매로 채워져 있으므로 표면 개질 용액의 함수율도 일정수준 이상으로 높아지지 않기 때문이다. 또한 표면 개질제가 습윤겔의 표면을 개질하며 부산물을 생성하는 반응은 용액 내 함수율 등에 영향을 받는 가역반응이므로 표면 개질제가 첨가된다고 해서 습윤겔의 표면 개질 후 남은 반응 부산물의 농도가 무한히 높아지는 것이 아니라 일정수준에서 평형을 이루게 된다. 따라서 표면 개질 폐액의 조성은 거의 일정한 값으로 유지되어 표면 개질 폐액이라도 표면 개질 단계에서 영향을 미치는 불순물이 많이 포함되지 않을 수 있다.
필요에 따라, 숙성 폐액 및 표면 개질 폐액 내에 잔류하는 실리카 등의 고체 불순물을 제거하기 위하여 여과하는 단계를 더 포함할 수 있다.
이어서, 상기 표면 개질된 습윤겔-기재 복합체를 초임계 건조하여 실리카 에어로겔 블랭킷을 제조하는 단계(단계 3-5)를 수행할 수 있다.
상기 단계 3-5에서 발생한 초임계 폐액은 별도의 분리기를 이용하여 회수될 수 있으며, 상기 초임계 폐액은 습윤겔 내에 존재하던 용액이 CO2에 의해 치환됨으로써 발생되는 용액과 표면 개질된 습윤겔-기재 복합체에 잔류하는 표면 개질 폐액을 포함하는 용액일 수 있다. 상기 습윤겔 내에 존재하던 용액과 표면 개질 폐액은 초임계 건조 단계를 거치면서, 상기 습윤겔의 표면에 존재하는 표면 개질제의 반응 부산물인 암모니아가 CO2와 반응하여 탄산암모늄을 생성할 수 있다. 상기 탄산암모늄은 초임계 장비 내 필터에서 일부 제거될 수는 있으나, 초임계 폐액에도 잔류하여 폐액의 pH를 높이는 역할을 할 수 있다.
한편, 상기 CO2에 의해 치환됨으로써 발생되는 용액은 숙성 폐액, 표면 개질 폐액 및 초임계 폐액으로 이루어진 군에서 선택되는 용액으로부터 유래된 용액을 포함할 수 있다.
본 발명의 일실시예에 따른 실리카 에어로겔 블랭킷의 제조방법에 재사용될 수 있다.
본 발명의 다른 일실시예에 따른 실리카 에어로겔 블랭킷은 본 발명의 일실시예에 따른 실리카 에어로겔 블랭킷의 제조방법으로 제조된 것이다.
본 발명의 다른 일실시예에 따른 실리카 에어로겔 블랭킷은 열전도도가 16 내지 21mW/mK일 수 있고, 탄소 함량은 실리카 에어로겔 총 중량에 대하여 8 내지 12중량%일 수 있다. 상술한 범위를 만족하면, 최초 사용 용매로만 제조된 실리카 에어로겔 블랭킷과 동등 또는 유사 수준의 물성을 가질 수 있다.
한편, 탄소 함량의 기준인 실리카 에어로겔 총 중량은 실리카 에어로겔 블랭킷의 총 중량에서 블랭킷용 기재의 중량을 제외시킨 것을 의미한다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1 내지 제조예 8 및 비교제조예 1
테트라에틸 오르소실리케이트(TEOS)와 에탄올을 3:1의 중량비로 혼합하여 제조한 혼합 용액에, 물에 희석한 염산 용액(농도: 0.15 중량%)을 상기 혼합 용액의 pH가 1이 되도록 첨가한 후 혼합하여 실리카졸(실리카졸 내 실리카 함량=4 중량%)을 제조하였다. 다음으로, 상기 실리카졸에 암모니아 촉매를 100:0.5(실리카졸: 암모니아 촉매)의 부피비로 첨가하고, 유리 섬유를 침적시킨 후 겔화시켜 습윤겔-기재 복합체를 제조하였다.
그 후, 습윤겔-기재 복합체를 에탄올에 침지시킨 후, 70℃인 오븐에서 2시간 숙성하였다. 숙성시 발생한 숙성 폐액을 회수하였다.
상기 숙성된 습윤겔-기재 복합체를 에탄올과 HMDS의 혼합물(에탄올: HMDS의 부피비: 1:19)인 표면 개질 용액을 이용하여 70 ℃에서 5시간 동안 표면 개질하였다. 표면 개질시 발생한 표면 개질 폐액을 회수하였다.
이후 초임계 장비 내 추출기에 상기 표면 개질된 습윤겔-기재 복합체를 넣고 초임계 CO2를 이용하여 초임계 건조를 실시하고, 150℃ 및 상압 조건에서 1시간 동안 건조하여, 실리카 에어로겔 블랭킷을 제조하였다.
회수된 초임계 폐액 100g에 대하여 하기 표 1에 기재된 양으로 산을 첨가하여 하기 표 1에 기재된 pH를 갖는 재생된 초임계 폐액을 제조하였다.
상기 재생된 초임계 폐액과 에탄올과 물과 TEOS를 혼합하여 재생 실리카졸(재생 실리카졸 내 상기 재생된 초임계 폐액과 에탄올과 물과 SiO2의 중량비: 11:4.5:0.8:1)을 제조하였다. 여기서, 에탄올은 최초 사용된 에탄올이고, 비교제조예 1의 pH는 회수된 초임계 폐액의 pH를 의미한다.
구분 재생된 초임계 폐액의 pH
종류 함량(㎖)
제조예 1 아세트산 0.24 7.2
제조예 2 아세트산 0.40 6.8
제조예 3 아세트산 0.48 6.7
제조예 4 아세트산 0.56 6.6
제조예 5 아세트산 0.64 6.5
제조예 6 아세트산 0.72 6.4
제조예 7 아세트산 1.00 6.3
제조예 8 염산 0.3 2.2
비교제조예 1 - - 8.0
비교제조예 2
최초 사용되는 에탄올과 물과 TEOS를 혼합하여 실리카졸(실리카졸 내 에탄올: 물: SiO2의 중량비=15.5:0.8:1)을 제조하였다.
실험예 1
재생 실리카졸의 저장 안정성을 평가하기 위하여, 상온에서 재생 실리카졸이 염기 없이 겔화가 개시된 시간을 하기 표 2에 기재하였다. 한편, 제조예 7, 제조예 8 및 비교제조예 2의 재생 실리카졸의 경우 36시간 까지만 측정하였으므로, 겔화 개시 시간을 36시간 초과라고 기재하였다.
구분 겔화 개시 시간
제조예 1 6.0시간
제조예 2 17.5시간
제조예 3 20.0시간
제조예 4 21.5시간
제조예 5 22.5시간
제조예 6 26.0시간
제조예 7 > 36.0시간
제조예 8 > 36.0시간
비교제조예 1 1.0시간
비교제조예 2 > 36.0시간
표 2를 참조하면, 제조예 1 내지 제조예 8의 재생 실리카졸의 경우, 제조 후, 6시간 이상이 경과된 후 겔화가 개시되었으므로 저장 안정성이 우수한 것을 확인할 수 있었다. 특히 제조예 6 내지 제조예 8의 재생 실리카졸의 경우 제조 후, 24시간 이상 경과된 후 겔화가 개시되었으므로, 비교제조예 2의 실리카졸과 유사 수준의 겔화 개시 시간을 갖는 것을 확인할 수 있었다.
또한, 회수된 초임계 폐액을 재생하지 않은 비교제조예 1의 실리카졸의 경우, 겔화 개시 시간이 1시간이므로, 양산 공정에 도입된다면, 실리카졸이 통과하는 라인 내에서 겔화가 진행되어 라인이 막히거나, 라인 내 실리카졸의 유속이 저하되는 문제가 일어나 공정효율이 저하될 수 있다.
실시예 1
제조예 8의 재생 실리카졸에 암모니아 촉매를 100:0.5(실리카졸: 암모니아 촉매)의 부피비로 첨가하고, 유리 섬유를 침적시킨 후 겔화시켜 습윤겔-기재 복합체를 제조하였다. 그 후, 습윤겔-기재 복합체를 최초 사용되는 에탄올에 침지시킨 후, 70℃인 오븐에서 2시간 숙성하였다. 상기 숙성된 습윤겔-기재 복합체를 최초 사용되는 에탄올과 HMDS의 혼합물(에탄올: HMDS의 부피비: 1:19)인 표면 개질 용액을 이용하여 70℃에서 5시간 동안 표면 개질하였다. 이후 초임계 장비 내 추출기에 상기 표면 개질된 습윤겔-기재 복합체를 넣고 초임계 CO2를 이용하여 초임계 건조를 실시하고, 150℃ 및 상압 조건에서 1시간 동안 건조하여, 실리카 에어로겔 블랭킷을 제조하였다.
실시예 2
제조예 6의 재생 실리카졸을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
실시예 3
제조예 6의 재생 실리카졸을 이용하고, 숙성 단계에서 제조예 6에서 회수된 숙성 폐액과 제조예 6에서 회수된 초임계 폐액(산 미처리)을 95:5의 중량비로 혼합한 용액을 이용하고, 표면 개질 단계에서 제조예 6에서 회수된 표면 개질 폐액과 제조예 6에서 회수된 초임계 폐액(산 미처리)을 95:5의 중량비로 혼합한 용액을 이용한 것을 제외하고는 제조예 6과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
실시예 4
실시예 3에서 회수한 초임계 폐액을 재생한 초임계 폐액(회수된 초임계 폐액과 아세트산의 중량비: 100:0.8)과 최초 사용되는 에탄올과 물과 SiO2 11:4.5:0.8:1의 중량비로 혼합하여 실리카졸을 제조하고, 숙성 단계에서 실시예 3에서 회수된 숙성 폐액과 실시예 3에서 회수된 초임계 폐액(산처리 안함)을 95:5의 중량비로 혼합한 용액을 이용하고, 표면 개질 단계에서 실시예 3에서 회수된 표면 개질 폐액과 실시예 3에서 회수된 초임계 폐액(산처리 안함)을 95:5의 중량비로 혼합한 용액을 이용한 것을 제외하고는 실시예 3과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
실시예 5
실시예 4에서 회수한 초임계 폐액을 재생한 초임계 폐액(회수된 초임계 폐액과 아세트산의 중량비: 100:0.8)과 최초 사용되는 에탄올과 물과 SiO2 11:4.5:0.8:1의 중량비로 혼합하여 실리카졸을 제조하고, 숙성 단계에서 실시예 4에서 회수된 숙성 폐액과 실시예 4에서 회수된 초임계 폐액(산처리 안함) 95:5의 중량비로 혼합한 용액을 이용하고, 표면 개질 단계에서 실시예 4에서 회수된 표면 개질 폐액과 실시예 4에서 회수된 초임계 폐액(산처리 안함)을 95:5의 중량비로 혼합한 용액을 이용한 것을 제외하고는 실시예 3과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
비교예 1
비교제조예 1의 재생 실리카졸을 이용하고, 초임계 폐액을 재생하여 실리카졸을 제조하는 단계를 수행하지 않은 것을 제외하고는 비교제조예 1에 기재된 방법으로 실리카 에어로겔 블랭킷을 제조하려고 하였으나, 실리카졸의 겔화가 너무 일찍 개시되어 실리카 에어로겔 블랭킷을 제조할 수 없었다.
비교예 2
비교제조예 2의 실리카졸과 최초 사용되는 숙성 용액, 표면 개질 용액, 초임계 용액만을 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
실험예 2
실시예 1 내지 실시예 5 및 비교예 2의 실리카 에어로겔 블랭킷의 제조 공정 중 표면 개질 단계에서 회수된 표면 개질 폐액을 GC 분석(GC/MS (EQC-0248))하고, 그 결과를 하기 표 3에 기재하였다.
구분 트리메틸실라놀(중량%) 헥사메틸디실록산(중량%) 트리메틸에톡시실란(중량%) 총합(중량%)
실시예 1 1.33 0.02 0.34 1.69
실시예 2 1.35 0.02 0.33 1.70
실시예 3 2.20 0.04 0.71 2.95
실시예 4 2.80 0.10 0.98 3.88
실시예 5 3.20 0.09 1.30 4.59
비교예 2 1.30 0.01 0.30 1.61
표 3을 참조하면, 표면 개질 폐액의 재사용 횟수가 증가함에 따라, 표면 개질 폐액 내 표면 개질제인 HMDS 유래 부산물인 트리메틸실라놀, 헥사메틸디실록산 및 트리메틸에톡시실란의 함량이 증가되는 것을 확인할 수 있었다.
실험예 3
실시예 1 내지 실시예 5 및 비교예 2의 실리카 에어로겔 블랭킷의 두께, 단열성 및 소수성을 평가하여 그 결과를 하기 표 4에 기재하였다.
1) 두께, 단열성 평가 방법: NETZSCH사의 HFM436 Lambda 장비를 이용하여 측정하였다
2) 소수성 평가 방법: ELTRA사의 CS-800 장비를 이용하여 측정하였다.
구분 두께(㎜) 단열성 평가(열전도도(mW/mk)) 소수성 평가 방법(실리카 에어로겔 총 중량에 대하여 탄소 함량(중량%))
실시예 1 10.6 18.9 10.9
실시예 2 10.8 19.2 10.8
실시예 3 10.9 19.4 10.8
실시예 4 11.0 19.6 11.1
실시예 5 10.7 19.3 11.2
비교예 2 10.9 19.0 9.8
표 4를 참조하면, 실시예 1 내지 실시예 5의 실리카 에어로겔 블랭킷은 최초 사용되는 용매만 이용한 비교예 2의 실리카 에어로겔 블랭킷과 비교하여 유사 수준의 두께와 단열성과 소수성을 구현하는 것을 확인할 수 있었다. 이 결과로부터 본 발명을 따르면 최종생산품인 실리카 에어로겔 블랭킷의 외관 변화 및 물성 저하 없이 제조원가를 절감할 수 있음을 확인할 수 있었다.

Claims (14)

  1. 실리카 에어로겔 블랭킷의 제조방법에 있어서,
    초임계 건조 단계 후 발생하는 초임계 폐액을 회수하는 단계;
    상기 회수된 초임계 폐액에 산을 첨가하여 중화시켜 재생하는 단계; 및
    상기 재생된 초임계 폐액을 재사용하는 단계를 포함하는 실리카 에어로겔 블랭킷의 제조방법.
  2. 청구항 1에 있어서,
    상기 회수된 초임계 폐액 100중량부에 대하여, 상기 산이 0.2 내지 1.5 중량부로 첨가되는 것인 실리카 에어로겔 블랭킷의 제조방법.
  3. 청구항 1에 있어서,
    상기 산은 아세트산 또는 염산인 것인 실리카 에어로겔 블랭킷의 제조방법.
  4. 청구항 1에 있어서,
    상기 산은 물 및 극성 유기용매를 포함하는 산성 용액 상태로 첨가되는 것인 실리카 에어로겔 블랭킷의 제조방법.
  5. 청구항 1에 있어서,
    상기 재생된 초임계 폐액의 pH는 2 이상 7.5 미만인 실리카 에어로겔 블랭킷의 제조방법.
  6. 청구항 1에 있어서,
    상기 재생된 초임계 폐액을 실리카졸 제조 단계에서 재사용하는 것인 실리카 에어로겔 블랭킷의 제조방법.
  7. 청구항 6에 있어서,
    상기 재생된 초임계 폐액을 실리카졸 제조 단계에서 사용하는 전체 극성 유기용매에 대하여 80중량% 미만으로 재사용하는 것인 실리카 에어로겔 블랭킷의 제조방법.
  8. 청구항 1에 있어서,
    상기 제조방법은 숙성 폐액 및 표면 개질 폐액으로 이루어진 군에서 선택되는 1종 이상을 재사용하는 단계를 더 포함하는 것인 실리카 에어로겔 블랭킷의 제조방법.
  9. 청구항 8에 있어서,
    상기 숙성 폐액은 숙성 단계에서 재사용하는 것인 실리카 에어로겔 블랭킷의 제조방법.
  10. 청구항 8에 있어서,
    상기 표면 개질 폐액은 표면 개질 단계에서 재사용하는 것인 실리카 에어로겔 블랭킷의 제조방법.
  11. 청구항 1에 있어서,
    상기 회수된 초임계 폐액은 숙성 단계 및 표면 개질 단계로 이루어지는 군에서 선택되는 1 이상의 단계에서 재사용하는 것인 실리카 에어로겔 블랭킷의 제조방법.
  12. 청구항 1 내지 청구항 11 중 어느 한 항에 따른 실리카 에어로겔 블랭킷의 제조방법으로 제조된 실리카 에어로겔 블랭킷.
  13. 청구항 12에 있어서,
    상기 실리카 에어로겔 블랭킷의 열전도도는 16 내지 21㎽/mK인 것인 실리카 에어로겔 블랭킷.
  14. 청구항 12에 있어서,
    상기 실리카 에어로겔 블랭킷의 탄소 함량은 실리카 에어로겔 총 중량에 대하여, 8 내지 12 중량%인 것인 실리카 에어로겔 블랭킷.
PCT/KR2018/003389 2017-05-12 2018-03-22 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷 WO2018208005A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18798320.0A EP3453676B1 (en) 2017-05-12 2018-03-22 Production method for silica aerogel blanket
US16/304,637 US11142463B2 (en) 2017-05-12 2018-03-22 Method for producing silica aerogel blanket and silica aerogel blanket produced thereby
CN201880002449.8A CN109415214B (zh) 2017-05-12 2018-03-22 二氧化硅气凝胶毡的制备方法和由此制备的二氧化硅气凝胶毡
JP2019535744A JP6757855B2 (ja) 2017-05-12 2018-03-22 シリカエアロゲルブランケットの製造方法、及びこれにより製造されたシリカエアロゲルブランケット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0059587 2017-05-12
KR1020170059587A KR102148388B1 (ko) 2017-05-12 2017-05-12 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷

Publications (1)

Publication Number Publication Date
WO2018208005A1 true WO2018208005A1 (ko) 2018-11-15

Family

ID=64105281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003389 WO2018208005A1 (ko) 2017-05-12 2018-03-22 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷

Country Status (6)

Country Link
US (1) US11142463B2 (ko)
EP (1) EP3453676B1 (ko)
JP (1) JP6757855B2 (ko)
KR (1) KR102148388B1 (ko)
CN (1) CN109415214B (ko)
WO (1) WO2018208005A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292347A (zh) * 2018-12-20 2021-01-29 株式会社Lg化学 二氧化硅湿凝胶毡的超临界干燥方法
JP2022542868A (ja) * 2019-09-03 2022-10-07 エルジー・ケム・リミテッド エアロゲルブランケットの製造方法
CN115709998A (zh) * 2022-11-14 2023-02-24 国能龙源环保有限公司 一种焙烧废弃风电叶片制备白炭黑的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183537B1 (ko) * 2017-11-17 2020-11-26 주식회사 엘지화학 초임계 폐액을 재사용한 실리카 에어로겔 블랭킷 제조방법
KR102559049B1 (ko) * 2018-12-20 2023-07-25 주식회사 엘지화학 실리카 에어로겔 블랭킷의 제조방법
CN113396134B (zh) * 2019-09-30 2022-11-11 株式会社Lg化学 气凝胶毡
CN115259884A (zh) * 2022-06-21 2022-11-01 中化学华陆新材料有限公司 一种无污染快速制备高温碳气凝胶毡的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013821A (en) * 1998-06-25 2000-01-11 Abbott Laboratories Removal of silylated compounds from solvent and gas waste streams
KR100848856B1 (ko) * 2007-03-27 2008-07-29 주식회사 넵 영구적 소수성을 갖는 에어로겔의 제조 방법 및 이로부터제조된 영구적 소수성을 갖는 에어로겔
JP2011190548A (ja) * 2010-03-12 2011-09-29 Asahi Kagaku Kk 置換洗浄容器およびこの置換洗浄容器を使用した置換洗浄装置
KR101434273B1 (ko) * 2007-03-15 2014-08-27 알이엠텍 주식회사 표면개질된 실리카겔의 제조 방법
KR20160122634A (ko) * 2015-04-14 2016-10-24 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1396125A (en) * 1972-06-22 1975-06-04 Kanegafuchi Kakaku Kogyo Kk Finished paper for casings and process of preparing the same
US4717708A (en) * 1983-12-27 1988-01-05 Stauffer Chemical Company Inorganic oxide aerogels and their preparation
FR2894580B1 (fr) * 2005-12-09 2014-04-11 Inst Francais Du Petrole Materiau hybride organique-inorganique mesostructure
KR101082982B1 (ko) 2011-03-23 2011-11-11 주식회사 지오스 실리카 에어로겔 분말 제조시스템
KR101400721B1 (ko) 2012-10-22 2014-05-29 지오스 에어로겔 리미티드 실리카 에어로겔 분말 제조시스템
CN103396081B (zh) * 2013-07-30 2015-09-02 湖北三江航天红阳机电有限公司 一种疏水型SiO2纳米气凝胶隔热材料的制备方法
US9862614B2 (en) 2014-02-06 2018-01-09 Lg Chem, Ltd. Preparation method of hydrophobic silica aerogel
US10160655B2 (en) * 2014-05-15 2018-12-25 Tahoe Technologies, Ltd. Apparatus and method for manufacturing and packaging of high performance thermal insulator aerogels
CN105819823B (zh) * 2015-01-05 2019-01-01 航天海鹰(镇江)特种材料有限公司 一种二氧化硅气凝胶与玻璃纤维毡复合材料的制备方法
KR101789371B1 (ko) 2015-02-13 2017-10-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
WO2016167494A1 (ko) 2015-04-14 2016-10-20 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013821A (en) * 1998-06-25 2000-01-11 Abbott Laboratories Removal of silylated compounds from solvent and gas waste streams
KR101434273B1 (ko) * 2007-03-15 2014-08-27 알이엠텍 주식회사 표면개질된 실리카겔의 제조 방법
KR100848856B1 (ko) * 2007-03-27 2008-07-29 주식회사 넵 영구적 소수성을 갖는 에어로겔의 제조 방법 및 이로부터제조된 영구적 소수성을 갖는 에어로겔
JP2011190548A (ja) * 2010-03-12 2011-09-29 Asahi Kagaku Kk 置換洗浄容器およびこの置換洗浄容器を使用した置換洗浄装置
KR20160122634A (ko) * 2015-04-14 2016-10-24 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292347A (zh) * 2018-12-20 2021-01-29 株式会社Lg化学 二氧化硅湿凝胶毡的超临界干燥方法
JP2022542868A (ja) * 2019-09-03 2022-10-07 エルジー・ケム・リミテッド エアロゲルブランケットの製造方法
JP7320664B2 (ja) 2019-09-03 2023-08-03 エルジー・ケム・リミテッド エアロゲルブランケットの製造方法
CN115709998A (zh) * 2022-11-14 2023-02-24 国能龙源环保有限公司 一种焙烧废弃风电叶片制备白炭黑的方法
CN115709998B (zh) * 2022-11-14 2023-03-31 国能龙源环保有限公司 一种焙烧废弃风电叶片制备白炭黑的方法

Also Published As

Publication number Publication date
CN109415214A (zh) 2019-03-01
JP6757855B2 (ja) 2020-09-23
US20190276322A1 (en) 2019-09-12
JP2019529326A (ja) 2019-10-17
CN109415214B (zh) 2022-03-18
US11142463B2 (en) 2021-10-12
EP3453676B1 (en) 2020-05-27
EP3453676A4 (en) 2019-03-27
EP3453676A1 (en) 2019-03-13
KR102148388B1 (ko) 2020-08-26
KR20180124663A (ko) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2018208005A1 (ko) 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
WO2017078294A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2015119430A1 (ko) 소수성 실리카 에어로겔의 제조방법
WO2015119431A1 (ko) 소수성 실리카 에어로겔의 제조방법
WO2017090912A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2018056626A1 (ko) 초고온용 실리카 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2021045483A1 (ko) 에어로겔 블랭킷 제조방법
WO2019039841A1 (ko) 실리카 에어로겔 블랑켓 제조방법 및 이의 제조장치
WO2020111765A1 (ko) 전가수분해된 폴리실리케이트의 합성방법
WO2018070752A1 (ko) 초고온용 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2021045528A1 (ko) 에어로겔 블랭킷 제조방법
WO2021054644A1 (ko) 에어로겔 블랑켓 및 이의 제조방법
US6558755B2 (en) Plasma curing process for porous silica thin film
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
WO2016129874A1 (ko) 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
WO2017090911A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
EP1265813A2 (en) Plasma processing for porous silica thin film
WO2019107706A1 (ko) 에어로겔을 포함한 복합 단열 시트
WO2019050345A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2020122683A1 (ko) 에어로겔 블랭킷의 제조방법
WO2019098504A1 (ko) 초임계 폐액을 재사용한 실리카 에어로겔 블랭킷 제조방법
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2021029624A1 (ko) 습윤겔 블랭킷의 건조방법 및 이를 이용한 에어로겔 블랭킷의 제조방법
WO2021045533A1 (ko) 에어로겔 블랭킷
WO2019050347A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018798320

Country of ref document: EP

Effective date: 20181203

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE