WO2017078294A1 - 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔 - Google Patents

소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔 Download PDF

Info

Publication number
WO2017078294A1
WO2017078294A1 PCT/KR2016/011700 KR2016011700W WO2017078294A1 WO 2017078294 A1 WO2017078294 A1 WO 2017078294A1 KR 2016011700 W KR2016011700 W KR 2016011700W WO 2017078294 A1 WO2017078294 A1 WO 2017078294A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
silica composite
airgel
hydrophobic metal
hydrophobic
Prior art date
Application number
PCT/KR2016/011700
Other languages
English (en)
French (fr)
Inventor
전현우
김종훈
이제균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680004817.3A priority Critical patent/CN107108239B/zh
Priority to US15/537,188 priority patent/US10399857B2/en
Priority to EP16862311.4A priority patent/EP3219670B1/en
Publication of WO2017078294A1 publication Critical patent/WO2017078294A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to a method for preparing a hydrophobic metal oxide-silica composite airgel having a large specific surface area and a low tap density, and a hydrophobic metal oxide-silica composite airgel prepared therefrom.
  • Aerogel is an ultra-porous, high specific surface area ( ⁇ 500 m 2 / g) material with a porosity of about 90 to 99.9% and a pore size in the range of 1 to 100 nm, and is characterized by excellent ultralight / ultra insulation / ultra low dielectric properties.
  • ⁇ 500 m 2 / g high specific surface area
  • pore size in the range of 1 to 100 nm
  • the biggest advantage of the airgel is super-insulation, which exhibits a thermal conductivity of 0.300 W / m ⁇ K or lower, which is lower than that of conventional thermal insulation materials such as styrofoam.
  • aerogels are prepared by preparing wet gels from silica precursors such as water glass and TEOS, and removing liquid components inside the wet gels without destroying microstructures.
  • silica airgel forms can be divided into three types: powder, granule, and monolith, and are generally prepared in the form of powder.
  • the present invention can be applied not only to industrial applications such as insulation panels of LNG ships, industrial insulation materials and space suits, transportation and vehicles, and power generation insulation materials, but also to household goods such as jackets and sneakers.
  • the use of silica airgel in the fire door as well as the roof or floor in a house such as an apartment has a great effect on fire prevention.
  • silica airgel powder is scattered due to high porosity, very low tap density, and small particle size, making it difficult to handle, and it is also difficult to fill.
  • the monolith has a high transparency to the visible light region, but has a disadvantage in that the size that can be manufactured is limited, difficult to form in various forms and easily broken.
  • silica airgel granules having a size of 0.5 mm or more to improve handling and shape correspondence.
  • a method of preparing a reaction solution obtained by hydrolyzing alkoxy silane as a filler, followed by gelation by polycondensation reaction with a catalyst, hydrophobization treatment with a hydrophobic agent, and supercritical drying to obtain hydrophobic silica airgel granules and a method of producing silica airgel granules by supplying airgel particles impregnated with additives, additives, and binders to a molding apparatus and compressing the same.
  • silica airgel deteriorates the gel structural properties and physical properties when water is absorbed, a method for permanently preventing the absorption of moisture in the air is required for easy use in the industry. Accordingly, methods for producing silica airgel having permanent hydrophobicity by hydrophobizing the surface of silica airgel have been proposed, and recently, based on the method for preparing silica airgel having hydrophobicity, hydrophobic metal oxide-silica composite airgel has been proposed. Is being manufactured. A specific example is as follows.
  • a method of preparing a hydrophobic metal oxide-silica composite aerogel is hydrolyzed by hydrolysis of TEOS (Tetra ethyl ortho silicate) or water glass using an acid catalyst, and a basic catalyst is added thereto to condense the hydrophilic wet.
  • TEOS Tetra ethyl ortho silicate
  • Preparing a gel (first step); Aging the wet gel (second step); A solvent replacement step of replacing the water in the wet gel with an organic solvent by placing the aged wet gel in an organic solvent (third step); Preparing a hydrophobic wet gel by adding a surface modifier to the solvent-substituted wet gel for a long time to perform a hydrolysis reaction (fourth step); Performing an additional solvent replacement by adding an organic solvent to a hydrophobic wet gel (step 5); And washing and drying the hydrophobic wet gel to prepare a hydrophobic metal oxide-silica composite airgel (sixth step) (see FIG. 1).
  • the present invention has been made to solve the above problems of the prior art, and compared to the prior art, the hydrophobic metal oxide has a relatively simple manufacturing process and a short manufacturing time, which is excellent in economic efficiency and has a large specific surface area and low tap density. It is an object of the present invention to provide a method for producing a hydrophobic metal oxide-silica composite airgel capable of producing a silica composite airgel.
  • Another object of the present invention is to provide a hydrophobic metal oxide-silica composite airgel prepared by the above method.
  • the present invention comprises the steps of preparing a metal oxide-silica composite gel by adding and mixing a metal ion solution and an acid catalyst in a water glass solution (step 1); Surface modification of the metal oxide-silica composite gel to prepare a hydrophobic metal oxide-silica composite wet gel (step 2); And drying the hydrophobic metal oxide-silica composite wet gel (step 3), and further comprising treating the metal oxide-silica composite gel with alcohol prior to the surface modification of step 2. It provides a method for producing a metal oxide-silica composite airgel of.
  • hydrophobic metal oxide-silica composite airgel prepared by the above method.
  • the method for producing a hydrophobic metal oxide-silica composite airgel according to the present invention has a simpler manufacturing process and a shorter manufacturing time compared to the prior art, which is excellent in productivity and economy, and has a specific surface area and a low tap density.
  • Metal-silica composite airgels can be prepared.
  • Figure 1 schematically shows a flow chart of a conventional method for producing a hydrophobic metal oxide-silica composite airgel in general.
  • Figure 2 schematically shows a flow chart of a method for producing a hydrophobic metal oxide-silica composite airgel according to an embodiment of the present invention.
  • Figure 3 schematically shows a flow chart of a method for producing a hydrophobic metal oxide-silica composite airgel according to another embodiment of the present invention.
  • Figure 4 compares the tap density of the hydrophobic metal oxide-silica composite airgel of Examples 1 to 5 and hydrophobic acid-cycling metal-silica composite airgel of Comparative Examples 1 to 5 according to one embodiment of the present invention
  • the result of analysis is a graph.
  • Figure 5 compares the carbon content of the hydrophobic metal oxide-silica composite airgel of Examples 1 to 5 and hydrophobic acid-cycling metal-silica composite airgel of Comparative Examples 1 to 5 according to one embodiment of the present invention
  • the result of analysis is a graph.
  • the present invention provides a method for producing a hydrophobic metal oxide-silica composite airgel having excellent physical properties in a relatively simplified process step compared to the conventional manufacturing method.
  • the hydrophobic metal oxide-silica composite airgel is prepared by preparing a hydrophilic metal oxide-silica composite wet gel (first step); Aging the wet gel (second step); First solvent replacement step (third step); Surface modification step (fourth step); Secondary solvent replacement step (stage 5); And it is produced by the manufacturing method consisting of a step of washing and drying (sixth step) (see Fig. 1).
  • the conventional manufacturing method as described above has a disadvantage in that productivity and economics are not good because the manufacturing cost is high because it requires a long time to undergo a plurality of process steps and the surface is modified. Thus, the above manufacturing method has been difficult to apply to the actual industry.
  • the present invention provides a method for producing a hydrophobic metal oxide-silica airgel having a relatively simple process step and a short process time, which is excellent in productivity and economy, as well as excellent physical properties such as specific surface area and tap density.
  • Figure 2 schematically shows a flow chart of a method for producing a hydrophobic metal oxide-silica composite airgel according to an embodiment of the present invention
  • Figure 3 is a hydrophobic metal oxide-silica composite airgel according to another embodiment of the present invention The flowchart of the manufacturing method is schematically shown.
  • the preparation method according to an embodiment of the present invention comprises the steps of preparing a metal oxide-silica composite gel by adding and mixing a metal ion solution and an acid catalyst in a water glass solution (step 1); Surface modification of the metal oxide-silica composite gel to prepare a hydrophobic metal oxide-silica composite wet gel (step 2); And drying the hydrophobic metal oxide-silica composite wet gel (step 3).
  • the manufacturing method according to an embodiment of the present invention is characterized in that it further comprises the step of treating the metal oxide-silica composite gel with alcohol before the surface modification of the step 2.
  • Step 1 is a step for preparing a metal oxide-silica composite gel by reacting a water glass solution with a metal ion solution, which may be performed by adding and mixing a metal ion solution and an acid catalyst to the water glass solution.
  • the metal ion solution and the acid catalyst may be added to the water glass solution at the same time, or may be mixed by sequentially adding the metal ion solution to the water glass solution and then adding the acid catalyst.
  • the metal ion solution and the acid catalyst may be added in a mixed state.
  • the mixing is not particularly limited, but may be performed by, for example, stirring, and the stirring may be performed at 300 rpm to 500 rpm for 3 hours or less using a magnetic bar. Specifically, the mixing may be for one hour or less.
  • the water glass solution may be a dilute solution in which distilled water is added and mixed with water glass, and the water glass is sodium silicate (Na 2 SiO 3 ), which is an alkali silicate salt obtained by melting silicon dioxide (SiO 2 ) and an alkali. Can be.
  • the sodium silicate may contain 28 wt% to 30 wt% of silicon dioxide (SiO 2 ).
  • the water glass solution may be a concentration of the water glass in the solution of 0.1 M to 2.0 M. That is, the water glass solution may contain water glass at 0.1 M to 2.0 M.
  • the structure of the airgel may not be properly formed, and even if the airgel is formed, the structure may not be able to withstand the shrinkage occurring during drying and the structure may collapse, resulting in a significant decrease in physical properties.
  • the water glass concentration is higher than 2.0 M, the density of the airgel structure is high, so that the shrinkage phenomenon occurring during drying can be tolerated, so that the problem caused by the collapse of the structure can be alleviated, but the specific surface area characteristics may be degraded. have.
  • the metal ion solution may be prepared by dissolving a metal compound in a solvent, the concentration of the metal ion in the metal ion solution may be 0.05 M to 2.0 M.
  • the metal ion solution may be a binary metal ion solution containing calcium ions (Ca 2 + ) and magnesium ions (Mg 2 + ), wherein the calcium ions (Ca 2 + ) and magnesium ions (Mg 2+ ) molar ratio can be 1: 0.3 to 3. That is, the metal ion solution may be prepared by dissolving a calcium compound and a magnesium compound in a solvent, and the calcium compound and the magnesium compound may be calcium chloride and magnesium chloride, or hydrates of calcium chloride and hydrate of magnesium chloride, respectively. .
  • the calcium compound may be calcium chloride dihydrate (CaCl 2 ⁇ 2H 2 O)
  • the magnesium compound may be magnesium chloride hexahydrate (MgCl 2 ⁇ 6H 2 O).
  • the solvent is not particularly limited as long as it can sufficiently dissolve the calcium compound and the magnesium compound, but may be, for example, distilled water.
  • the metal ion solution may be added in an amount capable of easily reacting the metal ions in the solution and the water glass in the water glass solution, specifically, the metal ion solution of the metal ions compared to the water glass contained in the water glass solution
  • the molar ratio may be added in an amount of 0.5 to 1.
  • the acid catalyst may serve to facilitate formation of the metal oxide-silica composite gel by promoting the gelation of the metal oxide-silica composite sol formed by the reaction of the water glass in the water glass solution and the metal ions in the metal ion solution. .
  • step 1 may be performed under the conditions of pH 6 to 8 so that gelation can be easily performed, the pH may be controlled by the acid catalyst.
  • the amount of the acid catalyst used is not particularly limited and may be added in an amount that can be adjusted to the pH in the above range.
  • the acid catalyst is not particularly limited, but may be, for example, at least one selected from the group consisting of hydrochloric acid, nitric acid, acetic acid, sulfuric acid, and hydrofluoric acid.
  • Step 2 is a step of preparing a hydrophobic metal oxide-silica composite wet gel by surface modification of the metal oxide-silica composite gel, and may be performed by adding and reacting a surface modifier to the metal oxide-silica composite gel.
  • the preparation method according to an embodiment of the present invention may be performed by treating the metal oxide-silica composite gel with alcohol before surface modification of the metal oxide-silica composite gel.
  • the step of treating with alcohol may be to disperse the metal oxide-silica composite gel in alcohol.
  • the alcohol may be used in an amount of 2 to 5 times the weight of the metal oxide-silica composite gel.
  • the alcohol is not particularly limited, but may be, for example, methanol, ethanol or a mixture thereof.
  • the metal oxide-silica composite may be partially removed while the sodium oxide (Na + ) present in the metal oxide-silica composite gel is treated by treating the metal oxide-silica composite gel with alcohol.
  • the water present in the gel may be substituted with alcohol, so that the water present in the pupil vaporizes in the gas phase upon drying of the hydrophobic metal oxide-silica composite wet gel prepared after the surface modification described later without a separate solvent replacement step. It can serve to prevent pores from shrinking and cracking.
  • the surface modification can be made more easily.
  • the sodium ions (Na + ) are derived from the water glass, and the water glass may be generated by the reaction of the metal ions with the metal ions and the substitution of the sodium ions (Na + ) and the metal ions in the water glass.
  • the surface modification may be performed by adding and reacting a surface modifier to the metal oxide-silica composite gel as described above.
  • the surface modification according to an embodiment of the present invention may be performed by adding and reacting a surface modifier to the metal oxide-silica composite gel.
  • the metal oxide-silica composite gel before the surface modifier is added may be treated with ethanol and dispersed in ethanol as described above.
  • the surface modification may be performed by dispersing the metal oxide-silica composite gel in a nonpolar organic solvent and adding and reacting the surface modifier.
  • the metal oxide-silica composite gel may be dispersed in ethanol after being treated with ethanol as described above, and the metal oxide-silica composite gel may be mixed with the non-polar organic solvent. It may be in the state disperse
  • the non-polar organic solvent is the hydrophobic metal oxide-silica composite wet gel pupil during the drying of step 3 described later by substituting water remaining in the cavity of the metal oxide-silica composite gel or the prepared hydrophobic metal oxide-silica composite wet gel.
  • the water present in the gas may serve to prevent shrinkage and cracking of pores that may occur while vaporizing in the gas phase. As a result, it is possible to prevent a decrease in surface area and a change in pore structure generated when the hydrophobic metal oxide-silica composite wet gel described later is dried.
  • the manufacturing method according to an embodiment of the present invention can perform an additional solvent replacement step by using a non-polar organic solvent, thereby preparing a hydrophobic metal oxide-silica composite airgel with improved specific surface area and tap density properties. can do.
  • the nonpolar organic solvent is not particularly limited, but may be a nonpolar organic solvent, and specifically, may be one or more selected from the group consisting of hexane, heptane, toluene, and xylene.
  • the surface modifier may react with the hydrophilic group (-OH) of the metal oxide-silica composite gel to surface-modify the metal oxide-silica composite gel hydrophobicly.
  • the surface modifier may be added in a molar ratio of 1.0 to 4.0 compared to the water glass in the water glass solution used initially.
  • the surface modifier may be one or more selected from the group consisting of trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), methyltrimethoxysilane and trimethylethoxysilane.
  • the surface modification is not particularly limited, but may be carried out by performing a surface modification reaction under a temperature condition of 55 °C to 65 °C, the reaction time may be within 1 hour.
  • the reaction may be carried out while stirring, in which case the stirring may be performed by stirring at 100 rpm to 300 rpm using a magnetic bar.
  • washing and solvent replacement may be simultaneously performed to omit a separate solvent replacement step, and additional solvent replacement may be performed simultaneously with surface modification as necessary. It can reduce the process steps and process time can be improved productivity and economics.
  • Step 3 is a step of drying the hydrophobic metal oxide-silica composite wet gel to prepare a hydrophobic metal oxide-silica composite aerogel.
  • the manufacturing method according to an embodiment of the present invention may further perform the step of washing before drying, and the washing removes impurities (eg, unreacted products, by-products, etc.) generated during the reaction, and has high hydrophobicity.
  • impurities eg, unreacted products, by-products, etc.
  • a metal oxide-silica composite aerogel of is not particularly limited and may be performed through a method conventional in the art.
  • the washing may be performed by adding a nonpolar organic solvent to the hydrophobic metal oxide-silica composite wet gel and stirring for 20 minutes to 1 hour.
  • the nonpolar organic solvent may be as described above.
  • the drying may be performed by separating the aqueous layer from the hydrophobic metal oxide-silica composite wet gel and removing the aqueous layer, followed by 105 ° C to 190 ° C of atmospheric drying for 1 hour to 4 hours under temperature conditions.
  • the present invention provides a hydrophobic metal oxide-silica composite airgel prepared by the above method.
  • the airgel according to an embodiment of the present invention may be a metal oxide doped with silica
  • the metal oxide may be a combination of magnesium oxide (MgO) and calcium oxide (CaO). That is, the airgel may include magnesium oxide (MgO), calcium oxide (CaO), and silica (SiO 2 ).
  • the doping refers to the addition of a limited amount of external material to the pure material, for example, may indicate that the metal oxide is bonded in the crystal lattice of silica.
  • the airgel according to an embodiment of the present invention is characterized in that the specific surface area is 350 m 2 / g to 700 m 2 / g.
  • the hydrophobic metal oxide-silica composite airgel may have a tap density of 0.051 g / ml to 0.102 g / ml, and may have a carbon content of 3.77 wt% to 9.23 wt%.
  • Hydrophobic metal oxide-silica composite airgel was prepared through the steps as shown in FIG. 2.
  • the metal ion solution was added in an amount such that 0.5 mol of metal ions in the metal ion solution compared to water glass in the water glass solution, and the hydrochloric acid was added until the pH was 7.
  • the prepared composite gel was treated with ethanol to remove sodium ions and primary solvent replacement was performed.
  • a metal oxide-silica composite wet gel was prepared.
  • the hydrophobic metal oxide-silica composite wet gel prepared above was dried under normal pressure in an oven at 105 ° C. for 1 hour to prepare a hydrophobic metal oxide-silica composite airgel.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 1, except that trimethylchlorosilane was used in an amount of 2.4 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite aerogels were prepared in the same manner as in Example 1, except that trimethylchlorosilane was used in an amount of 2.0 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 1, except that trimethylchlorosilane was used in an amount of 1.6 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 1, except that trimethylchlorosilane was used in an amount of 1.2 mol relative to water glass.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 1 except that the metal ion solution was added in an amount of 1.0 mol of metal ions to water glass.
  • Hydrophobic metal oxide-silica composite aerogels were prepared in the same manner as in Example 6, except that trimethylchlorosilane was used in an amount of 2.4 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite aerogels were prepared in the same manner as in Example 6, except that trimethylchlorosilane was used in an amount of 2.0 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite aerogels were prepared in the same manner as in Example 6, except that trimethylchlorosilane was used in an amount of 1.6 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 6, except that trimethylchlorosilane was used in an amount of 1.2 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite aerogels were prepared in the same manner as in Example 1, except that only the surface modification was performed after the first solvent replacement by ethanol without performing secondary solvent replacement using hexane.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 2, except that surface modification was performed after the first solvent replacement by ethanol treatment without performing secondary solvent replacement using hexane.
  • Hydrophobic metal oxide-silica composite aerogels were prepared through the steps as shown in FIG. 1.
  • the metal ion solution was added in an amount such that 0.5 mol of metal ions in the metal ion solution compared to water glass in the water glass solution, and the hydrochloric acid was added until the pH is 7.
  • the prepared wet gel was washed with distilled water to remove sodium ions. After aging at 60 ° C. for 1 hour, 200 ml of ethanol was added to replace the primary solvent, and hexane was added to the secondary solvent to improve surface modification reactivity.
  • trimethylchlorosilane was added to the secondary solvent-substituted wet gel in an amount of 4.0 mol relative to the water glass in the water glass solution, and then reacted at 55 ° C. for 1 hour, followed by further solvent replacement and surface modification by adding 100 ml of hexane.
  • the reaction was induced to prepare hydrophobic metal oxide-silica composite wet gel.
  • the hydrophobic metal oxide-silica composite wet gel prepared above was dried under normal pressure in an oven at 105 ° C. for 1 hour to prepare a hydrophobic metal oxide-silica composite airgel.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Comparative Example 1 except that trimethylchlorosilane was used in an amount of 2.4 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Comparative Example 1 except that trimethylchlorosilane was used in an amount of 2.0 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Comparative Example 1, except that trimethylchlorosilane was used in an amount of 1.6 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Comparative Example 1, except that trimethylchlorosilane was used in an amount of 1.2 mol relative to water glass.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Comparative Example 1 except that the metal ion solution was added in an amount of 1.0 mol of metal ion to water glass.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Comparative Example 6 except that trimethylchlorosilane was used in an amount of 2.4 mol relative to water glass.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Comparative Example 6 except that trimethylchlorosilane was used in an amount of 2.0 mol relative to water glass.
  • Hydrophobic metal oxide-silica composite aerogels were prepared in the same manner as in Comparative Example 6 except that trimethylchlorosilane was used in an amount of 1.6 mol relative to water glass.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Comparative Example 6 except that trimethylchlorosilane was used in an amount of 1.2 mol relative to water glass.
  • a hydrophobic metal oxide-silica composite aerogel was prepared in the same manner as in Example 1 except that the metal ion solution was added in an amount of 0.4 mol of the metal ion in the water glass solution to the water metal solution.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 2 except that the metal ion solution was added in an amount of 0.4 mol relative to the water ion in the water glass solution.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 3, except that the metal ion solution was added in an amount of 0.4 mol of the metal ion in the water glass solution compared to the water glass solution.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 4 except that the metal ion solution was added in an amount of 0.4 mol of metal ions in the solution of the water glass to the water glass solution.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 5 except that the metal ion solution was added in an amount of 0.4 mol of the metal ion in the water glass solution to the water metal solution.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 6 except that the metal ion solution was added in an amount of 0.4 mol of the metal ion in the water glass solution to the metal glass solution.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 7, except that the metal ion solution was added in an amount of 0.4 mol of the metal ion in the water glass solution compared to the water glass solution.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 8 except that the metal ion solution was added in an amount of 0.4 mol of the metal ion in the water glass solution to the metal glass solution.
  • a hydrophobic metal oxide-silica composite aerogel was prepared in the same manner as in Example 9 except that the metal ion solution was added in an amount of 0.4 mol of the metal ion in the water glass solution to the water glass solution.
  • a hydrophobic metal oxide-silica composite airgel was prepared in the same manner as in Example 10, except that the metal ion solution was added in an amount of 0.4 mol of metal ions in the solution of the water glass to the water glass solution.
  • Tap density was measured using a tap density meter (TAP-2S, Logan Instruments, Co.).
  • the specific surface area was analyzed by the adsorption / desorption amount of nitrogen according to partial pressure (0.11 ⁇ p / p 0 ⁇ 1) using an ASAP 2010 device (Micrometrics).
  • each aerogel was put into a cylinder and pretreated at 180 ° C. for 8 hours, and then measured using a specific surface area measuring device.
  • Carbon content was measured using a carbon analyzer (Carbon-Sulfur Analyzer CS-2000. Eltra).
  • the hydrophobic metal oxide-silica composite airgel of Examples 1 to 12 prepared according to an embodiment of the present invention is a hydrophobic metal oxide-silica composite of Comparative Examples 1 to 20 It was confirmed that the tap density was low and the carbon content was increased while showing the improved specific surface area characteristics as compared with the airgel.
  • hydrophobic metal oxide-silica composite airgels of Comparative Examples 1 to 10 prepared by the conventional method of preparing a conventional hydrophobic silica airgel are tabs compared to the hydrophobic metal oxide-silica composite airgels of Examples 1 to 10. It was confirmed that the density was relatively high, the specific surface area was small, and the carbon content was significantly reduced.
  • the hydrophobic metal oxide-silica composite airgel of Example 1 and Comparative Example 1 prepared using the same material and the same amount was compared to Comparative Example 1 of the hydrophobic metal oxide-silica composite airgel of Example 1 Compared to the hydrophobic metal oxide-silica composite airgel of, the tap density was reduced to about 77%, the specific surface area was increased by about 18%, and the carbon content was increased by about 12%.
  • Comparative Example 11 to Comparative Example 15 prepared by using a metal ion solution in an amount such that the metal ion concentration of the water glass is less than the range suggested in the present invention
  • hydrophobic metal oxide-silica composite aerogels had increased tap density and decreased specific surface area. It was confirmed that the carbon content was significantly reduced.
  • the tap density of the hydrophobic metal oxide-silica composite airgel of Example 1 decreased to 33%
  • the specific surface area increased by 43%
  • the carbon content This markedly increased to 143%.
  • Comparative Example 16 to Comparative Example 20 prepared by using a metal ion solution in an amount exceeding the range proposed in the present invention compared to the metal ion solution of water glass Compared to the hydrophobic metal oxide-silica composite aerogels of Examples 6 to 10, each prepared using the same amount of surface modifier, hydrophobic metal oxide-silica composite aerogels had increased tap density and decreased specific surface area. It was confirmed that the carbon content was significantly reduced.
  • the tap density of the hydrophobic metal oxide-silica composite airgel of Example 1 was reduced to 34% level, the specific surface area was increased about 2 times, and carbon was The content increased significantly to 137%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 비표면적이 크고 낮은 탭 밀도를 갖는 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이를 통하여 제조된 소수성의 산화금속-실리카 복합 에어로겔에 관한 것이다. 이에 제조방법은 종래 기술 대비 상대적으로 제조공정이 단순하고 제조시간이 짧아 생산성 및 경제성이 우수할 뿐 아니라 비표면적이 크고 낮은 탭 밀도를 갖는 소수성의 산화금속-실리카 복합 에어로겔을 제조할 수 있다.

Description

소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
[관련출원과의 상호인용]
본 출원은 2015.11.03자 한국 특허 출원 제10-2015-0153869호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 비표면적이 크고 낮은 탭 밀도를 갖는 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이를 통하여 제조된 소수성의 산화금속-실리카 복합 에어로겔에 관한 것이다.
에어로겔(aerogel)은 90~99.9% 정도의 기공율과 1~100 nm 범위의 기공크기를 갖는 초다공성의 고비표면적(≥500 m2/g) 물질로서, 뛰어난 초경량/초단열/초저유전 등의 특성을 갖는 재료이기 때문에 에어로겔 소재 개발연구는 물론 투명단열재 및 환경 친화적 고온형 단열재, 고집적 소자용 극저유전 박막, 촉매 및 촉매 담체, 슈퍼 커패시터용 전극, 해수 담수화용 전극 재료로서의 응용연구도 활발히 진행되고 있다.
에어로겔의 가장 큰 장점은 종래 스티로폼 등의 유기 단열재보다 낮은 0.300 W/m·K 이하의 열전도율을 보이는 슈퍼단열성(super-insulation)이다. 또한, 유기단열재의 치명적인 약점인 화재 취약성과 화재시 유해가스 발생을 해결할 수도 있다.
일반적으로 에어로겔은 물유리, TEOS 등의 실리카 전구체로부터 습윤겔을 제조하고, 습윤겔 내부의 액체성분을 미세구조 파괴 없이 제거하여 제조된다. 대표적인 실리카 에어로겔의 형태는 분말, 과립, 모노리스의 세 가지로 나눌 수 있으며, 일반적으로는 분말의 형태로 제조된다.
분말의 경우 섬유와 복합화하여 에어로겔 블랑켓(blanket) 또는 에어로겔 시트(sheet) 등과 같은 형태로의 제품화가 가능하며, 블랑켓 또는 시트의 경우 유연성을 가지고 있어 임의의 크기나 형태로 굽히거나, 접거나 자를 수 있다. 이에, LNG 선의 단열패널, 공업용 단열재와 우주복, 교통 및 차량, 전력생산용 단열재 등과 같은 공업용으로의 응용뿐 아니라 재킷이나 운동화류 등과 같은 생활용품에도 적용이 가능하다. 또한, 아파트와 같은 주택에서 지붕이나 바닥뿐만 아니라 방화문에서 실리카 에어로겔을 사용할 경우 화재 예방에 큰 효과가 있다.
그러나 실리카 에어로겔 분말은 높은 다공성과 매우 낮은 탭 밀도 및 작은 입자 크기로 인하여 비산되어 취급이 어려우며, 충진 또한 용이하지 않은 단점을 가지고 있다.
또한, 모노리스의 경우 가시광선 영역에 대하여 높은 투명도를 갖고 있으나, 제조할 수 있는 크기가 제한적이며 다양한 형태로 성형하기 어렵고 쉽게 깨지는 단점이 있다.
상기와 같은 실리카 에어로겔 분말과 모노리스 형태의 단점을 해결하기 위하여 크기가 0.5 mm 이상 되는 실리카 에어로겔 과립을 제조하여 취급 용이성과 형상 대응성을 높이고자 하는 시도가 행하여져 왔다. 일례로, 알콕시 실란을 가수분해한 반응용액을 충전체로 제조한 후 촉매와 함께 중축합반응하여 겔화하고, 소수화제와 반응시켜 소수화 처리한 후 초임계 건조하여 소수성 실리카 에어로겔 과립을 얻는 방법; 부가제, 첨가제 및 결합제를 부과한 에어로겔 입자를 성형장치에 공급하고 압축하여 실리카 에어로겔 과립을 제조하는 방법 등이 있다.
그러나, 상기와 같은 방법들은 부수적인 과립화 장치 및 결합제와 같은 첨가제를 사용하므로 기술적으로 복잡한 공정과 긴 공정시간이 요구되는 단점이 있을 뿐 아니라, 상기와 같은 방법으로 실리카 에어로겔을 대량생산 할 경우에는 복잡한 처리 절차와 많은 투자비가 소요되며, 결과적으로 많은 시간과 고가의 화학물질이 요구되고, 그로 인해 생산단가가 상승하는 문제가 있을 뿐 아니라 최종적으로 얻을 수 있는 실리카 에어로겔의 입자 크기가 균일하지 않거나 너무 크다는 단점이 있다.
또한, 실리카 에어로겔은 수분을 흡수하면 겔 구조 특성 및 물성이 저하되기 때문에 산업에서 용이하게 사용하기 위해서는 대기 중의 수분을 흡수하는 것을 영구적으로 방지할 수 있는 방안이 요구된다. 이에, 실리카 에어로겔의 표면을 소수화 처리하여 영구적인 소수성을 갖는 실리카 에어로겔을 제조하는 방법들이 제안되었으며, 근래에는 상기의 소수성을 갖는 실리카 에어로겔을 제조하는 방법을 기반으로하여 소수성 산화금속-실리카 복합 에어로겔이 제조되고 있다. 구체적인 일례는 다음과 같다.
일반적으로 소수성을 갖는 산화금속-실리카 복합 에어로겔의 제조방법은 TEOS(Tetra ethyl ortho silicate) 또는 물유리를 산촉매를 이용하여 가수분해시켜 실리카 졸을 제조하고 여기에 염기성 촉매를 첨가하여 축합반응시켜 친수성인 습윤겔을 제조하는 단계(제1 단계); 상기 습윤겔을 숙성시키는 단계(제2 단계); 상기 숙성된 습윤겔을 유기용매에 넣어 습윤겔 내 존재하는 물을 유기용매로 치환시키는 용매치환 단계(제3 단계); 상기 용매치환된 습윤겔에 표면개질제를 첨가하여 장시간 동한 개질반응 시켜 소수성의 습윤겔을 제조하는 단계(제4 단계); 소수성의 습윤겔에 유기용매를 넣어 추가의 용매치환을 수행하는 단계(제5 단계); 및 소수성의 습윤겔을 세척하고 건조하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하는 단계(제6 단계)를 통해 수행되고 있다(도 1 참고).
그러나, 상기의 방법을 이용하여 소수성 산화금속-실리카 복합 에어로겔을 제조할 경우 많은 양의 유기용매와 표면개질제가 필요하고 개질반응에 많은 시간이 소비되는 등 제조단가가 높고 생산성 및 공정의 연속성이 좋지 못한 단점이 있다. 이에 상업화에 많은 어려움이 있다.
따라서, 제조공정이 단순하고 제조시간이 짧으면서 물성이 우수한 소수성의 산화금속-실리카 복합 에어로겔을 제조할 수 있는 방법의 개발이 필요한 실정이다.
본 발명은 상기의 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 종래 기술 대비 상대적으로 제조공정이 단순하고 제조시간이 짧아 경제성이 우수할 뿐 아니라 비표면적이 크고 낮은 탭 밀도를 갖는 소수성의 산화금속-실리카 복합 에어로겔을 제조할 수 있는 소수성의 산화금속-실리카 복합 에어로겔의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기의 제조방법으로 제조된 소수성의 산화금속-실리카 복합 에어로겔을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 물유리 용액에 금속이온 용액 및 산촉매를 첨가하고 혼합하여 산화금속-실리카 복합 겔을 제조하는 단계(단계 1); 상기 산화금속-실리카 복합 겔을 표면개질하여 소수성의 산화금속-실리카 복합 습윤겔을 제조하는 단계(단계 2); 및 상기 소수성의 산화금속-실리카 복합 습윤겔을 건조하는 단계(단계 3)를 포함하고, 상기 단계 2의 표면개질 전 상기 산화금속-실리카 복합 겔을 알코올로 처리하는 단계를 더 포함하는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법을 제공한다.
또한, 상기 제조방법에 의하여 제조된 소수성의 산화금속-실리카 복합 에어로겔을 제공한다.
본 발명에 따른 소수성의 산화금속-실리카 복합 에어로겔의 제조방법은 종래 기술 대비 상대적으로 제조공정이 단순하고 제조시간이 짧아 생산성 및 경제성이 우수할 뿐 아니라 비표면적이 크고 낮은 탭 밀도를 갖는 소수성의 산화금속-실리카 복합 에어로겔을 제조할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 종래의 일반적인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법의 순서도를 개략적으로 나타낸 것이다.
도 2는, 본 발명의 일 실시예에 따른 소수성의 산화금속-실리카 복합 에어로겔의 제조방법의 순서도를 개략적으로 나타낸 것이다.
도 3은, 본 발명의 다른 일 실시예에 따른 소수성의 산화금속-실리카 복합 에어로겔의 제조방법의 순서도를 개략적으로 나타낸 것이다.
도 4는, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 5의 소수성의 산화금속-실리카 복합 에어로겔 및 비교예 1 내지 비교예 5의 소수성의 산환금속-실리카 복합 에어로겔의 탭 밀도를 비교분석한 결과 그래프이다.
도 5는, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 5의 소수성의 산화금속-실리카 복합 에어로겔 및 비교예 1 내지 비교예 5의 소수성의 산환금속-실리카 복합 에어로겔의 탄소 함량을 비교분석한 결과 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 종래의 제조방법 대비 상대적으로 단순화된 공정단계로 우수한 물성을 갖는 소수성의 산화금속-실리카 복합 에어로겔의 제조방법을 제공한다.
일반적으로 소수성의 산화금속-실리카 복합 에어로겔은 친수성의 산화금속-실리카 복합 습윤겔을 제조하는 단계(제1 단계); 상기 습윤겔을 숙성시키는 단계(제2 단계); 1차 용매치환 단계(제3 단계); 표면개질 단계(제4 단계); 2차 용매치환 단계(제5 단계); 및 세척 및 건조하는 단계(제6 단계)로 이루어진 제조방법에 의하여 제조되고 있다(도 1 참고). 상기와 같은 종래의 일반적인 제조방법은 다수의 공정단계를 거쳐야 하고 표면개질을 위하여 장시간을 필요로하여 제조단가가 높아 생산성 및 경제성이 좋지 못한 단점이 있다. 이에, 상기의 제조방법은 실제 산업에 적용하는데 어려움을 겪고 있다.
이에, 본 발명은 공정단계가 비교적 단순하고 공정시간이 짧아 생산성 및 경제성이 우수할 뿐 아니라 비표면적 및 탭 밀도와 같은 물성이 우수한 소수성의 산화금속-실리카 에어로겔의 제조방법을 제공한다.
이하, 도 2 및 도 3을 참고하여 본 발명의 일 실시예에 따른 소수성의 산화금속-실리카 복합 에어로겔의 제조방법을 구체적으로 설명한다.
도 2는 본 발명의 일 실시예에 따른 소수성의 산화금속-실리카 복합 에어로겔의 제조방법의 순서도를 개략적으로 나타낸 것이고, 도 3은 본 발명의 다른 일 실시예에 따른 소수성의 산화금속-실리카 복합 에어로겔의 제조방법의 순서도를 개략적으로 나타낸 것이다.
본 발명의 일 실시예에 따른 상기 제조방법은 물유리 용액에 금속이온 용액 및 산촉매를 첨가하고 혼합하여 산화금속-실리카 복합 겔을 제조하는 단계(단계 1); 상기 산화금속-실리카 복합 겔을 표면개질하여 소수성의 산화금속-실리카 복합 습윤겔을 제조하는 단계(단계 2); 및 상기 소수성의 산화금속-실리카 복합 습윤겔을 건조하는 단계(단계 3)를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에 따른 상기 제조방법은 상기 단계 2의 표면개질 전 상기 산화금속-실리카 복합 겔을 알코올로 처리하는 단계를 더 포함하는 것을 특징으로 한다.
상기 단계 1은 물유리 용액과 금속이온 용액을 반응시켜 산화금속-실리카 복합 겔을 제조하기 위한 단계로, 물유리 용액에 금속이온 용액 및 산촉매를 첨가하고 혼합하여 수행할 수 있다.
이때, 상기 금속이온 용액 및 산촉매는 동시에 물유리 용액에 첨가하거나, 순차적으로 물유리 용액에 금속이온 용액을 첨가하여 혼합한 후 산촉매를 첨가하여 혼합하는 것일 수 있다. 또한, 상기 금속이온 용액과 산촉매를 혼합한 혼합물 상태로 첨가하는 것일 수 있다.
상기 혼합은 특별히 제한되는 것은 아니나, 예컨대 교반을 통하여 수행할 수 있으며, 상기 교반은 마그네틱 바를 이용하여 300 rpm 내지 500 rpm으로 3시간 이내의 시간 동안 수행하는 것일 수 있다. 구체적으로는, 1시간 이내의 시간 동안 혼합하는 것일 수 있다.
상기 물유리 용액은 물유리에 증류수를 첨가하고 혼합한 희석 용액인 것일 수 있으며, 상기 물유리는 이산화규소(SiO2)와 알칼리를 융해해서 얻은 규산알칼리염인 소듐 실리케이트(Sodium silicate, Na2SiO3)일 수 있다. 이때, 상기 소듐 실리케이트는 28 중량% 내지 30 중량%의 이산화규소(SiO2)를 함유하는 것일 수 있다. 상기 물유리 용액은 용액 내 물유리의 농도가 0.1 M 내지 2.0 M인 것일 수 있다. 즉, 상기 물유리 용액은 0.1 M 내지 2.0 M로 물유리를 함유하는 것일 수 있다. 만약, 상기 물유리 농도가 0.1 M 미만인 경우에는 에어로겔의 구조가 제대로 형성되지 않을 수 있으며, 에어로겔이 형성되었다 하더라도 건조 시 발생하는 수축현상을 견디지 못하고 구조가 붕괴되어 물성이 현저히 저하되는 문제가 발생할 수 있다. 또한, 상기 물유리 농도가 2.0 M을 초과하는 경우에는 에어로겔 구조의 밀도가 높아 건조 시 발생하는 수축현상은 견딜 수 있어 구조 붕괴에 의한 문제는 완화될 수 있으나, 비표면적 특성이 저하되는 문제가 발생할 수 있다.
상기 금속이온 용액은 금속 화합물을 용매에 용해시켜 제조된 것일 수 있으며, 상기 금속이온 용액 내 금속이온의 농도가 0.05 M 내지 2.0 M인 것일 수 있다. 구체적으로, 상기 금속이온 용액은 칼슘 이온(Ca2 +)과 마그네슘 이온(Mg2 +)을 포함하는 이성분 금속이온 용액인 것일 수 있으며, 이때 상기 칼슘 이온(Ca2 +)과 마그네슘 이온(Mg2+) 몰비는 1:0.3 내지 3일 수 있다. 즉, 상기 금속이온 용액은 칼슘 화합물 및 마그네슘 화합물을 용매에 용해시켜 제조된 것일 수 있으며, 상기 칼슘 화합물 및 마그네슘 화합물은 각각 염화칼슘 및 염화마그네슘이거나, 또는 각각 염화칼슘의 수화물 및 염화마그네슘의 수화물일 수 있다. 구체적으로는, 상기 칼슘 화합물은 염화칼슘 이수화물(CaCl2·2H2O)일 수 있고, 상기 마그네슘 화합물은 염화마그네슘 육수화물(MgCl6H2O)일수 있다. 또한, 상기 용매는 상기 칼슘 화합물과 마그네슘 화합물을 충분히 용해시킬 수 있는 것이면 특별히 제한되는 것은 아니나, 예컨대 증류수일 수 있다.
또한, 상기 금속이온 용액은 용액 내 금속이온과 물유리 용액 내 물유리가 용이하게 반응할 수 있는 양으로 첨가하는 것일 수 있으며, 구체적으로는 상기 금속이온 용액은 물유리 용액 내 함유되어 있는 물유리 대비 금속이온의 몰비가 0.5 내지 1이 되는 양으로 첨가하는 것일 수 있다.
상기 산촉매는 물유리 용액 내 물유리와 금속이온 용액 내 금속이온이 반응하여 형성한 산화금속-실리카 복합 졸의 겔화를 촉진시켜 산화금속-실리카 복합 겔을 용이하게 형성할 수 있도록 하는 역할을 하는 것일 수 있다. 구체적으로, 상기 단계 1은 겔화가 용이하게 이루어질 수 있도록 pH 6 내지 8의 조건하에서 수행되는 것일 수 있으며, 상기 pH는 상기 산촉매에 의하여 조절되는 것일 수 있다. 상기 산촉매의 사용량은 특별히 제한되지 않고 상기 범위의 pH로 조절할 수 있는 양으로 첨가하는 것일 수 있다.
상기 산촉매는 특별히 제한되는 것은 아니나, 예컨대 염산, 질산, 아세트산, 황산 및 불산으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 단계 2는 상기 산화금속-실리카 복합 겔을 표면개질하여 소수성의 산화금속-실리카 복합 습윤겔을 제조하는 단계로, 산화금속-실리카 복합 겔에 표면개질제를 첨가하고 반응시켜 수행하는 것일 수 있다.
이때, 본 발명의 일 실시예에 따른 제조방법은 상기 산화금속-실리카 복합 겔의 표면개질 전 상기 산화금속-실리카 복합 겔을 알코올로 처리하는 단계를 수행할 수 있다. 여기에서, 상기 알코올로 처리하는 단계는 산화금속-실리카 복합 겔을 알코올에 분산시키는 것일 수 있다. 상기 알코올은 산화금속-실리카 복합 겔 중량 대비 2배 내지 5배의 중량으로 사용하는 것일 수 있다. 상기 알코올은 특별히 제한되는 것은 아니나, 예컨대 메탄올, 에탄올 또는 이들 혼합물일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 상기 산화금속-실리카 복합 겔을 알코올로 처리함으로써 상기 산화금속-실리카 복합 겔 내에 존재하는 나트륨 이온(Na+)을 일부 제거함과 동시에 상기 산화금속-실리카 복합 겔 내 존재하는 물이 알코올로 치환될 수 있어, 별도의 용매치환 단계 없이도 후술하는 표면개질 후 제조된 소수성의 산화금속-실리카 복합 습윤겔의 건조 시 동공 내 존재하는 물이 기상으로 기화하면서 발생시키는 기공의 수축 및 균열을 방지하는 역할을 할 수 있다. 뿐만 아니라, 표면개질제와의 반응성을 높일 수 있어 표면개질이 보다 용이하게 이루어질 수 있다.
여기에서, 상기 나트륨 이온(Na+)은 상기 물유리로부터 기인한 것으로, 상기 물유리가 금속이온과 반응하여 물유리 내 나트륨 이온(Na+)과 금속이온이 치환반응함으로써 발생된 것일 수 있다.
상기 표면개질은 전술한 바와 같이 산화금속-실리카 복합 겔에 표면개질제를 첨가하고 반응시켜 수행하는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 표면개질은 산화금속-실리카 복합 겔에 표면개질제를 첨가하고 반응시켜 수행하는 것일 수 있다. 이때, 상기 표면개질제 첨가 전 산화금속-실리카 복합 겔은 전술한 바와 같이 에탄올로 처리되어 에탄올에 분산되어 있는 상태일 수 있다.
본 발명의 다른 일 실시예에 따른 상기 표면개질은 산화금속-실리카 복합 겔을 비극성 유기 용매에 분산시킨 후 표면개질제를 첨가하고 반응시켜 수행하는 것일 수 있다. 이때, 비극성 유기 용매에 분산시키기 전 산화금속-실리카 복합 겔은 전술한 바와 같이 에탄올로 처리되어 에탄올에 분산되어 있는 상태일 수 있으며, 여기에 비극성 유기 용매가 투입되어 혼합됨으로써 산화금속-실리카 복합겔이 비극성 유기 용매에 분산된 상태가 될 수 있다.
상기 비극성 유기용매는 산화금속-실리카 복합겔 또는 제조된 소수성의 산화금속-실리카 복합 습윤겔의 동공 내에 잔존하는 물을 치환함으로써 후술하는 단계 3의 건조 시 상기 소수성의 산화금속-실리카 복합 습윤겔 동공 내에 존재하는 물이 기상으로 기화하면서 발생시킬 수 있는 기공의 수축 및 균열을 방지하는 역할을 하는 것일 수 있다. 이에, 후술하는 소수성의 산화금속-실리카 복합 습윤겔의 건조 시 발생하는 표면적의 감소 및 기공구조의 변화를 방지할 수 있다. 즉, 본 발명의 일 실시예에 따른 제조방법은 비극성 유기용매를 사용함으로써 추가의 용매치환 단계를 수행할 수 있으며, 이에 비표면적 및 탭 밀도 물성이 더욱 향상된 소수성의 산화금속-실리카 복합 에어로겔을 제조할 수 있다. 상기 비극성 유기용매는 특별히 제한되는 것은 아니나, 비극성 유기용매인 것일 수 있으며, 구체적으로는 헥산, 헵탄, 톨루엔 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 표면개질제는 상기 산화금속-실리카 복합 겔의 친수성기(-OH)와 반응하여 상기 산화금속-실리카 복합 겔을 소수성으로 표면개질시키는 역할을 하는 것일 수 있다. 이때, 상기 표면개질제는 초기에 사용된 물유리 용액 내 물유리 대비 1.0 내지 4.0의 몰비로 첨가하는 것일 수 있다. 또한, 상기 표면개질제는 트리메틸클로로실란(TMCS), 헥사메틸디실라잔(HMDS), 메틸트리메톡시실란 및 트리메틸에톡시실란으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
또한, 상기 표면개질은 특별히 제한되는 것은 아니나, 55℃ 내지 65℃의 온도 조건하에서 표면개질 반응시켜 수행하는 것일 수 있으며, 이때 반응시간은 1시간 이내일 수 있다. 또한, 상기 반응은 교반하면서 수행하는 것일 수 있으며, 이때 교반은 마그네틱 바를 이용하여 100 rpm 내지 300 rpm으로 교반하는 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 전술한 바와 같이 알코올로 처리함으로써 세척과 용매치환을 동시에 수행하여 별도의 용매치환 단계를 생략할 수 있으며, 필요에 따라 표면개질과 동시에 추가적 용매치환을 수행할 수 있어 공정단계 및 공정시간이 줄어들 수 있어 생산성 및 경제성이 향상될 수 있다.
상기 단계 3은 소수성의 산화금속-실리카 복합 에어로겔을 제조하기 위하여 상기 소수성의 산화금속-실리카 복합 습윤겔을 건조하는 단계이다.
이때, 본 발명의 일 실시예에 따른 제조방법은 상기 건조 전 세척하는 단계를 더 수행할 수 있으며, 상기 세척은 반응 중 발생되는 불순물(예컨대, 미반응물, 부산물 등)을 제거하여, 고순도의 소수성의 산화금속-실리카 복합 에어로겔을 얻기 위한 것으로 특별히 제한되지 않고 당업계에 통상적인 방법을 통하여 수행하는 것일 수 있다.
예컨대, 상기 세척은 소수성의 산화금속-실리카 복합 습윤겔에 비극성 유기용매를 첨가하고, 20분 내지 1시간 동안 교반하여 수행하는 것일 수 있다. 상기 비극성 유기용매는 전술한 바와 같은 것일 수 있다.
상기 건조는 상기 소수성의 산화금속-실리카 복합 습윤겔에서 수층을 분리하여 제거한 후 105℃ 내지 190℃이 온도 조건하에서 1시간 내지 4시간 동안 상압건조하여 수행하는 것일 수 있다.
또한, 본 발명은 상기의 제조방법에 의하여 제조된 소수성의 산화금속-실리카 복합 에어로겔을 제공한다.
본 발명의 일 실시예에 따른 상기 에어로겔은 산화금속이 실리카에 도핑되어 있는 것일 수 있으며, 상기 산화금속은 산화마그네슘(MgO) 및 산화칼슘(CaO)의 조합일 수 있다. 즉, 상기 에어로겔은 산화마그네슘(MgO), 산화칼슘(CaO) 및 실리카(SiO2)를 포함하는 것일 수 있다.
여기에서, 상기 도핑(doping)은 순수한 물질에 제한된 양의 외부 물질을 첨가하는 것을 나타내는 것으로, 예컨대 실리카의 결정 격자 내에 산화금속이 결합되어 있는 것을 나타내는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 에어로겔은 비표면적이 350 m2/g 내지 700 m2/g인 것을 특징으로 한다.
또한, 상기 소수성의 산화금속-실리카 복합 에어로겔은 0.051 g/ml 내지 0.102 g/ml의 탭 밀도를 갖는 것일 수 있으며, 탄소 함유량이 3.77 wt% 내지 9.23 wt%인 것일 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
도 2에 나타낸 바와 같은 단계를 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
구체적으로, 물유리 용액에 금속이온 용액(Mg2 +:Ca2 +=2:1 몰비) 및 염산을 첨가하고 혼합하여 친수성의 산화금속-실리카 복합 겔을 제조하였다. 이때, 상기 금속이온 용액은 물유리 용액 내 물유리 대비 금속이온 용액 내 금속이온이 0.5 몰이 되는 양으로 첨가하였으며, 상기 염산은 pH가 7이 될때까지 첨가하였다. 제조된 복합 겔을 에탄올로 처리하여 나트륨 이온을 제거하고 1차 용매치환을 수행하였다. 여기에 헥산 200 ml을 투입하여 혼합한 후 트리메틸클로로실란을 상기 물유리 용액 내 물유리 대비 4.0 몰이 되는 양으로 첨가한 후 55℃에서 1시간 동안 반응시켜 2차 용매치환을 수행함과 동시에 표면개질된 소수성의 산화금속-실리카 복합 습윤겔을 제조하였다. 상기 제조된 소수성의 산화금속-실리카 복합 습윤겔을 105℃의 오븐에서 1시간 동안 상압건조시켜 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 2
트리메틸클로로실란을 물유리 대비 2.4 몰이 되는 양으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 3
트리메틸클로로실란을 물유리 대비 2.0 몰이 되는 양으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 4
트리메틸클로로실란을 물유리 대비 1.6 몰이 되는 양으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 5
트리메틸클로로실란을 물유리 대비 1.2 몰이 되는 양으로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 6
금속이온 용액을 물유리 대비 금속이온이 1.0 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 7
트리메틸클로로실란을 물유리 대비 2.4 몰이 되는 양으로 사용한 것을 제외하고는 상기 실시예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 8
트리메틸클로로실란을 물유리 대비 2.0 몰이 되는 양으로 사용한 것을 제외하고는 상기 실시예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 9
트리메틸클로로실란을 물유리 대비 1.6 몰이 되는 양으로 사용한 것을 제외하고는 상기 실시예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 10
트리메틸클로로실란을 물유리 대비 1.2 몰이 되는 양으로 사용한 것을 제외하고는 상기 실시예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 11
헥산을 사용한 2차 용매치환을 수행하지 않고 에탄올 처리에 의한 1차 용매치환 후 표면개질만 수행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실시예 12
헥산을 사용한 2차 용매치환을 수행하지 않고 에탄올 처리에 의한 1차 용매치환 후 표면개질만 수행한 것을 제외하고는 상기 실시예 2와 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 1
도 1에 나타낸 바와 같은 단계를 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
구체적으로, 물유리 용액에 금속이온 용액(Mg2 +:Ca2 +=2:1 몰비) 및 염산을 첨가하고 혼합하여 친수성의 산화금속-실리카 복합 습윤겔을 제조하였다. 이때, 상기 금속이온 용액은 물유리 용액 내 물유리 대비 금속이온 용액 내 금속이온이 0.5 몰이 되는 양으로 첨가하고, 상기 염산은 pH가 7이 될때까지 첨가하였다. 제조된 습윤겔을 증류수로 세척하여 나트륨 이온을 제거하였다. 이후 60℃에서 1시간 동안 숙성시킨 후 에탄올 200 ml을 첨가하여 1차 용매치환시키고 헥산을 투입하여 2차 용매치환시켜 표면개질 반응성을 향상시켰다. 이 후, 2차 용매치환된 습윤겔에 트리메틸클로로실란을 상기 물유리 용액 내 물유리 대비 4.0 몰이 되는 양으로 첨가한 후 55℃에서 1시간 동안 반응시킨 후 헥산 100 ml를 첨가하여 추가 용매치환 및 표면개질 반응을 유도하여 소수성의 산화금속-실리카 복합 습윤겔을 제조하였다. 상기 제조된 소수성의 산화금속-실리카 복합 습윤겔을 105℃의 오븐에서 1시간 동안 상압건조시켜 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 2
트리메틸클로로실란을 물유리 대비 2.4 몰이 되는 양으로 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 3
트리메틸클로로실란을 물유리 대비 2.0 몰이 되는 양으로 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 4
트리메틸클로로실란을 물유리 대비 1.6 몰이 되는 양으로 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 5
트리메틸클로로실란을 물유리 대비 1.2 몰이 되는 양으로 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 6
금속이온 용액을 물유리 대비 금속이온이 1.0 몰이 되는 양으로 첨가한 것을 제외하고는 상기 비교예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 7
트리메틸클로로실란을 물유리 대비 2.4 몰이 되는 양으로 사용한 것을 제외하고는 상기 비교예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 8
트리메틸클로로실란을 물유리 대비 2.0 몰이 되는 양으로 사용한 것을 제외하고는 상기 비교예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 9
트리메틸클로로실란을 물유리 대비 1.6 몰이 되는 양으로 사용한 것을 제외하고는 상기 비교예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 10
트리메틸클로로실란을 물유리 대비 1.2 몰이 되는 양으로 사용한 것을 제외하고는 상기 비교예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 11
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 12
금속이온 용액을 물유리 용액 내 물유리 대비 금속이온 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 2와 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 13
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 3과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 14
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 4와 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 15
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 5와 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 16
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 6과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 17
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 7과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 18
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 8과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 19
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 9와 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
비교예 20
금속이온 용액을 물유리 용액 내 물유리 대비 금속이인 용액 내 금속이온이 0.4 몰이 되는 양으로 첨가한 것을 제외하고는 상기 실시예 10과 동일한 방법을 통하여 소수성의 산화금속-실리카 복합 에어로겔을 제조하였다.
실험예
상기 실시예 1 내지 실시예 12 및 비교예 1 내지 비교예 20에서 제조한 각 소수성의 산화금속-실리카 복합 에어로겔의 물성 비교 분석을 위하여, 각 에어로겔의 탭 밀도(tap density, g/ml), 비표면적(BET, m2/g) 및 탄소 함량(carbon contents, wt%)을 측정하였다. 결과를 하기 표 1, 도 3 및 도 4에 나타내었다.
1) 탭 밀도(tap density, g/ml)
탭 밀도는 탭 밀도 측정기(TAP-2S, Logan Instruments, Co.)를 이용하여 측정하였다.
구체적으로, 상기 각 에어로겔을 규격화된 실린더(10 ml)에 넣어 무게를 잰 후, 상기 실린더를 탭 밀도 측정기에 고정하고 noise damping Hood을 닫고 2000회 tapping을 설정하였다. Tapping 측정이 끝난 후 실린더 내 각 에어로겔의 부피를 재고, 앞서 잰 무게와의 비율로 계산하여 밀도를 측정하였다.
2) 비표면적(BET, m2/g)
비표면적은 ASAP 2010 장치(Micrometrics 社)를 이용하여 부분압(0.11<p/p0<1)에 따른 질소의 흡/탈착량으로 분석하였다.
구체적으로, 실린더에 각 에어로겔 100 mg을 넣고 180℃에서 8시간 동안 전처리한 후 비표면적 측정 장치를 이용하여 측정하였다.
3) 탄소 함량(wt%)
탄소 함량은 탄소 분석기(Carbon-Sulfur Analyzer CS-2000. Eltra 社)를 이용하여 측정하였다.
구분 탭 밀도(g/ml) 탄소 함량(wt%) 비표면적(m2/g)
실시예 1 0.051 9.23 452
실시예 2 0.058 7.66 478
실시예 3 0.083 6.38 546
실시예 4 0.091 5.99 588
실시예 5 0.099 4.51 609
실시예 6 0.061 8.18 470
실시예 7 0.068 6.08 466
실시예 8 0.081 5.91 582
실시예 9 0.095 4.03 591
실시예 10 0.102 3.77 655
실시예 11 0.067 6.99 412
실시예 12 0.077 7.01 368
비교예 1 0.066 8.31 382
비교예 2 0.071 7.22 304
비교예 3 0.084 6.01 395
비교예 4 0.09 4.54 452
비교예 5 0.111 4.21 441
비교예 6 0.071 8.88 511
비교예 7 0.078 8.18 536
비교예 8 0.079 7.96 421
비교예 9 0.102 3.86 553
비교예 10 0.123 3.51 478
비교예 11 0.152 6.45 315
비교예 12 0.166 4.17 356
비교예 13 0.184 4.21 298
비교예 14 0.191 3.56 268
비교예 15 0.201 3.14 250
비교예 16 0.175 5.99 240
비교예 17 0.188 5.21 245
비교예 18 0.201 3.17 220
비교예 19 0.222 3.12 207
비교예 20 0.231 2.57 188
상기 표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따라 제조된 실시예 1 내지 실시예 12의 소수성의 산화금속-실리카 복합 에어로겔이 비교예 1 내지 비교예 20의 소수성의 산화금속-실리카 복합 에어로겔 대비 전반적으로 향상된 비표면적 특성을 나타내면서 탭 밀도가 낮고 탄소 함량이 증가된 것을 확인하였다.
구체적으로, 종래 일반적인 소수성의 실리카 에어로겔 제조방법을 통하여 제조된 비교예 1 내지 비교예 10의 소수성의 산화금속-실리카 복합 에어로겔은 실시예 1 내지 실시예 10의 소수성의 산화금속-실리카 복합 에어로겔 대비 탭 밀도가 상대적으로 높고 비표면적이 작았으며, 탄소 함량이 현저히 감소된 것을 확인하였다. 예를 들어, 동일 물질 및 동일 양을 사용하여 제조된 실시예 1과 비교예 1의 소수성의 산화금속-실리카 복합 에어로겔을 비교한 결과 실시예 1의 소수성의 산화금속-실리카 복합 에어로겔이 비교예 1의 소수성의 산화금속-실리카 복합 에어로겔 대비 탭 밀도가 약 77% 수준으로 감소하고, 비표면적이 약 18% 증가하였으며, 탄소 함량이 약 12% 증가하였다.
또한, 본 발명의 일 실시예에 따른 제조방법에 의하여 제조하였으나, 금속이온 용액을 물유리 대비 금속이온 농도가 본 발명에서 제시하는 범위 미만이 되는 양으로 사용하여 제조된 비교예 11 내지 비교예 15의 소수성의 산화금속-실리카 복합 에어로겔을 각각 동일양의 표면개질제를 사용하여 제조된 실시예 1 내지 실시예 5의 소수성의 산화금속-실리카 복합 에어로겔과 비교한 결과 탭 밀도가 증가하고 비표면적이 감소하였으며 탄소 함량이 현저히 감소하는 것을 확인하였다. 예를 들어, 다른 조건은 동일하되 물유리 대비 금속이온 농도가 상이한 비교예 11의 소수성의 산화금속-실리카 복합 에어로겔(금속이온/물유리=0.4/1.0 몰)과 실시예 1의 소수성의 산화금속-실리카 복합 에어로겔(금속이온/물유리=0.5/1.0 몰)을 비교한 결과 실시예 1의 소수성의 산화금속-실리카 복합 에어로겔의 탭 밀도가 33% 수준으로 감소하고, 비표면적이 43% 증가하였으며, 탄소 함량이 143%로 현저히 증가하였다.
아울러, 본 발명의 일 실시예에 따른 제조방법에 의하여 제조하였으나, 금속이온 용액을 물유리 대비 금속이온 농도가 본 발명에서 제시하는 범위를 초과하는 양으로 사용하여 제조된 비교예 16 내지 비교예 20의 소수성의 산화금속-실리카 복합 에어로겔을 각각 동일양의 표면개질제를 사용하여 제조된 실시예 6 내지 실시예 10의 소수성의 산화금속-실리카 복합 에어로겔과 비교한 결과 탭 밀도가 증가하고 비표면적이 감소하였으며 탄소 함량이 현저히 감소하는 것을 확인하였다. 예를 들어, 다른 조건은 동일하되 물유리 대비 금속이온 농도가 상이한 비교예 16의 소수성의 산화금속-실리카 복합 에어로겔(금속이온/물유리=1.25/1.0 몰)과 실시예 6의 소수성의 산화금속-실리카 복합 에어로겔(금속이온/물유리=1.0/1.0 몰)을 비교한 결과 실시예 1의 소수성의 산화금속-실리카 복합 에어로겔의 탭 밀도가 34% 수준으로 감소하고, 비표면적이 약 2배 증가하였으며, 탄소 함량이 137%로 현저히 증가하였다.

Claims (20)

1) 물유리 용액에 금속이온 용액 및 산촉매를 첨가하고 혼합하여 산화금속-실리카 복합 겔을 제조하는 단계;
2) 상기 산화금속-실리카 복합 겔을 표면개질하여 소수성의 산화금속-실리카 복합 습윤겔을 제조하는 단계; 및
3) 상기 소수성의 산화금속-실리카 복합 습윤겔을 건조하는 단계를 포함하고,
상기 단계 2)의 표면개질 전 상기 산화금속-실리카 복합 겔을 알코올로 처리하는 단계를 더 포함하는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 물유리 용액 내 물유리의 농도는 0.1 M 내지 2.0 M인 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 금속이온 용액 내 금속이온의 농도는 0.05 M 내지 2.0 M인 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 금속이온 용액은 칼슘 이온(Ca2 +)과 마그네슘 이온(Mg2 +)을 포함하는 이성분 금속이온 용액인 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 4에 있어서,
상기 금속이온 용액 내 칼슘 이온(Ca2 +)과 마그네슘 이온(Mg2 +)의 몰비는 1:0.3 내지 3인 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 금속이온 용액은 물유리 대비 금속이온의 몰비가 0.5 내지 1이 되는 양으로 첨가하는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 단계 1)은 pH 6 내지 8인 조건하에서 수행되는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 산촉매는 염산, 질산, 아세트산, 황산 및 불산으로 이루어진 군으로부터 선택된 1종 이상인 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 알코올은 메탄올 및 에탄올으로 이루어진 군으로 선택된 1종 이상인 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 단계 2)의 표면개질은 산화금속-실리카 복합 겔에 표면개질제를 첨가하고 반응시켜 수행하는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 단계 2)의 표면개질은 산화금속-실리카 복합 겔을 비극성 유기용매에 분산시킨 후 표면개질제를 첨가하고 반응시켜 수행하는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 11에 있어서,
상기 비극성 유기용매는 헥산, 헵탄, 톨루엔 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 10 또는 청구항 11에 있어서,
상기 표면개질제는 트리메틸클로로실란(TMCS), 헥사메틸디실라잔(HMDS), 메틸트리메톡시실란 및 트리메틸에톡시실란으로 이루어진 군으로부터 선택된 1종 이상인 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1, 청구항 10 및 청구항 11 중 어느 한 항에 있어서,
상기 표면개질제는 물유리 대비 1.0 내지 4.0의 몰비로 첨가하는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 표면개질은 55℃ 내지 65℃의 온도 조건하에서 수행하는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1에 있어서,
상기 단계 3)의 건조는 105℃ 내지 190℃의 온도 조건하에서 1시간 내지 4시간 동안 상압건조하여 수행하는 것인 소수성의 산화금속-실리카 복합 에어로겔의 제조방법.
청구항 1의 제조방법에 의하여 제조된 소수성의 산화금속-실리카 복합 에어로겔.
청구항 17에 있어서,
상기 에어로겔은 비표면적이 350 m2/g 내지 700 m2/g인 것인 소수성의 산화금속-실리카 복합 에어로겔.
청구항 17에 있어서,
상기 에어로겔은 0.051 g/ml 내지 0.102 g/ml의 탭 밀도를 갖는 것인 소수성의 산화금속-실리카 복합 에어로겔.
청구항 17에 있어서,
상기 에어로겔은 탄소 함유량이 3.77 wt% 내지 9.23 wt%인 것인 소수성의 산화금속-실리카 복합 에어로겔.
PCT/KR2016/011700 2015-11-03 2016-10-18 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔 WO2017078294A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680004817.3A CN107108239B (zh) 2015-11-03 2016-10-18 疏水性金属氧化物-二氧化硅复合气凝胶的制备方法和由此制得的复合气凝胶
US15/537,188 US10399857B2 (en) 2015-11-03 2016-10-18 Method of preparing hydrophobic metal oxide-silica composite aerogel and hydrophobic metal oxide-silica composite aerogel prepared thereby
EP16862311.4A EP3219670B1 (en) 2015-11-03 2016-10-18 Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150153869A KR101941648B1 (ko) 2015-11-03 2015-11-03 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
KR10-2015-0153869 2015-11-03

Publications (1)

Publication Number Publication Date
WO2017078294A1 true WO2017078294A1 (ko) 2017-05-11

Family

ID=58662159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011700 WO2017078294A1 (ko) 2015-11-03 2016-10-18 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔

Country Status (5)

Country Link
US (1) US10399857B2 (ko)
EP (1) EP3219670B1 (ko)
KR (1) KR101941648B1 (ko)
CN (1) CN107108239B (ko)
WO (1) WO2017078294A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002395A (zh) * 2017-12-07 2018-05-08 北京工业大学 一种降低二氧化硅气凝胶干燥过程对设备腐蚀的方法
CN110575794A (zh) * 2018-06-08 2019-12-17 北方民族大学 一种超疏水棉纤维素气凝胶及其制备方法和应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101789371B1 (ko) 2015-02-13 2017-10-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
US10752509B2 (en) 2015-06-01 2020-08-25 Lg Chem, Ltd. Method of preparing metal oxide-silica composite aerogel and metal oxide-silica composite aerogel prepared by using the same
KR101868683B1 (ko) * 2015-06-01 2018-06-19 주식회사 엘지화학 금속산화물-실리카 복합 에어로겔의 제조방법 및 이를 이용하여 제조된 금속산화물-실리카 복합 에어로겔
KR101931569B1 (ko) * 2015-11-03 2018-12-21 주식회사 엘지화학 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
KR101938369B1 (ko) * 2015-12-09 2019-01-14 주식회사 엘지화학 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
KR20170110993A (ko) 2016-03-24 2017-10-12 주식회사 엘지화학 실리카 에어로겔 제조시스템
CN108602681B (zh) 2016-09-12 2021-12-17 株式会社Lg化学 二氧化硅气凝胶的制备方法以及由其制备的二氧化硅气凝胶
KR102092769B1 (ko) * 2016-09-12 2020-03-24 주식회사 엘지화학 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
KR102316793B1 (ko) * 2017-12-28 2021-10-25 주식회사 엘지화학 침상형 금속-실리카 에어로겔 복합입자의 제조방법 및 이에 의해 제조된 침상형 금속-실리카 에어로겔 복합입자
KR102316795B1 (ko) * 2017-12-28 2021-10-25 주식회사 엘지화학 침상형 금속-실리카 에어로겔 복합입자의 제조방법 및 이에 의해 제조된 침상형 금속-실리카 에어로겔 복합입자
JP6960044B2 (ja) * 2018-02-14 2021-11-05 エルジー・ケム・リミテッド 疎水性のシリカエアロゲル顆粒の製造方法
US11511261B2 (en) * 2019-03-21 2022-11-29 The Hong Kong University Of Science And Technology Moisture-resistant catalyst for air pollution remediation and method of making the same
CN114433030B (zh) * 2022-01-28 2024-05-24 苏州优特创优新材料科技有限公司 一种基于mof用于油水分离的有机无机杂化孔复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100090989A (ko) * 2009-02-09 2010-08-18 주식회사 영일이엔지 실리카 에어로겔 제조방법
US20110000370A1 (en) * 2004-12-27 2011-01-06 Svenska Aerogel Ab Agglomerates of precipitated silica, method for their preparation and their use as filter medium for gas filtration
JP2014051643A (ja) * 2012-08-09 2014-03-20 Panasonic Corp 2剤式エアロゲル成形体材料、及び、それを用いた断熱材、並びに、断熱材の製造方法
KR20140146814A (ko) * 2013-06-18 2014-12-29 한국에너지기술연구원 제조비용을 절감한 실리카 에어로겔 분말의 제조방법
KR20150093123A (ko) * 2014-02-06 2015-08-17 주식회사 엘지화학 소수성 실리카 에어로겔의 제조방법
KR20150093122A (ko) * 2014-02-06 2015-08-17 주식회사 엘지화학 소수성 실리카 에어로겔의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131072A (en) * 1960-11-10 1964-04-28 Monsanto Chemicals Novel silica aerogels and processes for preparing same
DE19648798C2 (de) * 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
US6812259B2 (en) * 2001-10-26 2004-11-02 Battelle Memorial Institute Hydroetching of high surface area ceramics using moist supercritical fluids
KR101434273B1 (ko) 2007-03-15 2014-08-27 알이엠텍 주식회사 표면개질된 실리카겔의 제조 방법
KR101187568B1 (ko) 2010-09-29 2012-10-04 한국에너지기술연구원 실리카 에어로겔 과립의 제조방법
CN103476707B (zh) * 2011-04-28 2016-05-25 株式会社德山 金属氧化物粉末及其制造方法
HUP1100603A2 (en) * 2011-10-28 2013-06-28 Debreceni Egyetem Method and installation for preparation of silicate - alcogels, xerogels, aerogels
CN102674374B (zh) * 2012-04-25 2013-10-30 纳诺科技有限公司 一种二氧化硅气凝胶的制备方法
KR101420163B1 (ko) * 2012-12-12 2014-07-17 주식회사 엠쓰리텍 초소수성 에어로겔 및 그의 제조 방법 및 그의 제조 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110000370A1 (en) * 2004-12-27 2011-01-06 Svenska Aerogel Ab Agglomerates of precipitated silica, method for their preparation and their use as filter medium for gas filtration
KR20100090989A (ko) * 2009-02-09 2010-08-18 주식회사 영일이엔지 실리카 에어로겔 제조방법
JP2014051643A (ja) * 2012-08-09 2014-03-20 Panasonic Corp 2剤式エアロゲル成形体材料、及び、それを用いた断熱材、並びに、断熱材の製造方法
KR20140146814A (ko) * 2013-06-18 2014-12-29 한국에너지기술연구원 제조비용을 절감한 실리카 에어로겔 분말의 제조방법
KR20150093123A (ko) * 2014-02-06 2015-08-17 주식회사 엘지화학 소수성 실리카 에어로겔의 제조방법
KR20150093122A (ko) * 2014-02-06 2015-08-17 주식회사 엘지화학 소수성 실리카 에어로겔의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108002395A (zh) * 2017-12-07 2018-05-08 北京工业大学 一种降低二氧化硅气凝胶干燥过程对设备腐蚀的方法
CN108002395B (zh) * 2017-12-07 2020-11-03 北京工业大学 一种降低二氧化硅气凝胶干燥过程对设备腐蚀的方法
CN110575794A (zh) * 2018-06-08 2019-12-17 北方民族大学 一种超疏水棉纤维素气凝胶及其制备方法和应用

Also Published As

Publication number Publication date
EP3219670A1 (en) 2017-09-20
CN107108239B (zh) 2019-11-26
EP3219670B1 (en) 2021-01-20
KR101941648B1 (ko) 2019-01-24
US20180002182A1 (en) 2018-01-04
US10399857B2 (en) 2019-09-03
KR20170052015A (ko) 2017-05-12
EP3219670A4 (en) 2018-02-28
CN107108239A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2017078294A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2017090912A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2017078293A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2015119430A1 (ko) 소수성 실리카 에어로겔의 제조방법
WO2017090911A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2015119431A1 (ko) 소수성 실리카 에어로겔의 제조방법
WO2019160368A1 (ko) 소수성의 실리카 에어로겔 과립의 제조방법
WO2017105065A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2019050345A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2017171279A1 (ko) 구형 실리카 에어로겔 과립의 제조방법 및 이에 의해 제조되는 구형 실리카 에어로겔 과립
WO2018208005A1 (ko) 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
WO2018070752A1 (ko) 초고온용 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2018070755A1 (ko) 저분진 고단열 에어로겔 블랭킷 및 이의 제조방법
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
WO2020111765A1 (ko) 전가수분해된 폴리실리케이트의 합성방법
WO2020122683A1 (ko) 에어로겔 블랭킷의 제조방법
WO2016163670A1 (ko) 에어로겔 함유 조성물 및 이를 이용하여 제조된 단열 블랑켓
WO2018212414A1 (ko) 탄화규소 분말 및 그 제조방법
WO2018048198A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2018048197A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2021045514A1 (ko) 에어로겔 블랭킷 및 이의 제조방법
WO2017043721A1 (ko) 실리카 에어로겔 포함 블랑켓 및 이의 제조방법
WO2018048289A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2019050347A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2017159968A1 (ko) 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016862311

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15537188

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE