WO2021045143A1 - 刃物用鋼、マルテンサイト系刃物用鋼、刃物、およびマルテンサイト系刃物用鋼の製造方法 - Google Patents

刃物用鋼、マルテンサイト系刃物用鋼、刃物、およびマルテンサイト系刃物用鋼の製造方法 Download PDF

Info

Publication number
WO2021045143A1
WO2021045143A1 PCT/JP2020/033402 JP2020033402W WO2021045143A1 WO 2021045143 A1 WO2021045143 A1 WO 2021045143A1 JP 2020033402 W JP2020033402 W JP 2020033402W WO 2021045143 A1 WO2021045143 A1 WO 2021045143A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
martensitic
hardness
knives
tempering
Prior art date
Application number
PCT/JP2020/033402
Other languages
English (en)
French (fr)
Inventor
賢太郎 福本
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN202080062825.XA priority Critical patent/CN114341384A/zh
Priority to US17/640,339 priority patent/US20220340988A1/en
Priority to JP2021544022A priority patent/JPWO2021045143A1/ja
Priority to BR112022004010A priority patent/BR112022004010A2/pt
Priority to EP20860745.7A priority patent/EP4026926A4/en
Priority to KR1020227007011A priority patent/KR20220041904A/ko
Publication of WO2021045143A1 publication Critical patent/WO2021045143A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a method for manufacturing a steel for cutting tools, a steel for martensitic cutting tools, a cutting tool, and a steel for martensitic cutting tools.
  • high carbon steel equivalent to SK1 and martensitic stainless steel containing 12 to 13% of Cr have been used as steel for cutting tools such as cutters and razors.
  • the former can be obtained with high hardness by quenching and tempering heat treatment, but it has poor corrosion resistance, so it can only be used for light transportation.
  • the latter martensitic stainless steel is widely used because it is hard to rust because it not only obtains high hardness by quenching and tempering but also has excellent corrosion resistance.
  • the sharpness of a cutting tool is mainly determined by the hardness of the cutting edge, the angle at which the blade is attached, and the distribution state of hard particles. Among them, the hardness is an essential characteristic for improving the sharpness.
  • the corrosion resistance of the blade is mainly determined by the contents of Cr and Mo. Therefore, in order to improve the sharpness of the blade and the corrosion resistance, it is essential to increase the hardness of the blade after quenching and tempering and to increase the content of Cr and Mo.
  • the method of increasing the content of Cr and Mo has a problem that the hardness of the blade after quenching and tempering decreases because the amount of austenite remaining during quenching increases.
  • Patent Document 1 the applicant can improve the short-time hardenability of martensitic stainless steel and obtain high hardness as a method capable of obtaining high hardness at C: 0 by mass%.
  • Carbide having a component composition of .55 to 0.73%, Si: 1.0% or less, Mn: 1.0% or less, Cr: 12 to 14%, balance Fe and impurities, and annealed by a continuous furnace.
  • Patent Document 2 describes in terms of mass%, C: 0.55 to 0.85%, Si: 2.0% or less, Mn: 1.0% or less, Cr: 8 to 15%, N: 0.03.
  • a stainless razor steel having a high heat treatment hardness which includes one or two groups and is composed of the balance Fe and some impurities, has been proposed.
  • Patent Document 1 the annealed material finely dispersed with a carbide density of 560 pieces / 100 ⁇ m 2 is subjected to quenching, subzero treatment, and tempering treatment to have a high hardness of 660 to 720 HV after tempering and corrosion resistance. Also listed are good razor steels. Further, Patent Document 2 also describes stainless steel for razors having a tempering hardness of 620 to 716 HV, but in order to meet the demand for higher hardness and higher corrosion resistance, Patent Documents 1 and 2 are described. Steel is also inadequate, leaving room for further study.
  • an object of the present invention is to provide a steel for cutting tools having higher hardness and excellent corrosion resistance than the conventional ones.
  • Another object of the present invention is to provide a manufacturing method capable of obtaining a steel for cutting tools having high hardness and excellent corrosion resistance without adding a step of increasing the number density of carbides.
  • one aspect of the present invention is, in terms of mass%, C: 0.45 to 1.00%, Si: 0.1 to 1.5%, Mn: 0.1 to 1.5%, Cr: 7.5. It is a steel for cutting tools containing ⁇ 11.0%, Mo and W alone or in combination (Mo + W / 2): 0.5 to 3.0%, and having a component composition of the balance Fe and unavoidable impurities.
  • Another aspect of the present invention is a martensitic steel for blades, which has a component composition of the steel for blades and has a hardness of 700 HV or more.
  • the carbide area ratio in the cross-sectional structure is 8.0% or less, and the average circle-equivalent diameter of the carbide is 0.2 to 0.8 ⁇ m.
  • Another aspect of the present invention is a cutting tool using the martensitic steel for cutting tools.
  • the steel for cutting tools having the component composition is quenched, subzero-treated, and tempered, and the quenching temperature at the time of quenching is 1050 to 1250 ° C., and the treatment temperature at the time of the subcello treatment is ⁇ 50 ° C.
  • a method for producing a martensitic blade steel is obtained by setting the tempering temperature at the time of tempering to 100 to 400 ° C. and obtaining a martensitic blade steel having a hardness of 700 HV or more.
  • the tempering temperature is set to 100 to 160 ° C.
  • a martensitic cutlery steel having a hardness of 800 HV or more is obtained.
  • C 0.45 to 1.00%
  • C in steel is divided into those that dissolve in solid solution at the matrix and those that precipitate as carbides, but since the ratio is determined by the interaction with Cr, it is important to keep Cr in the composition range described later. ..
  • the lower limit of C is set to 0.45%.
  • the preferred lower limit of C is 0.50%, the more preferred lower limit is 0.55%, the more preferred lower limit is 0.58%, and the particularly preferred lower limit is 0.60%.
  • the upper limit of C is 1.00%.
  • the preferred upper limit of C is 0.95%, the more preferred upper limit is 0.90%, the more preferred upper limit is 0.85%, and the particularly preferred upper limit is 0.79%.
  • Si 0.1-1.5% Si is used as a deoxidizer during refining of steel for cutting tools, and is an element that dissolves in the steel and suppresses softening during low-temperature tempering, so the lower limit is set to 0.1%.
  • the upper limit of the amount of Si is 1.5%.
  • the preferred upper limit is 1.2%, the more preferred upper limit is 1.0%, the more preferred upper limit is 0.98%, and the particularly preferred upper limit is 0.95.
  • Mn 0.1-1.5%
  • Mn also has a role as a deoxidizer during refining, and is an element that dissolves in a matrix and enhances hardenability. If the amount of Mn is too small, the hardenability of the steel deteriorates, and there is a possibility that the hardenability does not occur especially in the central portion of the steel wall thickness, so the lower limit is set to 0.1%. On the other hand, since excessive content of Mn reduces hot workability, the upper limit is set to 1.5%. The preferred upper limit is 1.2% and the more preferred upper limit is 1.0%.
  • Cr 7.5 to 11.0% Cr is an important element for forming a strong passivation film on steel and obtaining excellent corrosion resistance. In order to exhibit this corrosion resistance, it is necessary that the steel contains at least 7.5% Cr.
  • the lower limit of the preferable Cr is 8.0%, the lower limit of the more preferable Cr is 8.5%, and the lower limit of the more preferable Cr is 9.0%.
  • an excessive amount of Cr causes a decrease in the martensitic transformation start temperature (Ms point), which causes a decrease in hardness due to an increase in retained austenite.
  • the upper limit of Cr is set to 11.0%.
  • the preferred upper limit of Cr is 10.5%, and the more preferable upper limit of Cr is 10.2%.
  • Mo + W / 2 0.5-3.0% Mo and W have the same effect, and are specified by (Mo + W / 2) because of the atomic weight. And Mo and W can be contained alone or in combination. Mo and W have a high effect of stabilizing the passivation, and are elements effective for improving the corrosion resistance by making the pitting potential in the chloride solution noble. It is also an element that suppresses softening in low-temperature tempering, and at least 0.5% is required to obtain these effects. On the other hand, excessive addition of Mo and W significantly reduces workability during hot working, so the upper limit is set to 3.0%. The lower limit of the preferred (Mo + W / 2) amount is 0.8%, and the upper limit of the preferred (Mo + W / 2) amount is 2.0%.
  • Nb + V 0.5% or less
  • Nb and V have the same effect and can be contained alone or in combination.
  • Nb has a high affinity for carbon and forms a thermally stable carbide. Since this carbide is very thermally stable, it does not dissolve in the hot austenite but remains, and pinning of the carbide suppresses the coarsening of the austenite.
  • V is also an element that finely disperses thermally stable carbides, suppresses coarsening of austenite, and improves wear resistance.
  • carbides containing Nb and V are thermally stable, they do not dissolve in high-temperature austenite and remain, so that the amount of carbon that dissolves in martensite tends to decrease, leading to a decrease in hardness.
  • the upper limit of the amount of (V + Nb) is 0.5%.
  • the upper limit of the preferred (V + Nb) amount is 0.4%, and the upper limit of the more preferred (V + Nb) amount is 0.3%.
  • Ni + Cu 0.5% or less
  • Ni and Cu are elements effective for improving the corrosion resistance to non-oxidizing acids such as sulfuric acid, and can be contained alone or in combination. However, it causes a decrease in the Ms point and also causes a decrease in hardness due to an increase in retained austenite. Therefore, even if it is contained, the upper limit of the amount of (Ni + Cu) is set to 0.5%.
  • the upper limit of the preferable (Ni + Cu) amount is 0.4%, and the upper limit of the more preferable (Ni + Cu) amount is 0.3%.
  • the cutting tool steel according to the present invention can contain the following elements.
  • Co 0.5% or less
  • Co is an element that dissolves in martensite and enhances tempering and softening resistance.
  • razor materials that may come into contact with the human body, they may be contained in the steel of the present embodiment in the range of 0.5% or less because they may cause metal allergies.
  • N is an element that dissolves in the martensite structure and improves corrosion resistance, but it causes a decrease in the Ms point and also causes a decrease in hardness due to an increase in retained austenite. Therefore, it may be contained in the steel of the present embodiment in the range of 0.1% or less.
  • the preferred upper limit is 0.07% and the more preferred upper limit is 0.05%.
  • components other than the above are Fe and unavoidable impurities.
  • the unavoidable impurity element include P, S, Al, Ti, N and O, but they may be contained as long as they do not interfere with the effects of the present invention and are within the range shown below. P ⁇ 0.04%, S ⁇ 0.03%, Al ⁇ 0.1%, Ti ⁇ 0.1%, and O ⁇ 0.05%.
  • the hardness of the martensitic blade steel of the present embodiment is 700 HV or more as measured at room temperature (normal temperature). It is preferably 720 HV or more, more preferably 735 HV or more, further preferably 770 HV or more, and particularly preferably 800 HV or more.
  • the upper limit is not particularly limited, but may be about 950 HV due to manufacturing restrictions.
  • the hot-rolled material having the above-mentioned composition is annealed by batch annealing, continuous annealing, etc., and the material for cold rolling after annealing is subjected to one or more cold working (1 time or more). For example, it can be produced by subjecting it to cold rolling).
  • the carbide area ratio in the cross-sectional structure is preferably 8.0% or less.
  • the upper limit of the more preferable carbide area ratio is 6.0%, further preferably 4.0%, even more preferably 2.0%, particularly preferably 1.0%, and most preferably. It is 0.8%.
  • the average circle-equivalent diameter (area circle-equivalent diameter) of carbides in the cross-sectional structure is preferably 0.2 to 0.8 ⁇ m. ..
  • the upper limit of the average of the more preferable circle equivalent diameter is 0.6 ⁇ m, and the upper limit of the average of the more preferable circle equivalent diameter is 0.5 ⁇ m.
  • the average of the carbide area ratio and the equivalent circle diameter in this embodiment is a scanning electron microscope (magnification of 5000 times) in a cross-sectional structure parallel to the processing direction (rolling drawing direction) of the martensitic blade steel. ), It can be calculated by observing carbides in a visual field having a visual field area of 500 ⁇ m 2 or more and analyzing the image.
  • the carbides targeted for image analysis are limited to those having a circle-equivalent diameter of 0.1 ⁇ m or more, and those having a diameter smaller than that are not targeted.
  • the identification of carbides can be confirmed by element mapping by EPMA (electron probe microanalyzer) attached to the scanning electron microscope.
  • EPMA electron probe microanalyzer
  • the steel for cutting tools having the above-mentioned component range is hardened, subzero-treated, and tempered.
  • the quenching temperature is 1050 to 1250 ° C.
  • the treatment temperature during subzero treatment is ⁇ 50 ° C. or lower
  • the tempering temperature during tempering is 100 to 400 ° C.
  • the quenching temperature is less than 1050 ° C.
  • the carbide is not sufficiently dissolved in austenite, so that the hardness becomes low.
  • the quenching temperature exceeds 1250 ° C., excessive solid solution of carbon causes quench cracking after quenching or in subzero treatment.
  • the quenching temperature was set to 1050 to 1250 ° C.
  • the preferred lower limit of the quenching temperature is 1100 ° C, and the more preferred lower limit is 1150 ° C.
  • the preferred upper limit of the quenching temperature is 1230 ° C, and the more preferable upper limit is 1210 ° C.
  • the temperature during the sub-zero treatment performed after the quenching process shall be -50 ° C or less. By adjusting to this temperature, it becomes easy to obtain the high hardness characteristic which is a feature of the present invention.
  • the lower limit is not set in particular, the lower limit may be set to -196 ° C, for example, assuming treatment with liquid nitrogen.
  • a mixed solution of dry ice and alcohol at ⁇ 75 ° C. is used, but liquefied carbon dioxide gas or liquid nitrogen may be used. Further, an electric refrigeration equipment may be used, or a gas such as carbon dioxide gas may be used.
  • tempering is performed after the sub-zero treatment step.
  • the tempering temperature is set to 100 to 400 ° C., it is possible to obtain steel for martensitic cutlery of 700 HV or more.
  • the tempering temperature is less than 100 ° C.
  • the toughness tends to be excessively low.
  • the tempering temperature exceeds 400 ° C.
  • a large amount of carbides are precipitated from the martensite structure, which causes a decrease in hardness.
  • the upper limit of the preferred tempering temperature is 350 ° C.
  • a more preferable upper limit of the tempering temperature is 150 ° C.
  • a hot-rolled material having a thickness of 2.0 mm having the component composition (residual Fe and unavoidable impurities) shown in Table 1 is annealed in a batch annealing furnace, and then cold rolling and annealing are repeated to obtain a thickness of 0.1 mm. Finished, Examples 1 to 16 of the present invention and Comparative Examples 1 to 13 were prepared.
  • the hardness after heat treatment and the corrosion resistance were investigated.
  • the samples of the examples of the present invention and the comparative examples were heated to 1100 to 1200 ° C. in an Ar atmosphere, then quenched by quenching, and then subjected to a subzero treatment at ⁇ 75 ° C. for 15 minutes at 150 ° C. and 350 ° C. It was tempered at a temperature of ° C. Three types of hardness were measured: quenching, tempering at 150 ° C, and tempering at 350 ° C.
  • a salt spray test (based on JIS-Z-2371: 2015) using a 5% neutral saline solution at 35 ° C.
  • Example 1 of the present invention was shown in FIG. 3
  • the salt spray test result of Comparative Example 1 is shown in FIG.
  • the quenching hardness is 800 HV or more
  • the tempering hardness at 350 ° C. is 700 HV or more
  • the tempering hardness at 150 ° C. is 800 HV or more
  • the rust area ratio is 1% or less. Both hardness and corrosion resistance were good.
  • Comparative Examples 1 and 5 the corrosion resistance was low, and the quenching hardness and tempering hardness were also lower than those of the examples of the present invention. It was confirmed that all of Comparative Examples 2, 4, 6 and 7 had a high rust area ratio and low corrosion resistance.
  • Comparative Examples 3 and 11 to 13 the rusting area ratio was less than 1%, and although the corrosion resistance was high, the tempering hardness at 350 ° C. was as low as less than 700 HV, respectively. As a result, it was confirmed that the example of the present invention can simultaneously obtain high hardness and excellent corrosion resistance as compared with the conventional example.
  • Comparative Examples 8 to 10 in which V + Nb was 0.6% or more the evaluation was stopped because a plurality of cracks were formed in the sample end face and the inside of the sample from the early stage of the cold rolling process. Subsequently, observation samples were taken from the prepared Examples 1, 15, 16 of the present invention and Comparative Example 1, and the average circle-equivalent diameter of the carbide and the carbide area ratio were measured.
  • the area ratio and the equivalent circle diameter are the cross-sectional structures parallel to the stretching direction of the rolling process of the martensite-based cutting tool steel, in the field of view where the field of view area taken with a scanning electron microscope (magnification 5000 times) is 500 ⁇ m 2 or more.
  • a carbide having a circle equivalent diameter of 0.1 ⁇ m or more was measured using an image analyzer.
  • the photomicrograph of Example 1 of the present invention is shown in FIG. 1
  • the photomicrograph of Comparative Example 1 is shown in FIG. 2
  • the measurement results are shown in Table 3.
  • the average circle-equivalent diameter of the carbide of the present invention was 0.4 to 0.5 ⁇ m, and the carbide area ratio was 5.5% or less.
  • the average circle-equivalent diameter of the carbide of Comparative Example 1 was 0.5 ⁇ m, which was the same level as that of the example of the present invention, but the carbide area ratio was 8.5%, which was larger than that of the sample of the present invention. It was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

従来よりもさらに高硬度かつ耐食性に優れた刃物用鋼、刃物、マルテンサイト系刃物用鋼およびその製造方法を提供する。 質量%で、C:0.45~1.00%、Si:0.1~1.5%、Mn:0.1~1.5%、Cr:7.5~11.0%、MoおよびWは単独または複合で(Mo+W/2):0.5~3.0%を含有し、残部Feおよび不可避的不純物の成分組成からなる刃物用鋼、マルテンサイト系刃物用鋼および刃物。また焼入れ時の焼入れ温度を1050~1250℃、サブセロ処理時の処理温度を-50℃以下、焼戻し時の焼戻し温度を100~400℃とし、700HV以上の硬度を有するマルテンサイト系刃物用鋼を得る、マルテンサイト系刃物用鋼の製造方法。

Description

刃物用鋼、マルテンサイト系刃物用鋼、刃物、およびマルテンサイト系刃物用鋼の製造方法
 本発明は、刃物用鋼、マルテンサイト系刃物用鋼、刃物、およびマルテンサイト系刃物用鋼の製造方法に関するものである。
 従来、カッターや剃刀等の刃物用鋼として、SK1相当の高炭素鋼およびCrを12~13%含有するマルテンサイト系ステンレス鋼が用いられてきた。前者は、焼入れ焼き戻しの熱処理により、高い硬さが得られるが、耐食性に乏しいため、軽便用としての使用にとどまる。一方、後者のマルテンサイト系ステンレス鋼は、焼入れ焼き戻しによって高い硬さが得られるだけでなく、耐食性にも優れているので錆びにくく、一般的に広く用いられている。
 刃物の切れ味は、主に刃先の硬さと刃付けの際の角度、硬質粒子の分布状態によって決まるが、中でも硬さは切れ味を向上させるために必須の特性である。一方、刃物の耐食性は、主にCrとMoの含有量によって決まる。したがって、刃物の切れ味を向上させ、かつ耐食性を高めるためには、焼入れ、焼戻し後の刃物の硬さを高め、かつCrとMoの含有量を高めることが必須である。しかし、CrとMoの含有量を高める手法は、焼入れ時に残留するオーステナイト量が増大するため、焼入れ、焼戻し後の刃物の硬さは低下するという問題がある。この問題を解決するために、例えば出願人は特許文献1にて、マルテンサイト系ステンレス鋼の短時間焼入れ性を向上させ、高い硬さを得ることができる手法として、質量%で、C:0.55~0.73%、Si:1.0%以下、Mn:1.0%以下、Cr:12~14%、残部Feおよび不純物の成分組成を有し、連続炉による焼きなまし状態での炭化物密度を140~600個/100μmとしたステンレスカミソリ用鋼を提案している。また特許文献2には、質量%で、C:0.55~0.85%、Si:2.0%以下、Mn:1.0%以下、Cr:8~15%、N:0.03%以下を含み、さらにW、V、Mo、Coの1種または2種以上3.0%以下の1群とNi、Cuの1種または2種で2.0%以下の1群のいずれか1群または2群を含み、残部Feおよび若干の不純物よりなる熱処理硬さの高いステンレスカミソリ用鋼が提案されている。
特開平5-39547号公報 特開昭53-114719号公報
 近年、さらなる切れ味や剃り味向上の要求に応えるため、従来よりも高硬度かつ高耐食性の刃物が要求されている。特許文献1では、炭化物密度560個/100μmと微細に分散させた焼鈍材に、焼入れおよびサブゼロ処理、ならびに焼戻し処理を行うことで、焼戻し後において660~720HVと高い硬さを有し、耐食性も良好であるかみそり用鋼が記載されている。また特許文献2にも焼戻し硬さが620~716HVであるステンレス剃刀用鋼が記載されているが、さらなる高硬度と高耐食性の要求に応えるためには、特許文献1、2に記載されている鋼でも不十分であり、さらなる検討の余地が残されている。上述したような課題に鑑み、本発明の目的は、従来よりもさらに高硬度かつ耐食性に優れた刃物用鋼を提供することである。また、本発明の目的は、炭化物数密度を高める工程を付与することなく、高硬度かつ耐食性に優れた刃物用鋼を得ることができる製造方法を提供することである。
 本発明は上記課題に鑑みてなされたものである。
 すなわち本発明の一態様は、質量%で、C:0.45~1.00%、Si:0.1~1.5%、Mn:0.1~1.5%、Cr:7.5~11.0%、MoおよびWを単独または複合で(Mo+W/2):0.5~3.0%を含有し、残部Feおよび不可避的不純物の成分組成からなる刃物用鋼である。
 好ましくは、さらに、VおよびNbを単独または複合で(V+Nb):0.5%以下を含有するか、または、NiおよびCuを単独または複合で(Ni+Cu):0.5%以下を含有する。
 本発明の他の一態様は、前記刃物用鋼の成分組成を有し、硬度が700HV以上であるマルテンサイト系刃物用鋼である。
 好ましくは、断面組織における炭化物面積率が8.0%以下、炭化物の円相当径の平均が0.2~0.8μmである。
 本発明の他の一態様は、前記マルテンサイト系刃物用鋼を用いた、刃物である。
 本発明の他の一態様は、前記成分組成の刃物用鋼に、焼入れ、サブゼロ処理、焼戻しを行い、前記焼入れ時の焼入れ温度を1050~1250℃、前記サブセロ処理時の処理温度を-50℃以下、前記焼戻し時の焼戻し温度を100~400℃とし、700HV以上の硬度を有するマルテンサイト系刃物用鋼を得る、マルテンサイト系刃物用鋼の製造方法である。
 好ましくは、前記焼戻し温度を100~160℃とし、800HV以上の硬度を有するマルテンサイト系刃物用鋼を得る。
 本発明によれば、従来よりもさらに高硬度かつ耐食性に優れた刃物用鋼を、より効率よく得ることができる。
本発明例のマルテンサイト系刃物用鋼の断面組織を示す、走査型電子顕微鏡写真である。 比較例のマルテンサイト系刃物用鋼の断面組織を示す、走査型電子顕微鏡写真である。 本発明例のマルテンサイト系刃物用鋼の塩水噴霧試験結果を示す写真である。 比較例のマルテンサイト系刃物用鋼の塩水噴霧試験結果を示す写真である。
 以下、本発明の一実施形態について説明する。ただし本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。まず本発明に係る刃物用鋼の成分組成について限定理由を説明する。
 C:0.45~1.00%
 Cは、焼入れ時オーステナイト化温度において炭化物から基地(マトリックス)に固溶し、焼入れで生成するマルテンサイトの硬さを決定する重要な元素である。ここで鋼中のCは、基地に固溶するものと炭化物として析出するものとに分かれるが、その割合はCrとの相互作用で決まるため、Crも後述する組成範囲に収めることが重要である。本発明に適したより高硬度なマルテンサイト系刃物用鋼を得るために、Cの下限は0.45%とする。好ましいCの下限値は0.50%、より好ましい下限値は0.55%、さらに好ましい下限値は0.58%、特に好ましい下限値は0.60%である。一方でC量が多すぎると、刃欠けの要因となる大型の共晶炭化物が生成される可能性がある。またC量が多すぎると生成される炭化物も過剰に多くなるため、マルテンサイト中に固溶するCrやMoを減少させ、耐食性を低下させる要因にもなるため、Cの上限は1.00%とする。好ましいCの上限値は0.95%、より好ましい上限値は0.90%、さらに好ましい上限値は0.85%、特に好ましい上限値は0.79%である。
 Si:0.1~1.5%
 Siは、刃物用鋼の精錬時に脱酸剤として用いる他、鋼中に固溶し、低温焼戻しにおける軟化を抑制する元素であるため、下限を0.1%とする。一方で、過度の含有は刃物用鋼の靭性を低下させるため、例えば冷間圧延時の冷間加工性を低下させる可能性がある。そのため、Si量の上限は1.5%とする。好ましい上限は1.2%であり、より好ましい上限は1.0%であり、さらに好ましい上限は0.98%であり、特に好ましい上限は0.95である。
 Mn:0.1~1.5%
 MnもSiと同様に精錬時の脱酸剤としての役割を有し、基地に固溶し、焼入れ性を高める元素である。Mn量が少なすぎると鋼の焼入れ性が低下し、特に鋼の肉厚中心部においては焼きが入らない可能性もあるため、下限を0.1%とする。一方で、Mnの過度の含有は熱間加工性を低下させるため、上限を1.5%とする。好ましい上限は1.2%であり、より好ましい上限は1.0%である。
 Cr:7.5~11.0%
 Crは、鋼に強固な不動態膜を形成し、優れた耐食性を得るために重要な元素である。この耐食性を発揮させるために、少なくとも7.5%のCrが鋼に含有されていることが必要である。好ましいCrの下限は8.0%であり、より好ましいCrの下限は8.5%であり、さらに好ましいCrの下限は9.0%である。一方で過大なCr量はマルテンサイト変態開始温度(Ms点)の低下を招き、残留オーステナイトの増大による硬度低下の要因となる。高硬度と良好な耐食性とを両立させるためにも、Crの上限は11.0%とする。好ましいCrの上限は10.5%であり、より好ましいCrの上限は10.2%である。
 Mo+W/2:0.5~3.0%
 MoとWは同様の効果があり、原子量の関係から(Mo+W/2)で規定する。そして、MoおよびWは単独または複合で含有することができる。MoおよびWは不動態を安定化させる効果が高く、塩化物溶液中における孔食電位を貴にして耐食性の向上に有効な元素である。また、低温焼もどしにおける軟化を抑制する元素でもあり、これらの効果を得るためには、少なくとも0.5%は必要である。一方で、Mo、Wの過剰添加は、熱間加工時の加工性を著しく下げるため、上限を3.0%とする。好ましい(Mo+W/2)量の下限は0.8%であり、好ましい(Mo+W/2)量の上限は2.0%である。
 好ましくは、Nb+V:0.5%以下
 NbとVは同様の効果があり、単独または複合で含有することができる。Nbは炭素との親和性が高く、熱的に安定な炭化物を形成する。この炭化物は熱的に非常に安定なので、高温のオーステナイトには溶け込まずに残留し、炭化物のピン止めによってオーステナイトの粗大化を抑制する。また、Vも同様に熱的に安定な炭化物を微細に分散させ、オーステナイトの粗大化を抑制するとともに、耐摩耗性を向上させる元素である。しかし、NbおよびVを含む炭化物は熱的に安定なので、高温のオーステナイトには溶け込まずに残留するため、マルテンサイトに固溶する炭素量を減少させ、硬度の低下を招く傾向にある。また含有量が多いと冷間加工性低下によるクラックが発生する可能性も高まる。このため、本実施形態におけるVおよびNbは、含有する場合でも、(V+Nb)量の上限は0.5%とする。好ましい(V+Nb)量の上限は0.4%であり、より好ましい(V+Nb)量の上限は0.3%である。
 好ましくは、Ni+Cu:0.5%以下
 NiとCuは、硫酸のような非酸化性の酸に対する耐食性を向上させるのに有効な元素であり、単独または複合で含有することができる。しかし、Ms点の低下を招き、残留オーステナイトの増大による硬度低下の要因ともなる。そのため、含有する場合でも、(Ni+Cu)量の上限を0.5%とする。好ましい(Ni+Cu)量の上限は0.4%であり、より好ましい(Ni+Cu)量の上限は0.3%である。
 本発明に係る刃物用鋼は、以下の元素を含有することができる。
 Co:0.5%以下
 Coはマルテンサイト中に固溶し、焼戻し軟化抵抗を高める元素である。一方で剃刀材等の人体に接触する可能性のある用途については、金属アレルギーの原因となる可能性もあるため、0.5%以下の範囲で本実施形態の鋼に含有させてもよい。
 Nはマルテンサイト組織中に固溶し、耐食性を向上させる元素であるが、Ms点の低下を招き、残留オーステナイトを増大による硬度低下の要因ともなる。そのため0.1%以下の範囲で本実施形態の鋼に含有させてもよい。好ましい上限は、0.07%であり、より好ましい上限は0.05%である。
 本実施形態では上記以外の成分はFe及び不可避的不純物とする。不可避的不純物元素としては、P、S、Al、Ti、N及びOが挙げられるが、本発明の効果を阻害しない下記に示す範囲内であれば、含有されていてもよい。
 P≦0.04%、S≦0.03%、Al≦0.1%、Ti≦0.1%、及びO≦0.05%。
 続いて本発明のマルテンサイト系刃物用鋼について、実施形態を説明する。
 上述した成分組成を有する刃物用鋼に焼入れ、サブゼロ処理、および焼戻しを行うことによって、非常に高硬度なマルテンサイト系刃物用鋼を得ることができる。本実施形態のマルテンサイト系刃物用鋼の硬度は、室温(常温)で測定した値で、700HV以上である。好ましくは720HV以上であり、より好ましくは735HV以上であり、さらに好ましくは770HV以上であり、特に好ましくは800HV以上である。上限は特に限定しないが、製造制約上950HV程度とすることができる。なお、焼入れ前の刃物用鋼は、上述した成分組成を有する熱間圧延材にバッチ焼鈍や連続焼鈍等の焼鈍を行い、焼鈍後の冷間圧延用素材に、1回以上の冷間加工(例えば、冷間圧延など)を施すことで作製することが可能である。
 本実施形態のマルテンサイト系刃物用鋼は、炭化物を含むところ、断面組織における炭化物面積率が8.0%以下であることが好ましい。炭化物面積率を上記の範囲内とすることで、優れた耐食性を得ることができる。より好ましい炭化物面積率の上限は6.0%であり、さらに好ましくは4.0%であり、よりさらに好ましくは、2.0%であり、特に好ましくは1.0%であり、最も好ましくは0.8%である。また、上述したように粗大な炭化物は刃物強度の低下を招くため、断面組織における炭化物の円相当径(面積円相当径である。)の平均は0.2~0.8μmであることが好ましい。より好ましい円相当径の平均の上限は0.6μmであり、さらに好ましい円相当径の平均の上限は0.5μmである。
 なお、本実施形態における炭化物面積率および円相当径の平均は、マルテンサイト系刃物用鋼の加工方向(圧延加工の延伸方向)に対して平行な断面組織において、走査型電子顕微鏡(倍率5000倍)で撮影した視野面積が500μm以上の視野における炭化物を観察し、それを画像解析することで算出することができる。なお、画像解析で対象とする炭化物は、円相当径が0.1μm以上のものに限定し、それ未満のものは対象としていない。また、炭化物の同定は走査型電子顕微鏡に付属するEPMA(電子線マイクロアナライザ)による元素マッピングで確認することができる。上述したような特徴を有するマルテンサイト系刃物用鋼に加工を施すことで、切れ味が良く、耐食性に優れた刃物を得ることが可能である。
 続いて本発明のマルテンサイト系刃物用鋼の製造方法について述べる。本発明では、上述の成分範囲からなる刃物用鋼に、焼入れおよびサブゼロ処理、ならびに焼戻しを行う。焼入れ温度は1050~1250℃、サブゼロ処理時の処理温度は-50℃以下、焼戻し時の焼戻し温度は100~400℃である。本成分系においては、焼入れ温度が1050℃未満の場合、炭化物はオーステナイトに十分に固溶しないため、硬さが低くなる。また、焼入れ温度が1250℃を超える場合は過剰に固溶した炭素によって、焼入れ後もしくはサブゼロ処理において焼き割れがおこる。このため、焼入れ温度は1050~1250℃とした。焼入れ温度の好ましい下限は1100℃であり、より好ましい下限は1150℃である。また焼入れ温度の好ましい上限は1230℃であり、より好ましい上限は1210℃である
 焼入れ工程後に行うサブゼロ処理時の温度は、-50℃以下とする。この温度に調整することによって、本発明の特徴である高硬度特性を得やすくなる。特に下限は設定しないが、液体窒素で処理することを想定して、例えば下限を-196℃としてもよい。本実施形態のサブゼロ処理では、-75℃のドライアイスとアルコールの混合液を使用しているが、液化炭酸ガスや液体窒素を用いてもよい。また、電気式の冷凍設備を用いてもよく、炭酸ガスなどの気体を用いてもよい。
 本実施形態の製造方法では、サブゼロ処理工程の後に、焼戻しを行う。焼戻し温度は100~400℃に設定することで、700HV以上のマルテンサイト系刃物用鋼を得ることができる。本成分系においては、焼戻し温度が100℃未満の場合、靭性が過剰に低くなる傾向にある。一方、焼戻し温度が400℃を超える場合では、マルテンサイト組織から炭化物が多量に析出し、硬度低下を招く。好ましい焼戻し温度の上限は、350℃である。また、さらに高硬度のマルテンサイト系刃物用鋼を得る場合は、焼戻し温度を100℃~160℃に設定することが好ましい。より好ましい焼戻し温度の上限は、150℃である。これにより炭化物の析出をより抑制することができ、800HV以上といった高硬度のマルテンサイト系刃物用鋼を得ることができる。
 表1に示す成分組成(残部Feおよび不可避的不純物)を有する厚み2.0mmの熱間圧延材をバッチ式焼鈍炉で焼鈍し、その後冷間圧延と焼鈍とを繰り返して、0.1mmの厚さに仕上げ、本発明例1~16、および比較例1~13を準備した。
 続いて、熱処理後の硬度と、耐食性について調査した。硬度に関しては、本発明例および比較例の試料をAr雰囲気中で1100~1200℃に加熱後、急冷する焼入れ処理を行った後、-75℃で15分のサブゼロ処理を行い、150℃および350℃の温度で焼き戻した。硬度は焼入れ時、150℃焼戻し時、350℃焼戻し時の三種類を測定した。耐食性については、上記350℃にて焼戻した試料に、35℃、5%中性食塩水を用いた塩水噴霧試験(JIS-Z-2371:2015に基づく)を行い、1h後の発錆の状態を発サビ面積率にて評価した。本実施例では、錆の面積率1%未満は○(発サビ無)、1%以上は×(発サビ有)と判定した。表2にそれぞれの硬さを示す。また代表例として本発明例1の塩水噴霧試験結果を図3に、比較例1の塩水噴霧試験結果を図4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、本発明例1~16では、焼入れ硬さは800HV以上、350℃焼戻し硬さが700HV以上、150℃焼戻し硬さが800HV以上、発サビ面積率が1%以下と、硬さおよび耐食性ともに良好であった。一方で、比較例1、5では、耐食性も低く、焼入れ硬さおよび焼戻し硬さも本発明例より低い結果となった。比較例2、4、6、7いずれも発サビ面積率が高く、耐食性が低いことを確認した。比較例3、11~13では、発サビ面積率は1%未満であり、耐食性は高いものの、350℃焼戻し硬さがそれぞれ700HV未満と低い値であった。これにより、本発明例は従来例に比べ、高い硬さと優れた耐食性を同時に得られることが確認された。なお、V+Nbが0.6%以上である比較例8~10に関しては、冷間圧延工程の早期から試料端面や試料内部に複数のクラックが入ったため、評価を中止した。
 続いて、作製した本発明例1、15、16、および比較例1から観察用試料を採取し、炭化物の円相当径の平均と炭化物面積率を測定した。面積率および円相当径は、マルテンサイト系刃物用鋼の圧延加工の延伸方向に対して平行な断面組織において、走査型電子顕微鏡(倍率5000倍)で撮影した視野面積が500μm2以上の視野における円相当径が0.1μm以上の炭化物を、画像解析装置を用いて測定した。本発明例1の顕微鏡写真を図1に、比較例1の顕微鏡写真を図2に、測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 測定の結果、本発明例の炭化物の円相当径の平均は0.4~0.5μmであり、炭化物面積率は5.5%以下であった。一方で比較例1の炭化物の円相当径の平均は0.5μmと本発明例と同等水準であったが、炭化物面積率は8.5%と、本発明の試料よりも大きくなっていることを確認した。

 

Claims (8)

  1.  質量%で、C:0.45~1.00%、Si:0.1~1.5%、Mn:0.1~1.5%、Cr:7.5~11.0%、MoおよびWを単独または複合で(Mo+W/2):0.5~3.0%を含有し、残部Feおよび不可避的不純物の成分組成からなる刃物用鋼。
  2.  質量%で、さらに、VおよびNbを単独または複合で(V+Nb):0.5%以下を含有する、請求項1に記載の刃物用鋼。
  3.  質量%で、さらに、NiおよびCuを単独または複合で(Ni+Cu):0.5%以下を含有する、請求項1または2に記載の刃物用鋼。
  4.  請求項1ないし3のいずれかに記載の刃物用鋼の成分組成を有し、硬度が700HV以上である、マルテンサイト系刃物用鋼。
  5.  断面組織における炭化物面積率が8.0%以下、炭化物の円相当径の平均が0.2~0.8μmである、請求項4に記載のマルテンサイト系刃物用鋼。
  6.  請求項4または5に記載のマルテンサイト系刃物用鋼を用いた、刃物。
  7.  請求項1ないし3のいずれかに記載の刃物用鋼に、焼入れ、サブゼロ処理、焼戻しを行い、
     前記焼入れ時の焼入れ温度を1050~1250℃、
     前記サブセロ処理時の処理温度を-50℃以下、
     前記焼戻し時の焼戻し温度を100~400℃とし、
     700HV以上の硬度を有するマルテンサイト系刃物用鋼を得る、マルテンサイト系刃物用鋼の製造方法。
  8.  前記焼戻し温度を100~160℃とし、
     800HV以上の硬度を有するマルテンサイト系刃物用鋼を得る、請求項7に記載のマルテンサイト系刃物用鋼の製造方法。

     
PCT/JP2020/033402 2019-09-06 2020-09-03 刃物用鋼、マルテンサイト系刃物用鋼、刃物、およびマルテンサイト系刃物用鋼の製造方法 WO2021045143A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080062825.XA CN114341384A (zh) 2019-09-06 2020-09-03 刀具用钢、马氏体系刀具用钢、刀具、及马氏体系刀具用钢的制造方法
US17/640,339 US20220340988A1 (en) 2019-09-06 2020-09-03 Steel for knives, steel for martensitic knives, knife, and production method for steel for martensitic knives
JP2021544022A JPWO2021045143A1 (ja) 2019-09-06 2020-09-03
BR112022004010A BR112022004010A2 (pt) 2019-09-06 2020-09-03 Aço para facas, aço para facas de martensita, faca, e método de produção de aço para facas de martensita
EP20860745.7A EP4026926A4 (en) 2019-09-06 2020-09-03 STEEL FOR KNIVES, STEEL FOR MARTENSITIC KNIVES, KNIVES AND PRODUCTION PROCESS FOR STEEL FOR MARTENSITIC KNIVES
KR1020227007011A KR20220041904A (ko) 2019-09-06 2020-09-03 커터용 강, 마텐자이트계 커터용 강, 커터, 및 마텐자이트계 커터용 강의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-163378 2019-09-06
JP2019163378 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021045143A1 true WO2021045143A1 (ja) 2021-03-11

Family

ID=74853274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033402 WO2021045143A1 (ja) 2019-09-06 2020-09-03 刃物用鋼、マルテンサイト系刃物用鋼、刃物、およびマルテンサイト系刃物用鋼の製造方法

Country Status (7)

Country Link
US (1) US20220340988A1 (ja)
EP (1) EP4026926A4 (ja)
JP (1) JPWO2021045143A1 (ja)
KR (1) KR20220041904A (ja)
CN (1) CN114341384A (ja)
BR (1) BR112022004010A2 (ja)
WO (1) WO2021045143A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114719A (en) 1977-03-18 1978-10-06 Hitachi Metals Ltd Steel for stainless razor blade with high heatttreated hardness
JPH0539547A (ja) 1991-08-05 1993-02-19 Hitachi Metals Ltd ステンレスかみそり用鋼およびその製造方法
JPH0978199A (ja) * 1995-09-12 1997-03-25 Hitachi Metals Ltd 高硬度、高靭性冷間工具鋼
JPH1060596A (ja) * 1996-08-26 1998-03-03 Sanyo Special Steel Co Ltd 高硬度、高靱性冷間工具鋼
JP2001172748A (ja) * 1999-12-16 2001-06-26 Daido Steel Co Ltd 熱処理により寸法調整した冷間工具およびその製造方法
JP2002212679A (ja) * 2001-01-10 2002-07-31 Daido Steel Co Ltd 刃物及びそれに用いるFe系刃物用合金
JP2002285297A (ja) * 2001-01-22 2002-10-03 Hitachi Metals Ltd 転がり軸受およびその製造方法
JP2011026693A (ja) * 2009-07-03 2011-02-10 Hitachi Metals Ltd 軟化抵抗に優れた高硬度鋼

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469972A (en) * 1966-01-04 1969-09-30 Sandvikens Jernverks Ab Razor blades and similar thin elongated sharp-edged blades made of a chromium steel
GB1100340A (en) * 1966-09-22 1968-01-24 Sandvikens Jernverks Ab Improvements in or relating to razor blades
JPS5037005B2 (ja) * 1972-04-03 1975-11-29
JPS5611745B2 (ja) * 1973-10-03 1981-03-17
US6053991A (en) * 1998-01-06 2000-04-25 Sanyo Special Steel Co., Ltd. Production of cold working tool steel
US6719854B2 (en) * 2001-01-22 2004-04-13 Hitachi Metals Ltd. Rolling Bearing
KR20090069608A (ko) * 2007-12-26 2009-07-01 주식회사 포스코 냉간 공구강 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114719A (en) 1977-03-18 1978-10-06 Hitachi Metals Ltd Steel for stainless razor blade with high heatttreated hardness
JPH0539547A (ja) 1991-08-05 1993-02-19 Hitachi Metals Ltd ステンレスかみそり用鋼およびその製造方法
JPH0978199A (ja) * 1995-09-12 1997-03-25 Hitachi Metals Ltd 高硬度、高靭性冷間工具鋼
JPH1060596A (ja) * 1996-08-26 1998-03-03 Sanyo Special Steel Co Ltd 高硬度、高靱性冷間工具鋼
JP2001172748A (ja) * 1999-12-16 2001-06-26 Daido Steel Co Ltd 熱処理により寸法調整した冷間工具およびその製造方法
JP2002212679A (ja) * 2001-01-10 2002-07-31 Daido Steel Co Ltd 刃物及びそれに用いるFe系刃物用合金
JP2002285297A (ja) * 2001-01-22 2002-10-03 Hitachi Metals Ltd 転がり軸受およびその製造方法
JP2011026693A (ja) * 2009-07-03 2011-02-10 Hitachi Metals Ltd 軟化抵抗に優れた高硬度鋼

Also Published As

Publication number Publication date
EP4026926A4 (en) 2023-09-27
JPWO2021045143A1 (ja) 2021-03-11
US20220340988A1 (en) 2022-10-27
BR112022004010A2 (pt) 2022-05-24
CN114341384A (zh) 2022-04-12
EP4026926A1 (en) 2022-07-13
KR20220041904A (ko) 2022-04-01

Similar Documents

Publication Publication Date Title
JP2002256397A (ja) 耐食性に優れた高硬度マルテンサイト系ステンレス鋼
KR20190060805A (ko) 침탄용 강판, 및 침탄용 강판의 제조 방법
WO2021090472A1 (ja) 高炭素冷延鋼板およびその製造方法並びに高炭素鋼製機械部品
WO2013047237A1 (ja) 刃物用ステンレス鋼およびその製造方法
JP5533712B2 (ja) 表面硬化用熱間加工鋼材
JP5660417B1 (ja) 刃物用鋼の製造方法
JP5660416B1 (ja) 刃物用鋼及びその製造方法
JP5644483B2 (ja) 表面硬化用熱間加工鋼材
US20070137050A1 (en) Razor blades and compositions and processes for the production of razor blades
JP5207743B2 (ja) 耐摩耗性および靭性に優れた刃物用鋼材
JP7110983B2 (ja) 刃物用素材
JP6798508B2 (ja) 刃物用帯鋼
JP6540131B2 (ja) フェライト系耐熱鋼
WO2021045143A1 (ja) 刃物用鋼、マルテンサイト系刃物用鋼、刃物、およびマルテンサイト系刃物用鋼の製造方法
EP4265784A1 (en) Martensitic stainless steel with improved strength and corrosion resistance, and manufacturing method therefor
EP4144882A1 (en) Stainless steel sheet, method for producing same, edged tools and cutlery
JP4952708B2 (ja) マルテンサイト系ステンレス鋼およびその製造方法
WO2024057705A1 (ja) ステンレス鋼およびその製造方法、ならびに、ステンレス鋼製品およびその製造方法
JP7464821B2 (ja) 軸受軌道用鋼材、および軸受軌道
Tsay et al. Improved impact toughness of 13Cr martensitic stainless steel hardened by laser
JP7196837B2 (ja) 刃物用鋼帯の製造方法および刃物用鋼帯
JP7380512B2 (ja) 鋼板およびその製造方法
WO2021149601A1 (ja) マルテンサイト系ステンレス鋼板およびマルテンサイト系ステンレス鋼部材
WO2021044889A1 (ja) マルテンサイト系ステンレス鋼板およびマルテンサイト系ステンレス鋼部材
JP2005336560A (ja) 精密打抜き部品用高炭素鋼板および精密打抜き部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544022

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227007011

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004010

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020860745

Country of ref document: EP

Effective date: 20220406

ENP Entry into the national phase

Ref document number: 112022004010

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220304