WO2021031740A1 - 一种多用途星球探测车 - Google Patents

一种多用途星球探测车 Download PDF

Info

Publication number
WO2021031740A1
WO2021031740A1 PCT/CN2020/101378 CN2020101378W WO2021031740A1 WO 2021031740 A1 WO2021031740 A1 WO 2021031740A1 CN 2020101378 W CN2020101378 W CN 2020101378W WO 2021031740 A1 WO2021031740 A1 WO 2021031740A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
runner
exploration vehicle
planetary exploration
vehicle according
Prior art date
Application number
PCT/CN2020/101378
Other languages
English (en)
French (fr)
Inventor
高海波
杨怀广
黄澜
丁亮
于兆玮
邓宗全
于海涛
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US17/629,418 priority Critical patent/US20220289405A1/en
Publication of WO2021031740A1 publication Critical patent/WO2021031740A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/16Extraterrestrial cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/20Endless-track steering having pivoted bogie carrying track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/02Steering linkage; Stub axles or their mountings for pivoted bogies
    • B62D7/04Steering linkage; Stub axles or their mountings for pivoted bogies with more than one wheel

Definitions

  • the invention relates to the technical field of planet detection, in particular to a multi-purpose planet detection vehicle.
  • a small rover is usually mounted on a large planetary rover (mother vehicle), and the small rover (child vehicle) is used to explore the aforementioned special geographic location, that is, the "child vehicle” is used for exploration; Due to the limitation of volume and weight, it is usually necessary to compress the volume of small probe vehicles. Therefore, small probe vehicles with two-wheel structure are usually adopted; however, small probe vehicles with two-wheel structure are limited by their own structure. There are few detectors, which cannot fully and effectively detect the aforementioned special geographic location; on the other hand, additional supporting driven wheels need to be installed, and the driven wheels will generate huge bulldozing resistance, which will make the small rover slow and work. It is expensive and difficult to control, and the actual movement path has a large deviation from the planned path.
  • the present invention aims to solve to a certain extent that the existing planetary exploration vehicle cannot effectively explore the special geographical locations of cliffs, volcanic craters, craters, and lava caves on the alien planet. In addition, it is unable to effectively explore the planetary exploration vehicle and split type of the integral chassis. The planetary rover on the chassis is effectively tested and verified.
  • the present invention provides a multi-purpose planetary exploration vehicle, including:
  • the box body is equipped with first runners on the left and right sides;
  • a cantilever the front end of which is connected with the box body, and a second runner is installed at the rear end of the cantilever;
  • the cantilever can be rotated or fixed relative to the box body, the second runner can be steered relative to the cantilever, and the first runner and the second runner are used to drive the multi-purpose planet detection car.
  • the cantilever is installed with a first locking mechanism, and the first locking mechanism enables the cantilever to remain fixed relative to the box;
  • the multi-purpose planetary exploration vehicle is equipped with detection devices
  • the detection device includes a plurality of multi-dimensional force sensors, and the plurality of multi-dimensional force sensors are respectively installed at the rotation shafts of the first runner and the second runner.
  • the two first wheels enable the multi-purpose planetary exploration vehicle to steer through a differential steering mode.
  • the second runner is connected to the cantilever through a steering mechanism, and the steering mechanism includes:
  • a cross arm connected with the second runner
  • a vertical arm the lower end of which is connected with the horizontal arm, and the vertical arm is located on one side of the second runner;
  • One end of the connecting plate is connected with the upper end of the vertical arm, and the other end of the connecting plate is hinged with the cantilever.
  • a second locking mechanism is installed on the cantilever, and the second locking mechanism can prevent the second runner from turning relative to the cantilever.
  • the second runner is connected to the cantilever through a steering mechanism, and the steering mechanism is equipped with a second driving motor, and the second driving motor is used to drive the second runner to steer relative to the cantilever.
  • the second drive motor is equipped with an encoder, and the encoder is used to detect the turning angle of the second turning wheel relative to the cantilever.
  • a first driving motor is installed on the second runner, and the first driving motor is used to drive the second runner to rotate;
  • the multi-purpose planetary exploration vehicle is equipped with a controller which is respectively connected with the first locking mechanism, the second locking mechanism, the first driving motor and the second driving motor.
  • the second rotating wheel can drive the cantilever to rotate relative to the box body.
  • the cantilever has a rectangular plate-shaped structure, and the front and rear ends of the cantilever are two ends in the length direction.
  • first runner and the second runner are cylindrical structures, and the outer surfaces of the first runner and the second runner are respectively formed with a plurality of convex edges, and a plurality of the The convex ribs are arranged around the outer circular surfaces of the first runner and the second runner.
  • the second runner can move along the cantilever and be held at any position between the front end and the rear end of the cantilever.
  • the cantilever is installed with:
  • a rack fixed to the second runner, the rack extending along the front and rear direction of the cantilever;
  • the driving mechanism is connected with the gear.
  • the cantilever is provided with a rectangular through hole, the rectangular through hole is arranged in parallel with the rack, and a movable seat is installed in the rectangular through hole, and the movable seat can follow the length of the rectangular through hole.
  • the rack is fixed to the moving base, the moving base is hingedly mounted with a steering mechanism, the steering mechanism is connected with the second runner, the moving base is mounted with a second drive motor, The second driving motor is used to rotate the steering mechanism.
  • a plurality of plate-shaped members are fixed in the box body, the plurality of plate-shaped members are arranged parallel to each other, and two adjacent plate-shaped members are arranged at a distance.
  • two bearing parts are installed at the rear end of the cantilever, and the two bearing parts are respectively located on the left and right sides of the cantilever.
  • the body of the probe vehicle in the present invention is mainly composed of a box body and a cantilever, and is mainly composed of two first runners and a second runner to form a tricycle body structure, which makes the body structure of the probe vehicle very simple; In this way, on the one hand, as a large planetary rover, that is, the mother rover, because it has only three wheels, there are fewer wheels; in this way, compared with a four-wheel or six-wheeled planetary rover, at least one driving wheel is reduced.
  • the independent rover takes advantage of the very simple structure of the vehicle body, which enables the vehicle body to be equipped with effective detectors, while reducing the volume and weight of the vehicle body, thereby realizing the effect of the "special geographic location" mentioned in the background art.
  • the cantilever while using the characteristics that the cantilever can rotate relative to the box body and the second wheel can rotate relative to the cantilever, so that the car body can be flexibly turned according to the actual terrain of the alien planet, thereby improving the rover’s applicability to various terrains Sex.
  • the small probe vehicle that is, the sub probe vehicle
  • it can not only take advantage of the simple structure of the vehicle body, but also carry more detection devices, so as to effectively detect the "special geographic location" mentioned in the background technology. ;
  • the first runner and the second runner are both driving wheels to eliminate the wheel to the ground.
  • the huge bulldozing resistance allows the small rover to travel quickly and reduce energy consumption.
  • the use of the second wheel, cantilever and box can be turned to make the small rover have very flexible steering capabilities.
  • the currently developed planetary exploration vehicle with integral chassis and the planetary exploration vehicle with split chassis (the "split chassis” mentioned in the present invention is mainly for trailer-type chassis, that is, the front body and the rear body Articulated, and the front body and the rear body can rotate relative to each other), it is necessary to carry out the verification problem before detection.
  • the cantilever can be rotated or fixed relative to the box body", so that the cantilever and the box body are fixed Form an integral chassis; and when the cantilever and the box body rotate, the two first runners and the box body form the front body, and the cantilever and the second runner form the rear body, and then install it on the body Corresponding detection devices, and carry out detection and comparison analysis of the driving state in these two car body states, so as to realize effective detection and verification.
  • the vehicle body structure of two configurations is formed only by the cantilever being selectively held fixed or relative to the box body, so that the conversion mode of the two different configurations is very simple.
  • the probe vehicle of the present invention can be used as a large planetary probe vehicle or an independent planetary probe vehicle or a small planetary probe vehicle or a preliminary verification vehicle for planetary exploration, and therefore has a wide range of multi-purpose functions.
  • Figure 1 is a schematic front view of the multi-purpose planetary exploration vehicle
  • Figure 2 is a cross-sectional view taken along line AA of Figure 1;
  • Figure 3 is a schematic top view of the cantilever.
  • first”, “second”, “third”, “fourth” and “fifth” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly specifying the indicated technical features quantity. Therefore, the features defined as “first”, “second”, “third”, “fourth”, and “fifth” may explicitly or implicitly include at least one of the features.
  • this embodiment provides a multi-purpose planetary exploration vehicle, which includes a box body 100 and a cantilever 200.
  • a first runner 300 is installed on the left and right sides of the box 100; the front end of the cantilever 200 is connected to the box 100, and the rear end of the cantilever 200 is equipped with a second wheel 400; wherein the cantilever 200 can rotate or rotate relative to the box 100.
  • Fixed, the second runner 400 can steer relative to the cantilever 200, and the first runner 300 and the second runner 400 are used to drive the multi-purpose planetary exploration vehicle.
  • first runners 300 can drive the rover to steer, or only rely on the second runner 400 to drive the rover.
  • the rover turns.
  • the rover in this embodiment can also be regarded as a planetary exploration robot, which realizes autonomous detection through artificial intelligence.
  • the cantilever 200 can be rotated or fixed with respect to the box body 100, which can be specifically realized by the “limiting mechanism” mentioned later, which will not be explained here.
  • the second runner 400 can be steered relative to the cantilever 200, which can also be specifically realized by the "limiting mechanism” mentioned later, which will not be explained here.
  • the body of the probe vehicle in this embodiment is mainly composed of a box body 100 and a cantilever 200, and is mainly composed of two first runners 300 and a second runner 400 to form a tricycle body structure, so that the probe vehicle
  • the body structure is very simple; in this way, on the one hand, as a large planetary exploration vehicle, that is, the mother exploration vehicle, because it has only three wheels, there are few wheels; this way, compared with the four-wheel or six-wheeled planetary exploration vehicle, at least one drive is reduced Wheels, on the premise of the same frame size and volume, add more load-bearing areas, so that more detection equipment can be carried, especially to provide a very good platform for sub-probing vehicles with larger volume and weight; On the other hand, as an independent probe vehicle, it takes advantage of the very simple structure of the vehicle body, which enables the vehicle body to be equipped with effective detectors while reducing the volume and weight of the vehicle body, thereby achieving the "Geographical location" is used for effective detection, and
  • the small probe vehicle that is, the sub probe vehicle
  • it can not only take advantage of the simple structure of the vehicle body, but also carry more detection devices, so as to effectively detect the "special geographic location" mentioned in the background technology.
  • the huge bulldozing resistance to the ground allows the small rover to travel quickly and reduce energy consumption.
  • the use of the second runner 400, the cantilever 200 and the box 100 can all turn to make the small rover very flexible Steering ability.
  • the split chassis mentioned in this embodiment is mainly for the trailer-type chassis, that is, the front body and the rear car The body is hinged, and the front body and the rear body can rotate relative to each other), the verification problem before detection is required.
  • the cantilever 200 can be rotated or fixed relative to the box 100" to make the cantilever 200 and the box 100 When fixed, it constitutes an integral chassis; when the cantilever 200 and the box body 100 rotate, the two first runners 300 and the box body 100 constitute the front body, and the cantilever 200 and the second runner 400 constitute The rear car body then installs corresponding detection devices on the car body, and detects and compares and analyzes the driving state of the two car body states, thereby realizing effective detection and verification.
  • only the cantilever 200 can be selectively held fixed or relatively rotated with the box body 100 to form a vehicle body structure of two configurations, which makes the conversion of the two different configurations very simple.
  • the probe vehicle of this embodiment can be used as a large planetary probe vehicle or an independent planetary probe vehicle or a small planetary probe vehicle or a preliminary verification vehicle for planetary exploration, so it has a wide range of multi-purpose functions.
  • the steering modes of the aforementioned "integral" and “split" car bodies are different; since the cantilever 200 and the box 100 are kept fixed in the integrated state, two car bodies are required to steer.
  • the first runner 300 is steered in a differential manner, and then the second runner 400 follows the corresponding steering, so that the integral car body completes the corresponding steering action; while in the split car body structure state, the cantilever 200 is opposite to the box
  • the body 100 can rotate, but the second runner 400 cannot steer relative to the cantilever 200.
  • the car body turns, the car body is steered by the two first runners 300.
  • the cantilever 200 and the second runner 400 use Relative to the feature that the box 100 can be rotated, the steering can be realized in the process of following the movement of the box 100.
  • the cantilever 200 is equipped with a first locking mechanism, and the first locking mechanism enables the cantilever 200 to be fixed relative to the box body 100;
  • the multi-purpose planetary exploration vehicle is equipped with a detection device;
  • the detection device includes a plurality of multi-dimensional force sensors 500, and the plurality of multi-dimensional force sensors 500 are respectively installed at the rotating shafts of the first runner 300 and the second runner 400.
  • a six-dimensional force sensor is used.
  • the first locking mechanism may include a plurality of screws, which are penetrated by the screws and held in the cantilever 200 and the box body 100 at the same time, so that the cantilever arm 200 is kept fixed relative to the box body 100.
  • first locking mechanism may include a plurality of screws, which are penetrated by the screws and held in the cantilever 200 and the box body 100 at the same time, so that the cantilever arm 200 is kept fixed relative to the box body 100.
  • the inventor of this embodiment found that the driving state of the vehicle is mainly obtained by detecting the supporting force of different types of terrain on the vehicle body during the driving of the vehicle. Therefore, the multiple multidimensional force sensors 500 are separately Installed on the shafts of the first runner 300 and the second runner 400, it can detect the force and moment of the car body in different terrains; and the transformation of the two car body states is performed by the first locking mechanism on the cantilever 200 and the box body The locking of 100 can be achieved. This makes it convenient and quick to switch between the two body configurations.
  • the two first wheels 300 enable the multi-purpose planetary exploration vehicle to be steered through a differential steering method.
  • each first runner 300 may be installed with a third driving motor, so that the two first runners 300 can be used as driving wheels independently.
  • the rotation speed of the two third drive motors is controlled to be different; for example, the third drive motor on the left rotates while the third drive motor on the right does not rotate, thereby realizing the cabinet 100 turned to one side.
  • Differential steering makes the mechanical structure simple, which is achieved only by changing the control program, while ensuring that each drive wheel has a powerful driving function, while the use of a mechanical mechanism in the form of steering will increase the weight and volume of the car body; at the same time, two The third driving motor can independently provide driving force for each first rotating wheel 300 respectively.
  • the cantilever 200 is equipped with a second locking mechanism, and the second locking mechanism can prevent the second runner 400 from turning relative to the cantilever 200.
  • the structural form of the second locking mechanism may be the same as the structural form of the first locking mechanism.
  • the second runner 400 is connected to the cantilever 200 through a steering mechanism 600, and the steering mechanism 600 includes a cross arm 601, a vertical arm 602 and a connecting plate 603.
  • the horizontal arm 601 is connected with the second runner 400; the lower end of the vertical arm 602 is connected with the horizontal arm 601, and the vertical arm 602 is located on one side of the second runner 400; one end of the connecting plate 603 is connected with the upper end of the vertical arm 602, and the connecting plate 603
  • the other end of the cantilever 200 is hinged.
  • the steering mechanism 600 in this embodiment only consists of a cross arm 601, a vertical arm 602 and a connecting plate 603, so that the steering mechanism 600 has a simple structure and a light weight.
  • the second runner 400 is connected to the cantilever 200 through a steering mechanism 600, and the steering mechanism 600 is equipped with a second driving motor 604, and the second driving motor 604 is used to drive the second runner 400 to steer relative to the cantilever 200.
  • the second driving motor 604 is equipped with an encoder, and the encoder is used to detect the turning angle of the second rotating wheel 400 relative to the cantilever 200.
  • first drive motor 401 and the third drive motor mentioned later in this embodiment can also use encoders to learn their rotation angles.
  • a first driving motor 401 is installed on the second runner 400, and the first driving motor 401 is used to drive the second runner 400 to rotate;
  • the multi-purpose planetary exploration vehicle is equipped with a controller, which is respectively connected with the first locking mechanism, the second locking mechanism, the first driving motor 401 and the second driving motor 604.
  • the second rotating wheel 400 can drive the cantilever 200 to rotate relative to the box 100.
  • the controller is connected to the first locking mechanism, the second locking mechanism, the first driving motor 401, and the second driving motor 604 respectively, so that the controller can control the first locking mechanism and the second locking mechanism to execute Locking or non-locking action; and simultaneously controlling the first drive motor 401 and the second drive motor 604 to perform corresponding forward rotation, reverse rotation and stop rotation actions.
  • the first locking mechanism can be stopped, that is, unlocked, so that the cantilever 200 can rotate relative to the box 100
  • the second locking mechanism is also unlocked, so that the second driving motor 604 can drive the second rotating wheel 400 to turn.
  • the second driving motor 604 drives the second runner 400 to turn, and then the first driving motor 401 drives the second runner 400 to rotate, so that the second The rotating wheel 400 drives the cantilever 200 to rotate to a designated position, and then the second driving motor 604 drives the second rotating wheel 400 to turn again to adjust the posture of the second rotating wheel 400 relative to the cantilever 200.
  • encoders can be installed at the first drive motor 401 and the second drive motor 604 to detect the rotation angle.
  • the first locking mechanism and the second locking mechanism work to fix the cantilever 200 and the box 100 respectively, and the cantilever 200 and the second runner 400 cannot be steered.
  • the first locking mechanism and the second locking mechanism mentioned here are controllable automatic locking mechanisms;
  • the first locking mechanism may include a brake lever, which is installed on the box 100,
  • the moving rod is driven by the rack and pinion 201 assembly to cooperate with the fourth drive motor to move up and down.
  • a through hole is opened at the cantilever 200, which can be extended into the through hole during the up and down movement of the brake lever, thereby preventing the cantilever 200 from being opposed to each other.
  • the box body 100 rotates.
  • the cantilever 200 When the brake lever needs to be inserted into the through hole, the cantilever 200 is rotated to the designated position relative to the box body 100 through the second runner 400 (you can install magnetic through the through hole and the brake lever)
  • An induction device such as an electromagnetic sensor, detects whether it is aligned), so that the through hole is aligned with the brake rod, and the brake rod enters the through hole, so that the cantilever 200 is fixed relative to the box 100.
  • the controller is connected with the fourth drive motor of the first locking mechanism to realize the locking control of the first locking mechanism.
  • controllable automatic locking mode of the second locking mechanism is also the same, and the explanation is omitted here.
  • the cantilever 200 has a rectangular plate-shaped structure, and the front and rear ends of the cantilever 200 are two ends in the length direction. It should be noted that the length of the cantilever 200 is the front and back direction in the figure.
  • the three-wheeled rover is more uneven than the four-wheel and six-wheeled rover.
  • the lateral force generated by the soft ground on the vehicle body is more uneven, especially the second one.
  • the lateral force on the soft ground borne by the runner 400 is transmitted to the cantilever 200 through the steering mechanism 600, and the lateral force on the soft ground borne by the two first runners 300 will also pass through the box 100
  • the cantilever 200 is transmitted to the cantilever 200, so the front and rear ends of the cantilever 200 bear torsion and torque in different directions, which have a great impact on the performance and service life of the cantilever 200.
  • the shape structure has the characteristics of extremely strong tension and high torsion resistance and deformation resistance.
  • the rectangular plate structure is used as the structural form of the cantilever 200, so that the cantilever 200 has strong torsion resistance and deformation resistance.
  • first runner 300 and the second runner 400 are both cylindrical structures, and the outer circular surfaces of the first runner 300 and the second runner 400 are respectively formed with a plurality of ribs 700, and the plurality of ribs 700 surround The outer surfaces of the first runner 300 and the second runner 400 are arranged.
  • the contact between the first runner 300 and the second runner 400 and the surface of the alien planet can be increased.
  • the area prevents the first runner 300 and the second runner 400 from being too small to bear the weight of the vehicle body, and causing the wheels to sink into the soft ground on the outer planet surface and unable to drive.
  • the ribs 700 are used to further increase the contact force of the wheels on the soft ground and improve the driving efficiency of the wheels on the ground. .
  • the second runner 400 can move along the cantilever 200 and be held at any position between the front end and the rear end of the cantilever 200.
  • the feature that the second runner 400 can move along the cantilever 200 is used to make the second runner 400 move to a designated position along the cantilever 200, eliminating the occurrence of the second runner 400 cooperating with the cantilever 200 during rotation. Error.
  • the second runner 400 can move along the cantilever 200 and be held at any position between the front end and the rear end of the cantilever 200.
  • the second runner 400 can also be adjusted to adjust its position in accordance with the actual situation of its running. It is better suited to the steering needs of narrow terrain or complex terrain.
  • the second runner 400 can be moved along the cantilever 200 to make The second runner 400 avoids the obstacle.
  • the cantilever 200 is installed with a rack 201, a gear, and a driving mechanism 203.
  • the rack 201 is fixed to the second runner 400, and the rack 201 extends along the front and rear direction of the cantilever 200; the gear meshes with the rack 201; and the driving mechanism 203 is connected with the gear.
  • the rack 201, the gear, and the driving mechanism 203 realize that the second runner 400 can move along the cantilever 200 and be held at any position between the front end and the rear end of the cantilever 200.
  • the driving mechanism 203 may be a fifth driving motor to drive the gear to move relative to the rack 201.
  • the second driving motor 604 is connected to the moving base 205 through a motor fixing structure, which is mainly made of alloy steel;
  • the steering mechanism 600 is connected to the moving base 205 through a steering fixing structure, which is mainly made of alloy steel.
  • the movable seat 205 is a seat body made of alloy steel.
  • the cantilever 200 is provided with a rectangular through hole 204, the rectangular through hole 204 is arranged parallel to the rack 201, and a movable seat 205 is installed in the rectangular through hole 204, and the movable seat 205 can reciprocate along the length of the rectangular through hole 204.
  • the rack 201 is fixed to the moving base 205, the moving base 205 is hingedly mounted with a steering mechanism 600, the steering mechanism 600 is connected with the second runner 400, and the moving base 205 is mounted with a second drive motor 604, which is used to make the steering The mechanism 600 rotates.
  • the length direction of the rectangular through hole 204 is the front and back direction in the figure.
  • the two sides of the rectangular through hole 204 in the longitudinal direction are respectively formed with guide rails 206, the guide rail 206 extends along the longitudinal direction of the rectangular through hole 204, the left and right sides of the movable seat 205 are respectively formed with grooves, and the guide rail 206 is held in the groove. in.
  • the arrangement of the rectangular through hole 204 plays a role of limiting the position of the movable seat 205 on the one hand, and on the other hand, the rectangular through hole 204 also reduces the weight of the cantilever 200.
  • a plurality of plate-shaped members are fixed in the box body 100, and the plurality of plate-shaped members are arranged parallel to each other, and two adjacent plate-shaped members are arranged at a distance.
  • the space in the box 100 is divided into multiple layers of spaces by the plate-shaped members, and different components are placed in different layers of space, so that the space utilization rate in the box 100 and the layout of the inner space are more reasonable.
  • two bearing parts are installed at the rear end of the cantilever 200, and the two bearing parts are respectively located on the left and right sides of the cantilever 200.
  • a large amount of carrying space is required, and the three-wheel structure of the exploration vehicle can make full use of the space at the rear end of the cantilever 200, and the rear end of the cantilever 200 only has a second runner 400.
  • a large amount of usable space can be formed, so as to fully meet the carrying needs of large-scale planetary exploration vehicles and independent planetary exploration vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本发明提供了一种多用途星球探测车,涉及星球探测技术领域。所述多用途星球探测车包括:箱体,其左右两侧分别安装有第一转轮;以及悬臂,其前端与所述箱体连接,所述悬臂的后端安装有第二转轮;其中,所述悬臂相对所述箱体能够转动或固定,所述第二转轮相对所述悬臂能够转向,所述第一转轮和所述第二转轮用于驱动所述多用途星球探测车。相对现有技术,本发明的多用途星球探测车能够对外星球上的悬崖、火山口、陨石坑以及熔岩洞等特殊地理位置进行有效探索。

Description

一种多用途星球探测车 技术领域
本发明涉及星球探测技术领域,具体而言,涉及一种多用途星球探测车。
背景技术
目前世界上已经投入使用的星球探测车虽然能在松软崎岖地形上行驶,但是其体积大、质量重,不便于对外星球上的悬崖、火山口、陨石坑以及熔岩洞等特殊地理位置进行探索。
为此,通常在大型的星球探测车(母车)上搭载小型探测车,利用小型探测车(子车)对前述特殊地理位置进行探索,也就是利用“子母车”进行探索;但是,受体积和重量的限制,通常需要将小型探测车的体积压缩许多,因此通常采用两轮结构形式的小型探测车;然而,两轮结构形式的小型探测车受其自身结构限制,一方面,搭载的探测器件少,不能对前述特殊地理位置进行充分有效的探测;另一方面,需要额外安装起支撑作用的从动轮,而从动轮会产生巨大的推土阻力,从而使小型探测车行驶缓慢、功耗大,并且控制困难,实际运动路径与规划路径的偏差大。
因此,对于大型星球探测车和小型星球探测车来说,如何使星球探测车既能够搭载充足的探测设备又可以充分限制并降低其体积和重量成为一大难题。
另外,随着星球探测的不断发展,新的设计理念使星球探测车的结构形式也变得多种多样,最主要的是整体式底盘的星球探测车和分体式底盘的星球探测车,然而,目前缺少对其有效的前期验证能力。
发明内容
本发明旨在一定程度上解决现有的星球探测车不能对外星球上的悬崖、火山口、陨石坑以及熔岩洞等特殊地理位置进行有效探索,另外无法对整体式底盘的星球探测车和分体式底盘的星球探测车进行有效检测验证。
为解决上述问题,本发明提供一种多用途星球探测车,包括:
箱体,其左右两侧分别安装有第一转轮;以及
悬臂,其前端与所述箱体连接,所述悬臂的后端安装有第二转轮;
其中,所述悬臂相对所述箱体能够转动或固定,所述第二转轮相对所述悬臂能够转向,所述第一转轮和所述第二转轮用于驱动所述多用途星球探测车。
进一步地,所述悬臂安装有第一锁紧机构,所述第一锁紧机构使所述悬臂能够相对所述箱体保持固定;
所述多用途星球探测车安装有检测器件;
所述检测器件包括有多个多维力传感器,多个所述多维力传感器分别安装于所述第一转轮及所述第二转轮的转轴处。
进一步地,两个所述第一转轮通过差速转向方式使所述多用途星球探测车能够转向。
进一步地,所述第二转轮通过转向机构与所述悬臂连接,所述转向机构包括:
横臂,与所述第二转轮连接;
竖臂,其下端与所述横臂连接,所述竖臂位于所述第二转轮的一侧;以及
连接板,其一端与所述竖臂的上端连接,所述连接板的另一端与所述悬臂铰接。
进一步地,所述悬臂安装有第二锁紧机构,所述第二锁紧机构能够阻止所述第二转轮相对所述悬臂转向。
进一步地,所述第二转轮通过转向机构与所述悬臂连接,所述转向机构安装有第二驱动电机,所述第二驱动电机用于驱动所述第二转轮相对所述悬臂转向。
进一步地,所述第二驱动电机安装有编码器,所述编码器用于检测所述第二转轮相对所述悬臂发生转向的转角。
进一步地,所述第二转轮安装有第一驱动电机,所述第一驱动电机用于驱动所述第二转轮转动;
所述多用途星球探测车安装有控制器,所述控制器分别同所述第一锁紧机构、所述第二锁紧机构、所述第一驱动电机及所述第二驱动电机连接。
进一步地,所述第二转轮能够驱使所述悬臂相对所述箱体转动。
进一步地,所述悬臂呈长方形板状结构,所述悬臂的前端及后端为其长度方向的两个端部。
进一步地,所述第一转轮及所述第二转轮为圆柱体结构,所述第一转轮及所述第二转轮的外圆面分别形成有多个凸棱,多个所述凸棱环绕所述第一转轮及所述第二转轮的外圆面设置。
进一步地,所述第二转轮能够沿着所述悬臂移动并保持于所述悬臂的前端与后端之间的任意位置处。
进一步地,所述悬臂安装有:
齿条,与所述第二转轮固定,所述齿条沿着所述悬臂的前后方向延伸;
齿轮,与所述齿条啮合;以及
驱动机构,与所述齿轮连接。
进一步地,所述悬臂开设有长方形通孔,所述长方形通孔与所述齿条平行设置,所述长方形通孔中安装有移动座,所述移动座能够沿着所述长方形通孔的长度方向往复移动,所述齿条与所述移动座固定,所述移动座铰接安装有转向机构,所述转向机构与所述第二转轮连接,所述移动座安装有第二驱动电机,所述第二驱动电机用于使所述转向机构转动。
进一步地,所述箱体内固定有多个板状件,多个所述板状件相互平行设置,相邻两个所述板状件呈间距布置。
进一步地,所述悬臂的后端安装有两个承载部,两个所述承载部分别位于所述悬臂的左右两侧。
本发明中的该探测车的车体仅仅主要由箱体和悬臂组成,并主要由两个第一转轮和一个第二转轮组成三轮车体结构,使得该探测车的车体结构非常简单;这样,一方面,作为大型星球探测车,也就是母探测车,由于其仅仅具有三个车轮,车轮少;这样,相对于四轮或六轮的星球探测车减少了至少一个驱动轮,在车架外形体积相同的前提下,增加了更多的承载区,从而可以搭载更多的探测设备,尤其是为搭载体积和重量更大的子探测车提供了非常好的搭载平台;另一方面,作为独立探测车,利用车体结构非常简单的特点,在使车体搭载有效的探测器件的同时,使车体的体积和重量降低,从而实现对背景技术中提及的“特殊地理位置”进行有效探测,同时利用悬臂能 够相对箱体转动,以及第二转轮能够相对悬臂转向的特点,使得车体可以根据外星球的实际地形而进行灵活多样的转向,从而提高探测车对各种地形的适用性。再一方面,针对小型探测车,也就是子探测车,既能够利用车体结构简单的特点,可以搭载更多的探测器件,从而对背景技术中提及的“特殊地理位置”进行有效的探测;并且,利用两个第一转轮与一个第二转轮使车体对地面形成有效支撑的同时,利用第一转轮与第二转轮都是驱动轮的特点来消除车轮对地面产生的巨大推土阻力,使小型探测车可以快速行驶并降低能耗浪费,而且利用第二转轮、悬臂和箱体都能够转向的特点,使小型探测车具有十分灵活的转向能力。
另外,针对目前研制的整体式底盘的星球探测车和分体式底盘的星球探测车(本发明中提及的“分体式底盘”主要是针对挂车式的底盘,也就是前车体与后车体铰接,并且前车体与后车体能够相对转动),需要进行探测之前的验证问题,该探测车利用“悬臂相对箱体能够转动或固定”的特点,使得悬臂与箱体在固定的情况下构成整体式底盘;而在悬臂与箱体转动的情况下,使得两个第一转轮与箱体构成前车体,而悬臂与第二转轮构成后车体,然后通过在车体上安装相应的检测器件,并对这两种车体状态下的行驶状态进行检测及比对分析,从而实现有效的检测验证。
而且,本发明中,仅仅通过悬臂可选择的与箱体保持固定或相对转动便形成了两种构型的车体结构,使得两种不同构型的变换方式十分简单。
这样,本发明的该探测车可以作为大型的星球探测车或独立的星球探测车或小型的星球探测车或用于星球探测的前期验证车使用,因此具有广泛的多用途功能。
附图说明
图1为所述多用途星球探测车的示意性主视图;
图2为图1的AA剖视图;
图3为所述悬臂的示意性俯视图。
附图标记说明:
100箱体,200悬臂,201齿条,203驱动机构,204长方形通孔,205移动座,206导轨,300第一转轮,400第二转轮,401第一驱动电机,500多维力传感器,600转向机构,601横臂,602竖臂,603连接板,604第二驱动电机,700凸棱。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
在本发明的描述中,需要理解的是,术语“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”、“第三”、“第四”、“第五”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”、“第五”的特征可以明示或者隐含地包括至少一个该特征。
参见图1至图3,本实施方式提供了一种多用途星球探测车,包括:箱体100以及悬臂200。箱体100的左右两侧分别安装有第一转轮300;悬臂200的前端与箱体100连接,悬臂200的后端安装有第二转轮400;其中,悬臂200相对箱体100能够转动或固定,第二转轮400相对悬臂200能够转向,第一转轮300和第二转轮400用于驱动多用途星球探测车。
需要说明的是,箱体100的左右两侧分别安装有第一转轮300;这里的两个第一转轮300既可以驱使该探测车转向,也可以仅仅依靠第二转轮400而驱使该探测车转向。
另外,本实施方式中的该探测车也可以认为是星球探测机器人,通过人工智能实现自主探测。
另外,悬臂200相对箱体100能够转动或固定,具体可以通过后文提及的“限位机构”实现,在此处不再解释说明。
同理,第二转轮400相对悬臂200能够转向,具体也可以通过后文提及的“限位机构”实现,在此处不再解释说明。
本实施方式中的该探测车的车体仅仅主要由箱体100和悬臂200组成,并主要由两个第一转轮300和一个第二转轮400组成三轮车体结构,使得该探测车的车体结构非常简单;这样,一方面,作为大型星球探测车,也就是母探测车,由于其仅仅具有三个车轮,车轮少;这样,相对于四轮或六轮的星球探测车减少了至少一个驱动轮,在车架外形体积相同的前提下,增加了更多的承载区,从而可以搭载更多的探测设备,尤其是为搭载体积和重量更大的子探测车提供了非常好的搭载平台;另一方面,作为独立探测车,利用车体结构非常简单的特点,在使车体搭载有效的探测器件的同时,使车体的体积和重量降低,从而实现对背景技术中提及的“特殊地理位置”进行有效探测,同时利用悬臂200能够相对箱体100转动,以及第二转轮400能够相对悬臂200转向的特点,使得车体可以根据外星球的实际地形而进行灵活多样的转向,从而提高探测车对各种地形的适用性。再一方面,针对小型探测车,也就是子探测车,既能够利用车体结构简单的特点,可以搭载更多的探测器件,从而对背景技术中提及的“特殊地理位置”进行有效的探测;并且,利用两个第一转轮300与一个第二转轮400使车体对地面形成有效支撑的同时,利用第一转轮300与第二转轮400都是驱动轮的特点来消除车轮对地面产生的巨大推土阻力,使小型探测车可以快速行驶并降低能耗浪费,而且利用第二转轮400、悬臂200和箱体100都能够转向的特点,使小型探测车具有十分灵活的转向能力。
另外,针对目前研制的整体式底盘的星球探测车和分体式底盘的星球探测车(本实施方式中提及的“分体式底盘”主要是针对挂车式的底盘,也就是前车体与后车体铰接,并且前车体与后车体能够相对转动),需要进行探测之前的验证问题,该探测车利用“悬臂200相对箱体100能够转动或固定”的特点,使得悬臂200与箱体100在固定的情况下构成整体式底盘;而在悬臂200与箱体100转动的情况下,使得两个第一转轮300与箱体100构成前车体,而悬臂200与第二转轮400构成后车体,然后通过在车体上安装相应的检测器件,并对这两种车体状态下的行驶状态进行检测及比对分析,从而 实现有效的检测验证。
而且,本实施方式中,仅仅通过悬臂200可选择的与箱体100保持固定或相对转动便形成了两种构型的车体结构,使得两种不同构型的变换方式十分简单。
这样,本实施方式的该探测车可以作为大型的星球探测车或独立的星球探测车或小型的星球探测车或用于星球探测的前期验证车使用,因此具有广泛的多用途功能。
需要说明的是,前述“整体式”和“分体式”车体的转向方式是不同的;由于整体式的状态下,悬臂200与箱体100保持固定,车体要想进行转向,需要两个第一转轮300通过差速方式转向,接着,第二转轮400跟随进行相应的转向,从而使整体式车体完成相应的转向动作;而在分体式车体结构状态下,悬臂200相对箱体100可以转动,而第二转轮400相对悬臂200无法转向,此时车体转向时,通过两个第一转轮300转向使车体发生转向,接着,悬臂200和第二转轮400利用相对箱体100能够转动的特点,在跟随箱体100移动过程中实现转向。
进一步地,悬臂200安装有第一锁紧机构,第一锁紧机构使悬臂200能够相对箱体100保持固定;多用途星球探测车安装有检测器件;
检测器件包括有多个多维力传感器500,多个多维力传感器500分别安装于第一转轮300及第二转轮400的转轴处。
优选地,使用六维力传感器。
需要说明的是,第一锁紧机构可以包括多个螺钉,通过螺钉穿射并同时保持在悬臂200和箱体100中,从而使悬臂200相对箱体100保持固定。当然,第一锁紧机构的结构形式还有多种多样,这将在本实施方式的后文中尽可能详尽的阐明,在此不再过多解释说明。
作为验证车,需要对前述两种车体结构下的行驶状态进行检测、对比及验证。因此需要安装相应的检测器件,而本实施方式的发明人发现,车辆行驶状态主要是通过检测车辆行驶中不同类型的地形对车体的支撑力来获知的,因此将多个多维力传感器500分别安装于第一转轮300及第二转轮400的转轴处,可以检测车体在不同地形的受力及力矩;而两种车体状态的变换 通过第一锁紧机构对悬臂200和箱体100的锁紧便可以实现。从而使两种车体构型之间切换方便快速。
进一步地,两个第一转轮300通过差速转向方式使多用途星球探测车能够转向。
需要说明的是,每个第一转轮300可以安装有一个第三驱动电机,从而实现两个第一转轮300能够分别独立的作为驱动轮。
同时,在利用差速转向方式进行转向时候,通过控制使两个第三驱动电机的转速不同;例如左侧的第三驱动电机转动,而右侧的第三驱动电机不转动,从而实现箱体100向一侧转向。
差速转向使机械结构简单,而仅仅通过改变控制程序实现,同时保证每个驱动轮具有强有力的驱动功能,而采用机械机构形式的转向方式会增大车体重量和体积;同时,两个第三驱动电机可以分别独立的为每个第一转轮300提供驱动力。
进一步地,悬臂200安装有第二锁紧机构,第二锁紧机构能够阻止第二转轮400相对悬臂200转向。
需要说明的是,第二锁紧机构的结构形式可以与第一锁紧机构的结构形式相同。
进一步地,第二转轮400通过转向机构600与悬臂200连接,转向机构600包括:横臂601、竖臂602以及连接板603。横臂601与第二转轮400连接;竖臂602的下端与横臂601连接,竖臂602位于第二转轮400的一侧;连接板603一端与竖臂602的上端连接,连接板603的另一端与悬臂200铰接。
本实施方式中的转向机构600仅仅由横臂601、竖臂602以及连接板603组成,使得转向机构600结构简单,并且重量轻。
进一步地,第二转轮400通过转向机构600与悬臂200连接,转向机构600安装有第二驱动电机604,第二驱动电机604用于驱动第二转轮400相对悬臂200转向。
进一步地,第二驱动电机604安装有编码器,编码器用于检测第二转轮400相对悬臂200发生转向的转角。
需要说明的是,本实施方式后文将要提到的第一驱动电机401及第三驱动电机也可以使用编码器来获知其转动角度。
使用编码器更加适合于信号传输受到极大限制的情况,可以通过编码器来获知驱动电机的转动角度。
进一步地,第二转轮400安装有第一驱动电机401,第一驱动电机401用于驱动第二转轮400转动;
多用途星球探测车安装有控制器,控制器分别同第一锁紧机构、第二锁紧机构、第一驱动电机401及第二驱动电机604连接。
进一步地,第二转轮400能够驱使悬臂200相对箱体100转动。
利用控制器分别同第一锁紧机构、第二锁紧机构、第一驱动电机401及第二驱动电机604连接,使得控制器可以根据需要而控制第一锁紧机构及第二锁紧机构执行锁紧或非锁紧动作;并同时控制第一驱动电机401及第二驱动电机604执行相应的正转、反转及停止转动的动作。
这样,在前述的“特殊地理位置”中的狭小空间或者特殊情况下,转向空间非常有限的时候,可以使第一锁紧机构停止工作,也就是解锁,从而使悬臂200可以相对箱体100转动,同时第二锁紧机构也解锁,使第二驱动电机604可以驱动第二转轮400转向。这样,在两个第一转轮300驱使箱体100转向后,通过第二驱动电机604驱动第二转轮400转向,然后由第一驱动电机401驱动第二转轮400转动,从而使第二转轮400带动悬臂200转动到指定位置处,然后第二驱动电机604再驱使第二转轮400再次进行转向以调整第二转轮400相对悬臂200的姿态。而在此过程中,可以分别在第一驱动电机401和第二驱动电机604处安装编码器,以检测其转动角度。
当该探测车驶离前述特殊地理位置后,方可通过第一锁紧机构及第二锁紧机构工作而分别使悬臂200与箱体100固定,以及悬臂200与第二转轮400无法转向。
需要说明的是,这里提及的第一锁紧机构及第二锁紧机构为可控制的自动锁紧机构;第一锁紧机构可以包括制动杆,制动杆安装于箱体100,制动杆由齿轮齿条201组件配合第四驱动电机驱动而可以上下移动,在悬臂200处开设有通孔,在制动杆上下移动过程中可以伸入到该通孔中,从而阻止悬 臂200相对箱体100转动,当需要使制动杆***该通孔中时,通过第二转轮400趋势悬臂200相对箱体100转动到指定位置处(可以通过在该通孔及制动杆处安装磁性感应器件,如电磁传感器,来检测是否对正),从而使通孔与制动杆对正,使制动杆进入该通孔中,实现悬臂200相对箱体100固定。
这样,控制器与第一锁紧机构的第四驱动电机连接便可以实现对第一锁紧机构的锁紧控制。
第二锁紧机构实现可控制的自动锁紧方式也相同,在此不再解释说明。
进一步地,悬臂200呈长方形板状结构,悬臂200的前端及后端为其长度方向的两个端部,需要说明的是,悬臂200的长度方向为图中前后方向。
考虑到该探测车探测的星球表面很可能土质松软,而三轮构型的探测车相对于四轮及六轮的探测车承受松软土地对车体产生的侧向力更加不均匀,尤其是第二转轮400承受的松软地面对其产生的侧向力会通过转向机构600传递到悬臂200,同时两个第一转轮300承受的松软地面对其产生的侧向力也会通过箱体100传递到悬臂200处,因此悬臂200的前端和后端承受多个不同方向的扭力和扭力矩,对悬臂200的使用性能及使用寿命产生很大影响,为此,本实施例中利用大面积板状结构具有极强的张力及很高的抗扭力和抗变形能力的特点,使用长方形板状结构作为悬臂200的结构形式,从而使悬臂200具有很强的抗扭力和抗变形能力。
进一步地,第一转轮300及第二转轮400均为圆柱体结构,第一转轮300及第二转轮400的外圆面分别形成有多个凸棱700,多个凸棱700环绕第一转轮300及第二转轮400的外圆面设置。
针对外星球的地质可能存在土质松软的问题,通过使第一转轮300与第二转轮400为圆柱体结构,以增大第一转轮300及第二转轮400同外星球表面的接触面积,防止第一转轮300及第二转轮400因为体积过小而承受车体重量过重,而造成车轮陷入外星球表面的松软地面中而无法行驶。同时,通过增加多个凸棱700并环绕第一转轮300及第二转轮400的外圆面,从而利用凸棱700进一步增大车轮对松软地面的接触力度,提高车轮对地面的驱动效率。
进一步地,第二转轮400能够沿着悬臂200移动并保持于悬臂200的前 端与后端之间的任意位置处。
如此设置,利用第二转轮400能够沿着悬臂200移动的特点,使第二转轮400沿着悬臂200移动到指定的位置处,而消除第二转轮400协同悬臂200进行转动过程中产生的误差。另外,第二转轮400能够沿着悬臂200移动并保持于悬臂200的前端与后端之间的任意位置处,也可以使第二转轮400结合其行驶的实际情况而调整自身位置,从而更好的适用于狭小地形或复杂地形下的转向需要。例如,在悬臂200转动,并且第二转轮400转动行驶的过程中,在预定的第二转轮400行驶轨迹上存在障碍物,则可以通过第二转轮400沿着悬臂200移动,而使第二转轮400避开该障碍物。
进一步地,悬臂200安装有:齿条201、齿轮以及驱动机构203。齿条201与第二转轮400固定,齿条201沿着悬臂200的前后方向延伸;齿轮与齿条201啮合;驱动机构203与齿轮连接。
通过齿条201、齿轮以及驱动机构203实现第二转轮400能够沿着悬臂200移动并保持于悬臂200的前端与后端之间的任意位置处。
并且驱动机构203可以是第五驱动电机,以驱动齿轮与齿条201相对运动。
另外,第二驱动电机604通过电机固定结构与移动座205连接,电机固定结构主要由合金钢制成;转向机构600通过转向固定结构与移动座205连接,转向固定结构主要由合金钢制成,移动座205为合金钢制成的座体。
利用合金钢综合力学性能高的特点,例如强度高、抗变形能力强等,减少外星球表面松软土质对第二转轮400两侧产生不对称侧向力的问题。
进一步地,悬臂200开设有长方形通孔204,长方形通孔204与齿条201平行设置,长方形通孔204中安装有移动座205,移动座205能够沿着长方形通孔204的长度方向往复移动,齿条201与移动座205固定,移动座205铰接安装有转向机构600,转向机构600与第二转轮400连接,移动座205安装有第二驱动电机604,第二驱动电机604用于使转向机构600转动。需要说明的是,长方形通孔204的长度方向为图中前后方向,
其中,长方形通孔204的长度方向的两侧分别形成有导轨206,导轨206沿着长方形通孔204的长度方向延伸,移动座205的左右两侧分别形成有槽 体,导轨206保持于槽体中。
长方形通孔204的设置一方面起到对移动座205限位的作用,另一方面,长方形通孔204还减轻了悬臂200的重量。
进一步地,箱体100内固定有多个板状件,多个板状件相互平行设置,且相邻两个板状件呈间距布置。
通过板状件将箱体100内空间分割为多层空间,并针对不同的部件放置在不同的层空间内,从而箱体100内的空间利用率并使其内空间布置更加合理。
进一步地,悬臂200的后端安装有两个承载部,两个承载部分别位于悬臂200的左右两侧。
针对大型的星球探测车和独立的星球探测车,需要大量的承载空间,而该探测车的三轮结构形式可以充分利用悬臂200的后端的空间,并且悬臂200后端仅仅具有一个第二转轮400,这样,除第二转轮400外,可形成大量的可用空间,从而充分满足大型的星球探测车和独立的星球探测车的承载需要。
虽然本发明公开披露如上,但本发明公开的保护范围并非仅限于此。本领域技术人员在不脱离本发明公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (16)

  1. 一种多用途星球探测车,其中,包括:
    箱体(100),其左右两侧分别安装有第一转轮(300);以及
    悬臂(200),其前端与所述箱体(100)连接,所述悬臂(200)的后端安装有第二转轮(400);
    其中,所述悬臂(200)相对所述箱体(100)能够转动或固定,所述第二转轮(400)相对所述悬臂(200)能够转向,所述第一转轮(300)和所述第二转轮(400)用于驱动所述多用途星球探测车。
  2. 根据权利要求1所述的多用途星球探测车,其中,
    所述悬臂(200)安装有第一锁紧机构,所述第一锁紧机构使所述悬臂(200)能够相对所述箱体(100)保持固定;
    所述多用途星球探测车安装有检测器件;
    所述检测器件包括有多个多维力传感器(500),多个所述多维力传感器(500)分别安装于所述第一转轮(300)及所述第二转轮(400)的转轴处。
  3. 根据权利要求2所述的多用途星球探测车,其中,两个所述第一转轮(300)通过差速转向方式使所述多用途星球探测车能够转向。
  4. 根据权利要求2所述的多用途星球探测车,其中,所述第二转轮(400)通过转向机构(600)与所述悬臂(200)连接,所述转向机构(600)包括:
    横臂(601),与所述第二转轮(400)连接;
    竖臂(602),其下端与所述横臂(601)连接,所述竖臂(602)位于所述第二转轮(400)的一侧;以及
    连接板(603),其一端与所述竖臂(602)的上端连接,所述连接板(603)的另一端与所述悬臂(200)铰接。
  5. 根据权利要求2所述的多用途星球探测车,其中,所述悬臂(200)安装有第二锁紧机构,所述第二锁紧机构能够阻止所述第二转轮(400)相对所述悬臂(200)转向。
  6. 根据权利要求5所述的多用途星球探测车,其中,
    所述第二转轮(400)通过转向机构(600)与所述悬臂(200)连接,所述转向机构(600)安装有第二驱动电机(604),所述第二驱动电机(604)用于驱动所述第二转轮(400)相对所述悬臂(200)转向。
  7. 根据权利要求6所述的多用途星球探测车,其中,所述第二驱动电机(604)安装有编码器,所述编码器用于检测所述第二转轮(400)相对所述悬臂(200)发生转向的转角。
  8. 根据权利要求6所述的多用途星球探测车,其中,
    所述第二转轮(400)安装有第一驱动电机(401),所述第一驱动电机(401)用于驱动所述第二转轮(400)转动;
    所述多用途星球探测车安装有控制器,所述控制器分别同所述第一锁紧机构、所述第二锁紧机构、所述第一驱动电机(401)及所述第二驱动电机(604)连接。
  9. 根据权利要求8所述的多用途星球探测车,其中,所述第二转轮(400)能够驱使所述悬臂(200)相对所述箱体(100)转动。
  10. 根据权利要求1所述的多用途星球探测车,其中,所述悬臂(200)呈长方形板状结构,所述悬臂(200)的前端及后端为其长度方向的两个端部。
  11. 根据权利要求1所述的多用途星球探测车,其中,所述第一转轮(300)及所述第二转轮(400)为圆柱体结构,所述第一转轮(300)及所述第二转轮(400)的外圆面分别形成有多个凸棱(700),多个所述凸棱(700)环绕所述第一转轮(300)及所述第二转轮(400)的外圆面设置。
  12. 根据权利要求1所述的多用途星球探测车,其中,所述第二转轮(400)能够沿着所述悬臂(200)移动并保持于所述悬臂(200)的前端与后端之间的任意位置处。
  13. 根据权利要求12所述的多用途星球探测车,其中,所述悬臂(200)安装有:
    齿条(201),与所述第二转轮(400)固定,所述齿条(201)沿着所述悬 臂(200)的前后方向延伸;
    齿轮,与所述齿条(201)啮合;以及
    驱动机构(203),与所述齿轮连接。
  14. 根据权利要求13所述的多用途星球探测车,其中,所述悬臂(200)开设有长方形通孔(204),所述长方形通孔(204)与所述齿条(201)平行设置,所述长方形通孔(204)中安装有移动座(205),所述移动座(205)能够沿着所述长方形通孔(204)的长度方向往复移动,所述齿条(201)与所述移动座(205)固定,所述移动座(205)铰接安装有转向机构(600),所述转向机构(600)与所述第二转轮(400)连接,所述移动座(205)安装有第二驱动电机(604),所述第二驱动电机(604)用于使所述转向机构(600)转动。
  15. 根据权利要求1所述的多用途星球探测车,其中,所述箱体(100)内固定有多个板状件,多个所述板状件相互平行设置,相邻两个所述板状件呈间距布置。
  16. 根据权利要求1所述的多用途星球探测车,其中,所述悬臂(200)的后端安装有两个承载部,两个所述承载部分别位于所述悬臂(200)的左右两侧。
PCT/CN2020/101378 2019-08-20 2020-07-10 一种多用途星球探测车 WO2021031740A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/629,418 US20220289405A1 (en) 2019-08-20 2020-07-10 Multi-purpose planet rover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910767581.4 2019-08-20
CN201910767581.4A CN110758772B (zh) 2019-08-20 2019-08-20 一种多用途星球探测车

Publications (1)

Publication Number Publication Date
WO2021031740A1 true WO2021031740A1 (zh) 2021-02-25

Family

ID=69329834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101378 WO2021031740A1 (zh) 2019-08-20 2020-07-10 一种多用途星球探测车

Country Status (3)

Country Link
US (1) US20220289405A1 (zh)
CN (1) CN110758772B (zh)
WO (1) WO2021031740A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110758772B (zh) * 2019-08-20 2021-04-16 哈尔滨工业大学 一种多用途星球探测车
CN112429273B (zh) * 2020-11-30 2022-08-23 哈尔滨工业大学 一种悬架结构及星球探测车
CN113086247A (zh) * 2021-04-22 2021-07-09 哈尔滨工业大学 一种星球熔岩管探测车
CN115783306B (zh) * 2022-12-28 2024-05-28 北华大学 单电机绳驱滑轨直摆托举转移机构及转移方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310435A (ja) * 1995-05-22 1996-11-26 Nissan Motor Co Ltd 宇宙探査用走行車
JPH09142399A (ja) * 1995-11-20 1997-06-03 Natl Space Dev Agency Japan<Nasda> 宇宙探査用走行車
JPH10230864A (ja) * 1997-02-18 1998-09-02 Takaoka Electric Mfg Co Ltd ステアリングユニット
JPH10297557A (ja) * 1997-04-25 1998-11-10 Tokyo Inst Of Technol 展開型移動車両
US5901805A (en) * 1995-11-02 1999-05-11 Japan Tobacco Inc. Automatically guided vehicle
CN1718510A (zh) * 2005-07-14 2006-01-11 上海交通大学 月球探测车驱动转向一体化车轮
CN203480309U (zh) * 2013-08-16 2014-03-12 广东益翔自动化科技有限公司 双向无人搬运车的驱动装置
CN104401397A (zh) * 2014-11-22 2015-03-11 湖北荆硕自动化设备有限公司 全方向行走驱动装置
CN204279620U (zh) * 2014-11-10 2015-04-22 深圳市欧铠机器人有限公司 一种带转向角度回馈的驱动机构
CN204713236U (zh) * 2015-06-30 2015-10-21 合肥多加农业科技有限公司 一种高通过性遥控三轮农用机车
CN205524469U (zh) * 2016-04-27 2016-08-31 西南大学 一种轴间距可调节的小车
CN109927776A (zh) * 2017-11-08 2019-06-25 舍弗勒技术股份两合公司 具有转盘装置的车辆和用于控制车辆的方法
CN110758772A (zh) * 2019-08-20 2020-02-07 哈尔滨工业大学 一种多用途星球探测车

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200947311Y (zh) * 2006-04-17 2007-09-12 合肥安达电子有限责任公司 火星探测模拟演示装置
CN105128973A (zh) * 2015-07-27 2015-12-09 徐金鹏 一种火星探测车底盘

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310435A (ja) * 1995-05-22 1996-11-26 Nissan Motor Co Ltd 宇宙探査用走行車
US5901805A (en) * 1995-11-02 1999-05-11 Japan Tobacco Inc. Automatically guided vehicle
JPH09142399A (ja) * 1995-11-20 1997-06-03 Natl Space Dev Agency Japan<Nasda> 宇宙探査用走行車
JPH10230864A (ja) * 1997-02-18 1998-09-02 Takaoka Electric Mfg Co Ltd ステアリングユニット
JPH10297557A (ja) * 1997-04-25 1998-11-10 Tokyo Inst Of Technol 展開型移動車両
CN1718510A (zh) * 2005-07-14 2006-01-11 上海交通大学 月球探测车驱动转向一体化车轮
CN203480309U (zh) * 2013-08-16 2014-03-12 广东益翔自动化科技有限公司 双向无人搬运车的驱动装置
CN204279620U (zh) * 2014-11-10 2015-04-22 深圳市欧铠机器人有限公司 一种带转向角度回馈的驱动机构
CN104401397A (zh) * 2014-11-22 2015-03-11 湖北荆硕自动化设备有限公司 全方向行走驱动装置
CN204713236U (zh) * 2015-06-30 2015-10-21 合肥多加农业科技有限公司 一种高通过性遥控三轮农用机车
CN205524469U (zh) * 2016-04-27 2016-08-31 西南大学 一种轴间距可调节的小车
CN109927776A (zh) * 2017-11-08 2019-06-25 舍弗勒技术股份两合公司 具有转盘装置的车辆和用于控制车辆的方法
CN110758772A (zh) * 2019-08-20 2020-02-07 哈尔滨工业大学 一种多用途星球探测车

Also Published As

Publication number Publication date
CN110758772B (zh) 2021-04-16
CN110758772A (zh) 2020-02-07
US20220289405A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2021031740A1 (zh) 一种多用途星球探测车
CN111591363B (zh) 一种高集成轮腿复合机构及运载平台
CN105774457A (zh) 一种可升降自适应地形agv小车底盘
CN202622792U (zh) 一种新型的差动驱动复合吸附式爬壁机器人
CN205971575U (zh) 可直角壁面自主过渡的磁吸附轮式爬壁机器人
CN102303655B (zh) 一种轮腿复合式移动机器人平台
CN101380978A (zh) 虾形六轮移动机器人
CN102689296A (zh) 一种新型的差动驱动复合吸附式爬壁机器人
CN210526700U (zh) 一种新型停车agv小车
CN108313153A (zh) 一种无人驾驶阶梯攀爬机器人
CN110497892B (zh) 一种潜入式汽车搬运机器人及其控制方法
CN211196423U (zh) 全转向移动底盘以及机器人
CN204038440U (zh) 一种agv运输车
Miller et al. Experiments with a long-range planetary rover
CN112092553A (zh) 一种零转弯半径抗震性强的底盘
CN205766097U (zh) 一种曲面自适应吸附式全方位移动平台
CN102167100B (zh) 一种反四边形双节履带机器人
CN202098476U (zh) 一种轮腿复合式移动机器人平台
CN206606258U (zh) Agv转向机构
CN214985620U (zh) 一种带减震功能的无人扫地车前轮转向机构及无人扫地车
CN212828757U (zh) 一种全地形球形轮腿式机器人
CN107933731B (zh) 同轴式全地形轮腿移动机器人
CN201136558Y (zh) 一种全地形移动机器人
CN207029291U (zh) 一种三轮差速转向机构及车辆
CN105945890A (zh) 一种曲面自适应吸附式全方位移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855181

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20855181

Country of ref document: EP

Kind code of ref document: A1