WO2021031639A1 - 一种卷扬势能实时回收利用***及其控制方法 - Google Patents

一种卷扬势能实时回收利用***及其控制方法 Download PDF

Info

Publication number
WO2021031639A1
WO2021031639A1 PCT/CN2020/091640 CN2020091640W WO2021031639A1 WO 2021031639 A1 WO2021031639 A1 WO 2021031639A1 CN 2020091640 W CN2020091640 W CN 2020091640W WO 2021031639 A1 WO2021031639 A1 WO 2021031639A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
potential energy
oil
real
reversing
Prior art date
Application number
PCT/CN2020/091640
Other languages
English (en)
French (fr)
Inventor
朱振新
曾素
张奇志
罗钊
Original Assignee
山河智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山河智能装备股份有限公司 filed Critical 山河智能装备股份有限公司
Publication of WO2021031639A1 publication Critical patent/WO2021031639A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/08Driving gear incorporating fluid motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/027Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D2700/00Capstans, winches or hoists
    • B66D2700/01Winches, capstans or pivots
    • B66D2700/0125Motor operated winches
    • B66D2700/0133Fluid actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the invention belongs to the hoisting hydraulic technology, and specifically relates to a real-time recovery and utilization system of hoisting potential energy and a control method thereof.
  • the construction machinery hoisting system is mainly used for the lifting and lowering of heavy objects. At this stage, the hoisting system not only loses the gravitational potential energy released by the weight itself in the form of heat, but also requires the hydraulic system to provide additional power to push the hoist down. , As shown in Figure 1, by setting the auxiliary pump to control the additional control power of the hoisting process. Therefore, the comprehensive energy-saving control research of construction machinery hoisting device has very great practical significance.
  • the energy-saving technology of construction machinery hoisting device mainly has the following forms.
  • the system uses the principle of differential connection of the hydraulic system to allow the oil at the outlet of the winch motor to flow directly back to the motor inlet and form a differential connection with the supplementary oil in the main oil circuit, through the pilot hydraulic control throttling at the outlet of the winch motor
  • the speed control valve block controls the lowering speed of the winch.
  • the system does not need to work on the winch circuit during the lowering of the winch. Compared with the ordinary winch system, it can save part of the fuel consumption, but the system does not release the heavy objects. The gravitational potential energy is recycled, so its energy saving effect has not been maximized.
  • the hoist energy saving system adopts energy recovery and reuse.
  • the winch hydraulic system can convert the mechanical energy released when heavy objects are released into other forms of energy storage, and release the stored energy into the hydraulic system in other working conditions, thereby effectively reducing the power output of the main pump and reducing the engine's power output. energy burn.
  • the hoisting energy recovery system mainly takes two forms: hydraulic energy storage and electric energy storage.
  • the technical problem solved by the present invention is to provide a real-time recovery and utilization system of hoisting potential energy and a control method thereof in view of the above-mentioned defects in the existing energy-saving technology of hoisting devices.
  • the present invention adopts the following technical solutions to achieve.
  • a real-time recovery and utilization system for hoisting potential energy includes a main pump, an auxiliary pump, a reversing main valve, a potential energy recovery reversing valve and a balance valve group.
  • the main pump is connected to the inlet and outlet oil passages of the hoisting motor through a reversing main valve, the balance valve group is arranged between the inlet and outlet oil passages of the hoist motor, and the outlet of the balance valve of the balance valve group leads out
  • An oil return path is connected to the oil return port of the reversing main valve and the pressure oil port of the auxiliary pump through the potential energy recovery reversing valve.
  • the auxiliary pump adopts a secondary element pump/motor that drives coaxially with the main pump.
  • a check valve to prevent backflow is provided between the balance valve group and the potential energy recovery reversing valve.
  • the pressure oil port of the auxiliary pump is also connected in parallel with a working oil circuit, and a check valve to prevent backflow is provided between the working oil circuit of the auxiliary pump and the potential energy recovery reversing valve.
  • a check valve to prevent backflow is provided between the potential energy recovery reversing valve and the reversing main valve.
  • oil return path also returns to the oil tank through a parallel overflow valve.
  • an accumulator is provided on the oil path between the oil return path and the overflow valve.
  • the balance valve group includes an integrated pressure reducing valve, a shuttle valve, a balance valve and an overload protection valve.
  • the reversing main valve includes at least two working positions for changing the direction of oil in and out of the hoist motor and a cut-off position for cutting off the pressure oil of the main pump.
  • the potential energy recovery reversing valve includes at least two working positions for changing the flow direction of the oil circuit and a stop position for intercepting the oil return.
  • the invention also discloses a control method of the hoisting potential energy real-time recycling system.
  • the hoisting potential energy real-time recycling system of the invention is adopted, and the specific control steps are as follows.
  • Step 1 System initialization, including initializing winch motor speed N1, auxiliary pump displacement V2, reversing main valve opening signal, main pump and auxiliary pump relief valve opening signal, and setting the winch motor's allowable working speed N1 range and the displacement V2 range of the auxiliary pump.
  • Step 2 Set the working speed of the engine driving the main pump and the auxiliary pump, and enter the normal working process of the hoisting equipment.
  • Step 3 When the hoisting starts, the main reversing valve is controlled to open, the balance valve is opened, and the potential energy recovery reversing valve is controlled to return the pressure oil to the auxiliary pump as the motor to drive the main pump.
  • Step 4 Determine the target rotation speed N1 of the hoist motor, determine the displacement V2 of the auxiliary pump according to the opening degree signal of the reversing main valve and the rotation speed of the auxiliary pump, and determine whether it meets the value range in step 1.
  • Step 5 Detect the real-time speed n1 of the hoisting motor, and obtain the difference ⁇ n1 from the target speed N1 as the adjustment signal for the displacement of the hoisting motor, and adjust the output of the hoisting motor displacement V1 adjustment signal through the controller to make the value of ⁇ n1 Decrease and tend to 0.
  • Step 6 Detect the engine speed n2 in real time, and judge whether n2 is in the engine speed setting range. If it is lower than the engine setting working speed, control the engine oil supply to reach the setting speed; if it is higher than the engine setting working speed, control The controller controls and adjusts the pressure of the overflow valve on the oil return line to control the engine speed in the normal range; if the engine speed is normal, the auxiliary pump works as a motor stably, providing external power input to the engine to drive the hydraulic system and other auxiliary energy-consuming equipment , Real-time use of the potential energy released by the lowering of the winch, the engine is in a state of extremely low fuel consumption.
  • Step 7 The lowering of the winch is finished, the reversing main valve is closed, and the process of potential energy recovery and real-time utilization of the lowering of the winch is finished.
  • the present invention has the following beneficial effects.
  • the real-time recovery and utilization system of the potential energy of the hoisting down utilizes the load acting under the hoisting process to generate pressure in the hydraulic system, without increasing the difficulty of engineering machinery manufacturing and economic problems, and using the pressure oil to directly return to the auxiliary
  • the pump converts the auxiliary pump into a motor to assist the operation of the main pump, and recovers the potential energy of gravity in the process of hoisting and lowering in real time. It is especially suitable for the hydraulic system of construction machinery using a single engine with multiple pumps, and does not need to add too much hydraulic system. Cost, and the pipeline connection is relatively simple and reliable, the potential energy can be recycled in real time, and the energy saving effect is obvious.
  • the present invention can recover and utilize the potential energy of the load in the stable lowering stage of the winch, make the engine work in the state of zero power or low power output, realize the real-time recovery and reuse of the winch potential, and have excellent energy-saving effects. .
  • Fig. 1 is a schematic diagram of hydraulic control of construction machinery hoisting in the prior art.
  • Figure 2 is a schematic diagram of a real-time recovery and utilization system for hoisting potential energy in an embodiment.
  • Figure 3 is a hydraulic oil circuit diagram of the hoisting potential energy real-time recovery and utilization system in the embodiment when the hoisting is lifted.
  • Fig. 4 is a hydraulic oil circuit diagram of the real-time recovery and utilization system of the hoisting potential energy in the embodiment when the hoisting is lowered, and the potential energy under the hoisting is not recovered at this time.
  • Fig. 5 is a hydraulic oil circuit diagram for real-time recovery and utilization of potential energy of the hoisting potential energy system in the embodiment.
  • Fig. 6 is a control flow chart of the real-time recovery and utilization system of hoisting potential energy in the embodiment.
  • the real-time recovery and utilization system of hoisting potential energy in the figure is a specific embodiment of the present invention, including engine 1, main pump 2, main pump overflow valve 3, reversing main valve 4, pressure reducing valve 5, shuttle Valve 6, pilot balance valve 7, winch motor 8, overload protection valve 9, check valve 11/13/16, accumulator 12, potential energy recovery reversing valve 13, electric proportional relief valve 15, auxiliary pump overflow Flow valve 17 and auxiliary pump 18.
  • the main pump 2 and the auxiliary pump 18 are coaxially driven by the engine 1.
  • the coaxial term here means that the main pump 2 and the auxiliary pump 18 are synchronously transmitted through the output shaft of the engine 1, wherein the main pump 2 controls the hoisting motor 8
  • the auxiliary pump 18 is used as other hydraulic auxiliary systems to provide pressure oil.
  • the main pump 2 and auxiliary pump 18 are respectively provided with a main pump overflow valve 3 and auxiliary pump overflow valve 17, and the auxiliary pump 18 adopts secondary components Pump/motor can be switched between pump and motor. When used as a pump, it outputs pressure oil to the auxiliary system. When used as a motor, it receives the return oil pressure generated when the winch motor is lowered and converts it into mechanical energy to drive the main pump 2 together with the engine. Realize the real-time recycling and utilization of potential energy of hoisting and lowering.
  • the output pressure oil port of the main pump 2 is connected to the oil inlet and outlet of the winch motor 8 through the reversing main valve 4.
  • the hoisting motor 8 realizes the hoisting and lifting when the port and the oil inlet of the hoisting motor.
  • the control reversing main valve 4 is connected to the output pressure oil port of the main pump and the oil outlet of the hoisting motor, the hoisting motor 8 Reverse to achieve decentralization.
  • the reversing main valve 4 in the figure is a three-position four-way reversing valve, including oil inlet P, oil return port T, and working oil ports A and B respectively connected to the inlet and outlet of the winch motor 8.
  • the working positions respectively correspond to the working position connecting the main pump and the oil inlet of the winch motor when the hoist is raised, the working position connecting the main pump and the oil outlet of the hoist motor when the hoist is lowered, and the cut-off position for cutting off the pressure oil of the main pump.
  • the balance valve group is set between the oil inlet and outlet of the winch motor 8, including integrated pressure reducing valve 5, shuttle valve 6, pilot balance valve 7, overload protection valve 9, and the balance valve of the winch motor
  • the purpose of the group is to make the system pressure change more smoothly during the switching process of lifting and lowering of the hoisting motor, which is a common technical means of existing hoisting equipment, and its balance oil circuit is not described in detail in this embodiment.
  • an oil return path is led from the outlet of the balance valve of the balance valve group.
  • the oil return path is connected to the oil return port of the reversing main valve 4 and the pressure oil port of the auxiliary pump 18 through the potential energy recovery reversing valve 13 to realize the winding Utilize the oil return pressure in the process of raising and lowering.
  • the potential energy recovery reversing valve 13 in the figure is a three-position four-way electromagnetic reversing valve, including an oil inlet P, an oil return port T, and working oil ports A and B connected to the main reversing valve 4 and the auxiliary pump 18, respectively.
  • the three working positions include two working positions and a cut-off position. The cut-off position cuts off the oil return path during the hoisting process.
  • the two working positions of the potential energy recovery reversing valve connect the oil return path to the reversing main
  • the valve 4 switches between the two states of returning oil and communicating with the auxiliary pump 18 to recover potential energy.
  • the oil return circuit adopts a one-way oil circuit, which is only activated when the winch motor is in the lowering working process.
  • a check valve 11 to prevent backflow is provided between the balance valve outlet T of the balance valve group and the P port of the potential energy recovery reversing valve 13, and the working oil port B of the potential energy recovery reversing valve 13 is connected to the auxiliary pump 18.
  • the pressure port P of the auxiliary pump 18 is connected in parallel with the working oil path of the auxiliary pump 18.
  • a check valve 14 is provided between the working oil path of the auxiliary pump 18 and the working oil port B of the potential energy recovery reversing valve 13 to prevent backflow.
  • the oil line connecting the working oil port A of the potential energy recovery reversing valve 13 and the working oil port B of the reversing main valve 4 is provided with a check valve 16 to prevent backflow, so that during the lowering process of the winch, the balance valve group
  • the pressure oil drawn out can only pass through the potential energy reversing valve and return to the tank or connect to the auxiliary pump to recover potential energy.
  • the pressure oil of the main pump and the auxiliary pump will not enter the balance through the return oil path. Valve block.
  • the oil return path leading from the balance valve outlet T of the balance valve group returns to the oil tank through an electric proportional relief valve 15 in parallel, and an accumulator is provided on the oil path between the oil return path and the electric proportional relief valve 15 12. Adjust the oil return pressure through the electric proportional relief valve 15, and provide a certain oil return back pressure through the accumulator 12 to improve the stability of the lowering of the hoist.
  • the hoisting process has a normal working mode and a real-time recovery and utilization mode of hoisting potential energy.
  • the pressure oil of port A of the balance valve group flows to the shuttle valve 6, and enters the brake cylinder of the winch motor 8 through the pressure reducing valve 5 from the Br port, the winch brake is opened, and the motor oil returns from the balance valve group through the oil outlet.
  • the B port pressure oil of the balance valve group flows to the shuttle valve 6, and enters the brake cylinder of the hoisting motor 8 from the Br port through the pressure reducing valve 5.
  • the hoisting brake is opened.
  • the B port pressure oil of the balance valve group pushes the spool of the pilot balance valve 7 to move, and the motor return oil flows out of the T port of the pilot balance valve 7 through the balance valve spool, and enters the potential energy recovery directional valve through the one-way valve 11.
  • the P port of 13 then flows out from port A of the potential energy recovery reversing valve 13, and enters the port B of the reversing main valve 4 through the one-way valve 16, and directly returns to the fuel tank from the T port of the reversing main valve 4 to realize the normal working mode
  • the lower hoist is lowered.
  • the electromagnet Y1 that controls the potential energy recovery reversing valve 13 is energized, and the pilot handle of the reversing main valve 4 is operated to control the pilot oil to enter the reversing main valve.
  • the pilot port b of 4 the pilot oil pushes the spool of the reversing main valve 4 to move, and the pressure oil provided by the main pump 2 flows into port A from port P of the reversing main valve 4, and enters the motor through port B of the balance valve group.
  • the winch motor is driven to reverse and lower.
  • the pressure oil at port B of the balance valve group flows to the shuttle valve 6, and enters the brake cylinder of the winch motor 8 from the Br port through the pressure reducing valve 5.
  • the valve is automatically opened, and the B port pressure oil of the balance valve group pushes the spool of the pilot balance valve 7 to move the balance valve to open.
  • the lowered heavy objects do work on the winch motor, and the gravitational potential energy released by the lowering of the heavy objects is converted into the pressure of the hydraulic oil to increase the oil pressure.
  • the pressure oil passes through the outlet T of the pilot balance valve 7 and passes through the check valve 11.
  • the variable mechanism of the auxiliary pump 18 switches the auxiliary pump 18 to motor mode ,
  • the auxiliary pump 18 converts hydraulic energy into mechanical energy and transmits it to the engine 1 and the main pump 2.
  • the electronically controlled fuel injection system automatically reduces or stops fuel injection to reduce its own power output and save energy.
  • the displacement of the auxiliary pump 18 using the secondary element pump/motor is still small.
  • the accumulator 12 on the oil return path can store a certain potential energy, provide a certain oil return back pressure, and improve the lowering of the hoist. Stability.
  • the auxiliary pump 18 starts to work stably under the motor working condition to input the torque for the engine. At this time, the accumulator can continue to store a part of the excess energy.
  • the device 12 is energized by the electromagnet Y2 of the potential energy recovery reversing valve 13, and the pressure oil inside the accumulator 12 enters the P port of the potential energy recovery reversing valve 13 through the oil return path, flows out from the B port, and enters the working oil of the auxiliary pump It can provide certain hydraulic energy for the auxiliary system controlled by the auxiliary pump, and further utilize the potential energy collected during the lowering of the hoist to reduce the overall fuel consumption of the whole machine.
  • the energy-saving system In order to ensure the real-time recovery and utilization of potential energy of construction machinery hoisting equipment, the energy-saving system has good operating performance under the premise of high energy-saving performance, and the entire system needs to be controlled by electronic control.
  • the specific control process is shown in Figure 6. Show.
  • Step 1 System initialization, including initializing the speed N1 of the winch motor 8, the displacement V2 of the auxiliary pump 18, the opening degree signal of the reversing main valve 4, the opening degree signal of the relief valve of the main pump 2 and the auxiliary pump 18, and Set the allowable working speed N1 range of the winch motor 8 and the displacement V2 range of the auxiliary pump 18.
  • Step 2 Set the working speed of the engine 1 driving the main pump 2 and the auxiliary pump 18 to enter the normal working process of the construction machinery hoisting equipment.
  • Step 3 When the hoisting starts, the main reversing valve 4 is controlled to open, the pilot balance valve 7 is opened, and the potential energy recovery reversing valve 13 is controlled to return the pressure oil to the auxiliary pump 18 as the motor-driven main pump (specific hydraulic oil Refer to the description of Fig. 5 in this embodiment for the way of implementation).
  • Step 4 Determine the target rotation speed N1 of the winch motor 8, and determine the displacement V2 of the auxiliary pump 18 according to the opening degree signal of the reversing main valve 4 and the rotation speed of the auxiliary pump 18, and determine whether it meets the value range in step 1 .
  • Step 5 Detect the real-time rotation speed n1 of the winch motor 8, and obtain the difference ⁇ n1 from the target rotation speed N1 as the adjustment signal for the displacement of the winch motor, and adjust the output of the winch motor displacement V1 adjustment signal through the controller to make ⁇ n1 The value decreases and tends to zero.
  • Step 6 Detect the speed n2 of engine 1 in real time, and judge whether n2 is in the setting range of engine speed. If it is lower than the set working speed of the engine, the engine electronic control fuel injection system will increase the fuel injection volume to reach the set speed; if it is higher than The set working speed of the engine indicates that the power released by the lower hoist is too large, and the auxiliary pump 18 inputs too much power to the engine, causing the engine speed to be too high.
  • the pressure of the electric proportional relief valve 15 on the oil return line is controlled by the controller.
  • the engine speed is in the normal range; if the engine speed is normal, the auxiliary pump 18 works as a motor stably to provide external power input to the engine 1 to drive the hydraulic system and other auxiliary energy-consuming equipment, and use the potential energy released by the hoist in real time. In a state of extremely low fuel consumption.
  • Step 7 The lowering of the winch is finished, the reversing main valve 4 is closed, and the process of potential energy recovery and real-time utilization of the lowering of the winch is finished.
  • control and monitoring of each of the above signals can be realized through the electric control system equipped with the construction machinery to realize the monitoring and signal processing control.
  • the specific control realization method is not described in detail in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Elevator Control (AREA)

Abstract

一种卷扬势能实时回收利用***及其控制方法,包括主泵(2)、副泵(18)、换向主阀(4)、势能回收换向阀(13)和平衡阀组;所述主泵(2)通过换向主阀(4)连接至卷扬马达(8)的进、出油路,所述平衡阀组设置在卷扬马达(8)的进、出油路之间,所述平衡阀组的平衡阀(7)出口引出一回油路,所述回油路通过势能回收换向阀(13)与换向主阀(4)的回油口和副泵(18)的压力油口连接;所述副泵(18)采用与主泵(2)同轴传动的二次元件泵/马达。在卷扬稳定下放阶段实时回收利用负载下放的势能,使驱动主泵(2)的发动机(1)工作在零功率或低功率输出的状态,实现卷扬势实时回收再利用,具有优秀的节能效果,特别适用于工程机械使用单发动机(1)带多泵的液压***,不需要过多增加液压***的成本。

Description

一种卷扬势能实时回收利用***及其控制方法 技术领域
本发明属于卷扬液压技术,具体涉及一种卷扬势能实时回收利用***及其控制方法。
背景技术
工程机械上大都装配了大功率的内燃机,其油耗高,尾气排放体积巨大,因而其尾气的排放对空气的污染也处于越来越不可忽视的地位,基于对国家能源安全和空气污染治理两方面的考虑,加强工程机械节能控制技术的研究,大力推广应用节能技术已经刻不容缓。工程机械卷扬***主要用于重物的上提和下放,现阶段卷扬***下放过程中不仅重物本身释放的重力势能以热量形式损耗,还需要液压***提供额外的功率来推动卷扬下放,如图1所示,通过设置副泵来控制卷扬下放过程的额外控制功率。因此工程机械卷扬装置综合节能控制研究具有非常大的实际意义。
目前工程机械卷扬装置节能技术主要做有以下形式。
1、卷扬下放合流回油再生液压***。
该***利用液压***差动连接的原理,让卷扬马达出口处的油直接流回马达入口并和主油路中的补油组成差动连接,通过卷扬马达出口处的先导液控节流调速阀块控制卷扬的下放速度,该***在卷扬下放过程中发动机无需对卷扬回路做功,较普通卷扬***可以节省一部分燃油消耗,但该***并没有将重物下放释放出的重力势能进行回收利用,因而其节能效果还没有达到最大化。
2、采用能量回收及再利用的卷扬节能***。
该卷扬液压***可以将重物放时所释放的机械能转化成其它形式的能量储存,在其它工况中将存储的能量释放至液压***中,从而有效减少主泵的功率输出,降低发动机的燃油消耗。目前卷扬能量回收***主要以液压能储存与电能储存两种形式。
在以液压能储存形式的能量回收***中,当回收的能量较大时,需要蓄能器的工作容积将非常巨大,不便于工程机械的结构设计,而且蓄能器内的压力会随着充入油液的增多而升高,使得控制卷扬匀速下放变得很困难,因此该***没有很好地解决主卷扬***节能控制中的两个难点。
而以电能形式储存的能量回收***中,能量回收利用的方式上转换环节多,***结构复杂控制难度较高,在巨大能量回收时需要采用能量密度高,占用空间小的超级电容进行能量储存,但目前超级电容价格昂贵,没有很好的解决主卷扬***节能控制中难点中经济性的要求,制约了其在实际工程中的应用。
技术问题
本发明解决的技术问题是:针对现有的卷扬装置节能技术存在的上述缺陷,提供一种卷扬势能实时回收利用***及其控制方法。
技术解决方案
本发明采用如下技术方案实现。
一种卷扬势能实时回收利用***,包括主泵、副泵、换向主阀、势能回收换向阀和平衡阀组。
所述主泵通过换向主阀连接至卷扬马达的进、出油路,所述平衡阀组设置在卷扬马达的进、出油路之间,所述平衡阀组的平衡阀出口引出一回油路,所述回油路通过势能回收换向阀与换向主阀的回油口和副泵的压力油口连接。
所述副泵采用与主泵同轴传动的二次元件泵/马达。
进一步的,所述平衡阀组与势能回收换向阀之间设有防止倒流的单向阀。
进一步的,所述副泵的压力油口还并联连接有工作油路,所述副泵的工作油路与势能回收换向阀之间设有防止倒流的单向阀。
进一步的,所述势能回收换向阀与换向主阀之间设有防止倒流的单向阀。
进一步的,所述回油路上还通过并联溢流阀回流油箱。
进一步的,所述回油路和溢流阀之间的油路上设有蓄能器。
进一步的,所述平衡阀组包括集成设置的减压阀、梭阀、平衡阀以及过载保护阀。
在本发明的一种卷扬势能实时回收利用***中,所述换向主阀至少包括两个改变卷扬马达进出油方向的工作位以及截断主泵压力油的截止位。
进一步的,所述势能回收换向阀至少包括两个改变油路流通方向的工作位以及截断回油的截止位。
本发明还公开了一种卷扬势能实时回收利用***的控制方法,采用本发明的卷扬势能实时回收利用***,具体控制步骤如下。
步骤1、***初始化,包括初始化卷扬马达转速N1,副泵排量V2,换向主阀开口度信号,主泵及副泵的溢流阀开口度信号,并设定卷扬马达允许工作转速N1范围以及副泵的排量V2范围。
步骤2、设定驱动主泵和副泵的发动机工作转速,进入卷扬设备的正常工作流程。
步骤3、卷扬下放开始,控制换向主阀开启工作,平衡阀开启,控制势能回收换向阀,使压力油回流至副泵作为马达驱动主泵。
步骤4、确定卷扬马达的目标转速N1,根据换向主阀开口度信号和副泵的转速确定副泵的排量V2,并判断其是否符合步骤1中的取值范围。
步骤5、检测卷扬马达的实时转速n1,得出与目标转速N1的差值Δn1作为卷扬马达排量的调节信号,通过控制器控制调节输出卷扬马达排量V1调节信号,使得Δn1值减小并趋于0。
步骤6、实时检测发动机转速n2,判断n2是否处于发动机转速设定区间,如果低于发动机设定工作转速,则控制发动机供油达到设定转速;如果高于发动机设定工作转速,则通过控制器控制调节回油路上的溢流阀压力,控制发动机转速处于正常区间;如果发动机转速正常,则副泵作为马达稳定工作,给发动机提供外部功率输入,供其驱动液压***和其他辅助耗能设备,实时利用卷扬下放释放的势能,发动机处于极低油耗工作状态。
步骤7、卷扬下放结束,换向主阀关闭,卷扬下放势能回收与实时利用过程结束。
有益效果
本发明具有如下有益效果。
本发明提供的卷扬下放势能实时回收利用***,利用卷扬下方过程中负载作用在液压***中产生压力,在不增加工程机械制造难度及经济性问题的同时,利用该压力油直接回流到副泵,将副泵转换为马达来辅助驱动主泵运行,实时回收利用了卷扬下放过程中重力势能,特别适用于工程机械使用单发动机带多泵的液压***,不需要过多增加液压***的成本,并且管路连接较简单可靠,势能得到实时回收利用,节能效果明显。
综上所述,采用本发明可以在卷扬稳定下放阶段实时回收利用负载下放的势能,使发动机工作在零功率或低功率输出的状态,实现卷扬势实时回收再利用,具有优秀的节能效果。
以下结合附图和具体实施方式对本发明做进一步说明。
附图说明
图1为现有技术中的工程机械卷扬液压控制示意图。
图2为实施例中的卷扬势能实时回收利用***示意图。
图3为实施例中的卷扬势能实时回收利用***在卷扬上提时液压油回路图。
图4为实施例中的卷扬势能实时回收利用***在卷扬下放时液压油回路图,此时未回收卷扬下方势能。
图5为实施例中的卷扬势能实时回收利用***在卷扬下放时进行势能实时回收利用的液压油回路图。
图6为实施例中的卷扬势能实时回收利用***的控制流程图。
1-发动机;2-主泵;3-主泵溢流阀;4-换向主阀;5-减压阀;6-梭阀;7-先导式平衡阀;8-卷扬马达;9-过载保护阀;11、14、16-单向阀;12-蓄能器;13-势能回收换向阀;15-电比例溢流阀;17-副泵溢流阀;18-副泵。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
实施例。
参见图2,图示中的卷扬势能实时回收利用***为本发明的具体实施方案,包括发动机1、主泵2、主泵溢流阀3、换向主阀4、减压阀5、梭阀6、先导式平衡阀7、卷扬马达8、过载保护阀9、单向阀11/13/16、蓄能器12、势能回收换向阀13、电比例溢流阀15、副泵溢流阀17和副泵18。
其中,主泵2和副泵18通过发动机1同轴传动,这里所指的同轴是指主泵2和副泵18共同通过发动机1的输出轴同步传动,其中主泵2控制卷扬马达8的上提和下放,副泵18作为其他液压辅助***提供压力油,主泵2和副泵18分别设有主泵溢流阀3和副泵溢流阀17,并且副泵18采用二次元件泵/马达,可以在泵和马达之间切换,作为泵时输出压力油到辅助***,作为马达时,接受卷扬马达下放时产生的回油压力并转换为机械能与发动机一同驱动主泵2,实现卷扬下放势能的实时回收利用。
如图2所示,主泵2的输出压力油口通过换向主阀4分别连接至卷扬马达8的进油路和出油路,当控制换向主阀4连通主泵的输出压力油口和卷扬马达的进油路时,卷扬马达8实现卷扬上提,当控制换向主阀4连通主泵的输出压力油口和卷扬马达的出油路时,卷扬马达8反转实现下放。图示中的换向主阀4为三位四通换向阀,包括进油口P、回油口T以及分别连接卷扬马达8进、出油路的工作油口A、B,三个工作位分别对应卷扬上升时连通主泵和卷扬马达进油路的工作位、卷扬下放时连通主泵和卷扬马达出油路的工作位以及截断主泵压力油的截止位。平衡阀组设置在卷扬马达8的进油路和出油路之间,包括集成设置的减压阀5、梭阀6、先导式平衡阀7以及过载保护阀9,卷扬马达的平衡阀组目的使卷扬马达在上提和下放切换过程***压力变换更平缓,为现有卷扬设备常用的技术手段,本实施例在此不对其平衡油路进行赘述。
本实施例从平衡阀组的平衡阀出口引出一回油路,该回油路通过势能回收换向阀13与换向主阀4的回油口和副泵18的压力油口连接,实现卷扬下放过程的回油压力利用。图示中的势能回收换向阀13为三位四通电磁换向阀,包括进油口P、回油口T以及分别连接至换向主阀4和副泵18的工作油口A、B,三个工作位包括两个工作位和一个截止位,截止位对应卷扬上提过程截断该回油路,通过势能回收换向阀的两个工作位将回油路在连通至换向主阀4回油和连通至副泵18回收势能的两个状态之间切换。
为了避免回油影响主泵以及副泵的正常工作油路,该回油路采用单向油路,只在卷扬马达处于下放工作过程中起用。具体的,在平衡阀组的平衡阀出口T与势能回收换向阀13的P口之间设有防止倒流的单向阀11,势能回收换向阀13的工作油口B连接至副泵18的压力油口P,并与副泵18的工作油路并联,在副泵18的工作油路与势能回收换向阀13的工作油口B之间设有防止倒流的单向阀14,在势能回收换向阀13的工作油口A与换向主阀4的工作油口B之间连接的油路上设有防止倒流的单向阀16,这样在卷扬下放过程中,从平衡阀组引出的压力油只能够单向通过势能换向阀回油箱或者连接至副泵回收势能,而在卷扬上提过程中,主泵和副泵的压力油均不会通过该回油路进入平衡阀组。
另外,从平衡阀组的平衡阀出口T引出的该回油路通过并联一个电比例溢流阀15回流油箱,并在回油路和电比例溢流阀15之间的油路上设置蓄能器12,通过电比例溢流阀15调节回油压力,并且通过蓄能器12提供一定的回油背压,提高卷扬下放的稳定性。
本实施例使得卷扬工作过程中具备普通工作模式、卷扬下放势能实时回收利用工作模式。
如图3所示,普通工作模式中主卷上提,操作控制换向主阀4的先导手柄,控制先导油进入换向主阀4的先导口 a,先导油推动换向主阀4的阀芯移动,主泵2提供的压力油从换向主阀4的P口流入B口流出,经过平衡阀组的A口进入卷扬马达8的进油路,驱动卷扬马达上提,此时平衡阀组的A口压力油部分流至梭阀6,经过减压阀5从Br口进入卷扬马达8的制动油缸,卷扬制动打开,马达回油通过出油路从平衡阀组的B口流出,进入换向主阀4的A口经换向主阀后从T口直接回油箱,实现卷扬上提。
如图4所示,普通工作模式中主卷下放,控制势能回收换向阀13的电磁铁Y1得电,操作控制换向主阀4的先导手柄,控制先导油进入换向主阀4的先导口b,先导油推动换向主阀4的阀芯移动,主泵2提供的压力油从换向主阀4的P口流入A口流出,经平衡阀组的B口进入马达的出油路,驱动卷扬马达反转下放,此时平衡阀组的B口压力油部分流至梭阀6,经过减压阀5从Br口进入卷扬马达8的制动油缸,卷扬制动打开,并且平衡阀组的B口压力油推动先导式平衡阀7的阀芯移动,马达回油经平衡阀阀芯从先导式平衡阀7的T口流出,经单向阀11进入势能回收换向阀13的P口,然后从势能回收换向阀13的A口流出,经单向阀16进入换向主阀4的B口,从换向主阀4的T口直接回油箱,实现普通工作模式下的卷扬下放。
如图5所示,卷扬下放势能实时回收利用工作模式中,控制势能回收换向阀13的电磁铁Y1得电,操作控制换向主阀4的先导手柄,控制先导油进入换向主阀4的先导口b,先导油推动换向主阀4的阀芯移动,主泵2提供的压力油从换向主阀4的P口流入A口流出,经平衡阀组的B口进入马达的出油路,驱动卷扬马达反转下放,此时平衡阀组的B口压力油部分流至梭阀6,经过减压阀5从Br口进入卷扬马达8的制动油缸,卷扬制动打开,并且平衡阀组的B口压力油推动先导式平衡阀7的阀芯移动平衡阀打开。此时下放的重物对卷扬马达做功,将重物下放释放的重力势能转换为液压油的压力能使油压升高,压力油通过先导式平衡阀7的出口T,经单向阀11进入势能回收换向阀13的P口从势能回收换向阀13的B口流出,经单向阀14到副泵18,此时副泵18的变量机构作用将副泵18切换到马达工况,副泵18将液压能转化为机械能,传递给发动机1及主泵2,发动机1在外部功率输入之后,电控喷油***自动减小或者停止喷油,达到减少自身功率输出,实现节能。
在下放开始时,采用二次元件泵/马达的副泵18的排量还较小,回油路上的蓄能器12可以储存一定的势能,提供一定的回油背压,提高卷扬下放的稳定性,随着卷扬下放速度达到预定值以后,副泵18开始以马达工况稳定工作为发动机输入扭矩,此时蓄能器还可以继续储存一部分多余的能量,在下放完成后,蓄能器12通过势能回收换向阀13的电磁铁Y2得电,蓄能器12内部的压力油通过回油路进入势能回收换向阀13的P口,从B口流出,进入副泵的工作油路,可以为副泵控制的辅助***提供一定的液压能,进一步利用卷扬下放过程中收集的势能降低整机工作的综合油耗。
为了保证工程机械的卷扬设备下放势能实时回收与利用节能***在具有较高的节能性能的前提下拥有良好的操作性能,需要通过电控对整个***进行控制,具体的控制流程如图6所示。
步骤1、***初始化,包括初始化卷扬马达8的转速N1,副泵18的排量V2,换向主阀4的开口度信号,主泵2及副泵18的溢流阀开口度信号,并设定卷扬马达8允许工作转速N1范围以及副泵18的排量V2范围。
步骤2、设定驱动主泵2和副泵18的发动机1工作转速,进入工程机械卷扬设备的正常工作流程。
步骤3、卷扬下放开始,控制换向主阀4开启工作,先导式平衡阀7开启,控制势能回收换向阀13,使压力油回流至副泵18作为马达驱动主泵(具体的液压油路实现方式参考本实施例中关于图5的说明)。
步骤4、确定卷扬马达8的目标转速N1,根据换向主阀4的开口度信号和副泵18的转速确定副泵18的排量V2,并判断其是否符合步骤1中的取值范围。
步骤5、检测卷扬马达8的实时转速n1,得出与目标转速N1的差值Δn1作为卷扬马达排量的调节信号,通过控制器控制调节输出卷扬马达排量V1调节信号,使得Δn1值减小并趋于0。
步骤6、实时检测发动机1的转速n2,判断n2是否处于发动机转速设定区间,如果低于发动机设定工作转速,则发动机电控喷油***加大喷油量达到设定转速;如果高于发动机设定工作转速,说明卷扬下放释放的功率过大,副泵18给发动机输入功率太大,造成发动机转速过高,通过控制器控制调节回油路上的电比例溢流阀15压力,控制发动机转速处于正常区间;如果发动机转速正常,则副泵18作为马达稳定工作,给发动机1提供外部功率输入,供其驱动液压***和其他辅助耗能设备,实时利用卷扬下放释放的势能,发动机处于极低油耗工作状态。
步骤7、卷扬下放结束,换向主阀4关闭,卷扬下放势能回收与实时利用过程结束。
以上各个信号的控制和监控均可通过工程机械配备的电控***实现监控和信号处理控制,具体的控制实现方式本实施例在此不做赘述。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种卷扬势能实时回收利用***,其特征在于:包括主泵、副泵、换向主阀、势能回收换向阀和平衡阀组;
    所述主泵通过换向主阀连接至卷扬马达的进、出油路,所述平衡阀组设置在卷扬马达的进、出油路之间,所述平衡阀组的平衡阀出口引出一回油路,所述回油路通过势能回收换向阀与换向主阀的回油口和副泵的压力油口连接;
    所述副泵采用与主泵同轴传动的二次元件泵/马达。
  2. 根据权利要求1所述的一种卷扬势能实时回收利用***,所述平衡阀组与势能回收换向阀之间设有防止倒流的单向阀。
  3. 根据权利要求2所述的一种卷扬势能实时回收利用***,所述副泵的压力油口还并联连接有工作油路,所述副泵的工作油路与势能回收换向阀之间设有防止倒流的单向阀。
  4. 根据权利要求3所述的一种卷扬势能实时回收利用***,所述势能回收换向阀与换向主阀之间设有防止倒流的单向阀。
  5. 根据权利要求1所述的一种卷扬势能实时回收利用***,所述回油路上还通过并联溢流阀回流油箱。
  6. 根据权利要求5所述的一种卷扬势能实时回收利用***,所述回油路和溢流阀之间的油路上设有蓄能器。
  7. 根据权利要求1所述的一种卷扬势能实时回收利用***,所述平衡阀组包括集成设置的减压阀、梭阀、平衡阀以及过载保护阀。
  8. 根据权利要求1-7中任一项所述的一种卷扬势能实时回收利用***,所述换向主阀至少包括两个改变卷扬马达进出油方向的工作位以及截断主泵压力油的截止位。
  9. 根据权利要求8所述的一种卷扬势能实时回收利用***,所述势能回收换向阀至少包括两个改变油路流通方向的工作位以及截断回油的截止位。
  10. 一种卷扬势能实时回收利用***的控制方法,其特征在于:采用权利要求1-9中的卷扬势能实时回收利用***,具体控制步骤如下:
    步骤1、***初始化,包括初始化卷扬马达转速N1,副泵排量V2,换向主阀开口度信号,主泵及副泵的溢流阀开口度信号,并设定卷扬马达允许工作转速N1范围以及副泵的排量V2范围;
    步骤2、设定驱动主泵和副泵的发动机工作转速,进入卷扬设备的正常工作流程;
    步骤3、卷扬下放开始,控制换向主阀开启工作,平衡阀开启,控制势能回收换向阀,使压力油回流至副泵作为马达驱动主泵;
    步骤4、确定卷扬马达的目标转速N1,根据换向主阀开口度信号和副泵的转速确定副泵的排量V2,并判断其是否符合步骤1中的取值范围;
    步骤5、检测卷扬马达的实时转速n1,得出与目标转速N1的差值Δn1作为卷扬马达排量的调节信号,通过控制器控制调节输出卷扬马达排量V1调节信号,使得Δn1值减小并趋于0;
    步骤6、实时检测发动机转速n2,判断n2是否处于发动机转速设定区间,如果低于发动机设定工作转速,则控制发动机供油达到设定转速;如果高于发动机设定工作转速,则通过控制器控制调节回油路上的溢流阀压力,控制发动机转速处于正常区间;如果发动机转速正常,则副泵作为马达稳定工作,给发动机提供外部功率输入,供其驱动液压***和其他辅助耗能设备,实时利用卷扬下放释放的势能,发动机处于极低油耗工作状态;
    步骤7、卷扬下放结束,换向主阀关闭,卷扬下放势能回收与实时利用过程结束。
PCT/CN2020/091640 2019-08-21 2020-05-21 一种卷扬势能实时回收利用***及其控制方法 WO2021031639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910774671.6 2019-08-21
CN201910774671.6A CN110374940B (zh) 2019-08-21 2019-08-21 一种卷扬势能实时回收利用***及其控制方法

Publications (1)

Publication Number Publication Date
WO2021031639A1 true WO2021031639A1 (zh) 2021-02-25

Family

ID=68260104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091640 WO2021031639A1 (zh) 2019-08-21 2020-05-21 一种卷扬势能实时回收利用***及其控制方法

Country Status (2)

Country Link
CN (1) CN110374940B (zh)
WO (1) WO2021031639A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115126752A (zh) * 2022-04-26 2022-09-30 杭叉集团股份有限公司 一种势能回收控制方法及势能回收***

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110374940B (zh) * 2019-08-21 2024-05-17 山河智能装备股份有限公司 一种卷扬势能实时回收利用***及其控制方法
CN111503076B (zh) * 2020-04-08 2022-10-11 三一重机有限公司 回油发电***
CN113513515B (zh) * 2021-06-28 2023-06-23 三一海洋重工有限公司 势能回收利用的控制方法、控制器、利用***及存储介质
CN113958474B (zh) * 2021-09-30 2023-06-13 三一汽车起重机械有限公司 能量消耗方法、装置及作业机械
CN116146551B (zh) * 2023-04-17 2023-08-22 山河智能装备股份有限公司 一种卷扬机构的液压***及工程机械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296663A (zh) * 2011-05-21 2011-12-28 山河智能装备股份有限公司 一种势能回收的液压***
US20140150415A1 (en) * 2012-12-04 2014-06-05 Caterpillar Inc. Energy Recovery Hydraulic System
CN105951920A (zh) * 2016-06-20 2016-09-21 浙江大学 一种挖掘机回转动能回收及补油装置及其方法
CN106185662A (zh) * 2016-07-18 2016-12-07 华中科技大学 一种适用于履带起重机的卷扬液压***
CN106185671A (zh) * 2016-08-25 2016-12-07 武汉船用机械有限责任公司 牵引绞车液压控制***
CN110374940A (zh) * 2019-08-21 2019-10-25 山河智能装备股份有限公司 一种卷扬势能实时回收利用***及其控制方法
CN210949311U (zh) * 2019-08-21 2020-07-07 山河智能装备股份有限公司 一种卷扬势能实时回收利用***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628816B2 (ja) * 2005-02-18 2011-02-09 株式会社小松製作所 油圧駆動機械におけるエネルギー回生装置
JP2010174574A (ja) * 2009-01-30 2010-08-12 Caterpillar Japan Ltd 作業機械
JP5858818B2 (ja) * 2012-02-17 2016-02-10 日立建機株式会社 建設機械
JP5857004B2 (ja) * 2013-07-24 2016-02-10 日立建機株式会社 建設機械のエネルギ回生システム
KR102410841B1 (ko) * 2017-04-18 2022-06-21 현대두산인프라코어(주) 건설기계
JP7029939B2 (ja) * 2017-11-17 2022-03-04 川崎重工業株式会社 建設機械の駆動システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296663A (zh) * 2011-05-21 2011-12-28 山河智能装备股份有限公司 一种势能回收的液压***
US20140150415A1 (en) * 2012-12-04 2014-06-05 Caterpillar Inc. Energy Recovery Hydraulic System
CN105951920A (zh) * 2016-06-20 2016-09-21 浙江大学 一种挖掘机回转动能回收及补油装置及其方法
CN106185662A (zh) * 2016-07-18 2016-12-07 华中科技大学 一种适用于履带起重机的卷扬液压***
CN106185671A (zh) * 2016-08-25 2016-12-07 武汉船用机械有限责任公司 牵引绞车液压控制***
CN110374940A (zh) * 2019-08-21 2019-10-25 山河智能装备股份有限公司 一种卷扬势能实时回收利用***及其控制方法
CN210949311U (zh) * 2019-08-21 2020-07-07 山河智能装备股份有限公司 一种卷扬势能实时回收利用***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115126752A (zh) * 2022-04-26 2022-09-30 杭叉集团股份有限公司 一种势能回收控制方法及势能回收***

Also Published As

Publication number Publication date
CN110374940B (zh) 2024-05-17
CN110374940A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2021031639A1 (zh) 一种卷扬势能实时回收利用***及其控制方法
CN106049593B (zh) 一种基于多液压蓄能器的自动怠速***及控制方法
CN102887447B (zh) 变幅液压缸液压控制回路、起重机及变幅控制方法
WO2023092667A1 (zh) 一种电比例控制多工作位阀的液压***及其控制方法
CN104452868B (zh) 双液压缸混合驱动控制***
WO2024045445A1 (zh) 一种多路阀、液压***及挖掘机
CN114604791B (zh) 工程机械的卷扬机构动力回收***及动力回收方法
CN107700576B (zh) 液压挖掘机动势能回收利用***
CN201553113U (zh) 一种履带式牵引机的液压***
CN210949311U (zh) 一种卷扬势能实时回收利用***
CN107524187B (zh) 旋转运动制动能量液电混合回收利用***
CN205063484U (zh) 液压式立体车库液控***
CN208454429U (zh) 旁通式能量再生叉车液压***
CN212772524U (zh) 用于挖掘机的动臂节能***
CN103397677A (zh) 基于液压变压器的液压挖掘机动臂回路及其控制方法
CN211288284U (zh) 一种液压装置
CN219060177U (zh) 用于挖掘机的液压节能***
CN1600672A (zh) 液压驱动调速卷扬机
CN205591274U (zh) 小型挖掘机合流控制***
CN203641137U (zh) 一种开式液压***马达节能***
CN208764008U (zh) 底盘液压***
CN111442008A (zh) 一种用于控制高空作业车伸臂的差动平衡阀
CN114658704A (zh) 一种新型节能叉车液压控制***
CN112127415A (zh) 一种基于负载敏感的挖掘机动臂节能液压***
CN109019339B (zh) 一种轮胎吊液压控制阀总成及分工况控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854903

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20854903

Country of ref document: EP

Kind code of ref document: A1