WO2021019675A1 - Electronic circuit production method using 3d layer shaping - Google Patents

Electronic circuit production method using 3d layer shaping Download PDF

Info

Publication number
WO2021019675A1
WO2021019675A1 PCT/JP2019/029791 JP2019029791W WO2021019675A1 WO 2021019675 A1 WO2021019675 A1 WO 2021019675A1 JP 2019029791 W JP2019029791 W JP 2019029791W WO 2021019675 A1 WO2021019675 A1 WO 2021019675A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection terminal
wiring
circuit wiring
electronic circuit
forming step
Prior art date
Application number
PCT/JP2019/029791
Other languages
French (fr)
Japanese (ja)
Inventor
亮二郎 富永
謙磁 塚田
亮 榊原
佑 竹内
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to US17/630,860 priority Critical patent/US20220279657A1/en
Priority to EP19939582.3A priority patent/EP4007459A4/en
Priority to JP2021536510A priority patent/JP7145334B2/en
Priority to PCT/JP2019/029791 priority patent/WO2021019675A1/en
Publication of WO2021019675A1 publication Critical patent/WO2021019675A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0388Other aspects of conductors
    • H05K2201/0391Using different types of conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/013Inkjet printing, e.g. for printing insulating material or resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0776Uses of liquids not otherwise provided for in H05K2203/0759 - H05K2203/0773
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques

Definitions

  • the present disclosure relates to a method of manufacturing an electronic circuit using three-dimensional laminated modeling.
  • Patent Document 1 discloses a technique for forming a laminated unit including an electronic component and an electronic circuit by three-dimensional laminated modeling.
  • the laminated unit forming apparatus described in Patent Document 1 forms an insulating layer by discharging an ultraviolet curable resin onto a base material and curing it. Further, the laminated unit forming apparatus uses conductive ink or metal paste to form an electronic circuit in which circuit wiring, through holes, and the like are connected.
  • An object of the present invention is to provide a method for manufacturing an electronic circuit by three-dimensional laminated molding.
  • the present specification describes a wiring forming step of applying a fluid containing nano-sized metal nanoparticles on an insulating member and curing the applied fluid containing the metal nanoparticles to form a wiring, and a micro-sized.
  • Three-dimensional laminated molding including a connection terminal forming step of applying a fluid containing metal nanoparticles and curing the applied fluid containing the metal nanoparticles to form a connection terminal electrically connected to the wiring.
  • the type of fluid containing metal particles is used properly for the modeling of connection terminals and the modeling of wiring.
  • the wiring is formed by applying a fluid containing metal nanoparticles and curing the wiring.
  • nano-sized metal nanoparticles are brought into contact with each other or fused to each other and hardened, so that low-resistance wiring can be formed.
  • a fluid containing metal microparticles is applied and cured to form the connection terminal.
  • a layer having a certain thickness can be formed by micro-sized metal microparticles, and mechanical properties such as tensile strength of the connection terminal after modeling can be improved. Therefore, by properly using the fluid containing the metal particles, it is possible to manufacture an electronic circuit having improved electrical properties and mechanical properties by utilizing the characteristics of the fluid containing the metal particles.
  • FIG. 1 shows the laminated unit forming device 10.
  • the stacking unit forming device 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, a mounting unit 26, a third modeling unit 200, and a control device 27 (see FIGS. 3 and 4). Be prepared.
  • the transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, and the third modeling unit 200 are arranged on the base 28 of the laminated unit forming device 10.
  • the base 28 is generally rectangular in plan view.
  • the longitudinal direction of the base 28 will be referred to as the X-axis direction
  • the lateral direction of the base 28 will be referred to as the Y-axis direction
  • the direction orthogonal to both the X-axis direction and the Y-axis direction will be referred to as the Z-axis direction.
  • the transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32.
  • the X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36.
  • the X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction.
  • the X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34.
  • the X-axis slide mechanism 30 has an electromagnetic motor 38 (see FIG. 3), and the X-axis slider 36 is moved to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38.
  • the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52.
  • the Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction.
  • One end of the Y-axis slide rail 50 is connected to the X-axis slider 36. Therefore, the Y-axis slide rail 50 is movable in the X-axis direction.
  • the stage 52 is slidably held in the Y-axis direction by the Y-axis slide rail 50.
  • the Y-axis slide mechanism 32 has an electromagnetic motor 56 (see FIG. 2), and the stage 52 is moved to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
  • the stage 52 has a base 60, a holding device 62, and an elevating device 64.
  • the base 60 is formed in a flat plate shape, and the base material 70 is placed on the upper surface.
  • the holding devices 62 are provided on both sides of the base 60 in the X-axis direction.
  • the holding device 62 holds the base material 70 fixedly to the base 60 by sandwiching both edges of the base material 70 placed on the base 60 in the X-axis direction.
  • the elevating device 64 is arranged below the base 60, and raises and lowers the base 60 in the Z-axis direction.
  • the first modeling unit 22 is a unit for modeling circuit wiring on a base material 70 placed on a base 60 of a stage 52, and has a first printing unit 72 and a firing unit 74.
  • the first printing unit 72 has an inkjet head 76 (see FIG. 3), and linearly ejects conductive ink onto the base material 70 placed on the base 60.
  • the conductive ink is an example of a fluid containing the metal nanoparticles of the present disclosure.
  • FIG. 2 is a table showing the characteristics of the conductive ink and the conductive paste described later.
  • the conductive ink contains, for example, nanometer-sized metal (silver or the like) fine particles dispersed in a solvent as a main component, and is cured by being fired by heat.
  • the conductive ink contains, for example, metal nanoparticles having a size of several hundred nanometers or less.
  • the surface of the metal nanoparticles is, for example, coated with a dispersant to suppress agglutination
  • the inkjet head 76 ejects conductive ink from a plurality of nozzles by, for example, a piezo method using a piezoelectric element.
  • the device for ejecting the conductive ink is not limited to the inkjet head provided with a plurality of nozzles, and for example, a dispenser provided with one nozzle may be used.
  • the type of metal nanoparticles contained in the conductive ink is not limited to silver, and may be copper, gold, or the like.
  • the number of types of metal nanoparticles contained in the conductive ink is not limited to one, and may be a plurality of types.
  • the firing unit 74 has an irradiation device 78 (see FIG. 3).
  • the irradiation device 78 includes, for example, an infrared heater that heats the conductive ink ejected onto the base material 70.
  • the conductive ink is fired by applying heat from an infrared heater to form a circuit wiring.
  • the solvent is vaporized and the protective film of the metal nanoparticles, that is, the dispersant is decomposed, and the metal nanoparticles are contacted or fused. This is a phenomenon in which the conductivity is increased.
  • the circuit wiring can be formed by firing the conductive ink.
  • the device for heating the conductive ink is not limited to the infrared heater.
  • an infrared lamp, a laser irradiation device for irradiating the conductive ink with laser light, or a base material 70 to which the conductive ink is discharged is placed in the furnace. It may be provided with an electric furnace for heating.
  • the temperature for heating the conductive ink is not limited to, for example, a firing temperature lower than the melting point of the metal contained in the conductive ink, and may be a temperature higher than the melting point of the metal.
  • the second modeling unit 24 is a unit for modeling an insulating layer (an example of the resin member of the present disclosure) on a base material 70 placed on a base 60, and is a second printing unit 84 and a cured unit. Has 86 and.
  • the second printing unit 84 has an inkjet head 88 (see FIG. 3), and discharges an ultraviolet curable resin onto a base material 70 placed on a base 60.
  • the ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays.
  • the method in which the inkjet head 88 discharges the ultraviolet curable resin may be, for example, a piezo method using a piezoelectric element, or a thermal method in which the resin is heated to generate bubbles and discharged from a plurality of nozzles.
  • the hardened portion 86 has a flattening device 90 (see FIG. 3) and an irradiation device 92 (see FIG. 3).
  • the flattening device 90 flattens the upper surface of the ultraviolet curable resin discharged onto the base material 70 by the inkjet head 88.
  • the flattening device 90 makes the thickness of the ultraviolet curable resin uniform, for example, by scraping off the excess resin with a roller or a blade while leveling the surface of the ultraviolet curable resin.
  • the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the ultraviolet curable resin discharged on the base material 70 with ultraviolet rays. As a result, the ultraviolet curable resin discharged onto the base material 70 is cured, and an insulating layer can be formed.
  • the mounting unit 26 is a unit for mounting electronic components and probe pins on the base material 70 mounted on the base 60, and has a supply unit 100 and a mounting unit 102.
  • the supply unit 100 has a plurality of tape feeders 110 (see FIG. 3) for feeding the taped electronic components one by one, and supplies the electronic components at each supply position.
  • the supply unit 100 has a tray 201 (see FIG. 3) in which the probe pins are arranged in an upright state, and supplies the probe pins in a state where the probe pins can be picked up from the tray 201.
  • the electronic component is, for example, a sensor element such as a temperature sensor.
  • the probe pin is a member that electrically connects the circuit wiring of one laminated unit and the circuit wiring of another laminated unit. Further, it is preferable to use a probe pin that can be stroked in the axial direction by applying an external force.
  • the electronic components are not limited to the tape feeder 110 and may be supplied by the tray. Further, the probe pin is supplied not only by the tray 201 but also by a tape feeder. Further, the electronic components and the probe pins may be supplied by both the tape feeder and the tray, or other supply.
  • the mounting unit 102 has a mounting head 112 (see FIG. 3) and a moving device 114 (see FIG. 3).
  • the mounting head 112 has a suction nozzle for sucking and holding an electronic component or a probe pin.
  • the suction nozzle sucks and holds electronic components and the like by sucking air by supplying negative pressure from a positive / negative pressure supply device (not shown). Then, when a slight positive pressure is supplied from the positive / negative pressure supply device, the electronic component or the like is separated. Further, the moving device 114 moves the mounting head 112 between the supply position of the tape feeder 110 or the tray 201 and the base material 70 mounted on the base 60.
  • the mounting portion 102 holds the electronic parts and the like by the suction nozzle, and arranges the electronic parts and the like held by the suction nozzle on the base material 70.
  • the third modeling unit 200 is a unit for applying the conductive paste on the base material 70 placed on the base 60.
  • the conductive paste is an example of a fluid containing the metal microparticles of the present disclosure.
  • the conductive paste is, for example, a viscous fluid containing micro-sized metal particles (microfiller or the like) in a resin adhesive.
  • Micro-sized metal microparticles are, for example, flake-state metals (such as silver).
  • the metal microparticles are not limited to silver, but may be gold, copper, or a plurality of types of metals.
  • the adhesive contains, for example, an epoxy resin as a main component.
  • the conductive paste is cured by heating and is used, for example, to form connection terminals connected to circuit wiring.
  • connection terminals are connection terminals (bumps) connected to component terminals of electronic components, electrode pads (exposed pads, etc.) connected to external devices, pin terminals provided at contact points of probe pins, and laminated devices. It is used to form through holes that conduct circuit wiring in the direction.
  • the third modeling unit 200 has a dispenser 202 as a device for discharging (applying) the conductive paste.
  • the device for applying the conductive paste is not limited to the dispenser, but may be a screen printing device or a gravure printing device.
  • the "coating" in the present disclosure is a concept including an operation of discharging a fluid from a nozzle or the like and an operation of adhering a fluid onto an object by screen printing or gravure printing.
  • the dispenser 202 discharges the conductive paste into the through hole of the insulating layer, the surface of the insulating layer, and the like.
  • the conductive paste filled in the through hole is heated and cured by the firing portion 74 of the first modeling unit 22, for example, to form a connection terminal or a through hole.
  • the conductive paste applied to the surface of the insulating layer is heated and cured by, for example, the firing unit 74 to form a connection terminal or the like.
  • the conductive paste contains, for example, metal microparticles having a size of several tens of micrometers or less.
  • the adhesive resin or the like
  • the method of curing the conductive paste is not limited to the method of heating, and may be a method of curing by ultraviolet rays using an ultraviolet curable resin as an adhesive.
  • the conductive ink becomes an integrated metal by fusing the metal nanoparticles together by heating, and the conductivity is higher than that in the state where the metal nanoparticles are only in contact with each other.
  • the conductive paste is cured by bringing micro-sized metal microparticles into contact with each other, for example, by curing the adhesive. Therefore, the resistance (electric resistivity) of the wiring formed by curing the conductive ink is extremely small, for example, several to several tens of micro ⁇ ⁇ cm, and the resistance of the wiring formed by curing the conductive paste (several tens to several tens to severals). It is smaller than 1000 micro ⁇ ⁇ cm). Therefore, the conductive ink is suitable for modeling a modeled object that requires a low resistance value, such as a circuit wiring having a low resistance.
  • the conductive paste can improve the adhesiveness with other members by curing the adhesive at the time of curing, and has excellent adhesion with other members as compared with the conductive ink.
  • the other member referred to here is a member to which the conductive paste is discharged and adhered, and is, for example, an insulating layer, a circuit wiring, a component terminal of an electronic component, and the like. Therefore, the conductive paste is suitable for modeling a modeled object that requires mechanical strength (tensile strength, etc.), such as a connection terminal for fixing an electronic component to an insulating layer.
  • the conductive ink is made by dispersing metal nanoparticles in a solvent, and has lower viscosity (higher fluidity) than a conductive paste in which metal microparticles are mixed in an adhesive. For this reason, in the three-dimensional laminated molding using the conductive ink having a relatively low viscosity, finer inkjet printing becomes possible as compared with the case of the three-dimensional laminated molding using the conductive paste having a relatively high viscosity. It is possible to form a circuit wiring having a different shape.
  • the conductive paste has a higher viscosity than the conductive ink, it is difficult to flow after being ejected, and since it contains micro-sized metal microparticles, a relatively thick film can be formed.
  • an electronic circuit having improved electrical and mechanical properties can be manufactured by properly using such a conductive ink and a conductive paste and making the best use of the characteristics.
  • the control device 27 includes a controller 120, a plurality of drive circuits 122, and a storage device 124.
  • the plurality of drive circuits 122 include the electromagnetic motors 38 and 56, the holding device 62, the elevating device 64, the inkjet head 76, the irradiation device 78, the inkjet head 88, the flattening device 90, and the irradiation device 92. It is connected to the tape feeder 110, the mounting head 112, and the moving device 114. Further, the drive circuit 122 is connected to the third modeling unit 200 as shown in FIG.
  • the controller 120 includes a CPU, ROM, RAM, etc., and is mainly a computer, and is connected to a plurality of drive circuits 122.
  • the storage device 124 includes a RAM, a ROM, a hard disk, and the like, and stores a control program 126 that controls the stacking unit forming device 10.
  • the controller 120 can control the operations of the transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, the third modeling unit 200, and the like by executing the control program 126 on the CPU. ..
  • the fact that the controller 120 executes the control program 126 to control each device may be simply described as "device".
  • the controller 120 moves the stage 52 means that "the controller 120 executes the control program 126, controls the operation of the transfer device 20 via the drive circuit 122, and causes the stage by the operation of the transfer device 20.” It means "move 52".
  • FIG. 5 is a flowchart showing a flow of a manufacturing process of a three-dimensional laminated electronic device.
  • FIG. 6 is a cross-sectional view showing a state in which the first laminated unit 218A, the second laminated unit 218B, and the third laminated unit 218C are laminated in the vertical direction to manufacture the three-dimensional laminated electronic device 246.
  • FIG. 7 is a cross-sectional view showing a three-dimensional laminated electronic device 246.
  • the manufacturing process and the three-dimensional laminated electronic device 246 (number and structure of laminated units) shown in FIGS. 5 to 7 are examples.
  • the manufacturing process 130 of the three-dimensional laminated electronic device 246 by the three-dimensional laminated modeling includes a unit forming step P10 and a unit laminating step P12.
  • the unit forming step P10 the first to third laminated units 218A, 218B, and 218C are formed on the base material 70 by the laminated unit forming apparatus 10 described above.
  • the unit laminating step P12 the three-dimensional laminated electronic device 246 (see FIG. 7) is manufactured by laminating the first to third laminating units 218A, 218B, and 218C in the vertical direction.
  • laminated units 218 when the first to third laminated units 218A to 218C are generically referred to without distinction, they are referred to as laminated units 218.
  • the controller 120 executes the control program 126 to control each device of the laminated unit forming device 10 to execute the unit forming step P10.
  • the unit forming step P10 includes an insulating layer forming process S10, a circuit wiring forming process S20, a connection terminal forming process S30, and a mounting process S40.
  • the execution order of each of the above processes S10, S20, S30, and S40 is determined by the laminated structure of the three-dimensional laminated electronic devices 246 (that is, the first to third laminated units 218A to 218C). Therefore, the above processes S10, S20, S30, and S40 are not repeated in their notation order.
  • the user sets the base material 70 on the base 60 of the stage 52, and instructs the laminated unit forming apparatus 10 to start the manufacturing process 130 shown in FIG.
  • the laminating unit forming apparatus 10 may automatically execute the setting of the base material 70.
  • the controller 120 moves the stage 52 on which the base material 70 is set below the second modeling unit 24.
  • the controller 120 controls the second modeling unit 24, ejects the ultraviolet curable resin from the inkjet head 88 onto the base material 70, flattens it with the flattening device 90, and cures it with the irradiation device 92.
  • the controller 120 repeats discharging, flattening, and curing the ultraviolet curable resin to form the insulating layer 220 (see FIG. 6). Further, the controller 120 forms an accommodating portion 222 for accommodating the electronic component 96 and the probe pin 99 in the insulating layer forming process S10.
  • the controller 120 executes the circuit wiring formation process S20, the controller 120 moves the stage 52 below the first modeling unit 22.
  • the controller 120 controls the first modeling unit 22, ejects conductive ink from the inkjet head 76 to the upper surface of the insulating layer 220, and heats the ejected conductive ink with the irradiation device 78, thereby causing circuit wiring 225 ( (See FIG. 6).
  • the controller 120 executes the connection terminal forming process S30, the controller 120 moves the stage 52 below the third modeling unit 200.
  • the controller 120 controls the third modeling unit 200 to discharge the conductive paste from the dispenser 202 to the upper surface of the insulating layer 220, the upper surface of the circuit wiring 225, the bottom of the accommodating portion 222, and the like.
  • the controller 120 forms the connection terminal 227 (see FIG. 6) by heating the discharged conductive paste with the irradiation device 78 of the first modeling unit 22.
  • the controller 120 forms a component connection terminal 227A, a pin terminal 227B, and an electrode pad 227C as connection terminals 227.
  • the component connection terminal 227A is, for example, a connection terminal 227 connected to the component terminal 96A of the electronic component 96.
  • the pin terminal 227B is, for example, a connection terminal 227 connected to the lower end of the probe pin 99.
  • the electrode pad 227C is, for example, a connection terminal 227 for electrically connecting the electronic circuit of each laminated unit 218 to the upper end of the probe pin 99 and for connecting the three-dimensional laminated electronic device 246 to an external device.
  • Each connection terminal 227 is electrically connected by a circuit wiring 225 to form an electronic circuit.
  • the controller 120 has the shape, position, number, etc. of the insulating layer 220 formed by the insulating layer forming process S10, the circuit wiring 225 formed by the circuit wiring forming process S20, and the connecting terminals 227 formed by the connecting terminal forming process S30. Is appropriately changed to model each laminated unit 218. Further, the controller 120 appropriately executes the mounting process S40 in the process of modeling the laminated unit 218. The controller 120 mounts the electronic component 96 and the probe pin 99 by the mounting unit 26.
  • control program 126 For example, in the control program 126, three-dimensional data of each layer obtained by slicing the three-dimensional laminated electronic device 246 (each laminated unit 218) is set. Based on the data of the control program 126, the controller 120 executes each manufacturing process such as the circuit wiring forming process S20 to form the stacking unit 218. Further, the controller 120 detects information such as a layer and a position where the electronic component 96 and the probe pin 99 are arranged based on the data of the control program 126, and stacks the electronic component 96 and the probe pin 99 based on the detected information. Place it in unit 218.
  • the controller 120 controls the third modeling unit 200 to discharge the conductive paste, and then controls the mounting unit 26 so that the component terminals 96A of the electronic component 96 come into contact with the conductive paste. Is arranged in the accommodating portion 222 or the like. After arranging the electronic component 96, the controller 120 connects the component connection terminal 227A and the component terminal 96A by curing the conductive paste, and fixes the electronic component 96 to the insulating layer 220. After arranging the electronic component 96, the controller 120 may discharge the conductive paste onto the component terminal 96A of the electronic component 96 to cure the electronic component 96.
  • the controller 120 controls, for example, the third modeling unit 200 to discharge the conductive paste to the bottom of the accommodating portion 222 accommodating the probe pin 99.
  • the controller 120 forms the pin terminal 227B at the bottom of the accommodating portion 222 by curing the conductive paste by the irradiation device 78 of the first modeling unit 22.
  • the controller 120 controls the mounting unit 26 and arranges the probe pin 99 in the accommodating portion 222 so that the lower end of the probe pin 99 comes into contact with the hardened pin terminal 227B. In this way, the laminated unit 218 having a desired structure can be formed by three-dimensional laminated modeling.
  • the controller 120 assembles the above-mentioned stacking unit 218 in the unit stacking step P12.
  • a release film (not shown) that is peeled off by heat is attached on the base material 70, and each lamination unit 218 is formed on the release film. Then, by heating the release film, each lamination unit 218 can be peeled from the base material 70.
  • the method for separating the base material 70 and the lamination unit 218 is not limited to the above method.
  • a member (support material or the like) that melts by heat may be arranged between the base material 70 and the lamination unit 218, and the members may be melted and separated.
  • the base material 70 and the laminating unit 218 may be separated automatically by the laminating unit forming device 10 (with a robot arm or the like), or may be manually performed by a person.
  • a three-dimensional laminated electronic device 246 having a desired structure can be manufactured.
  • the method of fixing the plurality of laminated units 218 to each other is not particularly limited, but a method using screws, bolts, nuts, or the like, or a method using an adhesive can be adopted.
  • the work of assembling the plurality of laminated units 218 may be automatically executed by the laminated unit forming apparatus 10.
  • the stacking unit forming device 10 may include a robot arm for assembling a plurality of stacking units 218 and fixing them to each other.
  • the work of assembling the plurality of laminated units 218 may be performed manually by the user.
  • a probe pin 99 capable of stroking in the axial direction is used.
  • the probe pin 99 is sandwiched between the lower pin terminal 227B and the upper electrode pad 227C in the vertical direction.
  • the probe pin 99 contracts by varying the stroke amount according to the distance between the upper laminated unit 218 and the lower laminated unit 218.
  • an error in the thickness of the lamination unit 218 due to the three-dimensional lamination molding can be absorbed by the stroke amount of the probe pin 99.
  • FIG. 8 is a cross-sectional view for explaining where the conductive ink and the conductive paste are used.
  • FIG. 9 is a plan view for explaining the locations where the conductive ink and the conductive paste are used. 8 and 9 schematically show the configuration of the three-dimensional stacked electronic device 246. 8 and 9, and FIGS. 11 to 13 described later, the electronic component 96 is mounted on the surface of the insulating layer 220 in order to avoid complicating the drawings.
  • the manufacturing method for properly using the conductive ink and the conductive paste described below can be similarly applied to the electronic component 96 arranged in the housing portion 222 shown in FIG. 7.
  • the laminated unit forming apparatus 10 of the present embodiment uses conductive ink in places where low resistance is required, such as circuit wiring 225. Perform modeling.
  • the stacking unit forming apparatus 10 is joined or contacted with another member such as the connection terminal 227, so that the tensile strength and the like are mechanical. For the parts where strength is required, perform modeling using a conductive paste.
  • a fluid containing metal microparticles for example, a viscous fluid containing metal microparticles in a resin adhesive is used as the conductive paste.
  • the controller 120 cures the adhesive contained in the conductive paste to form a plurality of metal microparticles. The particles are brought into contact with each other and cured.
  • the controller 120 heats a fluid containing metal nanoparticles to heat the fluid.
  • connection terminal forming process S30 a plurality of metal microparticles are cured in a state of being in contact with each other by curing the adhesive, for example, mechanical properties (tensile strength, etc.) due to the adhesion of the adhesive. It is possible to form the connection terminal 227 which is improved. Further, in the circuit wiring forming process S20, by heating a plurality of metal nanoparticles and fusing them to each other, it is possible to form the circuit wiring 225 having improved electrical properties (reduction of resistance value, improvement of high frequency characteristics).
  • the controller 120 uses the component connection terminal 227A for connecting to the electronic component 96 mounted on the insulating layer 220, the electronic circuit of the insulating layer 220, and the external device as the connection terminal 227.
  • At least one connection terminal 227 is formed among the pin terminals 227B for connecting the electrode pads 227C to be connected and the probe pins 99 for connecting the electronic circuits of the plurality of laminated units 218 to the electronic circuits of the laminated unit 218.
  • an electronic circuit having improved mechanical properties is manufactured by using a fluid containing metal microparticles in a portion where mechanical strength is required. it can.
  • the conductive ink of the present embodiment is excellent in electrical properties, and the conductive paste is excellent in mechanical properties. Therefore, when the circuit wiring 225 formed of the conductive ink and the connection terminal 227 formed of the conductive paste are overlapped with each other, the resistance value can be reduced by increasing the ratio of the conductive ink. On the contrary, if the ratio of the conductive paste is increased, the tensile strength can be improved.
  • FIG. 10 is a table showing a connection pattern between the circuit wiring 225 and the connection terminal 227.
  • FIG. 11 is a diagram schematically showing a portion in which the connection terminal 227 is overlapped with the circuit wiring 225.
  • FIG. 10 shows an example of 12 connection patterns PT11 to PT34 from PT11 to PT34.
  • FIG. 10 shows a schematic view of the overlapping portion of the circuit wiring 225 and the connection terminal 227 in a plan view with connection patterns PT11 to PT34.
  • the overlapping portion referred to here is, for example, a portion where the component connection terminal 227A connected to the component terminal 96A of the electronic component 96 shown in FIG. 11 covers the end portion of the circuit wiring 225.
  • the component connection terminal 227A electrically connects the component terminal 96A to the circuit wiring 225 and fixes the component terminal 96A to the insulating layer 220.
  • the component connection terminal 227A is required to have tensile strength so that the electronic component 96 does not fall off from the three-dimensional laminated electronic device 246.
  • the controller 120 starts from a position PT2 that is covered by, for example, the component connection terminal 227A and is away from the position PT1 that is directly below the component terminal 96A. It is formed so as to pull out the circuit wiring 225.
  • the ratio of the circuit wiring 225 in the portion covered by the component connection terminal 227A is reduced, in other words, the component terminal 96A is provided with an insulating layer.
  • the ratio of the conductive paste can be increased at the portion fixed to 220 to improve the mechanical strength.
  • the electronic component 96 can be more firmly fixed to the insulating layer 220 via the component connection terminal 227A, and even a large electronic component 96 or the like can suppress the electronic component 96 from falling off or peeling off.
  • connection terminal 227 For example, in the leftmost column (connection patterns PT11, PT21, PT31) shown in FIG. 10, the circuit wiring 225 is pulled out starting from the outside (end side) of the connection terminal 227. In this case, the ratio of the portion of the circuit wiring 225 covered by the connection terminal 227 to the entire connection terminal 227 becomes small. It is possible to improve the mechanical properties of the electronic component 96 and the like joined by the connection terminal 227.
  • the electrode pad 227C shown in FIG. 11 is connected to the external device terminal 233, which is a terminal of the external device.
  • This external device is, for example, a device that is not always fixed to the three-dimensional stacked electronic device 246 but is connected when necessary. In this case, it is not necessary to fix the external device terminal 233 to the insulating layer 220 with the electrode pad 227C.
  • the controller 120 is a circuit in the circuit wiring forming process S20 so as to be pulled out from a position PT3 which is covered with, for example, the electrode pad 227C and is directly below the external device terminal 233.
  • the wiring 225 is formed.
  • the position PT3 is, for example, when the external device terminal 233 and the electrode pad 227C are electrically connected so that the three-dimensional laminated electronic device 246 and the external device can communicate normally, the electrode pad 227C in the entire external device terminal 233 is used. It is the central position of the part in contact with (the central position in the plan view). According to this, by pulling out the circuit wiring 225 starting from the position PT3 directly below the external device terminal 233, the pull-out position of the external device terminal 233 and the circuit wiring 225 can be brought closer to each other.
  • the amount (ratio) of the electrode pad 227C (conductive paste) intervening between the external device terminal 233 and the circuit wiring 225 is reduced, and the electrical connection between the external device and the circuit wiring 225 (three-dimensional laminated electronic device 246) is reduced.
  • the resistance value in can be made smaller. As a result, when an external device or the like that requires a low resistance connection is connected to the electrode pad 227C, the external device can be operated normally.
  • connection terminal 227 (connection pattern PT13) when viewed in the extending direction of the circuit wiring 225 (left-right direction in FIG. 10). Then, the circuit wiring 225 is pulled out from the central position). In this case, the distance between the lead-out position (starting point) of the circuit wiring 225 and the terminal connected to the connection terminal 227 (external device terminal 233, etc.) can be made as close as possible, and the circuit wiring 225 and the external device terminal 233 can be made as close as possible. The resistance value in the electronic circuit connected to and can be lowered.
  • the controller 120 of the present embodiment has a component connection terminal 227A (an example of a first connection terminal) connected to an electronic component 96 mounted on an insulating layer 220 (an example of an insulating member), and a component connection terminal 227A (an example of a first connection terminal).
  • An electrode pad 227C (an example of a second connection terminal) for connecting the electronic circuit of the insulating layer 220 and an external device is formed.
  • Each of the component connection terminal 227A and the electrode pad 227C is formed so as to cover a part of the circuit wiring 225 from above.
  • the ratio of the portion of the circuit wiring 225 covered by the component connection terminal 227A to the entire component connection terminal 227A is such that the portion of the circuit wiring 225 covered by the electrode pad 227C covers the entire electrode pad 227C. It is small compared to the ratio (see FIG. 11). According to this, for the electrode pad 227C connected to an external device, the electrical resistance (improvement of electrical properties) can be reduced by relatively increasing the ratio of the circuit wiring 225 to the entire electrode pad 227C. Can be done. Further, for the component connection terminal 227A such as a bump for connecting the electronic component 96, the mechanical strength is improved (improvement of mechanical properties) by relatively reducing the ratio of the circuit wiring 225 to the entire component connection terminal 227A. ) Can be planned.
  • the circuit wiring 225 may be pulled out from a position directly below the probe pin 99 to reduce the connection resistance between the circuit wiring 225 and the probe pin 99.
  • the pin terminal 227B may be firmly fixed by the insulating layer 220 by pulling out the circuit wiring 225 starting from a position away from directly below the probe pin 99. good.
  • the pin terminal 227B sandwiches the probe pin 99 from above and below when the stacking unit 218 is laminated, and applies stress according to the stroke amount. Therefore, when mechanical strength is required for the pin terminal 227B, the ratio of the conductive paste can be increased to improve the mechanical properties.
  • the circuit wiring 225 may be pulled out from the position PT1 directly below the component terminal 96A, and the distance between the component terminal 96A and the circuit wiring 225 may be shortened to reduce the connection resistance.
  • the circuit wiring 225 can be pulled out from the position PT1 to reduce the connection resistance.
  • the position PT3 for pulling out the circuit wiring 225 from the electrode pad 227C may be set to a position outside (end side) of the electrode pad 227C.
  • the lead-out position PT3 of the circuit wiring 225 is set to the outside, and the tensile strength of the electrode pad 227C is increased to increase the tensile strength of the electrode pad.
  • the peeling of 227C can be suppressed.
  • the method of properly using the above-mentioned conductive ink and conductive paste is not particularly limited.
  • the three-dimensional data of the control program 126 may be used properly by setting the material to be used, the position where the connection terminal 227 is formed, the pull-out position of the circuit wiring 225, and the like.
  • the controller 120 executes the three-dimensional laminated modeling based on the control program 126, and by performing the modeling according to the above-mentioned proper use, the three-dimensional laminated electrons aiming at the improvement of the electrical property and the mechanical property.
  • Device 246 can be manufactured.
  • the controller 120 is based on the value of the connection resistance required for the electronic component 96, the position where the connection terminal 227 is formed, the object to which the connection terminal 227 is connected, and the like, the material to be used, the pull-out position of the circuit wiring 225, and the like. May be changed automatically.
  • the controller 120 can properly use the connection patterns PT11 to PT34 shown in FIG. 10 based on, for example, the control program 126.
  • the controller 120 uses the connection patterns PT12, PT22, and PT32 when it is desired to draw out two circuit wirings 225 from the connection terminal 227 while improving the mechanical properties.
  • the controller 120 uses the connection patterns PT14, PT24, and PT34.
  • the controller 120 when the controller 120 wants to retract the circuit wiring 225, the controller 120 forms the circuit wiring 225 from the offset position shown in the second line of FIG.
  • the case where the user wants to evacuate here is, for example, a case where the component terminal 96A is relatively larger than the component connection terminal 227A and the circuit wiring 225 and the component terminal 96A interfere with each other.
  • the controller 120 pulls out the circuit wiring 225 from the central position shown in the first line of FIG. 10 to obtain a distance between the component terminal 96A and the like and the circuit wiring 225. Can be brought closer.
  • the controller 120 when the controller 120 wants to further reduce the electrical resistance, the controller 120 forms the circuit wiring 225 by the surface contact shown in the third line of FIG. In the formation of the circuit wiring 225 by the surface contact, the controller 120 makes, for example, the wiring width W of the circuit wiring 225 equal to or larger than the width of the connection terminal 227. As a result, the contact area between the circuit wiring 225 and the connection terminal 227 can be increased, and the connection resistance can be further reduced. Further, when a low resistance enough to use a surface contact is not required, the controller 120 pulls out the circuit wiring 225 from the central position shown in the first line of FIG. 10 and narrows the wiring width W to narrow the circuit wiring 225. It is possible to reduce the size and the amount of conductive ink used.
  • the controller 120 may increase the number of component connection terminals 227A so that the lead-out position of the circuit wiring 225 is further separated from the component terminals 96A.
  • the circuit wiring 225 can be eliminated from directly under the electronic component 96, the force for fixing the electronic component 96 by the component connection terminal 227A can be strengthened, and the electronic component 96 can be firmly fixed to the insulating layer 220.
  • the component connection terminals 227A are enlarged or lengthened along the plane direction of the insulating layer 220 to form the electronic component 96.
  • the circuit wiring 225 may be separated.
  • the controller 120 of the present embodiment forms the connection terminal 227 so as to cover the circuit wiring 225 from above.
  • the conductive ink of the present embodiment has low viscosity and high fluidity. Therefore, even if the conductive ink is first ejected to form the connection terminal 227 and then the conductive ink is ejected onto the surface of the connection terminal 227, the conductive ink may flow down from the surface of the connection terminal 227. ..
  • the conductive paste has high viscosity and easily adheres to the object. Therefore, when connecting the circuit wiring 225 and the connection terminal 227, the controller 120 forms the circuit wiring 225 first, and forms the connection terminal 227 on the formed circuit wiring 225.
  • the circuit wiring forming process S20 is executed to form the circuit wiring 225, and then the formed circuit wiring 225 contains metal microparticles.
  • a fluid is applied and the fluid containing the applied metal microparticles is cured to form a connection terminal 227.
  • the object is covered with the fluid. It is difficult to leave the fluid uniformly, and it is difficult to form a circuit wiring 225 having a uniform thickness.
  • the circuit wiring 225 by forming the circuit wiring 225 first with the metal nanoparticles, the circuit wiring 225 having a uniform thickness can be formed. Then, by applying a fluid containing metal microparticles having a relatively high viscosity on the circuit wiring 225 formed earlier, the connection terminal 227 can be suitably formed on the circuit wiring 225. If the conductive ink can be attached to the connection terminal 227, the conductive ink is discharged onto the connection terminal 227 after the connection terminal 227 is formed, and the circuit wiring 225 is formed on the surface of the connection terminal 227. Is also good.
  • the controller 120 when a conductive paste is discharged into a hole formed in the insulating layer 220 to form a through hole, the controller 120 first discharges the conductive paste to form a through hole, and then the through hole. Conductive ink may be ejected onto the circuit wiring 225 to form the circuit wiring 225.
  • a conductive ink containing nano-sized metal nanoparticles is coated on the insulating layer 220 and coated.
  • the circuit wiring forming process S20 for forming the circuit wiring 225 by curing the conductive ink is included.
  • a conductive paste containing micro-sized metal microparticles is applied, and the applied conductive paste is cured to electrically connect to the circuit wiring 225.
  • the connection terminal forming process S30 for forming 227 is included.
  • the type of fluid containing metal particles is used properly for the modeling of the connection terminal 227 and the modeling of the circuit wiring 225.
  • the circuit wiring 225 is formed by applying conductive ink and curing the circuit wiring 225.
  • nano-sized metal nanoparticles are brought into contact with each other or fused to each other to be cured, so that a low-resistance circuit wiring 225 can be formed.
  • the connection terminal 227 is formed by applying a conductive paste and curing the connection terminal 227.
  • a layer having a certain thickness can be formed by micro-sized metal microparticles, and mechanical properties such as tensile strength of the connection terminal 227 after modeling can be improved. Therefore, by properly using the fluid containing the metal particles, it is possible to manufacture an electronic circuit having improved electrical properties and mechanical properties by utilizing the characteristics of the fluid containing the metal particles.
  • the insulating layer 220 is an example of a resin member.
  • the circuit wiring 225 is an example of wiring.
  • the component connection terminal 227A is an example of the first connection terminal.
  • the electrode pad 227C is an example of the second connection terminal.
  • the circuit wiring forming process S20 is an example of the wiring forming process.
  • the connection terminal forming process S30 is an example of the connection terminal forming step.
  • the laminated unit forming apparatus 10 uses the conductive paste to form the component connection terminal 227A, the pin terminal 227B, and the electrode pad 227C, but it may be configured to form at least one of the three connection terminals 227.
  • the types of metal nanoparticles and solvent used in the conductive ink of the present application are not particularly limited.
  • the types of metal microparticles and adhesives used in the conductive paste of the present application are not particularly limited.
  • the resin constituting the insulating layer 220 is not limited to the ultraviolet curable resin, and may be, for example, a thermoplastic resin or a thermosetting resin.
  • the laminated unit forming apparatus 10 forms an insulating layer 220 obtained by curing an ultraviolet curable resin as the resin material of the present disclosure by three-dimensional laminating molding.
  • the laminated unit forming apparatus 10 may form the circuit wiring 225 and the connection terminal 227 on the resin material formed by a method other than the three-dimensional laminated molding (injection molding or the like).
  • the configuration of the laminated unit forming device 10 described above is an example, and can be changed as appropriate.
  • the stacking unit forming device 10 does not have to include a mounting unit 26 for mounting electronic components.
  • the three-dimensional additive manufacturing method of the present disclosure for example, a stereolithography method, a hot melting lamination method and the like can be adopted in addition to the inkjet method.
  • Laminated unit forming device S20 Circuit wiring forming process (wiring forming process) S30 Connection terminal forming process (connection terminal forming process) 96 Electronic components 99 Probe pin 218 Laminating unit (insulating member) 220 Insulation layer (insulation member) 225 circuit wiring (wiring) 227 connection terminal 227A component connection terminal (first connection terminal) 227B pin terminal 227C electrode pad (second connection terminal) 246 3D stacked electronic device

Abstract

Provided is an electronic circuit production method using 3D layer shaping which, by means of differentiating and using fluids comprising metal particles, enables production of an electronic circuit having improved electrical properties and mechanical properties, and which utilizes the characteristics of the fluids comprising the metal particles. This electronic circuit production method using 3D layer shaping comprises: a wiring forming step in which a fluid comprising nano-sized metal nanoparticles is applied onto an insulation member, and wiring is formed by curing the applied fluid comprising the metal nanoparticles; and a connection terminal forming step in which a fluid comprising micro-sized metal microparticles is applied, and a connection terminal which is electrically connected to the wiring is formed by curing the applied fluid comprising the metal microparticles.

Description

3次元積層造形による電子回路製造方法Electronic circuit manufacturing method by 3D laminated modeling
 本開示は、3次元積層造形を用いて電子回路を製造する方法に関するものである。 The present disclosure relates to a method of manufacturing an electronic circuit using three-dimensional laminated modeling.
 従来、3次元積層造形に関し、種々の技術が提案されている。例えば、下記特許文献1には、3次元積層造形により電子部品や電子回路を含んだ積層ユニットを形成する技術が開示されている。特許文献1に記載された積層ユニット形成装置は、紫外線硬化樹脂を基材の上に吐出して硬化することで絶縁層を形成する。また、積層ユニット形成装置は、導電性インクや金属ペーストを用いて、回路配線やスルーホールなどを接続した電子回路を形成している。 Conventionally, various techniques have been proposed for three-dimensional laminated modeling. For example, Patent Document 1 below discloses a technique for forming a laminated unit including an electronic component and an electronic circuit by three-dimensional laminated modeling. The laminated unit forming apparatus described in Patent Document 1 forms an insulating layer by discharging an ultraviolet curable resin onto a base material and curing it. Further, the laminated unit forming apparatus uses conductive ink or metal paste to form an electronic circuit in which circuit wiring, through holes, and the like are connected.
国際公開第WO/2019/102522号International Publication No. WO / 2019/102522
 上記特許文献1に係る技術のように、3次元積層造形により金属を含む流体を用いて絶縁層に電子回路を実装する場合、造形する電子回路は、その用途などに応じて要求される電気的性質や機械的性質が異なってくる。一方で、金属を含む流体についても、その種類に応じて特性が異なり、電子回路のどのような部分に用いるべきなのかが、造形後の電子回路の電気的性質及び機械的性質を決める上で極めて重要となる。 When an electronic circuit is mounted on an insulating layer using a fluid containing metal by three-dimensional laminated molding as in the technique according to Patent Document 1, the electronic circuit to be modeled is electrically required according to its application and the like. The properties and mechanical properties are different. On the other hand, the characteristics of fluids containing metals also differ depending on the type, and what part of the electronic circuit should be used determines the electrical and mechanical properties of the electronic circuit after modeling. It will be extremely important.
 本開示は、上述した点を鑑みてなされたものであり、金属粒子を含む流体を使い分けることで、金属粒子を含む流体の特性を活かし、電気的性質及び機械的性質を向上した電子回路を製造できる3次元積層造形による電子回路製造方法を提供することを課題とする。 The present disclosure has been made in view of the above points, and by properly using a fluid containing metal particles, an electronic circuit having improved electrical and mechanical properties can be manufactured by utilizing the characteristics of the fluid containing metal particles. An object of the present invention is to provide a method for manufacturing an electronic circuit by three-dimensional laminated molding.
 本明細書は、絶縁部材の上に、ナノサイズの金属ナノ粒子を含む流体を塗布し、塗布した前記金属ナノ粒子を含む流体を硬化させることで配線を形成する配線形成工程と、マイクロサイズの金属マイクロ粒子を含む流体を塗布し、塗布した前記金属マイクロ粒子を含む流体を硬化させることで前記配線に電気的に接続される接続端子を形成する接続端子形成工程と、を含む3次元積層造形による電子回路製造方法を開示する。 The present specification describes a wiring forming step of applying a fluid containing nano-sized metal nanoparticles on an insulating member and curing the applied fluid containing the metal nanoparticles to form a wiring, and a micro-sized. Three-dimensional laminated molding including a connection terminal forming step of applying a fluid containing metal nanoparticles and curing the applied fluid containing the metal nanoparticles to form a connection terminal electrically connected to the wiring. Disclose the method of manufacturing an electronic circuit according to the above.
 本開示によれば、接続端子の造形と、配線の造形とで、金属粒子を含む流体の種類を使い分ける。配線を形成する場合、金属ナノ粒子を含む流体を塗布し硬化させることで配線を形成する。これにより、ナノサイズの金属ナノ粒子が互いに接触又は融着等して硬化することで、低抵抗な配線を形成することができる。また、接続端子を形成する場合、金属マイクロ粒子を含む流体を塗布し硬化させることで接続端子を形成する。これにより、マイクロサイズの金属マイクロ粒子により一定の厚みを持った層を形成することができ、造形後の接続端子の引っ張り強度などの機械的性質を向上できる。従って、金属粒子を含む流体を使い分けることで、金属粒子を含む流体の特性を活かし、電気的性質及び機械的性質を向上した電子回路を製造できる。 According to this disclosure, the type of fluid containing metal particles is used properly for the modeling of connection terminals and the modeling of wiring. When forming the wiring, the wiring is formed by applying a fluid containing metal nanoparticles and curing the wiring. As a result, nano-sized metal nanoparticles are brought into contact with each other or fused to each other and hardened, so that low-resistance wiring can be formed. When forming a connection terminal, a fluid containing metal microparticles is applied and cured to form the connection terminal. As a result, a layer having a certain thickness can be formed by micro-sized metal microparticles, and mechanical properties such as tensile strength of the connection terminal after modeling can be improved. Therefore, by properly using the fluid containing the metal particles, it is possible to manufacture an electronic circuit having improved electrical properties and mechanical properties by utilizing the characteristics of the fluid containing the metal particles.
積層ユニット形成装置を示す図である。It is a figure which shows the laminated unit forming apparatus. 導電性インクと、導電性ペーストの特徴を示す表である。It is a table which shows the characteristic of a conductive ink and a conductive paste. 制御装置を示すブロック図である。It is a block diagram which shows the control device. 制御装置を示すブロック図である。It is a block diagram which shows the control device. 3次元積層電子デバイスの製造工程の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing process of a 3D laminated electronic device. 第1積層ユニット、第2積層ユニット、第3積層ユニットを上下方向に積層して3次元積層電子デバイスを製造する状態を示す断面図である。It is sectional drawing which shows the state which the 1st laminated unit, the 2nd laminated unit, and the 3rd laminated unit are laminated in the vertical direction, and the 3D laminated electronic device is manufactured. 3次元積層電子デバイスを示す断面図である。It is sectional drawing which shows the 3D laminated electronic device. 導電性インクと導電性ペーストの使用箇所を説明するための断面図である。It is sectional drawing for demonstrating the use place of the conductive ink and the conductive paste. 導電性インクと導電性ペーストの使用箇所を説明するための平面図である。It is a top view for demonstrating the place where the conductive ink and the conductive paste are used. 回路配線と接続端子の接続パターンを示す表である。It is a table which shows the connection pattern of a circuit wiring and a connection terminal. 回路配線に接続端子を重ねた部分を模式的に示す図である。It is a figure which shows typically the part which overlapped the connection terminal on the circuit wiring. 別例の回路配線に接続端子を重ねた部分を模式的に示す図である。It is a figure which shows typically the part which overlapped the connection terminal on the circuit wiring of another example. 別例の回路配線に接続端子を重ねた部分を模式的に示す図である。It is a figure which shows typically the part which overlapped the connection terminal on the circuit wiring of another example.
 以下、本開示の好適な実施形態を、図面を参照しつつ詳細に説明する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings.
(1)積層ユニット形成装置の構成
 図1に積層ユニット形成装置10を示す。積層ユニット形成装置10は、搬送装置20と、第1造形ユニット22と、第2造形ユニット24と、装着ユニット26と、第3造形ユニット200と、制御装置27(図3,図4参照)を備える。それら搬送装置20、第1造形ユニット22、第2造形ユニット24、装着ユニット26、第3造形ユニット200は、積層ユニット形成装置10のベース28の上に配置されている。ベース28は、平面視において概して長方形状をなしている。以下の説明では、ベース28の長手方向をX軸方向、ベース28の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。
(1) Configuration of Laminated Unit Forming Device FIG. 1 shows the laminated unit forming device 10. The stacking unit forming device 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, a mounting unit 26, a third modeling unit 200, and a control device 27 (see FIGS. 3 and 4). Be prepared. The transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, and the third modeling unit 200 are arranged on the base 28 of the laminated unit forming device 10. The base 28 is generally rectangular in plan view. In the following description, the longitudinal direction of the base 28 will be referred to as the X-axis direction, the lateral direction of the base 28 will be referred to as the Y-axis direction, and the direction orthogonal to both the X-axis direction and the Y-axis direction will be referred to as the Z-axis direction.
 搬送装置20は、X軸スライド機構30と、Y軸スライド機構32とを備えている。そのX軸スライド機構30は、X軸スライドレール34と、X軸スライダ36とを有している。X軸スライドレール34は、X軸方向に延びるように、ベース28の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ38(図3参照)を有しており、電磁モータ38の駆動により、X軸スライダ36をX軸方向の任意の位置に移動させる。また、Y軸スライド機構32は、Y軸スライドレール50と、ステージ52とを有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース28の上に配設されている。Y軸スライドレール50の一端部は、X軸スライダ36に連結されている。そのため、Y軸スライドレール50は、X軸方向に移動可能とされている。ステージ52は、Y軸スライドレール50によって、Y軸方向にスライド可能に保持されている。Y軸スライド機構32は、電磁モータ56(図2参照)を有しており、電磁モータ56の駆動により、ステージ52をY軸方向の任意の位置に移動させる。これにより、ステージ52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース28上の任意の位置に移動する。 The transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32. The X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36. The X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction. The X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34. Further, the X-axis slide mechanism 30 has an electromagnetic motor 38 (see FIG. 3), and the X-axis slider 36 is moved to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38. Further, the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52. The Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction. One end of the Y-axis slide rail 50 is connected to the X-axis slider 36. Therefore, the Y-axis slide rail 50 is movable in the X-axis direction. The stage 52 is slidably held in the Y-axis direction by the Y-axis slide rail 50. The Y-axis slide mechanism 32 has an electromagnetic motor 56 (see FIG. 2), and the stage 52 is moved to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
 ステージ52は、基台60と、保持装置62と、昇降装置64とを有している。基台60は、平板状に形成され、上面に基材70が載置される。保持装置62は、X軸方向における基台60の両側部に設けられている。保持装置62は、基台60に載置された基材70のX軸方向の両縁部を挟むことで、基台60に対して基材70を固定的に保持する。また、昇降装置64は、基台60の下方に配設されており、基台60をZ軸方向で昇降させる。 The stage 52 has a base 60, a holding device 62, and an elevating device 64. The base 60 is formed in a flat plate shape, and the base material 70 is placed on the upper surface. The holding devices 62 are provided on both sides of the base 60 in the X-axis direction. The holding device 62 holds the base material 70 fixedly to the base 60 by sandwiching both edges of the base material 70 placed on the base 60 in the X-axis direction. Further, the elevating device 64 is arranged below the base 60, and raises and lowers the base 60 in the Z-axis direction.
 第1造形ユニット22は、ステージ52の基台60に載置された基材70の上に回路配線を造形するユニットであり、第1印刷部72と、焼成部74とを有している。第1印刷部72は、インクジェットヘッド76(図3参照)を有しており、基台60に載置された基材70の上に、導電性インクを線状に吐出する。導電性インクは、本開示の金属ナノ粒子を含む流体の一例である。図2は、導電性インクと、後述する導電性ペーストの特徴を示す表である。図2に示すように、導電性インクは、例えば、主成分としてナノメートルサイズの金属(銀など)の微粒子を溶媒中に分散させたものを含み、熱により焼成されることで硬化する。導電性インクは、例えば、数百ナノメートル以下のサイズの金属ナノ粒子を含んでいる。金属ナノ粒子の表面は、例えば、分散剤によりコーティングされており、溶媒中での凝集が抑制されている。 The first modeling unit 22 is a unit for modeling circuit wiring on a base material 70 placed on a base 60 of a stage 52, and has a first printing unit 72 and a firing unit 74. The first printing unit 72 has an inkjet head 76 (see FIG. 3), and linearly ejects conductive ink onto the base material 70 placed on the base 60. The conductive ink is an example of a fluid containing the metal nanoparticles of the present disclosure. FIG. 2 is a table showing the characteristics of the conductive ink and the conductive paste described later. As shown in FIG. 2, the conductive ink contains, for example, nanometer-sized metal (silver or the like) fine particles dispersed in a solvent as a main component, and is cured by being fired by heat. The conductive ink contains, for example, metal nanoparticles having a size of several hundred nanometers or less. The surface of the metal nanoparticles is, for example, coated with a dispersant to suppress agglutination in the solvent.
 なお、インクジェットヘッド76は、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから導電性インクを吐出する。また、導電性インク(金属ナノ粒子を含む流体)を吐出する装置としては、複数のノズルを備えるインクジェットヘッドに限らず、例えば、1つのノズルを備えたディスペンサーでも良い。また、導電性インクに含まれる金属ナノ粒子の種類は、銀に限らず、銅、金等でも良い。また、導電性インクに含まれる金属ナノ粒子の種類数は、1種類に限らず、複数種類でも良い。 The inkjet head 76 ejects conductive ink from a plurality of nozzles by, for example, a piezo method using a piezoelectric element. Further, the device for ejecting the conductive ink (fluid containing metal nanoparticles) is not limited to the inkjet head provided with a plurality of nozzles, and for example, a dispenser provided with one nozzle may be used. Further, the type of metal nanoparticles contained in the conductive ink is not limited to silver, and may be copper, gold, or the like. Further, the number of types of metal nanoparticles contained in the conductive ink is not limited to one, and may be a plurality of types.
 焼成部74は、照射装置78(図3参照)を有している。照射装置78は、例えば、基材70の上に吐出された導電性インクを加熱する赤外線ヒータを備えている。導電性インクは、赤外線ヒータから熱を付与されることで焼成され、回路配線を形成する。ここでいう導電性インクの焼成とは、例えば、エネルギーを付与することによって、溶媒の気化や金属ナノ粒子の保護膜、つまり、分散剤の分解等が行われ、金属ナノ粒子が接触又は融着することで、導電率が高くなる現象である。そして、導電性インクを焼成することで、回路配線を形成することができる。なお、導電性インクを加熱する装置は、赤外線ヒータに限らない。例えば、積層ユニット形成装置10は、導電性インクを加熱する装置として、赤外線ランプ、レーザ光を導電性インクに照射するレーザ照射装置、あるいは導電性インクを吐出された基材70を炉内に入れて加熱する電気炉を備えても良い。また、導電性インクを加熱する温度は、例えば、導電性インクに含まれる金属の融点よりも低い焼成の温度に限らず、金属の融点よりも高い温度でも良い。 The firing unit 74 has an irradiation device 78 (see FIG. 3). The irradiation device 78 includes, for example, an infrared heater that heats the conductive ink ejected onto the base material 70. The conductive ink is fired by applying heat from an infrared heater to form a circuit wiring. In the firing of the conductive ink referred to here, for example, by applying energy, the solvent is vaporized and the protective film of the metal nanoparticles, that is, the dispersant is decomposed, and the metal nanoparticles are contacted or fused. This is a phenomenon in which the conductivity is increased. Then, the circuit wiring can be formed by firing the conductive ink. The device for heating the conductive ink is not limited to the infrared heater. For example, in the laminating unit forming device 10, as a device for heating the conductive ink, an infrared lamp, a laser irradiation device for irradiating the conductive ink with laser light, or a base material 70 to which the conductive ink is discharged is placed in the furnace. It may be provided with an electric furnace for heating. Further, the temperature for heating the conductive ink is not limited to, for example, a firing temperature lower than the melting point of the metal contained in the conductive ink, and may be a temperature higher than the melting point of the metal.
 また、第2造形ユニット24は、基台60に載置された基材70の上に絶縁層(本開示の樹脂部材の一例)を造形するユニットであり、第2印刷部84と、硬化部86とを有している。第2印刷部84は、インクジェットヘッド88(図3参照)を有しており、基台60に載置された基材70の上に紫外線硬化樹脂を吐出する。紫外線硬化樹脂は、紫外線の照射により硬化する樹脂である。なお、インクジェットヘッド88が紫外線硬化樹脂を吐出する方式は、例えば、圧電素子を用いたピエゾ方式でもよく、樹脂を加熱して気泡を発生させ複数のノズルから吐出するサーマル方式でも良い。 Further, the second modeling unit 24 is a unit for modeling an insulating layer (an example of the resin member of the present disclosure) on a base material 70 placed on a base 60, and is a second printing unit 84 and a cured unit. Has 86 and. The second printing unit 84 has an inkjet head 88 (see FIG. 3), and discharges an ultraviolet curable resin onto a base material 70 placed on a base 60. The ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays. The method in which the inkjet head 88 discharges the ultraviolet curable resin may be, for example, a piezo method using a piezoelectric element, or a thermal method in which the resin is heated to generate bubbles and discharged from a plurality of nozzles.
 硬化部86は、平坦化装置90(図3参照)と、照射装置92(図3参照)とを有している。平坦化装置90は、インクジェットヘッド88によって基材70の上に吐出された紫外線硬化樹脂の上面を平坦化するものである。平坦化装置90は、例えば、紫外線硬化樹脂の表面を均しながら余剰分の樹脂を、ローラもしくはブレードによって掻き取ることで、紫外線硬化樹脂の厚みを均一にさせる。また、照射装置92は、光源として水銀ランプもしくはLEDを備えており、基材70の上に吐出された紫外線硬化樹脂に紫外線を照射する。これにより、基材70の上に吐出された紫外線硬化樹脂が硬化し、絶縁層を形成することができる。 The hardened portion 86 has a flattening device 90 (see FIG. 3) and an irradiation device 92 (see FIG. 3). The flattening device 90 flattens the upper surface of the ultraviolet curable resin discharged onto the base material 70 by the inkjet head 88. The flattening device 90 makes the thickness of the ultraviolet curable resin uniform, for example, by scraping off the excess resin with a roller or a blade while leveling the surface of the ultraviolet curable resin. Further, the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the ultraviolet curable resin discharged on the base material 70 with ultraviolet rays. As a result, the ultraviolet curable resin discharged onto the base material 70 is cured, and an insulating layer can be formed.
 また、装着ユニット26は、基台60に載置された基材70の上に、電子部品やプローブピンを装着するユニットであり、供給部100と、装着部102とを有している。供給部100は、テーピング化された電子部品を1つずつ送り出すテープフィーダ110(図3参照)を複数有しており、各供給位置において、電子部品を供給する。さらに、供給部100は、プローブピンが立った状態で並べられたトレイ201(図3参照)を有しており、トレイ201からピックアップされることが可能な状態でプローブピンを供給する。電子部品は、例えば、温度センサ等のセンサ素子である。また、プローブピンとは、1つの積層ユニットの回路配線と、他の積層ユニットの回路配線とを電気的に接続する部材である。また、プローブピンには、外力を加えることで、軸方向にストローク可能なものを用いることが好ましい。なお、電子部品の供給は、テープフィーダ110による供給に限らず、トレイによる供給でも良い。また、プローブピンの供給は、トレイ201による供給に限らず、テープフィーダによる供給でも良い。また、電子部品とプローブピンの供給は、テープフィーダによる供給とトレイによる供給との両方、あるいはそれ以外の供給でも良い。 Further, the mounting unit 26 is a unit for mounting electronic components and probe pins on the base material 70 mounted on the base 60, and has a supply unit 100 and a mounting unit 102. The supply unit 100 has a plurality of tape feeders 110 (see FIG. 3) for feeding the taped electronic components one by one, and supplies the electronic components at each supply position. Further, the supply unit 100 has a tray 201 (see FIG. 3) in which the probe pins are arranged in an upright state, and supplies the probe pins in a state where the probe pins can be picked up from the tray 201. The electronic component is, for example, a sensor element such as a temperature sensor. Further, the probe pin is a member that electrically connects the circuit wiring of one laminated unit and the circuit wiring of another laminated unit. Further, it is preferable to use a probe pin that can be stroked in the axial direction by applying an external force. The electronic components are not limited to the tape feeder 110 and may be supplied by the tray. Further, the probe pin is supplied not only by the tray 201 but also by a tape feeder. Further, the electronic components and the probe pins may be supplied by both the tape feeder and the tray, or other supply.
 装着部102は、装着ヘッド112(図3参照)と、移動装置114(図3参照)とを有している。装着ヘッド112は、電子部品、又はプローブピンを吸着保持するための吸着ノズルを有している。吸着ノズルは、正負圧供給装置(図示省略)から負圧が供給されることで、エアの吸引により電子部品等を吸着保持する。そして、正負圧供給装置から僅かな正圧が供給されることで、電子部品等を離脱する。また、移動装置114は、テープフィーダ110の供給位置又はトレイ201と、基台60に載置された基材70との間で、装着ヘッド112を移動させる。これにより、装着部102は、吸着ノズルにより電子部品等を保持し、吸着ノズルによって保持した電子部品等を、基材70の上に配置する。 The mounting unit 102 has a mounting head 112 (see FIG. 3) and a moving device 114 (see FIG. 3). The mounting head 112 has a suction nozzle for sucking and holding an electronic component or a probe pin. The suction nozzle sucks and holds electronic components and the like by sucking air by supplying negative pressure from a positive / negative pressure supply device (not shown). Then, when a slight positive pressure is supplied from the positive / negative pressure supply device, the electronic component or the like is separated. Further, the moving device 114 moves the mounting head 112 between the supply position of the tape feeder 110 or the tray 201 and the base material 70 mounted on the base 60. As a result, the mounting portion 102 holds the electronic parts and the like by the suction nozzle, and arranges the electronic parts and the like held by the suction nozzle on the base material 70.
 また、第3造形ユニット200は、基台60に載置された基材70の上に、導電ペーストを塗布するユニットである。導電性ペーストは、本開示の金属マイクロ粒子を含む流体の一例である。図2に示すように、導電性ペーストは、例えば、マイクロサイズの金属粒子(マイクロフィラなど)を、樹脂製の接着剤に含めた粘性流体である。マイクロサイズの金属マイクロ粒子は、例えば、フレーク状態の金属(銀など)である。金属マイクロ粒子は、銀に限らず、金、銅などや複数種類の金属でも良い。接着剤は、例えば、エポキシ系の樹脂を主成分として含んでいる。導電性ペーストは、加熱により硬化し、例えば、回路配線に接続される接続端子の形成に使用される。接続端子とは、後述するように、電子部品の部品端子に接続する接続端子(バンプ)、外部機器などに接続する電極パッド(露出パッドなど)、プローブピンの接触箇所に設けられるピン端子、積層方向に回路配線を導通させるスルーホールなどの形成に使用される。 Further, the third modeling unit 200 is a unit for applying the conductive paste on the base material 70 placed on the base 60. The conductive paste is an example of a fluid containing the metal microparticles of the present disclosure. As shown in FIG. 2, the conductive paste is, for example, a viscous fluid containing micro-sized metal particles (microfiller or the like) in a resin adhesive. Micro-sized metal microparticles are, for example, flake-state metals (such as silver). The metal microparticles are not limited to silver, but may be gold, copper, or a plurality of types of metals. The adhesive contains, for example, an epoxy resin as a main component. The conductive paste is cured by heating and is used, for example, to form connection terminals connected to circuit wiring. As will be described later, the connection terminals are connection terminals (bumps) connected to component terminals of electronic components, electrode pads (exposed pads, etc.) connected to external devices, pin terminals provided at contact points of probe pins, and laminated devices. It is used to form through holes that conduct circuit wiring in the direction.
 また、第3造形ユニット200は、導電性ペーストを吐出(塗布)する装置としてディスペンサー202を有する。尚、図2に示すように、導電性ペーストを塗布する装置は、ディスペンサーに限らず、スクリーン印刷装置やグラビア印刷装置でも良い。また、本開示における「塗布」とは、流体をノズルなどから吐出する動作や、スクリーン印刷やグラビア印刷によって対象物の上に流体を付着させる動作を含む概念である。 Further, the third modeling unit 200 has a dispenser 202 as a device for discharging (applying) the conductive paste. As shown in FIG. 2, the device for applying the conductive paste is not limited to the dispenser, but may be a screen printing device or a gravure printing device. Further, the "coating" in the present disclosure is a concept including an operation of discharging a fluid from a nozzle or the like and an operation of adhering a fluid onto an object by screen printing or gravure printing.
 ディスペンサー202は、絶縁層の貫通孔内や絶縁層の表面等に導電性ペーストを吐出する。貫通孔に充填された導電性ペーストは、例えば、第1造形ユニット22の焼成部74によって加熱され硬化することで接続端子やスルーホールを形成する。また、絶縁層の表面に塗布された導電性ペーストは、例えば、焼成部74によって加熱され硬化することで、接続端子等を形成する。 The dispenser 202 discharges the conductive paste into the through hole of the insulating layer, the surface of the insulating layer, and the like. The conductive paste filled in the through hole is heated and cured by the firing portion 74 of the first modeling unit 22, for example, to form a connection terminal or a through hole. Further, the conductive paste applied to the surface of the insulating layer is heated and cured by, for example, the firing unit 74 to form a connection terminal or the like.
 図2に示すように、導電性ペーストは、例えば、数十マイクロメートル以下のサイズの金属マイクロ粒子を含んでいる。導電性ペーストは、加熱されることで接着剤(樹脂など)が硬化し、フレーク状の金属同士が接触した状態で硬化する。導電性ペーストを硬化する方法は、加熱による方法に限らず、接着剤として紫外線硬化樹脂を用いて紫外線により硬化する方法でも良い。 As shown in FIG. 2, the conductive paste contains, for example, metal microparticles having a size of several tens of micrometers or less. When the conductive paste is heated, the adhesive (resin or the like) is cured, and the flake-shaped metals are cured in contact with each other. The method of curing the conductive paste is not limited to the method of heating, and may be a method of curing by ultraviolet rays using an ultraviolet curable resin as an adhesive.
 上記したように導電性インクは、例えば、加熱によって金属ナノ粒子同士が融着することで一体化した金属となり、金属ナノ粒子同士が接触しているだけの状態に比べて導電率が高くなる。一方、導電性ペーストは、例えば、接着剤の硬化によってマイクロサイズの金属マイクロ粒子を互いに接触させて硬化する。このため、導電性インクを硬化して形成した配線の抵抗(電気抵抗率)は、例えば、数~数十マイクロΩ・cmと極めて小さく、導電性ペーストを硬化した配線の抵抗(数十~数千マイクロΩ・cm)に比べて小さい。従って、導電性インクは、低抵抗の回路配線など、低い抵抗値を要求される造形物の造形に適している。 As described above, the conductive ink becomes an integrated metal by fusing the metal nanoparticles together by heating, and the conductivity is higher than that in the state where the metal nanoparticles are only in contact with each other. On the other hand, the conductive paste is cured by bringing micro-sized metal microparticles into contact with each other, for example, by curing the adhesive. Therefore, the resistance (electric resistivity) of the wiring formed by curing the conductive ink is extremely small, for example, several to several tens of microΩ · cm, and the resistance of the wiring formed by curing the conductive paste (several tens to several tens to severals). It is smaller than 1000 micro Ω · cm). Therefore, the conductive ink is suitable for modeling a modeled object that requires a low resistance value, such as a circuit wiring having a low resistance.
 一方で、導電性ペーストは、硬化時に接着剤を硬化させることで、他の部材との接着性を高めることができ、導電性インクに比べて他の部材との密着性に優れている。ここでいう他の部材とは、導電性ペーストを吐出等して付着させる部材であり、例えば、絶縁層、回路配線、電子部品の部品端子などである。従って、導電性ペーストは、電子部品を絶縁層に固定する接続端子など、機械的強度(引っ張り強度など)が要求される造形物の造形に適している。 On the other hand, the conductive paste can improve the adhesiveness with other members by curing the adhesive at the time of curing, and has excellent adhesion with other members as compared with the conductive ink. The other member referred to here is a member to which the conductive paste is discharged and adhered, and is, for example, an insulating layer, a circuit wiring, a component terminal of an electronic component, and the like. Therefore, the conductive paste is suitable for modeling a modeled object that requires mechanical strength (tensile strength, etc.), such as a connection terminal for fixing an electronic component to an insulating layer.
 また、導電性インクは、金属ナノ粒子を溶媒中に分散させたものであり、接着剤中に金属マイクロ粒子を混入させた導電性ペーストに比べて粘性が低くなる(流動性が高くなる)。このため、比較的粘度の低い導電性インクを用いた3次元積層造形では、比較的粘度の高い導電性ペーストを用いた3次元積層造形に場合に比べて、微細なインクジェット印刷が可能となり、微細な形状の回路配線を形成することができる。一方で、導電性ペーストは、導電性インクに比べて粘性が高いため、吐出された後に流動し難く、マイクロサイズの金属マイクロ粒子を含んでいるため、比較的厚い膜を形成することができる。本実施形態の積層ユニット形成装置10では、このような導電性インクと導電性ペーストを使い分けて、特性を活かすことで、電気的性質及び機械的性質を向上した電子回路を製造できる。 In addition, the conductive ink is made by dispersing metal nanoparticles in a solvent, and has lower viscosity (higher fluidity) than a conductive paste in which metal microparticles are mixed in an adhesive. For this reason, in the three-dimensional laminated molding using the conductive ink having a relatively low viscosity, finer inkjet printing becomes possible as compared with the case of the three-dimensional laminated molding using the conductive paste having a relatively high viscosity. It is possible to form a circuit wiring having a different shape. On the other hand, since the conductive paste has a higher viscosity than the conductive ink, it is difficult to flow after being ejected, and since it contains micro-sized metal microparticles, a relatively thick film can be formed. In the laminated unit forming apparatus 10 of the present embodiment, an electronic circuit having improved electrical and mechanical properties can be manufactured by properly using such a conductive ink and a conductive paste and making the best use of the characteristics.
 また、制御装置27は、図3及び図4に示すように、コントローラ120と、複数の駆動回路122と、記憶装置124とを備えている。複数の駆動回路122は、図3に示すように、上記電磁モータ38,56、保持装置62、昇降装置64、インクジェットヘッド76、照射装置78、インクジェットヘッド88、平坦化装置90、照射装置92、テープフィーダ110、装着ヘッド112、移動装置114に接続されている。さらに、駆動回路122は、図4に示すように、第3造形ユニット200に接続されている。コントローラ120は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路122に接続されている。記憶装置124は、RAM、ROM、ハードディスク等を備えており、積層ユニット形成装置10の制御を行う制御プログラム126が記憶されている。コントローラ120は、制御プログラム126をCPUで実行することで、搬送装置20、第1造形ユニット22、第2造形ユニット24、装着ユニット26、第3造形ユニット200等の動作を制御可能となっている。以下の説明では、コントローラ120が、制御プログラム126を実行して各装置を制御することを、単に「装置が」と記載する場合がある。例えば、「コントローラ120がステージ52を移動させる」とは、「コントローラ120が、制御プログラム126を実行し、駆動回路122を介して搬送装置20の動作を制御して、搬送装置20の動作によってステージ52を移動させる」ことを意味している。 Further, as shown in FIGS. 3 and 4, the control device 27 includes a controller 120, a plurality of drive circuits 122, and a storage device 124. As shown in FIG. 3, the plurality of drive circuits 122 include the electromagnetic motors 38 and 56, the holding device 62, the elevating device 64, the inkjet head 76, the irradiation device 78, the inkjet head 88, the flattening device 90, and the irradiation device 92. It is connected to the tape feeder 110, the mounting head 112, and the moving device 114. Further, the drive circuit 122 is connected to the third modeling unit 200 as shown in FIG. The controller 120 includes a CPU, ROM, RAM, etc., and is mainly a computer, and is connected to a plurality of drive circuits 122. The storage device 124 includes a RAM, a ROM, a hard disk, and the like, and stores a control program 126 that controls the stacking unit forming device 10. The controller 120 can control the operations of the transfer device 20, the first modeling unit 22, the second modeling unit 24, the mounting unit 26, the third modeling unit 200, and the like by executing the control program 126 on the CPU. .. In the following description, the fact that the controller 120 executes the control program 126 to control each device may be simply described as "device". For example, "the controller 120 moves the stage 52" means that "the controller 120 executes the control program 126, controls the operation of the transfer device 20 via the drive circuit 122, and causes the stage by the operation of the transfer device 20." It means "move 52".
(2)3次元積層電子デバイスの製造方法
 本実施形態の積層ユニット形成装置10は、上記した構成によって、回路配線、接続端子及び電子部品を含んだ積層ユニットを複数造形し、複数の積層ユニットを組み立てることで3次元積層電子デバイスを製造する。詳述すると、図5は、3次元積層電子デバイスの製造工程の流れを示すフローチャートである。図6は、第1積層ユニット218A、第2積層ユニット218B、第3積層ユニット218Cを上下方向に積層して3次元積層電子デバイス246を製造する状態を示す断面図である。図7は、3次元積層電子デバイス246を示す断面図である。尚、図5~図7に示す製造工程や3次元積層電子デバイス246(積層ユニットの数や構造)は、一例である。
(2) Manufacturing Method of Three-Dimensional Laminated Electronic Device The laminated unit forming apparatus 10 of the present embodiment forms a plurality of laminated units including circuit wiring, connection terminals and electronic components according to the above configuration, and forms a plurality of laminated units. By assembling, a three-dimensional laminated electronic device is manufactured. More specifically, FIG. 5 is a flowchart showing a flow of a manufacturing process of a three-dimensional laminated electronic device. FIG. 6 is a cross-sectional view showing a state in which the first laminated unit 218A, the second laminated unit 218B, and the third laminated unit 218C are laminated in the vertical direction to manufacture the three-dimensional laminated electronic device 246. FIG. 7 is a cross-sectional view showing a three-dimensional laminated electronic device 246. The manufacturing process and the three-dimensional laminated electronic device 246 (number and structure of laminated units) shown in FIGS. 5 to 7 are examples.
 図5に示すように、3次元積層造形による3次元積層電子デバイス246の製造工程130は、ユニット形成工程P10と、ユニット積層工程P12とを含んでいる。ユニット形成工程P10では、上記した積層ユニット形成装置10によって、基材70の上に、第1~第3積層ユニット218A,218B,218Cを形成する。これに対して、ユニット積層工程P12では、第1~第3積層ユニット218A,218B,218Cを上下方向に積層することによって、3次元積層電子デバイス246(図7参照)を製造する。なお、以下の説明において、第1~第3積層ユニット218A~218Cを区別せずに総称する場合は、積層ユニット218と表記する。 As shown in FIG. 5, the manufacturing process 130 of the three-dimensional laminated electronic device 246 by the three-dimensional laminated modeling includes a unit forming step P10 and a unit laminating step P12. In the unit forming step P10, the first to third laminated units 218A, 218B, and 218C are formed on the base material 70 by the laminated unit forming apparatus 10 described above. On the other hand, in the unit laminating step P12, the three-dimensional laminated electronic device 246 (see FIG. 7) is manufactured by laminating the first to third laminating units 218A, 218B, and 218C in the vertical direction. In the following description, when the first to third laminated units 218A to 218C are generically referred to without distinction, they are referred to as laminated units 218.
 コントローラ120は、制御プログラム126を実行し積層ユニット形成装置10の各装置を制御することで、ユニット形成工程P10を実行する。ユニット形成工程P10は、絶縁層形成処理S10と、回路配線形成処理S20と、接続端子形成処理S30と、実装処理S40とを有している。なお、上記の各処理S10,S20,S30,S40の実行順序は、3次元積層電子デバイス246(つまり、第1~第3積層ユニット218A~218C)の積層構造等によって決定される。そのため、上記の各処理S10,S20,S30,S40は、それらの表記順で繰り返されるものでない。 The controller 120 executes the control program 126 to control each device of the laminated unit forming device 10 to execute the unit forming step P10. The unit forming step P10 includes an insulating layer forming process S10, a circuit wiring forming process S20, a connection terminal forming process S30, and a mounting process S40. The execution order of each of the above processes S10, S20, S30, and S40 is determined by the laminated structure of the three-dimensional laminated electronic devices 246 (that is, the first to third laminated units 218A to 218C). Therefore, the above processes S10, S20, S30, and S40 are not repeated in their notation order.
 例えば、ユーザが、ステージ52の基台60に基材70をセットし、積層ユニット形成装置10に対して図5に示す製造工程130の開始を指示する。尚、基材70のセットは、積層ユニット形成装置10が自動で実行しても良い。コントローラ120は、絶縁層形成処理S10を実行する場合、基材70がセットされたステージ52を第2造形ユニット24の下方に移動させる。コントローラ120は、第2造形ユニット24を制御し、インクジェットヘッド88から紫外線硬化樹脂を基材70の上に吐出して、平坦化装置90で平坦化し、照射装置92で硬化させる。コントローラ120は、紫外線硬化樹脂の吐出、平坦化、硬化を繰り返して絶縁層220(図6参照)を形成する。また、コントローラ120は、絶縁層形成処理S10において、電子部品96やプローブピン99を収容する収容部222を形成する。 For example, the user sets the base material 70 on the base 60 of the stage 52, and instructs the laminated unit forming apparatus 10 to start the manufacturing process 130 shown in FIG. The laminating unit forming apparatus 10 may automatically execute the setting of the base material 70. When executing the insulating layer forming process S10, the controller 120 moves the stage 52 on which the base material 70 is set below the second modeling unit 24. The controller 120 controls the second modeling unit 24, ejects the ultraviolet curable resin from the inkjet head 88 onto the base material 70, flattens it with the flattening device 90, and cures it with the irradiation device 92. The controller 120 repeats discharging, flattening, and curing the ultraviolet curable resin to form the insulating layer 220 (see FIG. 6). Further, the controller 120 forms an accommodating portion 222 for accommodating the electronic component 96 and the probe pin 99 in the insulating layer forming process S10.
 また、コントローラ120は、回路配線形成処理S20を実行する場合、ステージ52を第1造形ユニット22の下方に移動させる。コントローラ120は、第1造形ユニット22を制御し、インクジェットヘッド76から導電性インクを絶縁層220の上面などに吐出し、吐出した導電性インクを照射装置78で加熱することで、回路配線225(図6参照)を形成する。 Further, when the controller 120 executes the circuit wiring formation process S20, the controller 120 moves the stage 52 below the first modeling unit 22. The controller 120 controls the first modeling unit 22, ejects conductive ink from the inkjet head 76 to the upper surface of the insulating layer 220, and heats the ejected conductive ink with the irradiation device 78, thereby causing circuit wiring 225 ( (See FIG. 6).
 また、コントローラ120は、接続端子形成処理S30を実行する場合、ステージ52を第3造形ユニット200の下方に移動させる。コントローラ120は、第3造形ユニット200を制御して、ディスペンサー202から導電性ペーストを、絶縁層220の上面、回路配線225の上面、収容部222の底部などに吐出する。コントローラ120は、吐出した導電性ペーストを、第1造形ユニット22の照射装置78で加熱することで、接続端子227(図6参照)を形成する。例えば、図6に示すように、コントローラ120は、接続端子227として、部品接続端子227A、ピン端子227B、電極パッド227Cを形成する。部品接続端子227Aは、例えば、電子部品96の部品端子96Aと接続される接続端子227である。また、ピン端子227Bは、例えば、プローブピン99の下端と接続される接続端子227である。電極パッド227Cは、例えば、各積層ユニット218の電子回路をプローブピン99の上端に電気的に接続するためや、3次元積層電子デバイス246を外部機器と接続するための接続端子227である。各接続端子227は、回路配線225によって電気的に接続され、電子回路を構成している。 Further, when the controller 120 executes the connection terminal forming process S30, the controller 120 moves the stage 52 below the third modeling unit 200. The controller 120 controls the third modeling unit 200 to discharge the conductive paste from the dispenser 202 to the upper surface of the insulating layer 220, the upper surface of the circuit wiring 225, the bottom of the accommodating portion 222, and the like. The controller 120 forms the connection terminal 227 (see FIG. 6) by heating the discharged conductive paste with the irradiation device 78 of the first modeling unit 22. For example, as shown in FIG. 6, the controller 120 forms a component connection terminal 227A, a pin terminal 227B, and an electrode pad 227C as connection terminals 227. The component connection terminal 227A is, for example, a connection terminal 227 connected to the component terminal 96A of the electronic component 96. Further, the pin terminal 227B is, for example, a connection terminal 227 connected to the lower end of the probe pin 99. The electrode pad 227C is, for example, a connection terminal 227 for electrically connecting the electronic circuit of each laminated unit 218 to the upper end of the probe pin 99 and for connecting the three-dimensional laminated electronic device 246 to an external device. Each connection terminal 227 is electrically connected by a circuit wiring 225 to form an electronic circuit.
 コントローラ120は、上記した絶縁層形成処理S10で形成する絶縁層220、回路配線形成処理S20で形成する回路配線225、接続端子形成処理S30で形成する接続端子227のそれぞれの形状、位置、数等を適宜変更して各積層ユニット218を造形する。また、コントローラ120は、積層ユニット218を造形する過程で、実装処理S40を適宜実行する。コントローラ120は、装着ユニット26によって電子部品96やプローブピン99を実装する。 The controller 120 has the shape, position, number, etc. of the insulating layer 220 formed by the insulating layer forming process S10, the circuit wiring 225 formed by the circuit wiring forming process S20, and the connecting terminals 227 formed by the connecting terminal forming process S30. Is appropriately changed to model each laminated unit 218. Further, the controller 120 appropriately executes the mounting process S40 in the process of modeling the laminated unit 218. The controller 120 mounts the electronic component 96 and the probe pin 99 by the mounting unit 26.
 例えば、制御プログラム126には、3次元積層電子デバイス246(各積層ユニット218)をスライスした各層の三次元のデータが設定されている。コントローラ120は、制御プログラム126のデータに基づいて、回路配線形成処理S20等の各製造工程を実行し積層ユニット218を形成する。また、コントローラ120は、制御プログラム126のデータに基づいて、電子部品96やプローブピン99を配置する層や位置等の情報を検出し、検出した情報に基づいて電子部品96やプローブピン99を積層ユニット218に配置する。コントローラ120は、例えば、第3造形ユニット200を制御して導電性ペーストを吐出した後、装着ユニット26を制御して電子部品96の部品端子96Aが導電性ペーストに接触するように、電子部品96を収容部222等に配置する。コントローラ120は、電子部品96を配置した後、導電性ペーストを硬化することで部品接続端子227Aと部品端子96Aを接続し、絶縁層220に対して電子部品96を固定する。尚、コントローラ120は、電子部品96を配置した後に、電子部品96の部品端子96Aの上に導電性ペーストを吐出して硬化しても良い。 For example, in the control program 126, three-dimensional data of each layer obtained by slicing the three-dimensional laminated electronic device 246 (each laminated unit 218) is set. Based on the data of the control program 126, the controller 120 executes each manufacturing process such as the circuit wiring forming process S20 to form the stacking unit 218. Further, the controller 120 detects information such as a layer and a position where the electronic component 96 and the probe pin 99 are arranged based on the data of the control program 126, and stacks the electronic component 96 and the probe pin 99 based on the detected information. Place it in unit 218. For example, the controller 120 controls the third modeling unit 200 to discharge the conductive paste, and then controls the mounting unit 26 so that the component terminals 96A of the electronic component 96 come into contact with the conductive paste. Is arranged in the accommodating portion 222 or the like. After arranging the electronic component 96, the controller 120 connects the component connection terminal 227A and the component terminal 96A by curing the conductive paste, and fixes the electronic component 96 to the insulating layer 220. After arranging the electronic component 96, the controller 120 may discharge the conductive paste onto the component terminal 96A of the electronic component 96 to cure the electronic component 96.
 また、コントローラ120は、例えば、第3造形ユニット200を制御して、プローブピン99を収容する収容部222の底部に導電性ペーストを吐出する。コントローラ120は、第1造形ユニット22の照射装置78により導電性ペーストを硬化することで、収容部222の底部にピン端子227Bを形成する。コントローラ120は、装着ユニット26を制御し、プローブピン99の下端が硬化したピン端子227Bに接触するように、プローブピン99を収容部222内に配置する。このようにして所望の構造の積層ユニット218を3次元積層造形により造形することができる。 Further, the controller 120 controls, for example, the third modeling unit 200 to discharge the conductive paste to the bottom of the accommodating portion 222 accommodating the probe pin 99. The controller 120 forms the pin terminal 227B at the bottom of the accommodating portion 222 by curing the conductive paste by the irradiation device 78 of the first modeling unit 22. The controller 120 controls the mounting unit 26 and arranges the probe pin 99 in the accommodating portion 222 so that the lower end of the probe pin 99 comes into contact with the hardened pin terminal 227B. In this way, the laminated unit 218 having a desired structure can be formed by three-dimensional laminated modeling.
 次に、コントローラ120は、ユニット積層工程P12において、上記した積層ユニット218の組み立てを行なう。基材70の上には、例えば、熱によって剥離する剥離フィルム(図示略)が貼り付けられており、その剥離フィルムの上に各積層ユニット218が形成される。そして、剥離フィルムを加熱することで、各積層ユニット218を基材70から剥離することができる。尚、基材70と積層ユニット218の分離方法は、上記した方法に限らない。例えば、基材70と積層ユニット218との間に、熱によって溶ける部材(サポート材など)を配置し、溶かして分離しても良い。また、基材70と、積層ユニット218との分離は、積層ユニット形成装置10が自動で(ロボットアーム等で)実施しても良く、人が手作業で行なっても良い。 Next, the controller 120 assembles the above-mentioned stacking unit 218 in the unit stacking step P12. For example, a release film (not shown) that is peeled off by heat is attached on the base material 70, and each lamination unit 218 is formed on the release film. Then, by heating the release film, each lamination unit 218 can be peeled from the base material 70. The method for separating the base material 70 and the lamination unit 218 is not limited to the above method. For example, a member (support material or the like) that melts by heat may be arranged between the base material 70 and the lamination unit 218, and the members may be melted and separated. Further, the base material 70 and the laminating unit 218 may be separated automatically by the laminating unit forming device 10 (with a robot arm or the like), or may be manually performed by a person.
 そして、図6及び図7に示すように、ユニット積層工程P12において、複数の積層ユニット218を積層することで、所望の構造の3次元積層電子デバイス246を製造することができる。なお、複数の積層ユニット218を互いに固定する方法は、特に限定されないが、ネジ、ボルト、ナット等を用いる方法や、接着剤を用いる方法を採用できる。また、複数の積層ユニット218を組み立てる作業は、積層ユニット形成装置10が自動で実行しても良い。例えば、積層ユニット形成装置10は、複数の積層ユニット218を組み立てて互いに固定するロボットアームを備えても良い。あるいは、複数の積層ユニット218を組み立てる作業は、ユーザが手作業で行なっても良い。また、本実施形態では、プローブピン99として軸方向にストローク可能なものを用いる。積層ユニット218を積層する際に、プローブピン99は、下方のピン端子227Bと、上方の電極パッド227Cとで上下方向に挟まれる。この際に、プローブピン99は、上の積層ユニット218と、下の積層ユニット218との間の距離に応じてストローク量を変動させ収縮する。これにより、3次元積層造形による積層ユニット218の厚みの誤差などを、プローブピン99のストローク量で吸収することができる。 Then, as shown in FIGS. 6 and 7, by laminating a plurality of laminating units 218 in the unit laminating step P12, a three-dimensional laminated electronic device 246 having a desired structure can be manufactured. The method of fixing the plurality of laminated units 218 to each other is not particularly limited, but a method using screws, bolts, nuts, or the like, or a method using an adhesive can be adopted. Further, the work of assembling the plurality of laminated units 218 may be automatically executed by the laminated unit forming apparatus 10. For example, the stacking unit forming device 10 may include a robot arm for assembling a plurality of stacking units 218 and fixing them to each other. Alternatively, the work of assembling the plurality of laminated units 218 may be performed manually by the user. Further, in the present embodiment, a probe pin 99 capable of stroking in the axial direction is used. When laminating the laminating unit 218, the probe pin 99 is sandwiched between the lower pin terminal 227B and the upper electrode pad 227C in the vertical direction. At this time, the probe pin 99 contracts by varying the stroke amount according to the distance between the upper laminated unit 218 and the lower laminated unit 218. As a result, an error in the thickness of the lamination unit 218 due to the three-dimensional lamination molding can be absorbed by the stroke amount of the probe pin 99.
(3)導電性インクと導電性ペーストの使い分けについて
 図8は、導電性インクと導電性ペーストの使用箇所を説明するための断面図である。図9は、導電性インクと導電性ペーストの使用箇所を説明するための平面図である。図8及び図9は、3次元積層電子デバイス246の構成を模式的に示しいている。尚、図8、図9と、後述する図11~図13は、図面が複雑となるのを避けるため、電子部品96を、絶縁層220の表面に実装している。しかしながら、以下に説明する導電性インクと導電性ペーストを使い分ける製造方法については、図7に示す収容部222に配置する電子部品96についても、同様に実施できる。
(3) Proper Use of Conductive Ink and Conductive Paste FIG. 8 is a cross-sectional view for explaining where the conductive ink and the conductive paste are used. FIG. 9 is a plan view for explaining the locations where the conductive ink and the conductive paste are used. 8 and 9 schematically show the configuration of the three-dimensional stacked electronic device 246. 8 and 9, and FIGS. 11 to 13 described later, the electronic component 96 is mounted on the surface of the insulating layer 220 in order to avoid complicating the drawings. However, the manufacturing method for properly using the conductive ink and the conductive paste described below can be similarly applied to the electronic component 96 arranged in the housing portion 222 shown in FIG. 7.
 図8及び図9に斜線のハッチングを付して示すように、本実施形態の積層ユニット形成装置10は、例えば、回路配線225などの低抵抗が要求される箇所について、導電性インクを用いた造形を行なう。一方、図8及び図9にドットのハッチングを付して示すように、積層ユニット形成装置10は、接続端子227のような他の部材と接合、接触等するため、引っ張り強度などの機械的な強度が要求される箇所について、導電性ペーストを用いた造形を行なう。 As shown by hatching with diagonal lines in FIGS. 8 and 9, the laminated unit forming apparatus 10 of the present embodiment uses conductive ink in places where low resistance is required, such as circuit wiring 225. Perform modeling. On the other hand, as shown in FIGS. 8 and 9 with dot hatching, the stacking unit forming apparatus 10 is joined or contacted with another member such as the connection terminal 227, so that the tensile strength and the like are mechanical. For the parts where strength is required, perform modeling using a conductive paste.
 このように、本実施形態では、導電性ペーストとして、金属マイクロ粒子を含む流体、例えば、金属マイクロ粒子を、樹脂製の接着剤に含めた粘性流体を用いる。図5に示す接続端子227を形成する接続端子形成処理S30(本開示の接続端子形成工程の一例)では、コントローラ120は、導電性ペーストに含まれる接着剤を硬化させることで、複数の金属マイクロ粒子を互いに接触させて硬化する。また、図5に示す回路配線225(配線の一例)を形成する回路配線形成処理S20(本開示の配線形成工程の一例)では、コントローラ120は、金属ナノ粒子を含む流体を加熱することで、複数の金属ナノ粒子を互いに融着して硬化させる。これによれば、接続端子形成処理S30において、複数の金属マイクロ粒子を、接着剤を硬化することで互いに接触させた状態で硬化させ、例えば、接着剤の接着により機械的性質(引っ張り強度など)を向上した接続端子227を形成できる。また、回路配線形成処理S20において、複数の金属ナノ粒子を加熱して互いに融着させることで、電気的性質を向上した(抵抗値の低減、高周波特性の改善)回路配線225を形成できる。 As described above, in the present embodiment, a fluid containing metal microparticles, for example, a viscous fluid containing metal microparticles in a resin adhesive is used as the conductive paste. In the connection terminal forming process S30 (an example of the connection terminal forming step of the present disclosure) for forming the connection terminal 227 shown in FIG. 5, the controller 120 cures the adhesive contained in the conductive paste to form a plurality of metal microparticles. The particles are brought into contact with each other and cured. Further, in the circuit wiring forming process S20 (an example of the wiring forming step of the present disclosure) for forming the circuit wiring 225 (an example of wiring) shown in FIG. 5, the controller 120 heats a fluid containing metal nanoparticles to heat the fluid. A plurality of metal nanoparticles are fused to each other and cured. According to this, in the connection terminal forming process S30, a plurality of metal microparticles are cured in a state of being in contact with each other by curing the adhesive, for example, mechanical properties (tensile strength, etc.) due to the adhesion of the adhesive. It is possible to form the connection terminal 227 which is improved. Further, in the circuit wiring forming process S20, by heating a plurality of metal nanoparticles and fusing them to each other, it is possible to form the circuit wiring 225 having improved electrical properties (reduction of resistance value, improvement of high frequency characteristics).
 また、本実施形態では、接続端子形成処理S30において、コントローラ120は、接続端子227として、絶縁層220に実装する電子部品96と接続する部品接続端子227A、絶縁層220の電子回路と外部機器を接続する電極パッド227C、複数の積層ユニット218の電子回路を互いに接続するプローブピン99を積層ユニット218の電子回路に接続するピン端子227Bのうち、少なくとも1つの接続端子227を形成する。これによれば、3次元積層電子デバイス246に実装する電子回路のうち、機械的強度が要求される部分に、金属マイクロ粒子を含む流体を用いることで、機械的性質を向上した電子回路を製造できる。 Further, in the present embodiment, in the connection terminal forming process S30, the controller 120 uses the component connection terminal 227A for connecting to the electronic component 96 mounted on the insulating layer 220, the electronic circuit of the insulating layer 220, and the external device as the connection terminal 227. At least one connection terminal 227 is formed among the pin terminals 227B for connecting the electrode pads 227C to be connected and the probe pins 99 for connecting the electronic circuits of the plurality of laminated units 218 to the electronic circuits of the laminated unit 218. According to this, among the electronic circuits mounted on the three-dimensional laminated electronic device 246, an electronic circuit having improved mechanical properties is manufactured by using a fluid containing metal microparticles in a portion where mechanical strength is required. it can.
 また、上記したように、本実施形態の導電性インクは、電気的性質において優れており、導電性ペーストは、機械的性質において優れている。このため、導電性インクにより形成した回路配線225と、導電性ペーストにより形成した接続端子227とを重ねる場合、導電性インクの割合を大きくすれば、抵抗値の低減等を図ることができる。逆に、導電性ペーストの割合を大きくすれば、引っ張り強度の向上などを図ることができる。 Further, as described above, the conductive ink of the present embodiment is excellent in electrical properties, and the conductive paste is excellent in mechanical properties. Therefore, when the circuit wiring 225 formed of the conductive ink and the connection terminal 227 formed of the conductive paste are overlapped with each other, the resistance value can be reduced by increasing the ratio of the conductive ink. On the contrary, if the ratio of the conductive paste is increased, the tensile strength can be improved.
 図10は、回路配線225と接続端子227の接続パターンを示す表である。図11は、回路配線225に接続端子227を重ねた部分を模式的に示す図である。図10には、PT11~PT34までの12個の接続パターンPT11~PT34の一例が図示されている。図10は、回路配線225と接続端子227の重なった部分を平面視した模式図を接続パターンPT11~PT34で示している。 FIG. 10 is a table showing a connection pattern between the circuit wiring 225 and the connection terminal 227. FIG. 11 is a diagram schematically showing a portion in which the connection terminal 227 is overlapped with the circuit wiring 225. FIG. 10 shows an example of 12 connection patterns PT11 to PT34 from PT11 to PT34. FIG. 10 shows a schematic view of the overlapping portion of the circuit wiring 225 and the connection terminal 227 in a plan view with connection patterns PT11 to PT34.
 ここでいう重なった部分とは、例えば、図11に示す電子部品96の部品端子96Aと接続される部品接続端子227Aが、回路配線225の端部を覆う部分である。部品接続端子227Aは、部品端子96Aを回路配線225に電気的に接続するとともに、部品端子96Aを絶縁層220に対して固定している。この場合、部品接続端子227Aは、電子部品96が3次元積層電子デバイス246から脱落等しないように、引っ張り強度が要求される。 The overlapping portion referred to here is, for example, a portion where the component connection terminal 227A connected to the component terminal 96A of the electronic component 96 shown in FIG. 11 covers the end portion of the circuit wiring 225. The component connection terminal 227A electrically connects the component terminal 96A to the circuit wiring 225 and fixes the component terminal 96A to the insulating layer 220. In this case, the component connection terminal 227A is required to have tensile strength so that the electronic component 96 does not fall off from the three-dimensional laminated electronic device 246.
 そこで、図11に示すように、コントローラ120は、回路配線形成処理S20において、例えば、部品接続端子227Aに覆われる位置であって、部品端子96Aの直下となる位置PT1から離れた位置PT2を起点として回路配線225を引き出すように形成する。これによれば、回路配線225を引き出す位置PT2を、部品端子96Aから離すことで、部品接続端子227Aで覆われる部分における回路配線225の割合を低くし、換言すれば、部品端子96Aを絶縁層220に固定する箇所において導電性ペーストの割合を高くし、機械的強度を向上できる。これにより、部品接続端子227Aを介して絶縁層220に電子部品96をより強固に固定でき、大型の電子部品96などであっても、電子部品96の脱落や剥離を抑制できる。 Therefore, as shown in FIG. 11, in the circuit wiring forming process S20, the controller 120 starts from a position PT2 that is covered by, for example, the component connection terminal 227A and is away from the position PT1 that is directly below the component terminal 96A. It is formed so as to pull out the circuit wiring 225. According to this, by separating the position PT2 from which the circuit wiring 225 is pulled out from the component terminal 96A, the ratio of the circuit wiring 225 in the portion covered by the component connection terminal 227A is reduced, in other words, the component terminal 96A is provided with an insulating layer. The ratio of the conductive paste can be increased at the portion fixed to 220 to improve the mechanical strength. As a result, the electronic component 96 can be more firmly fixed to the insulating layer 220 via the component connection terminal 227A, and even a large electronic component 96 or the like can suppress the electronic component 96 from falling off or peeling off.
 例えば、図10に示す最も左側の列(接続パターンPT11,PT21,PT31)では、接続端子227の外側(端部側)を起点として回路配線225を引き出している。この場合、回路配線225のうち接続端子227に覆われる部分が、接続端子227の全体に対して占める割合は、小さくなる。接続端子227で接合する電子部品96等に対する機械的性質を向上できる。 For example, in the leftmost column (connection patterns PT11, PT21, PT31) shown in FIG. 10, the circuit wiring 225 is pulled out starting from the outside (end side) of the connection terminal 227. In this case, the ratio of the portion of the circuit wiring 225 covered by the connection terminal 227 to the entire connection terminal 227 becomes small. It is possible to improve the mechanical properties of the electronic component 96 and the like joined by the connection terminal 227.
 また、図11に示す電極パッド227Cは、外部機器の端子である外部機器端子233を接続されている。この外部機器は、例えば、3次元積層電子デバイス246に常に固定されている訳ではなく、必要な場合に接続される機器である。この場合、外部機器端子233を、電極パッド227Cで絶縁層220に固定する必要がない。このような電極パッド227Cを形成する場合、コントローラ120は、回路配線形成処理S20において、例えば、電極パッド227Cに覆われる位置であって、外部機器端子233の直下となる位置PT3から引き出すように回路配線225を形成する。位置PT3は、例えば、3次元積層電子デバイス246と外部機器とが正常に通信できるように、外部機器端子233と電極パッド227Cを電気的に接続した場合に、外部機器端子233全体における電極パッド227Cと接触している部分の中央位置(平面視における中央となる位置)である。これによれば、外部機器端子233の直下となる位置PT3を起点として回路配線225を引き出すことで、外部機器端子233と回路配線225の引き出し位置をより近づけることができる。外部機器端子233と回路配線225との間に電極パッド227C(導電性ペースト)が介在する量(割合)を少なくし、外部機器と回路配線225(3次元積層電子デバイス246)との電気的接続における抵抗値をより小さくすることができる。これにより、低抵抗な接続を要求する外部機器などを電極パッド227Cに接続でした場合、外部機器を正常に動作させることができる。 Further, the electrode pad 227C shown in FIG. 11 is connected to the external device terminal 233, which is a terminal of the external device. This external device is, for example, a device that is not always fixed to the three-dimensional stacked electronic device 246 but is connected when necessary. In this case, it is not necessary to fix the external device terminal 233 to the insulating layer 220 with the electrode pad 227C. When forming such an electrode pad 227C, the controller 120 is a circuit in the circuit wiring forming process S20 so as to be pulled out from a position PT3 which is covered with, for example, the electrode pad 227C and is directly below the external device terminal 233. The wiring 225 is formed. The position PT3 is, for example, when the external device terminal 233 and the electrode pad 227C are electrically connected so that the three-dimensional laminated electronic device 246 and the external device can communicate normally, the electrode pad 227C in the entire external device terminal 233 is used. It is the central position of the part in contact with (the central position in the plan view). According to this, by pulling out the circuit wiring 225 starting from the position PT3 directly below the external device terminal 233, the pull-out position of the external device terminal 233 and the circuit wiring 225 can be brought closer to each other. The amount (ratio) of the electrode pad 227C (conductive paste) intervening between the external device terminal 233 and the circuit wiring 225 is reduced, and the electrical connection between the external device and the circuit wiring 225 (three-dimensional laminated electronic device 246) is reduced. The resistance value in can be made smaller. As a result, when an external device or the like that requires a low resistance connection is connected to the electrode pad 227C, the external device can be operated normally.
 例えば、図10に示す右から2列目(接続パターンPT13,PT23,PT33)では、回路配線225の延びる方向(図10の左右方向)で見た場合、接続端子227の中点(接続パターンPT13では中央の位置)から回路配線225を引き出している。この場合、回路配線225の引き出し位置(起点)と、接続端子227に接続される端子(外部機器端子233など)との間の距離をできだけ近づけることができ、回路配線225と外部機器端子233とを接続する電子回路における抵抗値を低くすることができる。 For example, in the second row from the right (connection pattern PT13, PT23, PT33) shown in FIG. 10, the midpoint of the connection terminal 227 (connection pattern PT13) when viewed in the extending direction of the circuit wiring 225 (left-right direction in FIG. 10). Then, the circuit wiring 225 is pulled out from the central position). In this case, the distance between the lead-out position (starting point) of the circuit wiring 225 and the terminal connected to the connection terminal 227 (external device terminal 233, etc.) can be made as close as possible, and the circuit wiring 225 and the external device terminal 233 can be made as close as possible. The resistance value in the electronic circuit connected to and can be lowered.
 従って、本実施形態のコントローラ120は、接続端子形成処理S30において、絶縁層220(絶縁部材の一例)に実装する電子部品96と接続される部品接続端子227A(第1接続端子の一例)、及び絶縁層220の電子回路と外部機器を接続する電極パッド227C(第2接続端子の一例)を形成する。部品接続端子227A及び電極パッド227Cの各々は、回路配線225の一部を上から覆うように形成される。そして、回路配線225のうち部品接続端子227Aに覆われる部分が、部品接続端子227Aの全体に対して占める割合は、回路配線225のうち電極パッド227Cに覆われる部分が、電極パッド227Cの全体に対して占める割合に比べて小さい(図11参照)。これによれば、外部機器と接続する電極パッド227Cについては、回路配線225が電極パッド227C全体に占める割合を相対的に増やすことで、電気的抵抗の減少(電気的性質の向上)を図ることができる。また、電子部品96を接続するバンプのような部品接続端子227Aについては、回路配線225が部品接続端子227A全体に占める割合を相対的に減らすことで、機械的強度の向上(機械的性質の向上)を図ることができる。 Therefore, in the connection terminal forming process S30, the controller 120 of the present embodiment has a component connection terminal 227A (an example of a first connection terminal) connected to an electronic component 96 mounted on an insulating layer 220 (an example of an insulating member), and a component connection terminal 227A (an example of a first connection terminal). An electrode pad 227C (an example of a second connection terminal) for connecting the electronic circuit of the insulating layer 220 and an external device is formed. Each of the component connection terminal 227A and the electrode pad 227C is formed so as to cover a part of the circuit wiring 225 from above. The ratio of the portion of the circuit wiring 225 covered by the component connection terminal 227A to the entire component connection terminal 227A is such that the portion of the circuit wiring 225 covered by the electrode pad 227C covers the entire electrode pad 227C. It is small compared to the ratio (see FIG. 11). According to this, for the electrode pad 227C connected to an external device, the electrical resistance (improvement of electrical properties) can be reduced by relatively increasing the ratio of the circuit wiring 225 to the entire electrode pad 227C. Can be done. Further, for the component connection terminal 227A such as a bump for connecting the electronic component 96, the mechanical strength is improved (improvement of mechanical properties) by relatively reducing the ratio of the circuit wiring 225 to the entire component connection terminal 227A. ) Can be planned.
 同様に、例えば、図6に示すピン端子227Bのような、プローブピン99を物理的に固定する訳ではなく、プローブピン99と接触して電気的に接続されているような部分では、上記した図11に示す電極パッド227Cのように、プローブピン99の直下となる位置から回路配線225を引き出して、回路配線225とプローブピン99の接続抵抗を低減しても良い。あるいは、上記した図11に示す部品接続端子227Aのように、プローブピン99の直下から離れた位置を起点として回路配線225を引き出すことで、ピン端子227Bを絶縁層220により強固に固定しても良い。ピン端子227Bは、上記したように、積層ユニット218を積層した際に、プローブピン99を上下から挟み、ストローク量に応じた応力を付加される。このため、機械的強度がピン端子227Bに必要な場合、導電性ペーストの割合を高くして、機械的性質の向上を図れる。 Similarly, for example, a portion such as the pin terminal 227B shown in FIG. 6 in which the probe pin 99 is not physically fixed but is electrically connected in contact with the probe pin 99, as described above. Like the electrode pad 227C shown in FIG. 11, the circuit wiring 225 may be pulled out from a position directly below the probe pin 99 to reduce the connection resistance between the circuit wiring 225 and the probe pin 99. Alternatively, as in the component connection terminal 227A shown in FIG. 11 described above, the pin terminal 227B may be firmly fixed by the insulating layer 220 by pulling out the circuit wiring 225 starting from a position away from directly below the probe pin 99. good. As described above, the pin terminal 227B sandwiches the probe pin 99 from above and below when the stacking unit 218 is laminated, and applies stress according to the stroke amount. Therefore, when mechanical strength is required for the pin terminal 227B, the ratio of the conductive paste can be increased to improve the mechanical properties.
 尚、図12に示すように、部品端子96Aの直下となる位置PT1から回路配線225を引き出し、部品端子96Aと回路配線225との間の距離を短くして接続抵抗を減らしても良い。例えば、小型で小さい接続抵抗を要求するような電子部品96については、位置PT1から回路配線225を引き出し、接続抵抗の低減を図れる。また、図11に示すように、電極パッド227Cから回路配線225を引き出す位置PT3を、電極パッド227Cの外側(端部側)となる位置にしても良い。例えば、外部機器端子233との接触(接続)が頻繁に繰り返されるような電極パッド227Cなどについては、回路配線225の引き出し位置PT3を外側にし、電極パッド227Cの引っ張り強度を高くして、電極パッド227Cの剥離を抑制できる。 As shown in FIG. 12, the circuit wiring 225 may be pulled out from the position PT1 directly below the component terminal 96A, and the distance between the component terminal 96A and the circuit wiring 225 may be shortened to reduce the connection resistance. For example, for an electronic component 96 that is small and requires a small connection resistance, the circuit wiring 225 can be pulled out from the position PT1 to reduce the connection resistance. Further, as shown in FIG. 11, the position PT3 for pulling out the circuit wiring 225 from the electrode pad 227C may be set to a position outside (end side) of the electrode pad 227C. For example, for the electrode pad 227C in which contact (connection) with the external device terminal 233 is frequently repeated, the lead-out position PT3 of the circuit wiring 225 is set to the outside, and the tensile strength of the electrode pad 227C is increased to increase the tensile strength of the electrode pad. The peeling of 227C can be suppressed.
 上記した導電性インクと導電性ペーストとを使い分ける方法については、特に限定されない。例えば、制御プログラム126の三次元のデータに、使用する材料、接続端子227を形成する位置、回路配線225の引き出し位置等を設定することで使い分けを実現しても良い。これにより、コントローラ120は、制御プログラム126に基づいて3次元積層造形を実行し、上記した使い分けに応じた造形を実施することで、電気的性質及び機械的性質の向上を図った3次元積層電子デバイス246を製造できる。あるいは、コントローラ120は、電子部品96に要求される接続抵抗の値、接続端子227を造形する位置、接続端子227を接続する対象物などに基づいて、使用する材料や回路配線225の引き出し位置等を自動で変更しても良い。 The method of properly using the above-mentioned conductive ink and conductive paste is not particularly limited. For example, the three-dimensional data of the control program 126 may be used properly by setting the material to be used, the position where the connection terminal 227 is formed, the pull-out position of the circuit wiring 225, and the like. As a result, the controller 120 executes the three-dimensional laminated modeling based on the control program 126, and by performing the modeling according to the above-mentioned proper use, the three-dimensional laminated electrons aiming at the improvement of the electrical property and the mechanical property. Device 246 can be manufactured. Alternatively, the controller 120 is based on the value of the connection resistance required for the electronic component 96, the position where the connection terminal 227 is formed, the object to which the connection terminal 227 is connected, and the like, the material to be used, the pull-out position of the circuit wiring 225, and the like. May be changed automatically.
 また、コントローラ120は、例えば、制御プログラム126に基づいて、図10に示す接続パターンPT11~PT34を使い分けることができる。例えば、コントローラ120は、機械的性質を向上しつつ、接続端子227から2つの回路配線225を引き出したい場合、接続パターンPT12,PT22,PT32を使用する。また、例えば、コントローラ120は、電気的性質を向上しつつ、接続端子227から2つの回路配線225を引き出したい場合、接続パターンPT14,PT24,PT34を使用する。 Further, the controller 120 can properly use the connection patterns PT11 to PT34 shown in FIG. 10 based on, for example, the control program 126. For example, the controller 120 uses the connection patterns PT12, PT22, and PT32 when it is desired to draw out two circuit wirings 225 from the connection terminal 227 while improving the mechanical properties. Further, for example, when the controller 120 wants to draw out two circuit wirings 225 from the connection terminal 227 while improving the electrical properties, the controller 120 uses the connection patterns PT14, PT24, and PT34.
 また、コントローラ120は、回路配線225を退避したい場合、図10の2行目に示すオフセットした位置から回路配線225を形成する。ここでいう退避したい場合とは、例えば、部品端子96Aが部品接続端子227Aに比べて相対的に大きく、回路配線225と部品端子96Aとが干渉するような場合である。また、コントローラ120は、回路配線225を退避する必要がない場合、図10の1行目に示す中央の位置から回路配線225を引き出すことで、部品端子96A等と回路配線225との間の距離を近づけることができる。 Further, when the controller 120 wants to retract the circuit wiring 225, the controller 120 forms the circuit wiring 225 from the offset position shown in the second line of FIG. The case where the user wants to evacuate here is, for example, a case where the component terminal 96A is relatively larger than the component connection terminal 227A and the circuit wiring 225 and the component terminal 96A interfere with each other. When the controller 120 does not need to retract the circuit wiring 225, the controller 120 pulls out the circuit wiring 225 from the central position shown in the first line of FIG. 10 to obtain a distance between the component terminal 96A and the like and the circuit wiring 225. Can be brought closer.
 また、コントローラ120は、電気的抵抗をより低減したい場合、図10の3行目に示す面接点による回路配線225を形成する。この面接点による回路配線225の形成では、コントローラ120は、例えば、回路配線225の配線幅Wを、接続端子227の幅と同一以上にする。これにより、回路配線225と接続端子227の接触面積を増やし、接続抵抗をより低減することができる。また、面接点を用いる程の低抵抗が要求されない場合、コントローラ120は、図10の1行目に示す中央の位置から回路配線225を引き出し、配線幅Wを狭くすることで、回路配線225の小型化や、使用する導電性インクの量を削減できる。 Further, when the controller 120 wants to further reduce the electrical resistance, the controller 120 forms the circuit wiring 225 by the surface contact shown in the third line of FIG. In the formation of the circuit wiring 225 by the surface contact, the controller 120 makes, for example, the wiring width W of the circuit wiring 225 equal to or larger than the width of the connection terminal 227. As a result, the contact area between the circuit wiring 225 and the connection terminal 227 can be increased, and the connection resistance can be further reduced. Further, when a low resistance enough to use a surface contact is not required, the controller 120 pulls out the circuit wiring 225 from the central position shown in the first line of FIG. 10 and narrows the wiring width W to narrow the circuit wiring 225. It is possible to reduce the size and the amount of conductive ink used.
 また、図13に示すように、コントローラ120は、部品接続端子227Aの数を増やして、回路配線225の引き出し位置を部品端子96Aからより離しても良い。これにより、電子部品96の直下から回路配線225をなくし、部品接続端子227Aによる電子部品96を固定する力をより強くし、電子部品96を絶縁層220に強固に固定できる。また、部品接続端子227Aを複数個形成せずに、例えば、図9に示すように、絶縁層220の平面方向に沿って部品接続端子227Aを大きくする、あるいは長くするなどして電子部品96と、回路配線225とを離しても良い。 Further, as shown in FIG. 13, the controller 120 may increase the number of component connection terminals 227A so that the lead-out position of the circuit wiring 225 is further separated from the component terminals 96A. As a result, the circuit wiring 225 can be eliminated from directly under the electronic component 96, the force for fixing the electronic component 96 by the component connection terminal 227A can be strengthened, and the electronic component 96 can be firmly fixed to the insulating layer 220. Further, instead of forming a plurality of component connection terminals 227A, for example, as shown in FIG. 9, the component connection terminals 227A are enlarged or lengthened along the plane direction of the insulating layer 220 to form the electronic component 96. , The circuit wiring 225 may be separated.
 また、図11~図13に示すように、本実施形態のコントローラ120は、回路配線225を上から覆うように、接続端子227を形成している。図2に示すように、本実施形態の導電性インクは、粘性が低く、流動性が高い。このため、先に導電性ペーストを吐出して接続端子227を形成した後に、接続端子227の表面に導電性インクを吐出しても、接続端子227の表面から導電性インクが流れ落ちる可能性がある。一方で、導電性ペーストは、粘性が高く、対象物に対して付着し易い。そこで、コントローラ120は、回路配線225と接続端子227を接続する場合、回路配線225を先に形成し、形成した回路配線225の上に接続端子227を形成する。 Further, as shown in FIGS. 11 to 13, the controller 120 of the present embodiment forms the connection terminal 227 so as to cover the circuit wiring 225 from above. As shown in FIG. 2, the conductive ink of the present embodiment has low viscosity and high fluidity. Therefore, even if the conductive ink is first ejected to form the connection terminal 227 and then the conductive ink is ejected onto the surface of the connection terminal 227, the conductive ink may flow down from the surface of the connection terminal 227. .. On the other hand, the conductive paste has high viscosity and easily adheres to the object. Therefore, when connecting the circuit wiring 225 and the connection terminal 227, the controller 120 forms the circuit wiring 225 first, and forms the connection terminal 227 on the formed circuit wiring 225.
 従って、本実施形態のコントローラ120は、回路配線225と接続端子227を接続する場合、回路配線形成処理S20を実行して回路配線225を形成した後、形成した回路配線225に金属マイクロ粒子を含む流体を塗布し、塗布した金属マイクロ粒子を含む流体を硬化させて接続端子227を形成する。上記したように、3次元積層造形法では、接続端子227のような凹凸のある部材の上に、金属ナノ粒子を含む流体、即ち、流動性の高い流体を塗布しても、対象物上に流体を均一に残留させることが難しく、均一な厚みの回路配線225を形成することが困難となる。そこで、金属ナノ粒子により回路配線225を先に形成することで、均一な厚みの回路配線225を形成できる。そして、先に形成した回路配線225の上に、比較的粘性の高い金属マイクロ粒子を含む流体を塗布することで、回路配線225の上に接続端子227を好適に形成できる。尚、導電性インクを、接続端子227に付着等できる場合、接続端子227を形成した後に、接続端子227の上に導電性インクを吐出して回路配線225を接続端子227の表面に形成しても良い。あるいは、例えば、絶縁層220に形成した穴に導電性ペーストを吐出してスルーホールを形成するような場合、コントローラ120は、先に導電性ペーストを吐出してスルーホールを形成した後に、スルーホールの上に導電性インクを吐出して回路配線225を形成しても良い。 Therefore, in the controller 120 of the present embodiment, when the circuit wiring 225 and the connection terminal 227 are connected, the circuit wiring forming process S20 is executed to form the circuit wiring 225, and then the formed circuit wiring 225 contains metal microparticles. A fluid is applied and the fluid containing the applied metal microparticles is cured to form a connection terminal 227. As described above, in the three-dimensional laminated molding method, even if a fluid containing metal nanoparticles, that is, a fluid having high fluidity is applied onto an uneven member such as the connection terminal 227, the object is covered with the fluid. It is difficult to leave the fluid uniformly, and it is difficult to form a circuit wiring 225 having a uniform thickness. Therefore, by forming the circuit wiring 225 first with the metal nanoparticles, the circuit wiring 225 having a uniform thickness can be formed. Then, by applying a fluid containing metal microparticles having a relatively high viscosity on the circuit wiring 225 formed earlier, the connection terminal 227 can be suitably formed on the circuit wiring 225. If the conductive ink can be attached to the connection terminal 227, the conductive ink is discharged onto the connection terminal 227 after the connection terminal 227 is formed, and the circuit wiring 225 is formed on the surface of the connection terminal 227. Is also good. Alternatively, for example, when a conductive paste is discharged into a hole formed in the insulating layer 220 to form a through hole, the controller 120 first discharges the conductive paste to form a through hole, and then the through hole. Conductive ink may be ejected onto the circuit wiring 225 to form the circuit wiring 225.
(4)まとめ
 以上詳細に説明したように、本実施形態の3次元積層造形による電子回路製造方法は、絶縁層220の上に、ナノサイズの金属ナノ粒子を含む導電性インクを塗布し、塗布した導電性インクを硬化させることで回路配線225を形成する回路配線形成処理S20を含む。また、3次元積層造形による電子回路製造方法は、マイクロサイズの金属マイクロ粒子を含む導電性ペーストを塗布し、塗布した導電性ペーストを硬化させることで回路配線225に電気的に接続される接続端子227を形成する接続端子形成処理S30を含む。
(4) Summary As described in detail above, in the electronic circuit manufacturing method by the three-dimensional laminated molding of the present embodiment, a conductive ink containing nano-sized metal nanoparticles is coated on the insulating layer 220 and coated. The circuit wiring forming process S20 for forming the circuit wiring 225 by curing the conductive ink is included. Further, in the electronic circuit manufacturing method by three-dimensional laminated molding, a conductive paste containing micro-sized metal microparticles is applied, and the applied conductive paste is cured to electrically connect to the circuit wiring 225. The connection terminal forming process S30 for forming 227 is included.
 これによれば、接続端子227の造形と、回路配線225の造形とで、金属粒子を含む流体の種類を使い分ける。回路配線225を形成する場合、導電性インクを塗布し硬化させることで回路配線225を形成する。これにより、ナノサイズの金属ナノ粒子が互いに接触又は融着等して硬化することで、低抵抗な回路配線225を形成することができる。また、接続端子227を形成する場合、導電性ペーストを塗布し硬化させることで接続端子227を形成する。これにより、マイクロサイズの金属マイクロ粒子により一定の厚みを持った層を形成することができ、造形後の接続端子227の引っ張り強度などの機械的性質を向上できる。従って、金属粒子を含む流体を使い分けることで、金属粒子を含む流体の特性を活かし、電気的性質及び機械的性質を向上した電子回路を製造できる。 According to this, the type of fluid containing metal particles is used properly for the modeling of the connection terminal 227 and the modeling of the circuit wiring 225. When forming the circuit wiring 225, the circuit wiring 225 is formed by applying conductive ink and curing the circuit wiring 225. As a result, nano-sized metal nanoparticles are brought into contact with each other or fused to each other to be cured, so that a low-resistance circuit wiring 225 can be formed. Further, when the connection terminal 227 is formed, the connection terminal 227 is formed by applying a conductive paste and curing the connection terminal 227. As a result, a layer having a certain thickness can be formed by micro-sized metal microparticles, and mechanical properties such as tensile strength of the connection terminal 227 after modeling can be improved. Therefore, by properly using the fluid containing the metal particles, it is possible to manufacture an electronic circuit having improved electrical properties and mechanical properties by utilizing the characteristics of the fluid containing the metal particles.
 因みに、本実施形態において、絶縁層220は、樹脂部材の一例である。回路配線225は、配線の一例である。部品接続端子227Aは、第1接続端子の一例である。電極パッド227Cは、第2接続端子の一例である。回路配線形成処理S20は、配線形成工程の一例である。接続端子形成処理S30は、接続端子形成工程の一例である。 Incidentally, in the present embodiment, the insulating layer 220 is an example of a resin member. The circuit wiring 225 is an example of wiring. The component connection terminal 227A is an example of the first connection terminal. The electrode pad 227C is an example of the second connection terminal. The circuit wiring forming process S20 is an example of the wiring forming process. The connection terminal forming process S30 is an example of the connection terminal forming step.
(5)変更例
 なお、本開示は上記実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、積層ユニット形成装置10は、導電性ペーストを用いて部品接続端子227A、ピン端子227B、電極パッド227Cを形成したが、3つの接続端子227のうち、少なくとも1つを形成する構成でも良い。
 また、本願の導電性インクに用いる金属ナノ粒子や溶剤の種類は、特に限定されない。
 また、本願の導電性ペーストに用いる金属マイクロ粒子や接着剤の種類は、特に限定されない。
 また、絶縁層220を構成する樹脂は、紫外線硬化樹脂に限らず、例えば、熱可塑性樹脂や熱硬化性樹脂でも良い。
 また、上記実施形態では、積層ユニット形成装置10は、本開示の樹脂材料として、紫外線硬化樹脂を硬化した絶縁層220を、3次元積層造形により形成した。しかしながら、積層ユニット形成装置10は、3次元積層造形以外の方法(射出成形など)で形成した樹脂材料の上に回路配線225や接続端子227を形成しても良い。
 上記した積層ユニット形成装置10の構成は一例であり、適宜変更可能である。例えば、積層ユニット形成装置10は、電子部品を装着するための装着ユニット26を備えなくとも良い。
 また、本開示の3次元積層造形法としては、インクジェット法以外に、例えば、光造形法、熱溶解積層法などを採用できる。
(5) Example of change The present disclosure is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present embodiment.
For example, the laminated unit forming apparatus 10 uses the conductive paste to form the component connection terminal 227A, the pin terminal 227B, and the electrode pad 227C, but it may be configured to form at least one of the three connection terminals 227.
Further, the types of metal nanoparticles and solvent used in the conductive ink of the present application are not particularly limited.
Further, the types of metal microparticles and adhesives used in the conductive paste of the present application are not particularly limited.
Further, the resin constituting the insulating layer 220 is not limited to the ultraviolet curable resin, and may be, for example, a thermoplastic resin or a thermosetting resin.
Further, in the above embodiment, the laminated unit forming apparatus 10 forms an insulating layer 220 obtained by curing an ultraviolet curable resin as the resin material of the present disclosure by three-dimensional laminating molding. However, the laminated unit forming apparatus 10 may form the circuit wiring 225 and the connection terminal 227 on the resin material formed by a method other than the three-dimensional laminated molding (injection molding or the like).
The configuration of the laminated unit forming device 10 described above is an example, and can be changed as appropriate. For example, the stacking unit forming device 10 does not have to include a mounting unit 26 for mounting electronic components.
Further, as the three-dimensional additive manufacturing method of the present disclosure, for example, a stereolithography method, a hot melting lamination method and the like can be adopted in addition to the inkjet method.
 10 積層ユニット形成装置
 S20 回路配線形成処理(配線形成工程)
 S30 接続端子形成処理(接続端子形成工程)
 96 電子部品
 99 プローブピン
 218 積層ユニット(絶縁部材)
 220 絶縁層(絶縁部材)
 225 回路配線(配線)
 227 接続端子
 227A 部品接続端子(第1接続端子)
 227B ピン端子
 227C 電極パッド(第2接続端子)
 246 3次元積層電子デバイス
10 Laminated unit forming device S20 Circuit wiring forming process (wiring forming process)
S30 Connection terminal forming process (connection terminal forming process)
96 Electronic components 99 Probe pin 218 Laminating unit (insulating member)
220 Insulation layer (insulation member)
225 circuit wiring (wiring)
227 connection terminal 227A component connection terminal (first connection terminal)
227B pin terminal 227C electrode pad (second connection terminal)
246 3D stacked electronic device

Claims (7)

  1.  絶縁部材の上に、ナノサイズの金属ナノ粒子を含む流体を塗布し、塗布した前記金属ナノ粒子を含む流体を硬化させることで配線を形成する配線形成工程と、
     マイクロサイズの金属マイクロ粒子を含む流体を塗布し、塗布した前記金属マイクロ粒子を含む流体を硬化させることで前記配線に電気的に接続される接続端子を形成する接続端子形成工程と、
     を含む3次元積層造形による電子回路製造方法。
    A wiring forming step of applying a fluid containing nano-sized metal nanoparticles on an insulating member and curing the applied fluid containing the metal nanoparticles to form wiring.
    A connection terminal forming step of applying a fluid containing micro-sized metal microparticles and curing the applied fluid containing the metal microparticles to form a connection terminal electrically connected to the wiring.
    A method for manufacturing an electronic circuit by three-dimensional laminated modeling including.
  2.  前記金属マイクロ粒子を含む流体は、
     前記金属マイクロ粒子を、樹脂製の接着剤に含めた粘性流体であり、
     前記接続端子形成工程は、
     前記接着剤を硬化させることで、複数の前記金属マイクロ粒子を互いに接触させて硬化し、
     前記配線形成工程は、
     前記金属ナノ粒子を含む流体を加熱することで、複数の前記金属ナノ粒子を互いに融着して硬化させる、請求項1に記載の3次元積層造形による電子回路製造方法。
    The fluid containing the metal microparticles
    A viscous fluid containing the metal microparticles in a resin adhesive.
    The connection terminal forming step is
    By curing the adhesive, the plurality of the metal microparticles are brought into contact with each other and cured.
    The wiring forming step is
    The method for manufacturing an electronic circuit by three-dimensional laminated molding according to claim 1, wherein a plurality of the metal nanoparticles are fused to each other and cured by heating a fluid containing the metal nanoparticles.
  3.  前記接続端子形成工程は、
     前記接続端子として、前記絶縁部材に実装する電子部品と接続する前記接続端子、前記絶縁部材の電子回路と外部機器を接続する前記接続端子、複数の前記絶縁部材の電子回路を互いに接続するプローブピンを前記絶縁部材の電子回路に接続する前記接続端子のうち、少なくとも1つの前記接続端子を形成する、請求項1又は請求項2に記載の3次元積層造形による電子回路製造方法。
    The connection terminal forming step is
    As the connection terminal, the connection terminal for connecting to an electronic component mounted on the insulating member, the connection terminal for connecting the electronic circuit of the insulating member with an external device, and a probe pin for connecting a plurality of electronic circuits of the insulating member to each other. The method for manufacturing an electronic circuit by three-dimensional laminated molding according to claim 1 or 2, wherein at least one of the connection terminals is formed from the connection terminals connecting the electronic circuit of the insulating member.
  4.  前記配線形成工程を実行して前記配線を形成した後、形成した前記配線に前記金属マイクロ粒子を含む流体を塗布し、塗布した前記金属マイクロ粒子を含む流体を硬化させて前記接続端子を形成する、請求項1乃至請求項3の何れか1項に記載の3次元積層造形による電子回路製造方法。 After executing the wiring forming step to form the wiring, a fluid containing the metal microparticles is applied to the formed wiring, and the applied fluid containing the metal microparticles is cured to form the connection terminal. The method for manufacturing an electronic circuit by the three-dimensional laminated molding according to any one of claims 1 to 3.
  5.  前記接続端子形成工程は、
     前記絶縁部材に実装する電子部品の部品端子と接続される前記接続端子を形成し、
     前記配線形成工程は、
     前記接続端子に覆われる位置であって、前記部品端子の直下から離れた位置を起点として引き出される前記配線を形成する、請求項1乃至請求項4の何れか1項に記載の3次元積層造形による電子回路製造方法。
    The connection terminal forming step is
    The connection terminal to be connected to the component terminal of the electronic component mounted on the insulating member is formed.
    The wiring forming step is
    The three-dimensional laminated molding according to any one of claims 1 to 4, wherein the wiring is formed at a position covered by the connection terminal and is drawn out from a position distant from directly below the component terminal. Electronic circuit manufacturing method by.
  6.  前記接続端子形成工程は、
     前記絶縁部材に実装する電子部品の部品端子と接続される前記接続端子を形成し、
     前記配線形成工程は、
     前記接続端子に覆われる位置であって、前記部品端子の直下から引き出される前記配線を形成する、請求項1乃至請求項5の何れか1項に記載の3次元積層造形による電子回路製造方法。
    The connection terminal forming step is
    The connection terminal to be connected to the component terminal of the electronic component mounted on the insulating member is formed.
    The wiring forming step is
    The method for manufacturing an electronic circuit by three-dimensional laminated molding according to any one of claims 1 to 5, wherein the wiring is formed at a position covered by the connection terminals and is drawn out from directly below the component terminals.
  7.  前記接続端子形成工程は、
     前記接続端子として、前記絶縁部材に実装する電子部品と接続される第1接続端子、及び前記絶縁部材の電子回路と外部機器を接続する第2接続端子を形成し、
     前記第1接続端子及び前記第2接続端子の各々は、
     前記配線の一部を上から覆うように形成され、
     前記配線のうち前記第1接続端子に覆われる部分が、前記第1接続端子の全体に対して占める割合は、前記配線のうち前記第2接続端子に覆われる部分が、前記第2接続端子の全体に対して占める割合に比べて小さい、請求項1乃至請求項6の何れか1項に記載の3次元積層造形による電子回路製造方法。
    The connection terminal forming step is
    As the connection terminal, a first connection terminal connected to an electronic component mounted on the insulating member and a second connection terminal connecting the electronic circuit of the insulating member and an external device are formed.
    Each of the first connection terminal and the second connection terminal
    It is formed so as to cover a part of the wiring from above.
    The ratio of the portion of the wiring covered by the first connection terminal to the entire first connection terminal is such that the portion of the wiring covered by the second connection terminal is the second connection terminal. The method for manufacturing an electronic circuit by three-dimensional laminated molding according to any one of claims 1 to 6, which is smaller than the ratio to the whole.
PCT/JP2019/029791 2019-07-30 2019-07-30 Electronic circuit production method using 3d layer shaping WO2021019675A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/630,860 US20220279657A1 (en) 2019-07-30 2019-07-30 Electronic circuit production method using 3d layer shaping
EP19939582.3A EP4007459A4 (en) 2019-07-30 2019-07-30 Electronic circuit production method using 3d layer shaping
JP2021536510A JP7145334B2 (en) 2019-07-30 2019-07-30 Electronic circuit manufacturing method by 3D additive manufacturing
PCT/JP2019/029791 WO2021019675A1 (en) 2019-07-30 2019-07-30 Electronic circuit production method using 3d layer shaping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029791 WO2021019675A1 (en) 2019-07-30 2019-07-30 Electronic circuit production method using 3d layer shaping

Publications (1)

Publication Number Publication Date
WO2021019675A1 true WO2021019675A1 (en) 2021-02-04

Family

ID=74228360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029791 WO2021019675A1 (en) 2019-07-30 2019-07-30 Electronic circuit production method using 3d layer shaping

Country Status (4)

Country Link
US (1) US20220279657A1 (en)
EP (1) EP4007459A4 (en)
JP (1) JP7145334B2 (en)
WO (1) WO2021019675A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057249A (en) * 2003-07-23 2005-03-03 Sharp Corp Circuit board and manufacturing method thereof, and electronic device
JP2005340279A (en) * 2004-05-24 2005-12-08 Fujikura Ltd Multilayer wiring board and its manufacturing method
JP2012253306A (en) * 2011-06-07 2012-12-20 Asahi Glass Co Ltd Manufacturing method of circuit board and circuit board
WO2018142577A1 (en) * 2017-02-03 2018-08-09 株式会社Fuji Circuit formation method and circuit formation device
WO2019102522A1 (en) 2017-11-21 2019-05-31 株式会社Fuji Three-dimensional multi-layer electronic device production method and three-dimensional multi-layer electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831679B2 (en) * 1993-06-18 1996-03-27 帝国通信工業株式会社 Mounting structure of electronic component on flexible substrate and mounting method thereof
JP3925283B2 (en) * 2002-04-16 2007-06-06 セイコーエプソン株式会社 Method for manufacturing electronic device, method for manufacturing electronic device
US20110005822A1 (en) * 2006-10-20 2011-01-13 Yuuki Momokawa Structure of a package for electronic devices and method for manufacturing the package
CN102137728B (en) * 2008-08-29 2013-09-11 石原产业株式会社 Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed there
JP6092117B2 (en) * 2010-12-24 2017-03-08 エルジー イノテック カンパニー リミテッド Printed circuit board and manufacturing method thereof
US9831206B2 (en) * 2014-03-28 2017-11-28 Intel Corporation LPS solder paste based low cost fine pitch pop interconnect solutions
KR102212827B1 (en) * 2014-06-30 2021-02-08 엘지이노텍 주식회사 Pcb, package substrate and a manufacturing method thereof
JP6630053B2 (en) * 2015-03-25 2020-01-15 スタンレー電気株式会社 Electronic device manufacturing method
JP6533112B2 (en) * 2015-07-21 2019-06-19 株式会社Fuji Circuit formation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057249A (en) * 2003-07-23 2005-03-03 Sharp Corp Circuit board and manufacturing method thereof, and electronic device
JP2005340279A (en) * 2004-05-24 2005-12-08 Fujikura Ltd Multilayer wiring board and its manufacturing method
JP2012253306A (en) * 2011-06-07 2012-12-20 Asahi Glass Co Ltd Manufacturing method of circuit board and circuit board
WO2018142577A1 (en) * 2017-02-03 2018-08-09 株式会社Fuji Circuit formation method and circuit formation device
WO2019102522A1 (en) 2017-11-21 2019-05-31 株式会社Fuji Three-dimensional multi-layer electronic device production method and three-dimensional multi-layer electronic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007459A4

Also Published As

Publication number Publication date
EP4007459A4 (en) 2022-08-24
EP4007459A1 (en) 2022-06-01
US20220279657A1 (en) 2022-09-01
JP7145334B2 (en) 2022-09-30
JPWO2021019675A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US11458722B2 (en) Three-dimensional multi-layer electronic device production method
WO2020012626A1 (en) Circuit formation method and circuit formation device
WO2019193644A1 (en) Three-dimensional structure formation method and three-dimensional structure formation device
JP6554541B2 (en) Wiring formation method and wiring formation apparatus
WO2021019675A1 (en) Electronic circuit production method using 3d layer shaping
WO2021181561A1 (en) Manufacturing method for mounting substrate by three-dimensional laminate molding
WO2021075051A1 (en) Component mounting method and component mounting device
JP7325532B2 (en) 3D object manufacturing method and 3D object manufacturing device by layered manufacturing method
WO2022113186A1 (en) Electric circuit forming method
JP7284275B2 (en) Manufacturing method of three-dimensional layered electronic device by three-dimensional layered manufacturing
WO2021176498A1 (en) Wiring formation method
JP7358614B2 (en) Wiring formation method
WO2022101965A1 (en) Circuit forming method
JP7238206B2 (en) Modeling method
WO2019123629A1 (en) Method and device for manufacturing additively manufactured electronic device
WO2023195175A1 (en) Electrical circuit formation method and electrical circuit formation device
WO2023157111A1 (en) Electrical circuit formation method, and electrical circuit formation device
JP7213361B2 (en) Laminated unit bonding method
WO2023079607A1 (en) Circuit-forming method and circuit-forming apparatus
JP7142781B2 (en) Wiring board manufacturing method and wiring board manufacturing apparatus
JP7055897B2 (en) Circuit formation method
WO2024062605A1 (en) Circuit forming device and circuit forming method
WO2022195800A1 (en) Electronic part mounting method and electronic part mounting device
JP2023166848A (en) Electric circuit forming method and electric circuit forming device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019939582

Country of ref document: EP

Effective date: 20220228