WO2024062605A1 - Circuit forming device and circuit forming method - Google Patents

Circuit forming device and circuit forming method Download PDF

Info

Publication number
WO2024062605A1
WO2024062605A1 PCT/JP2022/035405 JP2022035405W WO2024062605A1 WO 2024062605 A1 WO2024062605 A1 WO 2024062605A1 JP 2022035405 W JP2022035405 W JP 2022035405W WO 2024062605 A1 WO2024062605 A1 WO 2024062605A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
conductive paste
electrode
resin
mounting
Prior art date
Application number
PCT/JP2022/035405
Other languages
French (fr)
Japanese (ja)
Inventor
謙磁 塚田
亮二郎 富永
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/035405 priority Critical patent/WO2024062605A1/en
Publication of WO2024062605A1 publication Critical patent/WO2024062605A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present invention relates to a circuit forming apparatus and the like that mounts electronic components so that electrodes are in contact with conductive paste.
  • Patent Document 1 listed below describes a technique for mounting electronic components so that electrodes are in contact with conductive paste.
  • the object of the present invention is to appropriately form a substrate including an electronic component mounted so that an electrode is in contact with a conductive paste.
  • the present specification provides a first coating device that applies a conductive paste to a position shifted away from the electronic component from a scheduled mounting position of an electrode of the electronic component, and a A circuit forming apparatus is disclosed that includes a mounting device for mounting the electronic component so that the electrode contacts the conductive paste applied by the device.
  • the present specification includes a coating process of applying a conductive paste to a position shifted away from the electronic component from a planned mounting position of an electrode of the electronic component, and a coating process of applying the conductive paste to a position that is shifted away from the electronic component, and a conductive paste applied in the coating process.
  • a circuit forming method including a mounting step of mounting the electronic component so that the electrodes are in contact with each other.
  • a conductive paste is applied to a position shifted away from the electronic component from the planned mounting position of the electrode of the electronic component. Then, electronic components are mounted so that the electrodes are in contact with the applied conductive paste. This makes it possible to appropriately form a substrate including an electronic component mounted so that the electrode is in contact with the conductive paste.
  • FIG. 2 is a block diagram showing a control device.
  • FIG. 2 is a cross-sectional view showing a circuit board with a resin laminate formed thereon.
  • FIG. 2 is a cross-sectional view showing a circuit board with wiring formed on a resin laminate.
  • FIG. 2 is a cross-sectional view showing a circuit board with conductive paste applied on wiring.
  • FIG. 2 is a cross-sectional view showing a circuit board with a thermosetting resin coated on a resin layer.
  • FIG. 2 is a cross-sectional view showing a circuit board with electronic components mounted thereon.
  • FIG. 3 is a cross-sectional view showing a circuit board with electronic components pressed against a resin laminate.
  • FIG. 3 is an image diagram showing a conductive paste applied to a position where an electrode is scheduled to be attached.
  • FIG. 13 is an image diagram showing a conductive paste applied to a position shifted from the intended position of the electrode.
  • FIG. 3 is an image diagram showing a conductive paste applied to a position where an electrode is scheduled to be attached.
  • FIG. 3 is an image diagram showing a conductive paste applied to a position where an electrode is scheduled to be attached.
  • FIG. 3 is an image diagram showing a conductive paste applied to a position shifted from the intended position of the electrode.
  • FIG. 3 is a diagram showing the adhesion area ratio for each size of electronic components.
  • FIG. 3 is an image diagram showing a conductive paste applied to a position shifted from the intended position of the electrode.
  • FIG. 3 is an image diagram showing a conductive paste applied to a position shifted from the intended position of the electrode.
  • FIG. 1 shows a circuit forming apparatus 10.
  • the circuit forming apparatus 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 23, a third modeling unit 24, a fourth modeling unit 25, a pressing unit 26, a mounting unit 27, and a control unit 26.
  • a device (see FIG. 2) 28 is provided.
  • the conveyance device 20, the first modeling unit 22, the second modeling unit 23, the third modeling unit 24, the fourth modeling unit 25, the pressing unit 26, and the mounting unit 27 are arranged on the base 29 of the circuit forming apparatus 10. has been done.
  • the base 29 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 29 is the X-axis direction, the short direction of the base 29 is the Y-axis direction, and it is perpendicular to both the X-axis direction and the Y-axis direction. The direction will be described as the Z-axis direction.
  • the transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32.
  • the X-axis slide mechanism 30 includes an X-axis slide rail 34 and an X-axis slider 36.
  • the X-axis slide rail 34 is arranged on the base 29 so as to extend in the X-axis direction.
  • the X-axis slider 36 is held by the X-axis slide rail 34 so as to be slidable in the X-axis direction.
  • the X-axis slide mechanism 30 includes an electromagnetic motor (see FIG. 2) 38, and the X-axis slider 36 is moved to any position in the X-axis direction by driving the electromagnetic motor 38.
  • the Y-axis slide mechanism 32 includes a Y-axis slide rail 50 and a stage 52.
  • the Y-axis slide rail 50 is disposed on the base 29 so as to extend in the Y-axis direction, and is movable in the X-axis direction.
  • One end of the Y-axis slide rail 50 is connected to the X-axis slider 36.
  • a stage 52 is held on the Y-axis slide rail 50 so as to be slidable in the Y-axis direction.
  • the Y-axis slide mechanism 32 includes an electromagnetic motor (see FIG. 2) 56, and the stage 52 is moved to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. Thereby, the stage 52 is moved to an arbitrary position on the base 29 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
  • the stage 52 includes a base 60, a holding device 62, a lifting device (see FIG. 2) 64, and a heater (see FIG. 2) 66.
  • the base 60 is formed into a flat plate shape, and a substrate is placed on the top surface.
  • the holding device 62 is provided on both sides of the base 60 in the X-axis direction. Then, both edges of the substrate placed on the base 60 in the X-axis direction are held between the holding devices 62, so that the substrate is fixedly held.
  • the lifting device 64 is disposed below the base 60 and raises and lowers the base 60.
  • the heater 66 is built into the base 60 and heats the substrate placed on the base 60 to an arbitrary temperature.
  • the first modeling unit 22 is a unit that shapes wiring on a circuit board, and includes a first printing section 72 and a firing section 74.
  • the first printing section 72 has an inkjet head (see FIG. 2) 76, and the inkjet head 76 discharges metal ink in a linear manner.
  • Metal ink is made by dispersing nanometer-sized metal particles, such as silver, in a solvent. Note that the surface of the metal fine particles is coated with a dispersant to prevent agglomeration in the solvent. Further, the inkjet head 76 ejects metal ink from a plurality of nozzles using a piezo system using piezoelectric elements, for example.
  • the baking section 74 has an infrared irradiation device 78 (see Figure 2).
  • the infrared irradiation device 78 is a device that irradiates the ejected metal ink with infrared rays.
  • the metal ink irradiated with infrared rays is baked, and wiring is formed.
  • baking of metal ink is a phenomenon in which, by applying energy, the solvent is evaporated and the protective film for the metal particles, i.e., the dispersant is decomposed, and the metal particles come into contact or fuse together, thereby increasing the conductivity. Then, by baking the metal ink, metal wiring is formed.
  • the second modeling unit 23 is a unit that models the resin layer of the circuit board, and includes a second printing section 84 and a curing section 86.
  • the second printing section 84 has an inkjet head (see FIG. 2) 88, and the inkjet head 88 discharges ultraviolet curing resin.
  • Ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays.
  • the inkjet head 88 may be of a piezo type using a piezoelectric element, for example, or may be a thermal type of heating resin to generate bubbles and ejecting the bubbles from a plurality of nozzles.
  • the curing section 86 has a flattening device (see FIG. 2) 90 and an irradiation device (see FIG. 2) 92.
  • the flattening device 90 flattens the top surface of the UV-curable resin discharged by the inkjet head 88, for example by leveling the surface of the UV-curable resin while scraping off excess resin with a roller or blade, thereby making the thickness of the UV-curable resin uniform.
  • the irradiation device 92 has a mercury lamp or LED as a light source, and irradiates the discharged UV-curable resin with ultraviolet light. This hardens the discharged UV-curable resin, forming a resin layer.
  • the third modeling unit 24 is a unit that models connection parts between electrodes and wiring of electronic components on a circuit board, and has a third printing unit 100.
  • the third printing unit 100 has a dispenser (see FIG. 2) 106, and the dispenser 106 discharges conductive paste.
  • the conductive paste is made by dispersing micrometer-sized metal particles in a resin that hardens by heating at a relatively low temperature.
  • the metal particles are in the form of flakes, and the viscosity of the conductive paste is relatively high compared to the metal ink.
  • the amount of conductive paste discharged by the dispenser 106 is controlled by the inner diameter of the needle, the pressure at the time of discharge, and the discharge time.
  • the conductive paste discharged by the dispenser 106 is heated by the heater 66 built into the base 60.
  • the heated conductive paste causes the resin to harden.
  • the resin hardens and contracts, and the flaky metal particles dispersed in the resin come into contact with each other. Thereby, the conductive paste exhibits conductivity.
  • the resin of the conductive paste is an organic adhesive, and exhibits adhesive strength by being cured by heating.
  • the fourth modeling unit 25 is a unit that models resin for fixing electronic components to a circuit board, and has a fourth printing section 110.
  • the fourth printing section 110 has a dispenser (see FIG. 2) 116, and the dispenser 116 dispenses thermosetting resin.
  • a thermosetting resin is a resin that hardens by heating.
  • the dispenser 116 is of a piezo type using a piezoelectric element, for example.
  • the thermosetting resin discharged by the dispenser 116 is heated by a heater 66 built into the base 60 and hardens.
  • the pressing unit 26 is a unit for pressing the circuit board, and has a pressing part 120.
  • the pressing section 120 includes a pressing plate (see FIG. 8) 122, a rubber plate (see FIG. 8) 124, and a cylinder (see FIG. 2) 126.
  • the rubber plate 124 is made of silicone rubber, for example, and has a plate shape.
  • the pressing plate 122 is made of, for example, steel and has a plate shape.
  • a rubber plate 124 is attached to the lower surface of the pressing plate 122, and the pressing plate 122 is pressed toward the circuit board by the operation of the cylinder 126. As a result, the circuit board is pressed by the pressing plate 122 via the rubber plate 124. Note that by controlling the operation of the cylinder 126, the force with which the substrate is pressed can be changed in a controllable manner.
  • the mounting unit 27 is a unit for mounting electronic components on a circuit board, and includes a supply section 130 and a mounting section 132.
  • the supply unit 130 has a plurality of tape feeders (see FIG. 2) 134 that feed out taped electronic components one by one, and supplies the electronic components at a supply position.
  • the supply unit 130 is not limited to the tape feeder 134, and may be a tray-type supply device that picks up and supplies electronic components from a tray. Further, the supply unit 130 may be configured to include both a tape type and a tray type, or other types of supply devices.
  • the mounting section 132 includes a mounting head (see FIG. 2) 136 and a moving device (see FIG. 2) 138.
  • the mounting head 136 has a suction nozzle (not shown) for suctioning and holding the electronic component.
  • the suction nozzle is supplied with negative pressure from a positive and negative pressure supply device (not shown), and suctions and holds the electronic component by suctioning air. Then, by supplying a slight positive pressure from the positive/negative pressure supply device, the electronic component is detached.
  • the moving device 138 moves the mounting head 136 between the position where the electronic components are supplied by the tape feeder 134 and the substrate placed on the base 60. As a result, in the mounting section 132, the electronic component supplied from the tape feeder 134 is held by the suction nozzle, and the electronic component held by the suction nozzle is mounted on the board.
  • control device 28 includes a controller 140 and a plurality of drive circuits 142, as shown in FIG.
  • the plurality of drive circuits 142 include the electromagnetic motors 38 and 56, a holding device 62, a lifting device 64, a heater 66, an inkjet head 76, an infrared irradiation device 78, an inkjet head 88, a flattening device 90, an irradiation device 92, a dispenser 106, It is connected to the dispenser 116, cylinder 126, tape feeder 134, mounting head 136, and moving device 138.
  • the controller 140 is mainly a computer, including a CPU, ROM, RAM, etc., and is connected to a plurality of drive circuits 142. As a result, the operations of the transport device 20 , the first modeling unit 22 , the second modeling unit 23 , the third modeling unit 24 , the fourth modeling unit 25 , the pressing unit 26 , and the mounting unit 27 are controlled by the controller 140 .
  • a resin laminate is formed on the base 60, and wiring is formed on the upper surface of the resin laminate. Then, the electrodes of the electronic component are electrically connected to the wiring via the conductive paste, and the electronic component is fixed with the resin, thereby forming a circuit board.
  • the stage 52 is moved below the second modeling unit 23. Then, in the second modeling unit 23, as shown in FIG. 3, a resin laminate 152 is formed on the base 60 of the stage 52.
  • the resin laminate 152 is formed by repeatedly ejecting the ultraviolet curable resin from the inkjet head 88 and irradiating the ejected ultraviolet curable resin with ultraviolet rays by the irradiation device 92.
  • the inkjet head 88 discharges a thin film of ultraviolet curing resin onto the upper surface of the base 60. Subsequently, when the ultraviolet curable resin is discharged in the form of a thin film, the ultraviolet curable resin is flattened by a flattening device 90 in the curing section 86 so that the thickness of the ultraviolet curable resin becomes uniform. Then, the irradiation device 92 irradiates the thin film of ultraviolet curing resin with ultraviolet rays. As a result, a thin film-like resin layer 153 is formed on the base 60.
  • the inkjet head 88 discharges a thin film of ultraviolet curing resin onto the thin film resin layer 153.
  • the thin film-like ultraviolet curable resin is flattened by the flattening device 90, and the irradiation device 92 irradiates the ultraviolet rays onto the thin film-like ultraviolet curable resin, thereby forming a layer on the thin film-like resin layer 153.
  • a thin film-like resin layer 153 is laminated.
  • the resin laminate 152 is formed by repeating the discharging of the ultraviolet curable resin onto the thin film-like resin layer 153 and the irradiation of ultraviolet rays, and by stacking a plurality of resin layers 153.
  • the stage 52 is moved below the first modeling unit 22.
  • the inkjet head 76 ejects the metal ink 160 in a line shape according to the circuit pattern onto the upper surface of the resin laminate 152, as shown in FIG. 4.
  • the infrared irradiation device 78 irradiates the metal ink 160 ejected according to the circuit pattern with infrared rays. As a result, the metal ink 160 is baked, and wiring 162 is formed on the upper surface of the resin laminate 152. Note that in FIG.
  • wiring 162a the wiring on the left side in FIG. 4 is described as wiring 162a
  • the wiring in the center is described as wiring 162b
  • the wiring on the right side is described as wiring 162c.
  • the stage 52 is moved below the third modeling unit 24.
  • the dispenser 106 prints on both ends of the wiring 162b, and on the wiring 162a and the wiring 162c facing both ends of the wiring 162b. Dispense conductive paste 166 onto the end.
  • the heater 66 built into the base 60 heats the resin laminate 152 according to the heating conditions of the conductive paste.
  • the heating conditions of the conductive paste are heating conditions for completely hardening the conductive paste, and are set by the manufacturer of the conductive paste.
  • the heating conditions of the conductive paste are also set according to the results of heating the conductive paste experimentally performed by a user of the conductive paste. In this way, the conductive paste 166 is heated according to the heating conditions of the conductive paste and completely hardens, thereby exhibiting conductivity.
  • the stage 52 is moved below the fourth modeling unit 25. Then, in the fourth printing section 110 of the fourth modeling unit 25, the dispenser 116 applies heat to the upper surface of the resin laminate 152 between the ends of the two wires 162a, b facing each other, as shown in FIG.
  • the thermosetting resin 170 is discharged onto the upper surface of the resin laminate 152 between the ends of the two wires 162b and 162c facing each other.
  • the stage 52 is moved below the mounting unit 27.
  • an electronic component (see FIG. 7) is supplied by a tape feeder 134, and the electronic component 172 is held by a suction nozzle of a mounting head 136.
  • the electronic component 172 is a so-called chip component, and is composed of a component body 176 and two electrodes 178 disposed on the lower surface of the component body 176.
  • the mounting head 136 is moved by the moving device 138, and the electronic component 172 held by the suction nozzle is mounted on the upper surface of the resin laminate 152, as shown in FIG.
  • two electronic components 172 are mounted on the upper surface of the resin laminate 152, and the sizes of these two electronic components 172 are different. Therefore, a small-sized electronic component will be referred to as an electronic component 172a, and a large-sized electronic component will be referred to as an electronic component 172b. Then, the two electronic components 172a, b are connected so that the electronic component 172a is electrically connected to the two wirings 162a, b, and the electronic component 172b is electrically connected to the two wirings 162b, c. is mounted on the upper surface of the resin laminate 152.
  • electronic component 172a is mounted so that electrode 178 contacts conductive paste 166 in a hardened state on wiring 162a, b.
  • component body 176 of electronic component 172a contacts thermosetting resin 170 dispensed between wiring 162a, b.
  • Electronic component 172b is mounted so that electrode 178 contacts conductive paste 166 in a hardened state on wiring 162b, c.
  • component body 176 of electronic component 172b contacts thermosetting resin 170 dispensed between wiring 162b, c.
  • conductive paste 166 is dispensed at the intended attachment position of electrode 178 to wiring 162
  • thermosetting resin 170 is dispensed at the intended attachment position of component body 176.
  • the planned mounting position of the electrode 178 is the relative position of the electrode 178 with respect to the electronic component 172 among the positions where the electronic component 172 is mounted on the upper surface of the resin laminate 152 and the wiring 162, and is the position where the electrode 178 comes into contact when the electronic component 172 is mounted.
  • the planned mounting position of the component body 176 is the relative position of the component body 176 with respect to the electronic component 172 among the positions where the electronic component 172 is mounted on the upper surface of the resin laminate 152, and is the position where the component body 176 comes into contact when the electronic component 172 is mounted.
  • thermosetting resin 170 in contact with the component body 176 is sealed between the component body 176 and the resin laminate 152. That is, the thermosetting resin 170 is filled between the upper surface of the resin laminate 152 and the lower surface of the component body 176.
  • the amount of the thermosetting resin 170 dispensed by the dispenser 116 is controlled so that the thermosetting resin 170 does not spill out from between the upper surface of the resin laminate 152 and the lower surface of the component body 176.
  • the electronic component 172a is electrically connected to the two wirings 162a, b
  • the electronic component 172b is electrically connected to the two wirings 162b, c. connected.
  • the electronic component 172 is mounted so that the electrode 178 contacts the hardened conductive paste 166, the contact area between the electrode 178 and the conductive paste 166 at this point is small.
  • the component body 176 of the electronic component 172 contacts the thermosetting resin 170, but since the thermosetting resin 170 is uncured at this point, the contact area between the component body 176 and the thermosetting resin 170 is growing.
  • the stage 52 is moved below the pressing unit 26. Then, in the pressing section 120 of the pressing unit 26, as shown in FIG. 8, the electronic component 172 mounted on the resin laminate 152 is pressed from above to below by the pressing plate 122 via the rubber plate 124.
  • the rubber plate 124 is attached to the lower surface of the press plate 122, the rubber plate 124 is elastically deformed when the two electronic components 172 are pressed, and the two electronic components with different height dimensions are Part 172 can be pressed appropriately.
  • the resin laminate 152 is heated by the heater 66 built into the base 60.
  • the thermosetting resin 170 is heated and hardened via the resin laminate 152.
  • the heating temperature is, for example, a temperature at which the thermosetting resin 170 is cured (for example, 85° C.). That is, the thermosetting resin 170 sealed between the upper surface of the resin laminate 152 and the lower surface of the component body 176 is hardened while being pressed by the rubber plate 124 . This further increases the contact area between the component body 176 and the thermosetting resin 170, and the adhesive force of the thermosetting resin 170 fixes the electronic component 172 to the upper surface of the resin laminate 152 in the component body 176.
  • the electronic component 172 when the electronic component 172 is pressed, that is, when the electronic component 172 mounted on the resin laminate 152 is pressed toward the resin laminate 152, it comes into contact with the electrode 178 of the electronic component 172.
  • the conductive paste 166 is deformed, and the contact area between the electrode 178 and the conductive paste 166 increases. This ensures electrical connection between the electronic component 172 and the wiring 162.
  • the electronic component 172 is fixed to the upper surface of the resin laminate 152 by the adhesive force of the thermosetting resin 170, thereby forming the circuit board 180 shown in FIG.
  • the adhesive area ratio of the small-sized electronic component 172a by the thermosetting resin 170 is smaller than the adhesive area ratio of the large-sized electronic component 172b by the thermosetting resin 170.
  • the electronic component 172a may be displaced, resulting in poor conduction.
  • the adhesive area ratio of the thermosetting resin 170 of the electronic component 172 is the ratio of the adhesive area of the electronic component 172 by the thermosetting resin 170 to the area of the mounting surface of the electronic component 172 to the circuit board, that is, the bottom surface of the electronic component 172. It is a percentage of the adhesive area.
  • the area of the mounting surface of the small-sized electronic component 172a is XA1
  • the adhesive area of the small-sized electronic component 172a with the thermosetting resin 170 is XS1. Therefore, the adhesive area ratio of the small-sized electronic component 172a by the thermosetting resin 170 is XS1/XA1.
  • the area of the mounting surface of the large-sized electronic component 172b is XA2
  • the adhesive area of the large-sized electronic component 172b with the thermosetting resin 170 is XS2. Therefore, the adhesive area ratio of the thermosetting resin 170 of the large-sized electronic component 172b is XS2/XA2.
  • the adhesion area ratio XS1/XA1 of the small-sized electronic component 172a is clearly smaller than the adhesion area ratio XS2/XA2 of the large-sized electronic component 172b.
  • thermosetting resin 170 of the small-sized electronic component 172a is considerably smaller than that of the thermosetting resin 170 of the large-sized electronic component 172b, so that the attached electronic component 172a There is a risk of misalignment and poor continuity.
  • the conductive paste 166 that connects the electrode 178 of the electronic component 172a and the wiring 162 is inserted from the planned mounting position of the electrode 178. It is applied at a position shifted in the direction away from the electronic component 172a (hereinafter referred to as the "separation direction"). Specifically, when the conductive resin paste 166 is applied to the planned mounting position of the electrode 178 of the small-sized electronic component 172a, as shown in FIG. Conductive paste 166 is applied so that it overlaps center 192 .
  • the size of the small electronic component 172a is, for example, 0.6 mm x 0.3 mm (the length in the horizontal direction of the paper in FIG. 10 is 0.6 mm, and the length in the vertical direction of the paper is 0.3 mm).
  • the conductive paste 166 is applied to the intended mounting position of the electrode 178 of the small-sized electronic component 172a, the conductive paste 166 is applied between the pair of conductive pastes 166 applied corresponding to the pair of electrodes 178
  • the electronic component 172a contacts the thermosetting resin 170 in the space. That is, the shaded area in FIG. 10 is the adhesive area XS1 of the electronic component 172a by the thermosetting resin 170. Further, the dot portion in FIG.
  • the adhesion area ratio XS1 (shaded area)/XA1 (dot area) of the electronic component 172a is approximately 23%.
  • the adhesion area ratio of the electronic component 172a is approximately 23 %.
  • the conductive paste 166 is applied to a position shifted away from the intended mounting position of the electrode 178. That is, the conductive paste 166 is applied so that the center 192 of the conductive paste 166 is shifted away from the center 190 of the electrode 178 of the electronic component 172a.
  • the conductive paste 166 is applied to a position shifted away from the intended attachment position of the electrode 178 in this way, a pair of conductive pastes 166 applied corresponding to a pair of electrodes 178 are separated from each other. , the space between the pair of conductive pastes 166 becomes wider.
  • the adhesive area ratio XS1 (shaded area)/XA1 (dot area) of the electronic component 172a becomes approximately 43%.
  • the adhesive area ratio of the electronic component 172a when the conductive paste 166 is applied to a position shifted away from the scheduled mounting position of the electrode 178 of the electronic component 172a (hereinafter referred to as "adhesion area ratio at the separated position"). ) is approximately 43%.
  • the conductive paste 166 is applied to a position shifted away from the scheduled mounting position of the electrode 178 of the electronic component 172a, so that the contact area ratio of the electronic component 172a increases, and the mounted electronic component It becomes possible to prevent the positional shift of 172a.
  • the conductive resin paste 166 is applied to the planned mounting position of the electrode 178 of the large-sized electronic component 172a, as shown in FIG.
  • Conductive paste 166 is applied so as to overlap with each other.
  • the size of the large-sized electronic component 172b is, for example, 1.0 mm x 0.5 mm (the length in the horizontal direction of the paper in FIG. 12 is 1.0 mm, and the length in the vertical direction of the paper is 0.5 mm).
  • the conductive paste 166 is applied to the intended mounting position of the electrode 178 of the electronic component 172b, the size of the electronic component 172b is large and the space between the pair of electrodes 178 is also relatively large.
  • the adhesive area XS2 hatchched area where 172b and thermosetting resin 170 contact is also large. Therefore, the adhesion area ratio XS2 (shaded area)/XA2 (dotted area) of the electronic component 172b is approximately 43%. In other words, the adhesion area ratio at the intended mounting position of the electrode 178 of the electronic component 172b is approximately 43%. In this way, the adhesive area ratio (approximately 43%) for the large electronic component 172b at the planned mounting position is approximately the same as the adhesive area ratio (approximately 43%) for the small electronic component 172a at the separated position.
  • the conductive paste 166 When the conductive paste 166 is applied to the component 172b, the conductive paste 166 does not need to be applied at a position shifted from the planned mounting position of the electrode 178, but is applied at the planned mounting position of the electrode 178.
  • the size of electronic component 172a is, for example, 0.6 mm x 0.3 mm, and since electronic component 172a is small, conductive paste 166 is applied to a position shifted from the intended mounting position of the electrode. For this reason, even for electronic component 172a, that is, electronic components smaller than 0.6 mm x 0.3 mm, conductive paste 166 is applied to a position shifted from the intended mounting position of the electrode. Specifically, as shown in FIG. 13, when conductive resin paste 166 is applied to the intended mounting position of electrode 178 of electronic component 172c smaller than 0.6 mm x 0.3 mm, for example, electronic component 172c of 0.4 mm x 0.2 mm (0.4 mm in the horizontal direction of the paper in FIG.
  • conductive paste 166 is applied so that center 210 of electrode 178 and center 212 of conductive paste 166 overlap.
  • the conductive resin paste 166 is applied in this manner to the intended mounting positions of the electrodes 178 of the electronic component 172c, the pair of conductive pastes 166 applied corresponding to the pair of electrodes 178 come into contact with each other, and there is no space between the pair of conductive pastes 166. Therefore, when the conductive resin paste 166 is applied to the intended mounting positions of the electrodes 178 of the electronic component 172c, the contact area between the electronic component 172c and the thermosetting resin 170 is 0, and the adhesion area ratio of the electronic component 172c is 0%. In other words, the adhesion area ratio at the intended mounting positions of the electrodes 178 of the electronic component 172c is 0%.
  • the conductive paste 166 is applied to a position of the electronic component 172c that is shifted away from the planned mounting position of the electrode 178. That is, the conductive paste 166 is applied so that the center 212 of the conductive paste 166 is shifted away from the center 210 of the electrode 178 of the electronic component 172c. As a result, the pair of conductive pastes 166 are separated from each other, and the adhesive area of the electronic component 172c by the thermosetting resin 170 is secured, so that the adhesive area ratio of the electronic component 172c is approximately 43%. Thereby, even if the electronic component 172c is smaller than the electronic component 172a, it is possible to prevent the electronic component 172c from being misaligned.
  • the adhesion area ratio at the scheduled mounting position for electronic components a and c (for example, 0.6 mm x 0.3 mm, for example, 0.4 mm x 0.2 mm) is as follows: Because the adhesive area ratio is lower than the bonding area ratio at the scheduled mounting position for electronic components 172b (for example, 1.0 mm x 0.5 mm) larger than c, the conductive paste was shifted from the scheduled mounting position for electronic components a and c. applied to the location.
  • the adhesion area ratio at the separated position for electronic components a and c is 40% or more, that is, the same level as the adhesion area ratio at the scheduled mounting position for electronic component 172b, which is larger in size than electronic components a and c. It becomes possible to do so.
  • the space between a pair of electrodes is larger than the space between a pair of electrodes of electronic component 172b (e.g., 1.0 mm x 0.5 mm).
  • the adhesion area ratio at the intended mounting position for electronic components having sizes of 1.6 mm x 0.8 mm, 2.0 mm x 1.2 mm, and 3.2 mm x 1.6 mm is larger than the adhesion area ratio at the intended mounting position for electronic component 172b (e.g., 1.0 mm x 0.5 mm).
  • the adhesion area ratio at the intended mounting position for an electronic component of 1.6 mm x 0.8 mm is about 61%
  • the adhesion area ratio at the intended mounting position for an electronic component of 2.0 mm x 1.2 mm is about 69%
  • the adhesion area ratio at the intended mounting position for an electronic component of 3.2 mm x 1.6 mm is about 80%.
  • the conductive paste 166 when the conductive paste 166 is applied to electronic components of 1.6 mm x 0.8 mm, 2.0 mm x 1.2 mm, and 3.2 mm x 1.6 mm, the conductive paste 166 does not need to be applied at a position shifted from the intended mounting position of the electrode 178, but is applied at the intended mounting position of the electrode 178. In other words, the conductive paste 166 is applied at the intended mounting position of the electrode 178 for electronic components of 1.0 mm x 0.5 mm or more, and is applied at a position shifted from the intended mounting position of the electrode 178 for electronic components of less than 1.0 mm x 0.5 mm.
  • the standard size for determining whether the conductive paste 166 is applied to the intended installation position or offset from the intended installation position, i.e., 1.0 mm x 0.5 mm, is set by the operator, but the standard size can be changed as desired.
  • the adhesion area ratio increases and the adhesive force of the thermosetting resin 170 for electronic components increases; however, the conductive paste 166 If the amount of deviation from the planned mounting position is too large, there is a risk that the electrical conductivity of the electronic component cannot be ensured. Specifically, for example, as shown in FIG. 16, when the conductive paste 166 is applied to the electronic component 172a, if there is too much misalignment between the center 190 of the electrode 178 and the center 192 of the conductive paste 166. , the conductive area ratio of the conductive paste 166 becomes smaller.
  • the conductive area ratio of the conductive paste 166 is the percentage of the contact area (shaded area) between the electrode 178 and the conductive paste 166 to the area (dot area) on the mounting surface of one electrode 178.
  • the amount of misalignment between the center 190 of the electrode 178 and the center 192 of the conductive paste 166 is too large, so that the conductive area ratio of the conductive paste 166 is about 30%.
  • the conductivity between the conductive paste 166 and the electrode 178 cannot be properly ensured.
  • the amount of deviation between the center 190 of the electrode 178 and the center 192 of the conductive paste 166 is adjusted so that the conductive area ratio of the conductive paste 166 is 50% or more.
  • the conductive area ratio of the conductive paste 166 can be increased to 50% or more. (approximately 80% in FIG. 17). This makes it possible to appropriately ensure the conductivity between the conductive paste 166 and the electrode 178.
  • the controller 140 of the control device 28 includes an application section 220 and a mounting section 222, as shown in FIG.
  • the application section 220 is a functional section for applying the conductive paste 166 to a position shifted in the direction away from the intended mounting position of the electrode 178.
  • the mounting section 222 is a functional section for mounting the electronic component 172 so that the electrode 178 comes into contact with the conductive paste 166 applied by the application section 220.
  • the circuit forming device 10 is an example of a circuit forming device.
  • Dispenser 106 is an example of a first coating device.
  • Dispenser 116 is an example of a second coating device.
  • the mounting section 132 is an example of a mounting device.
  • the conductive paste 166 is an example of a conductive paste.
  • Thermosetting resin 170 is an example of a curable resin.
  • Electronic component 172 is an example of an electronic component.
  • the component body 176 is an example of a component body.
  • Electrode 178 is an example of an electrode.
  • 1.0 mm x 0.5 mm is an example of the predetermined size.
  • the process performed by the coating unit 220 is an example of a coating process.
  • the process performed by the mounting unit 222 is an example of a mounting process.
  • the present invention is not limited to the above-mentioned embodiments, but can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art.
  • the present invention is applied to a mode in which the thermosetting resin 170 is applied between the pair of conductive pastes 166, but the thermosetting resin 170 is applied between the pair of conductive pastes 166.
  • the present invention may be applied to an embodiment in which the resin 170 is not applied. Specifically, for example, as shown in FIG. 13, when the conductive resin paste 166 is applied to the electronic component 172c at the intended mounting position of the electrode 178, the pair of conductive pastes 166 come into contact with each other.
  • thermosetting resin 170 is applied before the electronic component 172 is mounted, but the thermosetting resin 170 may be applied after the electronic component 172 is mounted. At this time, the thermosetting resin 170 is applied between the lower surface of the component body 176 of the mounted electronic component 172 and the upper surface of the resin laminate 152. That is, the thermosetting resin 170 is applied to the resin laminate 152 at the position where the component body 176 is scheduled to be mounted. Then, after the thermosetting resin 170 is applied between the lower surface of the component body 176 of the electronic component 172 and the upper surface of the resin laminate 152, the electronic component 172 is pressed by the rubber plate 124.
  • the size that serves as the standard for determining whether the conductive paste 166 is applied to the intended attachment position or displaced from the intended attachment position is set by the operator, but the default value is It may be entered.
  • the electronic component 172 is mounted with the conductive paste 166 completely cured, and the electronic component 172 is pressed by the rubber plate 124.
  • the electronic component 172 may be mounted with the conductive paste 166 semi-hardened, and the electronic component 172 may be pressed by the rubber plate 124.
  • the electronic component 172 may be mounted with the conductive paste 166 neither semi-cured nor completely cured, and the electronic component 172 may be pressed by the rubber plate 124. Note that when the electronic component 172 is mounted with the conductive paste 166 in a semi-cured state, neither semi-cured nor completely cured, and the electronic component 172 is pressed by the rubber plate 124, heating by the heater 66 is performed. The conductive paste is completely cured.
  • the conductive paste 166 is used as the conductive fluid that electrically connects the wiring 162 and the electrode 178 of the electronic component 172, but various pastes may be used as long as they exhibit conductivity. It is possible to employ fluids.
  • thermosetting resin is used as the curable resin for fixing the electronic component 172 to the resin laminate 152, but ultraviolet curable resin, two-component mixed curable resin, thermoplastic resin, etc. It is possible to form resin or the like.
  • an ultraviolet curing resin is used as the resin for forming the resin laminate 152
  • a thermosetting resin is used as the resin for fixing the electronic component 172.
  • the resin forming the resin laminate 152 and the resin fixing the electronic component 172 are different curable resins, the resin forming the resin laminate 152 and the resin fixing the electronic component 172 are different.
  • the same curable resin may be used.
  • the conductive paste is discharged by the dispenser 106, but it may be transferred by a transfer device or the like. Further, the conductive paste may be printed by screen printing.
  • Circuit forming device (electrical circuit forming device) 106: Dispenser (first coating device) 116: Dispenser (second coating device) 132: Mounting part (mounting device) 166: Conductive paste (conductive fluid) 170: Heat Curable resin (curable resin) 172: Electronic component 176: Component body 178: Electrode 220: Coating section (coating process) 222: Mounting section (fitting process)

Abstract

Provided is a circuit forming device comprising a first application device and a mounting device. The first application device applies a conductive paste at a position displaced from a planned mounting position of an electrode of an electronic component toward a direction away from the electronic component. The mounting device mounts the electronic component such that the electrode comes in contact with the conductive paste applied by the first application device.

Description

回路形成装置、および回路形成方法Circuit forming device and circuit forming method
 本発明は、導電性ペーストに電極が接触するように電子部品を装着する回路形成装置等に関する。 The present invention relates to a circuit forming apparatus and the like that mounts electronic components so that electrodes are in contact with conductive paste.
 下記特許文献1には、導電性ペーストに電極が接触するように電子部品を装着する技術が記載されている。 Patent Document 1 listed below describes a technique for mounting electronic components so that electrodes are in contact with conductive paste.
特開2019-153701号公報Japanese Patent Application Publication No. 2019-153701
 導電性ペーストに電極が接触するように装着された電子部品を含む基板を適切に形成することを課題とする。 The object of the present invention is to appropriately form a substrate including an electronic component mounted so that an electrode is in contact with a conductive paste.
 上記課題を解決するために、本明細書は、電子部品の電極の装着予定位置から、前記電子部品から離れる方向にズレた位置に導電性ペーストを塗布する第1塗布装置と、前記第1塗布装置により塗布された導電性ペーストに前記電極が接触するように前記電子部品を装着する装着装置と、を備える回路形成装置を開示する。 In order to solve the above problems, the present specification provides a first coating device that applies a conductive paste to a position shifted away from the electronic component from a scheduled mounting position of an electrode of the electronic component, and a A circuit forming apparatus is disclosed that includes a mounting device for mounting the electronic component so that the electrode contacts the conductive paste applied by the device.
 また、本明細書は、電子部品の電極の装着予定位置から、前記電子部品から離れる方向にズレた位置に導電性ペーストを塗布する塗布工程と、前記塗布工程において塗布された導電性ペーストに前記電極が接触するように前記電子部品を装着する装着工程と、を含む回路形成方法を開示する。 Further, the present specification includes a coating process of applying a conductive paste to a position shifted away from the electronic component from a planned mounting position of an electrode of the electronic component, and a coating process of applying the conductive paste to a position that is shifted away from the electronic component, and a conductive paste applied in the coating process. Disclosed is a circuit forming method including a mounting step of mounting the electronic component so that the electrodes are in contact with each other.
 本開示では、電子部品の電極の装着予定位置から、電子部品から離れる方向にズレた位置に導電性ペーストが塗布される。そして、塗布された導電性ペーストに電極が接触するように電子部品が装着される。これにより、導電性ペーストに電極が接触するように装着された電子部品を含む基板を適切に形成することが可能となる。 In the present disclosure, a conductive paste is applied to a position shifted away from the electronic component from the planned mounting position of the electrode of the electronic component. Then, electronic components are mounted so that the electrodes are in contact with the applied conductive paste. This makes it possible to appropriately form a substrate including an electronic component mounted so that the electrode is in contact with the conductive paste.
回路形成装置を示す図である。It is a figure showing a circuit formation device. 制御装置を示すブロック図である。FIG. 2 is a block diagram showing a control device. 樹脂積層体が形成された状態の回路基板を示す断面図である。FIG. 2 is a cross-sectional view showing a circuit board with a resin laminate formed thereon. 樹脂積層体の上に配線が形成された状態の回路基板を示す断面図である。FIG. 2 is a cross-sectional view showing a circuit board with wiring formed on a resin laminate. 配線の上に導電性ペーストが塗布された状態の回路基板を示す断面図である。FIG. 2 is a cross-sectional view showing a circuit board with conductive paste applied on wiring. 樹脂層の上に熱硬化性樹脂が塗布された状態の回路基板を示す断面図である。FIG. 2 is a cross-sectional view showing a circuit board with a thermosetting resin coated on a resin layer. 電子部品が装着された状態の回路基板を示す断面図である。FIG. 2 is a cross-sectional view showing a circuit board with electronic components mounted thereon. 電子部品が樹脂積層体に向って押し付けられた状態の回路基板を示す断面図である。FIG. 3 is a cross-sectional view showing a circuit board with electronic components pressed against a resin laminate. 従来の手法により形成された回路基板を示す断面図である。1 is a cross-sectional view showing a circuit board formed by a conventional method. 電極の装着予定位置に塗布された導電性ペーストを示すイメージ図である。FIG. 3 is an image diagram showing a conductive paste applied to a position where an electrode is scheduled to be attached. 電極の装着予定位置からズレた位置に塗布された導電性ペーストを示すイメージ図である。FIG. 13 is an image diagram showing a conductive paste applied to a position shifted from the intended position of the electrode. 電極の装着予定位置に塗布された導電性ペーストを示すイメージ図である。FIG. 3 is an image diagram showing a conductive paste applied to a position where an electrode is scheduled to be attached. 電極の装着予定位置に塗布された導電性ペーストを示すイメージ図である。FIG. 3 is an image diagram showing a conductive paste applied to a position where an electrode is scheduled to be attached. 電極の装着予定位置からズレた位置に塗布された導電性ペーストを示すイメージ図である。FIG. 3 is an image diagram showing a conductive paste applied to a position shifted from the intended position of the electrode. 電子部品のサイズ毎の接着面積率を示す図である。FIG. 3 is a diagram showing the adhesion area ratio for each size of electronic components. 電極の装着予定位置からズレた位置に塗布された導電性ペーストを示すイメージ図である。FIG. 3 is an image diagram showing a conductive paste applied to a position shifted from the intended position of the electrode. 電極の装着予定位置からズレた位置に塗布された導電性ペーストを示すイメージ図である。FIG. 3 is an image diagram showing a conductive paste applied to a position shifted from the intended position of the electrode.
 図1に回路形成装置10を示す。回路形成装置10は、搬送装置20と、第1造形ユニット22と、第2造形ユニット23と、第3造形ユニット24と、第4造形ユニット25と、押圧ユニット26と、装着ユニット27と、制御装置(図2参照)28とを備える。それら搬送装置20と第1造形ユニット22と第2造形ユニット23と第3造形ユニット24と第4造形ユニット25と押圧ユニット26と装着ユニット27とは、回路形成装置10のベース29の上に配置されている。ベース29は、概して長方形状をなしており、以下の説明では、ベース29の長手方向をX軸方向、ベース29の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。 FIG. 1 shows a circuit forming apparatus 10. The circuit forming apparatus 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 23, a third modeling unit 24, a fourth modeling unit 25, a pressing unit 26, a mounting unit 27, and a control unit 26. A device (see FIG. 2) 28 is provided. The conveyance device 20, the first modeling unit 22, the second modeling unit 23, the third modeling unit 24, the fourth modeling unit 25, the pressing unit 26, and the mounting unit 27 are arranged on the base 29 of the circuit forming apparatus 10. has been done. The base 29 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 29 is the X-axis direction, the short direction of the base 29 is the Y-axis direction, and it is perpendicular to both the X-axis direction and the Y-axis direction. The direction will be described as the Z-axis direction.
 搬送装置20は、X軸スライド機構30と、Y軸スライド機構32とを備えている。そのX軸スライド機構30は、X軸スライドレール34とX軸スライダ36とを有している。X軸スライドレール34は、X軸方向に延びるように、ベース29の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ(図2参照)38を有しており、電磁モータ38の駆動により、X軸スライダ36がX軸方向の任意の位置に移動する。また、Y軸スライド機構32は、Y軸スライドレール50とステージ52とを有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース29の上に配設されており、X軸方向に移動可能とされている。そして、Y軸スライドレール50の一端部が、X軸スライダ36に連結されている。そのY軸スライドレール50には、ステージ52が、Y軸方向にスライド可能に保持されている。さらに、Y軸スライド機構32は、電磁モータ(図2参照)56を有しており、電磁モータ56の駆動により、ステージ52がY軸方向の任意の位置に移動する。これにより、ステージ52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース29上の任意の位置に移動する。 The transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32. The X-axis slide mechanism 30 includes an X-axis slide rail 34 and an X-axis slider 36. The X-axis slide rail 34 is arranged on the base 29 so as to extend in the X-axis direction. The X-axis slider 36 is held by the X-axis slide rail 34 so as to be slidable in the X-axis direction. Further, the X-axis slide mechanism 30 includes an electromagnetic motor (see FIG. 2) 38, and the X-axis slider 36 is moved to any position in the X-axis direction by driving the electromagnetic motor 38. Further, the Y-axis slide mechanism 32 includes a Y-axis slide rail 50 and a stage 52. The Y-axis slide rail 50 is disposed on the base 29 so as to extend in the Y-axis direction, and is movable in the X-axis direction. One end of the Y-axis slide rail 50 is connected to the X-axis slider 36. A stage 52 is held on the Y-axis slide rail 50 so as to be slidable in the Y-axis direction. Further, the Y-axis slide mechanism 32 includes an electromagnetic motor (see FIG. 2) 56, and the stage 52 is moved to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. Thereby, the stage 52 is moved to an arbitrary position on the base 29 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
 ステージ52は、基台60と、保持装置62と、昇降装置(図2参照)64と、ヒータ(図2参照)66とを有している。基台60は、平板状に形成され、上面に基板が載置される。保持装置62は、基台60のX軸方向の両側部に設けられている。そして、基台60に載置された基板のX軸方向の両縁部が、保持装置62によって挟まれることで、基板が固定的に保持される。また、昇降装置64は、基台60の下方に配設されており、基台60を昇降させる。また、ヒータ66は、基台60に内蔵されており、基台60に載置された基板を任意の温度に加熱する。 The stage 52 includes a base 60, a holding device 62, a lifting device (see FIG. 2) 64, and a heater (see FIG. 2) 66. The base 60 is formed into a flat plate shape, and a substrate is placed on the top surface. The holding device 62 is provided on both sides of the base 60 in the X-axis direction. Then, both edges of the substrate placed on the base 60 in the X-axis direction are held between the holding devices 62, so that the substrate is fixedly held. Further, the lifting device 64 is disposed below the base 60 and raises and lowers the base 60. Furthermore, the heater 66 is built into the base 60 and heats the substrate placed on the base 60 to an arbitrary temperature.
 第1造形ユニット22は、回路基板の配線を造形するユニットであり、第1印刷部72と、焼成部74とを有している。第1印刷部72は、インクジェットヘッド(図2参照)76を有しており、インクジェットヘッド76が金属インクを線状に吐出する。金属インクは、ナノメートルサイズの金属、例えば銀の微粒子が溶剤中に分散されたものである。なお、金属微粒子の表面は分散剤によりコーティングされており、溶剤中での凝集が防止されている。また、インクジェットヘッド76は、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから金属インクを吐出する。 The first modeling unit 22 is a unit that shapes wiring on a circuit board, and includes a first printing section 72 and a firing section 74. The first printing section 72 has an inkjet head (see FIG. 2) 76, and the inkjet head 76 discharges metal ink in a linear manner. Metal ink is made by dispersing nanometer-sized metal particles, such as silver, in a solvent. Note that the surface of the metal fine particles is coated with a dispersant to prevent agglomeration in the solvent. Further, the inkjet head 76 ejects metal ink from a plurality of nozzles using a piezo system using piezoelectric elements, for example.
 焼成部74は、赤外線照射装置(図2参照)78を有している。赤外線照射装置78は、吐出された金属インクに赤外線を照射する装置である。赤外線が照射された金属インクは焼成し、配線が形成される。なお、金属インクの焼成とは、エネルギーを付与することによって、溶媒の気化や金属微粒子の保護膜、つまり、分散剤の分解等が行われ、金属微粒子が接触または融着をすることで、導電率が高くなる現象である。そして、金属インクが焼成することで、金属製の配線が形成される。 The baking section 74 has an infrared irradiation device 78 (see Figure 2). The infrared irradiation device 78 is a device that irradiates the ejected metal ink with infrared rays. The metal ink irradiated with infrared rays is baked, and wiring is formed. Note that baking of metal ink is a phenomenon in which, by applying energy, the solvent is evaporated and the protective film for the metal particles, i.e., the dispersant is decomposed, and the metal particles come into contact or fuse together, thereby increasing the conductivity. Then, by baking the metal ink, metal wiring is formed.
 また、第2造形ユニット23は、回路基板の樹脂層を造形するユニットであり、第2印刷部84と、硬化部86とを有している。第2印刷部84は、インクジェットヘッド(図2参照)88を有しており、インクジェットヘッド88は紫外線硬化樹脂を吐出する。紫外線硬化樹脂は、紫外線の照射により硬化する樹脂である。なお、インクジェットヘッド88は、例えば、圧電素子を用いたピエゾ方式でもよく、樹脂を加熱して気泡を発生させ複数のノズルから吐出するサーマル方式でもよい。 Further, the second modeling unit 23 is a unit that models the resin layer of the circuit board, and includes a second printing section 84 and a curing section 86. The second printing section 84 has an inkjet head (see FIG. 2) 88, and the inkjet head 88 discharges ultraviolet curing resin. Ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays. Note that the inkjet head 88 may be of a piezo type using a piezoelectric element, for example, or may be a thermal type of heating resin to generate bubbles and ejecting the bubbles from a plurality of nozzles.
 硬化部86は、平坦化装置(図2参照)90と照射装置(図2参照)92とを有している。平坦化装置90は、インクジェットヘッド88によって吐出された紫外線硬化樹脂の上面を平坦化するものであり、例えば、紫外線硬化樹脂の表面を均しながら余剰分の樹脂を、ローラもしくはブレードによって掻き取ることで、紫外線硬化樹脂の厚みを均一させる。また、照射装置92は、光源として水銀ランプもしくはLEDを備えており、吐出された紫外線硬化樹脂に紫外線を照射する。これにより、吐出された紫外線硬化樹脂が硬化し、樹脂層が形成される。 The curing section 86 has a flattening device (see FIG. 2) 90 and an irradiation device (see FIG. 2) 92. The flattening device 90 flattens the top surface of the UV-curable resin discharged by the inkjet head 88, for example by leveling the surface of the UV-curable resin while scraping off excess resin with a roller or blade, thereby making the thickness of the UV-curable resin uniform. The irradiation device 92 has a mercury lamp or LED as a light source, and irradiates the discharged UV-curable resin with ultraviolet light. This hardens the discharged UV-curable resin, forming a resin layer.
 第3造形ユニット24は、回路基板の上に電子部品の電極と配線との接続部を造形するユニットであり、第3印刷部100を有している。第3印刷部100は、ディスペンサ(図2参照)106を有しており、ディスペンサ106は導電性ペーストを吐出する。導電性ペーストは、比較的低温の加熱により硬化する樹脂に、マイクロメートルサイズの金属粒子が分散されたものである。ちなみに、金属粒子は、フレーク状とされており、導電性ペーストの粘度は、金属インクと比較して比較的高い。なお、ディスペンサ106による導電性ペーストの吐出量は、ニードルの内径や吐出時の圧力および吐出時間により制御される。 The third modeling unit 24 is a unit that models connection parts between electrodes and wiring of electronic components on a circuit board, and has a third printing unit 100. The third printing unit 100 has a dispenser (see FIG. 2) 106, and the dispenser 106 discharges conductive paste. The conductive paste is made by dispersing micrometer-sized metal particles in a resin that hardens by heating at a relatively low temperature. Incidentally, the metal particles are in the form of flakes, and the viscosity of the conductive paste is relatively high compared to the metal ink. Note that the amount of conductive paste discharged by the dispenser 106 is controlled by the inner diameter of the needle, the pressure at the time of discharge, and the discharge time.
 そして、ディスペンサ106により吐出された導電性ペーストは、基台60に内蔵されているヒータ66により加熱される。加熱された導電性ペーストでは、樹脂が硬化する。この際、導電性ペーストでは、樹脂が硬化して収縮し、その樹脂に分散されたフレーク状の金属粒子が接触する。これにより、導電性ペーストが導電性を発揮する。また、導電性ペーストの樹脂は、有機系の接着剤であり、加熱により硬化することで接着力を発揮する。 Then, the conductive paste discharged by the dispenser 106 is heated by the heater 66 built into the base 60. The heated conductive paste causes the resin to harden. At this time, in the conductive paste, the resin hardens and contracts, and the flaky metal particles dispersed in the resin come into contact with each other. Thereby, the conductive paste exhibits conductivity. Further, the resin of the conductive paste is an organic adhesive, and exhibits adhesive strength by being cured by heating.
 第4造形ユニット25は、電子部品を回路基板に固定するための樹脂を造形するユニットであり、第4印刷部110を有している。第4印刷部110は、ディスペンサ(図2参照)116を有しており、ディスペンサ116は熱硬化性樹脂を吐出する。熱硬化性樹脂は、加熱により硬化する樹脂である。なお、ディスペンサ116は、例えば、圧電素子を用いたピエゾ方式である。そして、ディスペンサ116により吐出された熱硬化性樹脂は、基台60に内蔵されているヒータ66により加熱され、硬化する。 The fourth modeling unit 25 is a unit that models resin for fixing electronic components to a circuit board, and has a fourth printing section 110. The fourth printing section 110 has a dispenser (see FIG. 2) 116, and the dispenser 116 dispenses thermosetting resin. A thermosetting resin is a resin that hardens by heating. Note that the dispenser 116 is of a piezo type using a piezoelectric element, for example. The thermosetting resin discharged by the dispenser 116 is heated by a heater 66 built into the base 60 and hardens.
 また、押圧ユニット26は、回路基板を押圧するためのユニットであり、押圧部120を有している。押圧部120は、押圧プレート(図8参照)122と、ゴムプレート(図8参照)124と、シリンダ(図2参照)126とを有している。ゴムプレート124は、例えば、シリコン製のゴムにより成形されており、板形状とされている。また、押圧プレート122は、例えば、鋼材により成形されており、板形状とされている。そして、押圧プレート122の下面にゴムプレート124が貼着されており、シリンダ126の作動により、押圧プレート122が、回路基板に向って押し付けられる。これにより、回路基板が、ゴムプレート124を介して押圧プレート122により押圧される。なお、シリンダ126の作動が制御されることで、基板を押圧する力を制御可能に変更することができる。 Further, the pressing unit 26 is a unit for pressing the circuit board, and has a pressing part 120. The pressing section 120 includes a pressing plate (see FIG. 8) 122, a rubber plate (see FIG. 8) 124, and a cylinder (see FIG. 2) 126. The rubber plate 124 is made of silicone rubber, for example, and has a plate shape. Further, the pressing plate 122 is made of, for example, steel and has a plate shape. A rubber plate 124 is attached to the lower surface of the pressing plate 122, and the pressing plate 122 is pressed toward the circuit board by the operation of the cylinder 126. As a result, the circuit board is pressed by the pressing plate 122 via the rubber plate 124. Note that by controlling the operation of the cylinder 126, the force with which the substrate is pressed can be changed in a controllable manner.
 また、装着ユニット27は、回路基板に電子部品を装着するユニットであり、供給部130と、装着部132とを有している。供給部130は、テーピング化された電子部品を1つずつ送り出すテープフィーダ(図2参照)134を複数有しており、供給位置において、電子部品を供給する。なお、供給部130は、テープフィーダ134に限らず、トレイから電子部品をピックアップして供給するトレイ型の供給装置でもよい。また、供給部130は、テープ型とトレイ型との両方、あるいはそれ以外の供給装置を備えた構成でもよい。 Furthermore, the mounting unit 27 is a unit for mounting electronic components on a circuit board, and includes a supply section 130 and a mounting section 132. The supply unit 130 has a plurality of tape feeders (see FIG. 2) 134 that feed out taped electronic components one by one, and supplies the electronic components at a supply position. Note that the supply unit 130 is not limited to the tape feeder 134, and may be a tray-type supply device that picks up and supplies electronic components from a tray. Further, the supply unit 130 may be configured to include both a tape type and a tray type, or other types of supply devices.
 装着部132は、装着ヘッド(図2参照)136と、移動装置(図2参照)138とを有している。装着ヘッド136は、電子部品を吸着保持するための吸着ノズル(図示省略)を有する。吸着ノズルは、正負圧供給装置(図示省略)から負圧が供給されることで、エアの吸引により電子部品を吸着保持する。そして、正負圧供給装置から僅かな正圧が供給されることで、電子部品を離脱する。また、移動装置138は、テープフィーダ134による電子部品の供給位置と、基台60に載置された基板との間で、装着ヘッド136を移動させる。これにより、装着部132では、テープフィーダ134から供給された電子部品が、吸着ノズルにより保持され、その吸着ノズルによって保持された電子部品が、基板に装着される。 The mounting section 132 includes a mounting head (see FIG. 2) 136 and a moving device (see FIG. 2) 138. The mounting head 136 has a suction nozzle (not shown) for suctioning and holding the electronic component. The suction nozzle is supplied with negative pressure from a positive and negative pressure supply device (not shown), and suctions and holds the electronic component by suctioning air. Then, by supplying a slight positive pressure from the positive/negative pressure supply device, the electronic component is detached. Furthermore, the moving device 138 moves the mounting head 136 between the position where the electronic components are supplied by the tape feeder 134 and the substrate placed on the base 60. As a result, in the mounting section 132, the electronic component supplied from the tape feeder 134 is held by the suction nozzle, and the electronic component held by the suction nozzle is mounted on the board.
 また、制御装置28は、図2に示すように、コントローラ140と、複数の駆動回路142とを備えている。複数の駆動回路142は、上記電磁モータ38,56、保持装置62、昇降装置64、ヒータ66、インクジェットヘッド76、赤外線照射装置78、インクジェットヘッド88、平坦化装置90、照射装置92、ディスペンサ106、ディスペンサ116、シリンダ126、テープフィーダ134、装着ヘッド136、移動装置138に接続されている。コントローラ140は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路142に接続されている。これにより、搬送装置20、第1造形ユニット22、第2造形ユニット23、第3造形ユニット24、第4造形ユニット25、押圧ユニット26、装着ユニット27の作動が、コントローラ140によって制御される。 Further, the control device 28 includes a controller 140 and a plurality of drive circuits 142, as shown in FIG. The plurality of drive circuits 142 include the electromagnetic motors 38 and 56, a holding device 62, a lifting device 64, a heater 66, an inkjet head 76, an infrared irradiation device 78, an inkjet head 88, a flattening device 90, an irradiation device 92, a dispenser 106, It is connected to the dispenser 116, cylinder 126, tape feeder 134, mounting head 136, and moving device 138. The controller 140 is mainly a computer, including a CPU, ROM, RAM, etc., and is connected to a plurality of drive circuits 142. As a result, the operations of the transport device 20 , the first modeling unit 22 , the second modeling unit 23 , the third modeling unit 24 , the fourth modeling unit 25 , the pressing unit 26 , and the mounting unit 27 are controlled by the controller 140 .
 回路形成装置10では、上述した構成によって、基台60の上に樹脂積層体が形成され、その樹脂積層体の上面に配線が形成される。そして、導電性ペーストを介して、電子部品の電極が配線に電気的に接続され、その電子部品が樹脂により固定されことで、回路基板が形成される。 In the circuit forming apparatus 10, with the above-described configuration, a resin laminate is formed on the base 60, and wiring is formed on the upper surface of the resin laminate. Then, the electrodes of the electronic component are electrically connected to the wiring via the conductive paste, and the electronic component is fixed with the resin, thereby forming a circuit board.
 具体的には、まず、ステージ52が第2造形ユニット23の下方に移動される。そして、第2造形ユニット23において、図3に示すように、ステージ52の基台60の上に樹脂積層体152が形成される。樹脂積層体152は、インクジェットヘッド88からの紫外線硬化樹脂の吐出と、吐出された紫外線硬化樹脂への照射装置92による紫外線の照射とが繰り返されることにより形成される。 Specifically, first, the stage 52 is moved below the second modeling unit 23. Then, in the second modeling unit 23, as shown in FIG. 3, a resin laminate 152 is formed on the base 60 of the stage 52. The resin laminate 152 is formed by repeatedly ejecting the ultraviolet curable resin from the inkjet head 88 and irradiating the ejected ultraviolet curable resin with ultraviolet rays by the irradiation device 92.
 詳しくは、第2造形ユニット23の第2印刷部84において、インクジェットヘッド88が、基台60の上面に紫外線硬化樹脂を薄膜状に吐出する。続いて、紫外線硬化樹脂が薄膜状に吐出されると、硬化部86において、紫外線硬化樹脂の膜厚が均一となるように、紫外線硬化樹脂が平坦化装置90によって平坦化される。そして、照射装置92が、その薄膜状の紫外線硬化樹脂に紫外線を照射する。これにより、基台60の上に薄膜状の樹脂層153が形成される。 Specifically, in the second printing section 84 of the second modeling unit 23, the inkjet head 88 discharges a thin film of ultraviolet curing resin onto the upper surface of the base 60. Subsequently, when the ultraviolet curable resin is discharged in the form of a thin film, the ultraviolet curable resin is flattened by a flattening device 90 in the curing section 86 so that the thickness of the ultraviolet curable resin becomes uniform. Then, the irradiation device 92 irradiates the thin film of ultraviolet curing resin with ultraviolet rays. As a result, a thin film-like resin layer 153 is formed on the base 60.
 続いて、インクジェットヘッド88が、その薄膜状の樹脂層153の上に紫外線硬化樹脂を薄膜状に吐出する。そして、平坦化装置90によって薄膜状の紫外線硬化樹脂が平坦化され、照射装置92が、その薄膜状に吐出された紫外線硬化樹脂に紫外線を照射することで、薄膜状の樹脂層153の上に薄膜状の樹脂層153が積層される。このように、薄膜状の樹脂層153の上への紫外線硬化樹脂の吐出と、紫外線の照射とが繰り返され、複数の樹脂層153が積層されることで、樹脂積層体152が形成される。 Subsequently, the inkjet head 88 discharges a thin film of ultraviolet curing resin onto the thin film resin layer 153. Then, the thin film-like ultraviolet curable resin is flattened by the flattening device 90, and the irradiation device 92 irradiates the ultraviolet rays onto the thin film-like ultraviolet curable resin, thereby forming a layer on the thin film-like resin layer 153. A thin film-like resin layer 153 is laminated. In this way, the resin laminate 152 is formed by repeating the discharging of the ultraviolet curable resin onto the thin film-like resin layer 153 and the irradiation of ultraviolet rays, and by stacking a plurality of resin layers 153.
 次に、樹脂積層体152が形成されると、ステージ52が第1造形ユニット22の下方に移動される。そして、第1造形ユニット22の第1印刷部72において、インクジェットヘッド76が、図4に示すように、樹脂積層体152の上面に金属インク160を、回路パターンに応じて線状に吐出する。続いて、回路パターンに応じて吐出された金属インク160に、第1造形ユニット22の焼成部74において、赤外線照射装置78が赤外線を照射する。これにより、金属インク160が焼成し、樹脂積層体152の上面に配線162が形成される。なお、図4では、3本の配線162が形成されるが、それら3本の配線162を区別する場合に、図4での左側の配線を配線162aと記載し、中央の配線を配線162bと記載し、右側の配線を配線162cと記載する。 Next, when the resin laminate 152 is formed, the stage 52 is moved below the first modeling unit 22. Then, in the first printing section 72 of the first modeling unit 22, the inkjet head 76 ejects the metal ink 160 in a line shape according to the circuit pattern onto the upper surface of the resin laminate 152, as shown in FIG. 4. Next, in the baking section 74 of the first modeling unit 22, the infrared irradiation device 78 irradiates the metal ink 160 ejected according to the circuit pattern with infrared rays. As a result, the metal ink 160 is baked, and wiring 162 is formed on the upper surface of the resin laminate 152. Note that in FIG. 4, three wirings 162 are formed, but when distinguishing between these three wirings 162, the wiring on the left side in FIG. 4 is described as wiring 162a, the wiring in the center is described as wiring 162b, and the wiring on the right side is described as wiring 162c.
 続いて、樹脂積層体152の上に配線162が形成されると、ステージ52が第3造形ユニット24の下方に移動される。そして、第3造形ユニット24の第3印刷部100において、ディスペンサ106が、図5に示すように、配線162bの両端部の上と、その配線162bの両端部と対向する配線162a及び配線162cの端部の上に導電性ペースト166を吐出する。 Subsequently, when the wiring 162 is formed on the resin laminate 152, the stage 52 is moved below the third modeling unit 24. Then, in the third printing section 100 of the third modeling unit 24, the dispenser 106 prints on both ends of the wiring 162b, and on the wiring 162a and the wiring 162c facing both ends of the wiring 162b. Dispense conductive paste 166 onto the end.
 このように、導電性ペースト166が配線162の端部に吐出されると、基台60に内蔵されているヒータ66により樹脂積層体152が導電性ペーストの加熱条件に従って加熱される。これにより、樹脂積層体152を介して導電性ペースト166が加熱されて、硬化する。なお、導電性ペーストの加熱条件は、導電性ペーストを完全に硬化させるための加熱条件であり、導電性ペーストの製造元のメーカにより設定されている。また、導電性ペーストの加熱条件は、導電性ペーストのユーザにより実験的に実施された導電性ペーストの加熱結果に応じて設定されている。このように、導電性ペースト166が導電性ペーストの加熱条件に従って加熱されて、完全に硬化することで、導電性を発揮する。 When the conductive paste 166 is thus discharged onto the end of the wiring 162, the heater 66 built into the base 60 heats the resin laminate 152 according to the heating conditions of the conductive paste. This causes the conductive paste 166 to be heated through the resin laminate 152 and harden. The heating conditions of the conductive paste are heating conditions for completely hardening the conductive paste, and are set by the manufacturer of the conductive paste. The heating conditions of the conductive paste are also set according to the results of heating the conductive paste experimentally performed by a user of the conductive paste. In this way, the conductive paste 166 is heated according to the heating conditions of the conductive paste and completely hardens, thereby exhibiting conductivity.
 このように、配線162の端部に吐出された導電性ペースト166が加熱により硬化すると、ステージ52は第4造形ユニット25の下方に移動される。そして、第4造形ユニット25の第4印刷部110において、ディスペンサ116が、図6に示すように、互いに対向する2本の配線162a,bの端部の間において樹脂積層体152の上面に熱硬化性樹脂170を吐出し、互いに対向する2本の配線162b,cの端部の間において樹脂積層体152の上面に熱硬化性樹脂170を吐出する。 In this way, when the conductive paste 166 discharged onto the end of the wiring 162 is cured by heating, the stage 52 is moved below the fourth modeling unit 25. Then, in the fourth printing section 110 of the fourth modeling unit 25, the dispenser 116 applies heat to the upper surface of the resin laminate 152 between the ends of the two wires 162a, b facing each other, as shown in FIG. The thermosetting resin 170 is discharged onto the upper surface of the resin laminate 152 between the ends of the two wires 162b and 162c facing each other.
 そして、互いに対向する2本の配線162の端部の間において樹脂積層体152の上面に熱硬化性樹脂170が吐出されると、ステージ52が装着ユニット27の下方に移動される。装着ユニット27では、テープフィーダ134により電子部品(図7参照)172が供給され、その電子部品172が装着ヘッド136の吸着ノズルによって、保持される。なお、電子部品172は、所謂チップ部品であり、部品本体176と、部品本体176の下面に配設された2個の電極178とにより構成されている。そして、装着ヘッド136が、移動装置138によって移動され、吸着ノズルにより保持された電子部品172が、図7に示すように、樹脂積層体152の上面に装着される。なお、図7では、2個の電子部品172が樹脂積層体152の上面に装着されており、それら2個の電子部品172のサイズは異なっている。このため、小さなサイズの電子部品を電子部品172aと記載し、大きなサイズの電子部品を電子部品172bと記載する。そして、電子部品172aが2本の配線162a,bと電気的に接続され、電子部品172bが2本の配線162b,cと電気的に接続されるように、それら2個の電子部品172a,bが樹脂積層体152の上面に装着される。 Then, when the thermosetting resin 170 is discharged onto the upper surface of the resin laminate 152 between the ends of the two wires 162 facing each other, the stage 52 is moved below the mounting unit 27. In the mounting unit 27, an electronic component (see FIG. 7) is supplied by a tape feeder 134, and the electronic component 172 is held by a suction nozzle of a mounting head 136. Note that the electronic component 172 is a so-called chip component, and is composed of a component body 176 and two electrodes 178 disposed on the lower surface of the component body 176. Then, the mounting head 136 is moved by the moving device 138, and the electronic component 172 held by the suction nozzle is mounted on the upper surface of the resin laminate 152, as shown in FIG. In addition, in FIG. 7, two electronic components 172 are mounted on the upper surface of the resin laminate 152, and the sizes of these two electronic components 172 are different. Therefore, a small-sized electronic component will be referred to as an electronic component 172a, and a large-sized electronic component will be referred to as an electronic component 172b. Then, the two electronic components 172a, b are connected so that the electronic component 172a is electrically connected to the two wirings 162a, b, and the electronic component 172b is electrically connected to the two wirings 162b, c. is mounted on the upper surface of the resin laminate 152.
 具体的には、電子部品172aは、電極178が配線162a,bの上で硬化した状態の導電性ペースト166に接触するように、装着される。この際、電子部品172aの部品本体176は、配線162a,bの間に吐出された熱硬化性樹脂170に接触する。また、電子部品172bは、電極178が配線162b,cの上で硬化した状態の導電性ペースト166に接触するように、装着される。この際、電子部品172bの部品本体176は、配線162b,c間に吐出された熱硬化性樹脂170に接触する。つまり、導電性ペースト166は配線162への電極178の装着予定位置に吐出されており、熱硬化性樹脂170は部品本体176の装着予定位置に吐出されている。なお、電極178の装着予定位置は、樹脂積層体152及び配線162の上面での電子部品172が装着される位置のうちの、電子部品172に対する電極178の相対的な位置であり、電子部品172が装着された際に電極178が接触する位置である。また、部品本体176の装着予定位置は、樹脂積層体152の上面での電子部品172が装着される位置のうちの、電子部品172に対する部品本体176の相対的な位置であり、電子部品172が装着された際に部品本体176が接触する位置である。このため、電子部品172が樹脂積層体152に装着されることで、電極178が配線162の上で硬化した状態の導電性ペースト166に接触し、部品本体176が熱硬化性樹脂170に接触する。また、部品本体176に接触する熱硬化性樹脂170は、その部品本体176と樹脂積層体152との間に封じ込められる。つまり、樹脂積層体152の上面と部品本体176の下面との間に、熱硬化性樹脂170が封入される。なお、樹脂積層体152の上面と部品本体176の下面との間から熱硬化性樹脂170がはみ出ないように、ディスペンサ116による熱硬化性樹脂170の吐出量が制御されている。 Specifically, electronic component 172a is mounted so that electrode 178 contacts conductive paste 166 in a hardened state on wiring 162a, b. At this time, component body 176 of electronic component 172a contacts thermosetting resin 170 dispensed between wiring 162a, b. Electronic component 172b is mounted so that electrode 178 contacts conductive paste 166 in a hardened state on wiring 162b, c. At this time, component body 176 of electronic component 172b contacts thermosetting resin 170 dispensed between wiring 162b, c. In other words, conductive paste 166 is dispensed at the intended attachment position of electrode 178 to wiring 162, and thermosetting resin 170 is dispensed at the intended attachment position of component body 176. The planned mounting position of the electrode 178 is the relative position of the electrode 178 with respect to the electronic component 172 among the positions where the electronic component 172 is mounted on the upper surface of the resin laminate 152 and the wiring 162, and is the position where the electrode 178 comes into contact when the electronic component 172 is mounted. The planned mounting position of the component body 176 is the relative position of the component body 176 with respect to the electronic component 172 among the positions where the electronic component 172 is mounted on the upper surface of the resin laminate 152, and is the position where the component body 176 comes into contact when the electronic component 172 is mounted. Therefore, by mounting the electronic component 172 on the resin laminate 152, the electrode 178 comes into contact with the conductive paste 166 in a hardened state on the wiring 162, and the component body 176 comes into contact with the thermosetting resin 170. The thermosetting resin 170 in contact with the component body 176 is sealed between the component body 176 and the resin laminate 152. That is, the thermosetting resin 170 is filled between the upper surface of the resin laminate 152 and the lower surface of the component body 176. The amount of the thermosetting resin 170 dispensed by the dispenser 116 is controlled so that the thermosetting resin 170 does not spill out from between the upper surface of the resin laminate 152 and the lower surface of the component body 176.
 このように、2個の電子部品172a,bが装着されることで、電子部品172aが2本の配線162a,bと電気的に接続され、電子部品172bが2本の配線162b,cと電気的に接続される。ただし、電極178が、硬化した状態の導電性ペースト166に接触するように、電子部品172は装着されるため、この時点において電極178と導電性ペースト166との接触面積は小さい。一方で、電子部品172の部品本体176は熱硬化性樹脂170に接触するが、熱硬化性樹脂170はこの時点において未硬化であるため、部品本体176と熱硬化性樹脂170との接触面積は大きくなる。 In this way, by installing the two electronic components 172a, b, the electronic component 172a is electrically connected to the two wirings 162a, b, and the electronic component 172b is electrically connected to the two wirings 162b, c. connected. However, since the electronic component 172 is mounted so that the electrode 178 contacts the hardened conductive paste 166, the contact area between the electrode 178 and the conductive paste 166 at this point is small. On the other hand, the component body 176 of the electronic component 172 contacts the thermosetting resin 170, but since the thermosetting resin 170 is uncured at this point, the contact area between the component body 176 and the thermosetting resin 170 is growing.
 このように、電子部品172が樹脂積層体152の上面に装着されると、ステージ52は押圧ユニット26の下方に移動される。そして、押圧ユニット26の押圧部120において、図8に示すように、樹脂積層体152に装着された電子部品172が上方から下方に向って押圧プレート122によりゴムプレート124を介して押し付けられる。なお、樹脂積層体152に2個の電子部品172a,bが装着されており、それら2個の電子部品172のサイズは異なっている。また、2個の電子部品の高さ寸法は異なる。しかし、押圧プレート122の下面にゴムプレート124が貼着されているため、2個の電子部品172が押圧される際にゴムプレート124が弾性変形することで、高さ寸法の異なる2個の電子部品172を適切に押し付けることができる。 In this way, when the electronic component 172 is mounted on the upper surface of the resin laminate 152, the stage 52 is moved below the pressing unit 26. Then, in the pressing section 120 of the pressing unit 26, as shown in FIG. 8, the electronic component 172 mounted on the resin laminate 152 is pressed from above to below by the pressing plate 122 via the rubber plate 124. Note that two electronic components 172a and 172b are attached to the resin laminate 152, and the sizes of these two electronic components 172 are different. Further, the height dimensions of the two electronic components are different. However, since the rubber plate 124 is attached to the lower surface of the press plate 122, the rubber plate 124 is elastically deformed when the two electronic components 172 are pressed, and the two electronic components with different height dimensions are Part 172 can be pressed appropriately.
 また、押圧ユニット26において電子部品が押圧されている際に、基台60に内蔵されているヒータ66により樹脂積層体152が加熱される。これにより、樹脂積層体152を介して熱硬化性樹脂170が加熱されて、硬化する。ここで、加熱温度は、例えば、熱硬化性樹脂170が硬化する温度(例えば、85℃)である。つまり、樹脂積層体152の上面と部品本体176の下面との間に封入された状態の熱硬化性樹脂170がゴムプレート124により押圧されながら硬化する。これにより、部品本体176と熱硬化性樹脂170との接触面積は更に大きくなり、熱硬化性樹脂170の接着力により、電子部品172は部品本体176において樹脂積層体152の上面に固定される。また、電子部品172が押圧されることで、つまり、樹脂積層体152に装着されている電子部品172が樹脂積層体152に向って押し付けられることで、電子部品172の電極178と接触している導電性ペースト166が変形し、電極178と導電性ペースト166との接触面積が増大する。これにより、電子部品172と配線162との電気的な接続が担保される。 Furthermore, when the electronic component is pressed by the pressing unit 26, the resin laminate 152 is heated by the heater 66 built into the base 60. As a result, the thermosetting resin 170 is heated and hardened via the resin laminate 152. Here, the heating temperature is, for example, a temperature at which the thermosetting resin 170 is cured (for example, 85° C.). That is, the thermosetting resin 170 sealed between the upper surface of the resin laminate 152 and the lower surface of the component body 176 is hardened while being pressed by the rubber plate 124 . This further increases the contact area between the component body 176 and the thermosetting resin 170, and the adhesive force of the thermosetting resin 170 fixes the electronic component 172 to the upper surface of the resin laminate 152 in the component body 176. Furthermore, when the electronic component 172 is pressed, that is, when the electronic component 172 mounted on the resin laminate 152 is pressed toward the resin laminate 152, it comes into contact with the electrode 178 of the electronic component 172. The conductive paste 166 is deformed, and the contact area between the electrode 178 and the conductive paste 166 increases. This ensures electrical connection between the electronic component 172 and the wiring 162.
 このように熱硬化性樹脂170の接着力により、電子部品172が樹脂積層体152の上面に固定されることで、図9に示す回路基板180が形成される。ただし、回路基板180では、小さなサイズの電子部品172aの熱硬化性樹脂170による接着面積率は、大きなサイズの電子部品172bの熱硬化性樹脂170による接着面積率と比較して小さいため、装着された電子部品172aが位置ずれして導通不良となる虞がある。詳しくは、電子部品172の熱硬化性樹脂170による接着面積率は、電子部品172の回路基板への装着面、つまり、電子部品172の下面の面積に対する、電子部品172の熱硬化性樹脂170による接着面積の百分率である。ここで、小さなサイズの電子部品172aの装着面の面積はXA1であり、小さなサイズの電子部品172aの熱硬化性樹脂170による接着面積はXS1である。このため、小さなサイズの電子部品172aの熱硬化性樹脂170による接着面積率は、XS1/XA1である。一方、大きなサイズの電子部品172bの装着面の面積はXA2であり、大きなサイズの電子部品172bの熱硬化性樹脂170による接着面積はXS2である。このため、大きなサイズの電子部品172bの熱硬化性樹脂170による接着面積率は、XS2/XA2である。そして、図9から解るように、小さなサイズの電子部品172aの接着面積率XS1/XA1は、大きなサイズの電子部品172bの接着面積率XS2/XA2より明らかに小さい。このため、小さなサイズの電子部品172aの熱硬化性樹脂170による接着力は、大きなサイズの電子部品172bの熱硬化性樹脂170による接着力と比較して相当小さいため、装着された電子部品172aが位置ずれして導通不良となる虞がある。 In this manner, the electronic component 172 is fixed to the upper surface of the resin laminate 152 by the adhesive force of the thermosetting resin 170, thereby forming the circuit board 180 shown in FIG. However, on the circuit board 180, the adhesive area ratio of the small-sized electronic component 172a by the thermosetting resin 170 is smaller than the adhesive area ratio of the large-sized electronic component 172b by the thermosetting resin 170. There is a possibility that the electronic component 172a may be displaced, resulting in poor conduction. Specifically, the adhesive area ratio of the thermosetting resin 170 of the electronic component 172 is the ratio of the adhesive area of the electronic component 172 by the thermosetting resin 170 to the area of the mounting surface of the electronic component 172 to the circuit board, that is, the bottom surface of the electronic component 172. It is a percentage of the adhesive area. Here, the area of the mounting surface of the small-sized electronic component 172a is XA1, and the adhesive area of the small-sized electronic component 172a with the thermosetting resin 170 is XS1. Therefore, the adhesive area ratio of the small-sized electronic component 172a by the thermosetting resin 170 is XS1/XA1. On the other hand, the area of the mounting surface of the large-sized electronic component 172b is XA2, and the adhesive area of the large-sized electronic component 172b with the thermosetting resin 170 is XS2. Therefore, the adhesive area ratio of the thermosetting resin 170 of the large-sized electronic component 172b is XS2/XA2. As can be seen from FIG. 9, the adhesion area ratio XS1/XA1 of the small-sized electronic component 172a is clearly smaller than the adhesion area ratio XS2/XA2 of the large-sized electronic component 172b. Therefore, the adhesive force of the thermosetting resin 170 of the small-sized electronic component 172a is considerably smaller than that of the thermosetting resin 170 of the large-sized electronic component 172b, so that the attached electronic component 172a There is a risk of misalignment and poor continuity.
 このようなことに鑑みて、小さなサイズの電子部品172aの接触面積率を大きくするべく、電子部品172aの電極178と配線162とを導通する導電性ペースト166が、電極178の装着予定位置から、電子部品172aから離れる方向(以下、「離間方向」と記載する)にズレた位置に塗布される。具体的には、小さなサイズの電子部品172aの電極178の装着予定位置に導電性樹脂ペースト166が塗布される場合には、図10に示すように、電極178の中央190と導電性ペースト166の中央192とが重なるように、導電性ペースト166が塗布される。なお、小さなサイズの電子部品172aのサイズは、例えば、0.6mm×0.3mm(図10における紙面左右方向の長さが0.6mm、紙面上下方向の長さが0.3mm)である。このように導電性ペースト166が小さなサイズの電子部品172aの電極178の装着予定位置に塗布された場合には、1対の電極178に対応して塗布される1対の導電性ペースト166の間のスペースにおいて電子部品172aが熱硬化性樹脂170と接触する。つまり、図10での斜線部が、電子部品172aの熱硬化性樹脂170による接着面積XS1である。また、図10でのドット部が、電子部品172aの装着面の面積XA1である。このため、電子部品172aの接着面積率XS1(斜線部)/XA1(ドット部)は、約23%となる。つまり、導電性ペースト166が電子部品172aの電極178の装着予定位置に塗布された場合の電子部品172aの接着面積率(以下、「装着予定位置での接着面積率」と記載する)は約23%となる。 In view of this, in order to increase the contact area ratio of the small-sized electronic component 172a, the conductive paste 166 that connects the electrode 178 of the electronic component 172a and the wiring 162 is inserted from the planned mounting position of the electrode 178. It is applied at a position shifted in the direction away from the electronic component 172a (hereinafter referred to as the "separation direction"). Specifically, when the conductive resin paste 166 is applied to the planned mounting position of the electrode 178 of the small-sized electronic component 172a, as shown in FIG. Conductive paste 166 is applied so that it overlaps center 192 . Note that the size of the small electronic component 172a is, for example, 0.6 mm x 0.3 mm (the length in the horizontal direction of the paper in FIG. 10 is 0.6 mm, and the length in the vertical direction of the paper is 0.3 mm). In this way, when the conductive paste 166 is applied to the intended mounting position of the electrode 178 of the small-sized electronic component 172a, the conductive paste 166 is applied between the pair of conductive pastes 166 applied corresponding to the pair of electrodes 178 The electronic component 172a contacts the thermosetting resin 170 in the space. That is, the shaded area in FIG. 10 is the adhesive area XS1 of the electronic component 172a by the thermosetting resin 170. Further, the dot portion in FIG. 10 is the area XA1 of the mounting surface of the electronic component 172a. Therefore, the adhesion area ratio XS1 (shaded area)/XA1 (dot area) of the electronic component 172a is approximately 23%. In other words, when the conductive paste 166 is applied to the planned mounting position of the electrode 178 of the electronic component 172a, the adhesion area ratio of the electronic component 172a (hereinafter referred to as "adhesion area ratio at the planned mounting position") is approximately 23 %.
 そこで、電子部品172aの接触面積率を大きくするべく、図11に示すように、導電性ペースト166が、電極178の装着予定位置から離間方向にズレた位置に塗布される。つまり、導電性ペースト166の中央192が、電子部品172aの電極178の中央190から離間方向にズレるように、導電性ペースト166が塗布される。このように導電性ペースト166が電極178の装着予定位置から離間方向にズレた位置に塗布されると、1対の電極178に対応して塗布される1対の導電性ペースト166が互いに離れるため、1対の導電性ペースト166の間のスペースが広くなる。このため、電子部品172aの熱硬化性樹脂170による接着面積XS1(斜線部)が大きくなることで、電子部品172aの接着面積率XS1(斜線部)/XA1(ドット部)は、約43%となる。つまり、導電性ペースト166が電子部品172aの電極178の装着予定位置から離間方向にズレた位置に塗布された場合の電子部品172aの接着面積率(以下、「離間位置での接着面積率」と記載する)は約43%となる。このように、導電性ペースト166が、電子部品172aの電極178の装着予定位置から離間方向にズレた位置に塗布されることで、電子部品172aの接触面積率が大きくなり、装着された電子部品172aの位置ズレ等を防止することが可能となる。 Therefore, in order to increase the contact area ratio of the electronic component 172a, as shown in FIG. 11, the conductive paste 166 is applied to a position shifted away from the intended mounting position of the electrode 178. That is, the conductive paste 166 is applied so that the center 192 of the conductive paste 166 is shifted away from the center 190 of the electrode 178 of the electronic component 172a. When the conductive paste 166 is applied to a position shifted away from the intended attachment position of the electrode 178 in this way, a pair of conductive pastes 166 applied corresponding to a pair of electrodes 178 are separated from each other. , the space between the pair of conductive pastes 166 becomes wider. Therefore, as the adhesive area XS1 (shaded area) of the electronic component 172a by the thermosetting resin 170 increases, the adhesive area ratio XS1 (shaded area)/XA1 (dot area) of the electronic component 172a becomes approximately 43%. Become. In other words, the adhesive area ratio of the electronic component 172a when the conductive paste 166 is applied to a position shifted away from the scheduled mounting position of the electrode 178 of the electronic component 172a (hereinafter referred to as "adhesion area ratio at the separated position"). ) is approximately 43%. In this way, the conductive paste 166 is applied to a position shifted away from the scheduled mounting position of the electrode 178 of the electronic component 172a, so that the contact area ratio of the electronic component 172a increases, and the mounted electronic component It becomes possible to prevent the positional shift of 172a.
 一方で、大きなサイズの電子部品172aの電極178の装着予定位置に導電性樹脂ペースト166が塗布される場合には、図12に示すように、電極178の中央200と導電性ペースト166の中央202とが重なるように、導電性ペースト166が塗布される。なお、大きなサイズの電子部品172bのサイズは、例えば、1.0mm×0.5mm(図12における紙面左右方向の長さが1.0mm、紙面上下方向の長さが0.5mm)である。このように導電性ペースト166が電子部品172bの電極178の装着予定位置に塗布された場合に、電子部品172bのサイズは大きく、1対の電極178の間のスペースも比較的大きいため、電子部品172bと熱硬化性樹脂170とが接触する接着面積XS2(斜線部)も大きい。このため、電子部品172bの接着面積率XS2(斜線部)/XA2(ドット部)は、約43%となる。つまり、電子部品172bの電極178の装着予定位置での接着面積率は約43%となる。このように、大きな電子部品172bに対する装着予定位置での接着面積率(約43%)は、小さな電子部品172aに対する離間位置での接着面積率(約43%)と略同じであるため、大きな電子部品172bに対して導電性ペースト166が塗布される場合に、導電性ペースト166は、電極178の装着予定位置からズラして塗布される必要はなく、電極178の装着予定位置に塗布される。 On the other hand, when the conductive resin paste 166 is applied to the planned mounting position of the electrode 178 of the large-sized electronic component 172a, as shown in FIG. Conductive paste 166 is applied so as to overlap with each other. The size of the large-sized electronic component 172b is, for example, 1.0 mm x 0.5 mm (the length in the horizontal direction of the paper in FIG. 12 is 1.0 mm, and the length in the vertical direction of the paper is 0.5 mm). When the conductive paste 166 is applied to the intended mounting position of the electrode 178 of the electronic component 172b, the size of the electronic component 172b is large and the space between the pair of electrodes 178 is also relatively large. The adhesive area XS2 (hatched area) where 172b and thermosetting resin 170 contact is also large. Therefore, the adhesion area ratio XS2 (shaded area)/XA2 (dotted area) of the electronic component 172b is approximately 43%. In other words, the adhesion area ratio at the intended mounting position of the electrode 178 of the electronic component 172b is approximately 43%. In this way, the adhesive area ratio (approximately 43%) for the large electronic component 172b at the planned mounting position is approximately the same as the adhesive area ratio (approximately 43%) for the small electronic component 172a at the separated position. When the conductive paste 166 is applied to the component 172b, the conductive paste 166 does not need to be applied at a position shifted from the planned mounting position of the electrode 178, but is applied at the planned mounting position of the electrode 178.
 なお、上述したように、電子部品172aのサイズは、例えば、0.6mm×0.3mmであり、電子部品172aは小さいため、導電性ペースト166が電極の装着予定位置からズレた位置に塗布される。このため、電子部品172a、つまり、0.6mm×0.3mmより小さいサイズの電子部品に対しても、導電性ペースト166が電極の装着予定位置からズレた位置に塗布される。具体的には、図13に示すように、0.6mm×0.3mmより小さいサイズの電子部品172c、例えば、0.4mm×0.2mm(図13における紙面左右方向の長さが0.4mm、紙面上下方向の長さが0.2mm)の電子部品172cの電極178の装着予定位置に導電性樹脂ペースト166が塗布される場合に、電極178の中央210と導電性ペースト166の中央212とが重なるように、導電性ペースト166が塗布される。このように電子部品172cの電極178の装着予定位置に導電性樹脂ペースト166が塗布されると、1対の電極178に対応して塗布された1対の導電性ペースト166が接触し、1対の導電性ペースト166の間のスペースがない。このため、電子部品172cの電極178の装着予定位置に導電性樹脂ペースト166が塗布された場合に、電子部品172cと熱硬化性樹脂170とが接触する接着面積は0となり、電子部品172cの接着面積率は0%となる。つまり、電子部品172cの電極178の装着予定位置での接着面積率は0%となる。  As described above, the size of electronic component 172a is, for example, 0.6 mm x 0.3 mm, and since electronic component 172a is small, conductive paste 166 is applied to a position shifted from the intended mounting position of the electrode. For this reason, even for electronic component 172a, that is, electronic components smaller than 0.6 mm x 0.3 mm, conductive paste 166 is applied to a position shifted from the intended mounting position of the electrode. Specifically, as shown in FIG. 13, when conductive resin paste 166 is applied to the intended mounting position of electrode 178 of electronic component 172c smaller than 0.6 mm x 0.3 mm, for example, electronic component 172c of 0.4 mm x 0.2 mm (0.4 mm in the horizontal direction of the paper in FIG. 13 and 0.2 mm in the vertical direction of the paper), conductive paste 166 is applied so that center 210 of electrode 178 and center 212 of conductive paste 166 overlap. When the conductive resin paste 166 is applied in this manner to the intended mounting positions of the electrodes 178 of the electronic component 172c, the pair of conductive pastes 166 applied corresponding to the pair of electrodes 178 come into contact with each other, and there is no space between the pair of conductive pastes 166. Therefore, when the conductive resin paste 166 is applied to the intended mounting positions of the electrodes 178 of the electronic component 172c, the contact area between the electronic component 172c and the thermosetting resin 170 is 0, and the adhesion area ratio of the electronic component 172c is 0%. In other words, the adhesion area ratio at the intended mounting positions of the electrodes 178 of the electronic component 172c is 0%.
 そこで、電子部品172cの接触面積率を大きくするべく、図14に示すように、導電性ペースト166が、電子部品172cの電極178の装着予定位置から離間方向にズレた位置に塗布される。つまり、導電性ペースト166の中央212が、電子部品172cの電極178の中央210から離間方向にズレるように、導電性ペースト166が塗布される。これにより、1対の導電性ペースト166が互いに離れて、電子部品172cの熱硬化性樹脂170による接着面積が確保されることで、電子部品172cの接着面積率は約43%となる。これにより、電子部品172aより小さな電子部品172cにおいても、電子部品172cの位置ズレ等を防止することが可能となる。 Therefore, in order to increase the contact area ratio of the electronic component 172c, as shown in FIG. 14, the conductive paste 166 is applied to a position of the electronic component 172c that is shifted away from the planned mounting position of the electrode 178. That is, the conductive paste 166 is applied so that the center 212 of the conductive paste 166 is shifted away from the center 210 of the electrode 178 of the electronic component 172c. As a result, the pair of conductive pastes 166 are separated from each other, and the adhesive area of the electronic component 172c by the thermosetting resin 170 is secured, so that the adhesive area ratio of the electronic component 172c is approximately 43%. Thereby, even if the electronic component 172c is smaller than the electronic component 172a, it is possible to prevent the electronic component 172c from being misaligned.
 つまり、図15に示すように、電子部品a,c(例えば、0.6mm×0.3mm、例えば、0.4mm×0.2mm)に対する装着予定位置での接着面積率は、電子部品a,cより大きなサイズの電子部品172b(例えば、1.0mm×0.5mm)に対する装着予定位置での接着面積率より低いため、電子部品a,cに対して導電性ペーストが装着予定位置からズレた位置に塗布される。これにより、電子部品a,cに対して離間位置での接着面積率を40%以上、つまり、電子部品a,cより大きなサイズの電子部品172bに対する装着予定位置での接着面積率と同程度とすることが可能となる。つまり、熱硬化性樹脂170による電子部品a,cの接着力を、熱硬化性樹脂170による電子部品bの接着力と同程度とすることが可能となる。これにより、電子部品172bより小さい電子部品a,cの位置ズレ等を適切に防止することが可能となる。 That is, as shown in FIG. 15, the adhesion area ratio at the scheduled mounting position for electronic components a and c (for example, 0.6 mm x 0.3 mm, for example, 0.4 mm x 0.2 mm) is as follows: Because the adhesive area ratio is lower than the bonding area ratio at the scheduled mounting position for electronic components 172b (for example, 1.0 mm x 0.5 mm) larger than c, the conductive paste was shifted from the scheduled mounting position for electronic components a and c. applied to the location. As a result, the adhesion area ratio at the separated position for electronic components a and c is 40% or more, that is, the same level as the adhesion area ratio at the scheduled mounting position for electronic component 172b, which is larger in size than electronic components a and c. It becomes possible to do so. In other words, it is possible to make the adhesive strength of the electronic components a and c by the thermosetting resin 170 comparable to the adhesive strength of the electronic component b by the thermosetting resin 170. Thereby, it becomes possible to appropriately prevent the positional deviation of the electronic components a and c, which are smaller than the electronic component 172b.
 一方で、電子部品172b(例えば、1.0mm×0.5mm)より大きい電子部品、例えば、1.6mm×0.8mm、2.0mm×1.2mm、3.2mm×1.6mmのサイズの電子部品において、図示は省略するが、1対の電極の間のスペースは、電子部品172b(例えば、1.0mm×0.5mm)の1対の電極の間のスペースより大きい。このため、1.6mm×0.8mm、2.0mm×1.2mm、3.2mm×1.6mmのサイズの電子部品に対する装着予定位置での接着面積率は、電子部品172b(例えば、1.0mm×0.5mm)に対する装着予定位置での接着面積率より大きい。具体的には、図15に示すように、1.6mm×0.8mmのサイズの電子部品に対する装着予定位置での接着面積率は約61%であり、2.0mm×1.2mmのサイズの電子部品に対する装着予定位置での接着面積率は約69%であり、3.2mm×1.6mmのサイズの電子部品に対する装着予定位置での接着面積率は約80%である。このため、1.6mm×0.8mm、2.0mm×1.2mm、3.2mm×1.6mmのサイズの電子部品に対して導電性ペースト166が塗布される場合に、導電性ペースト166は、電極178の装着予定位置からズラして塗布される必要はなく、電極178の装着予定位置に塗布される。つまり、1.0mm×0.5mm以上のサイズの電子部品に対して、導電性ペースト166は電極178の装着予定位置に塗布され、1.0mm×0.5mm未満のサイズの電子部品に対して、電極178の装着予定位置からズラして塗布される。なお、導電性ペースト166が装着予定位置に塗布されるか、装着予定位置からズラして塗布されるかの基準となるサイズ、つまり、1.0mm×0.5mmは作業者により設定されているが、その基準となるサイズを任意に変更することが可能である。 On the other hand, in electronic components larger than electronic component 172b (e.g., 1.0 mm x 0.5 mm), e.g., electronic components having sizes of 1.6 mm x 0.8 mm, 2.0 mm x 1.2 mm, and 3.2 mm x 1.6 mm, although not shown in the figures, the space between a pair of electrodes is larger than the space between a pair of electrodes of electronic component 172b (e.g., 1.0 mm x 0.5 mm). Therefore, the adhesion area ratio at the intended mounting position for electronic components having sizes of 1.6 mm x 0.8 mm, 2.0 mm x 1.2 mm, and 3.2 mm x 1.6 mm is larger than the adhesion area ratio at the intended mounting position for electronic component 172b (e.g., 1.0 mm x 0.5 mm). Specifically, as shown in Fig. 15, the adhesion area ratio at the intended mounting position for an electronic component of 1.6 mm x 0.8 mm is about 61%, the adhesion area ratio at the intended mounting position for an electronic component of 2.0 mm x 1.2 mm is about 69%, and the adhesion area ratio at the intended mounting position for an electronic component of 3.2 mm x 1.6 mm is about 80%. Therefore, when the conductive paste 166 is applied to electronic components of 1.6 mm x 0.8 mm, 2.0 mm x 1.2 mm, and 3.2 mm x 1.6 mm, the conductive paste 166 does not need to be applied at a position shifted from the intended mounting position of the electrode 178, but is applied at the intended mounting position of the electrode 178. In other words, the conductive paste 166 is applied at the intended mounting position of the electrode 178 for electronic components of 1.0 mm x 0.5 mm or more, and is applied at a position shifted from the intended mounting position of the electrode 178 for electronic components of less than 1.0 mm x 0.5 mm. The standard size for determining whether the conductive paste 166 is applied to the intended installation position or offset from the intended installation position, i.e., 1.0 mm x 0.5 mm, is set by the operator, but the standard size can be changed as desired.
 なお、導電性ペースト166が電極178の装着予定位置からズラして塗布されることで、接着面積率が大きくなり、熱硬化性樹脂170による電子部品の接着力は高くなるが、導電性ペースト166の装着予定位置からのズレ量が多すぎると、電子部品の導電性を担保することができなくなる虞がある。詳しくは、例えば、図16に示すように、電子部品172aに対して導電性ペースト166が塗布される際に、電極178の中央190と導電性ペースト166の中央192とのズレ量が多すぎると、導電性ペースト166の導電面積率が小さくなる。ここで、導電性ペースト166の導電面積率は、1つの電極178の装着面での面積(ドット部)に対する、その電極178と導電性ペースト166との接触面積(斜線部)の百分率である。図16に示す電子部品172aでは、電極178の中央190と導電性ペースト166の中央192とのズレ量が多すぎるため、導電性ペースト166の導電面積率は約30%となっている。このように導電性ペースト166の導電面積率が低い場合には、導電性ペースト166と電極178との導電性を適切に担保することができない。このようなことに鑑みて、導電性ペースト166の導電面積率が50%以上となるように、電極178の中央190と導電性ペースト166の中央192とのズレ量が調整される。具体的には、例えば、図17に示すように、電極178の中央190と導電性ペースト166の中央192とのズレ量が調整されることで、導電性ペースト166の導電面積率が50%以上(図17では80%程度)とされる。これにより、導電性ペースト166と電極178との導電性を適切に担保することが可能となる。 Note that by applying the conductive paste 166 at a position shifted from the intended mounting position of the electrode 178, the adhesion area ratio increases and the adhesive force of the thermosetting resin 170 for electronic components increases; however, the conductive paste 166 If the amount of deviation from the planned mounting position is too large, there is a risk that the electrical conductivity of the electronic component cannot be ensured. Specifically, for example, as shown in FIG. 16, when the conductive paste 166 is applied to the electronic component 172a, if there is too much misalignment between the center 190 of the electrode 178 and the center 192 of the conductive paste 166. , the conductive area ratio of the conductive paste 166 becomes smaller. Here, the conductive area ratio of the conductive paste 166 is the percentage of the contact area (shaded area) between the electrode 178 and the conductive paste 166 to the area (dot area) on the mounting surface of one electrode 178. In the electronic component 172a shown in FIG. 16, the amount of misalignment between the center 190 of the electrode 178 and the center 192 of the conductive paste 166 is too large, so that the conductive area ratio of the conductive paste 166 is about 30%. When the conductive area ratio of the conductive paste 166 is low as described above, the conductivity between the conductive paste 166 and the electrode 178 cannot be properly ensured. In view of this, the amount of deviation between the center 190 of the electrode 178 and the center 192 of the conductive paste 166 is adjusted so that the conductive area ratio of the conductive paste 166 is 50% or more. Specifically, as shown in FIG. 17, for example, by adjusting the amount of misalignment between the center 190 of the electrode 178 and the center 192 of the conductive paste 166, the conductive area ratio of the conductive paste 166 can be increased to 50% or more. (approximately 80% in FIG. 17). This makes it possible to appropriately ensure the conductivity between the conductive paste 166 and the electrode 178.
 また、制御装置28のコントローラ140は、図2に示すように、塗布部220と装着部222とを有している。塗布部220は、導電性ペースト166を電極178の装着予定位置から離間方向にズレた位置に塗布するための機能部である。装着部222は、塗布部220により塗布された導電性ペースト166に電極178が接触するように電子部品172を装着するための機能部である。 Further, the controller 140 of the control device 28 includes an application section 220 and a mounting section 222, as shown in FIG. The application section 220 is a functional section for applying the conductive paste 166 to a position shifted in the direction away from the intended mounting position of the electrode 178. The mounting section 222 is a functional section for mounting the electronic component 172 so that the electrode 178 comes into contact with the conductive paste 166 applied by the application section 220.
 なお、上記実施例において、回路形成装置10は、回路形成装置の一例である。ディスペンサ106は、第1塗布装置の一例である。ディスペンサ116は、第2塗布装置の一例である。装着部132は、装着装置の一例である。導電性ペースト166は、導電性ペーストの一例である。熱硬化性樹脂170は、硬化性樹脂の一例である。電子部品172は、電子部品の一例である。部品本体176は、部品本体の一例である。電極178は、電極の一例である。1.0mm×0.5mmは、所定サイズの一例である。また、塗布部220により実行される工程は、塗布工程の一例である。装着部222により実行される工程は、装着工程の一例である。 Note that in the above embodiment, the circuit forming device 10 is an example of a circuit forming device. Dispenser 106 is an example of a first coating device. Dispenser 116 is an example of a second coating device. The mounting section 132 is an example of a mounting device. The conductive paste 166 is an example of a conductive paste. Thermosetting resin 170 is an example of a curable resin. Electronic component 172 is an example of an electronic component. The component body 176 is an example of a component body. Electrode 178 is an example of an electrode. 1.0 mm x 0.5 mm is an example of the predetermined size. Further, the process performed by the coating unit 220 is an example of a coating process. The process performed by the mounting unit 222 is an example of a mounting process.
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。例えば、上記実施例では、1対の導電性ペースト166の間に熱硬化性樹脂170が塗布される態様に本発明が適用されているが、1対の導電性ペースト166の間に熱硬化性樹脂170が塗布されない態様に本発明が適用されてもよい。具体的には、例えば、図13に示すように、電子部品172cに対して電極178の装着予定位置に導電性樹脂ペースト166が塗布されると、1対の導電性ペースト166が接触する。このような場合には、短絡が生じるため好ましくない。そこで、図14に示すように、電子部品172cに対して電極178の装着予定位置から離間方向にズレた位置に導電性樹脂ペースト166が塗布されると、1対の導電性ペースト166が離間する。これにより、短絡を防止することが可能となる。このように、1対の導電性ペースト166の間に熱硬化性樹脂170が塗布されない態様に本発明が適用されることで、短絡を防止することが可能となる。 Note that the present invention is not limited to the above-mentioned embodiments, but can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art. For example, in the above embodiment, the present invention is applied to a mode in which the thermosetting resin 170 is applied between the pair of conductive pastes 166, but the thermosetting resin 170 is applied between the pair of conductive pastes 166. The present invention may be applied to an embodiment in which the resin 170 is not applied. Specifically, for example, as shown in FIG. 13, when the conductive resin paste 166 is applied to the electronic component 172c at the intended mounting position of the electrode 178, the pair of conductive pastes 166 come into contact with each other. In such a case, a short circuit may occur, which is not preferable. Therefore, as shown in FIG. 14, when the conductive resin paste 166 is applied to the electronic component 172c at a position deviated in the separating direction from the planned mounting position of the electrode 178, the pair of conductive pastes 166 are separated. . This makes it possible to prevent short circuits. In this way, by applying the present invention to an embodiment in which the thermosetting resin 170 is not applied between the pair of conductive pastes 166, short circuits can be prevented.
 また、上記実施例では、電子部品172が装着される前に、熱硬化性樹脂170が塗布されているが、電子部品172が装着された後に、熱硬化性樹脂170が塗布されてもよい。この際、熱硬化性樹脂170は、装着された電子部品172の部品本体176の下面と樹脂積層体152の上面との間に塗布される。つまり、熱硬化性樹脂170は、樹脂積層体152での部品本体176の装着予定位置に塗布される。そして、熱硬化性樹脂170が電子部品172の部品本体176の下面と樹脂積層体152の上面との間に塗布された後に、電子部品172がゴムプレート124により押圧される。 Furthermore, in the above embodiment, the thermosetting resin 170 is applied before the electronic component 172 is mounted, but the thermosetting resin 170 may be applied after the electronic component 172 is mounted. At this time, the thermosetting resin 170 is applied between the lower surface of the component body 176 of the mounted electronic component 172 and the upper surface of the resin laminate 152. That is, the thermosetting resin 170 is applied to the resin laminate 152 at the position where the component body 176 is scheduled to be mounted. Then, after the thermosetting resin 170 is applied between the lower surface of the component body 176 of the electronic component 172 and the upper surface of the resin laminate 152, the electronic component 172 is pressed by the rubber plate 124.
 また、上記実施例では、導電性ペースト166が装着予定位置に塗布されるか、装着予定位置からズラして塗布されるかの基準となるサイズは作業者により設定されているが、デフォルト値として入力されていてもよい。 Furthermore, in the above embodiment, the size that serves as the standard for determining whether the conductive paste 166 is applied to the intended attachment position or displaced from the intended attachment position is set by the operator, but the default value is It may be entered.
 また、上記実施例では、導電性ペースト166が完全に硬化した状態で電子部品172が装着されて、その電子部品172がゴムプレート124により押圧される。一方で、導電性ペースト166が半硬化した状態で電子部品172が装着されて、その電子部品172がゴムプレート124により押圧されてもよい。また、導電性ペースト166が半硬化も完全硬化もしていない状態で電子部品172が装着されて、その電子部品172がゴムプレート124により押圧されてもよい。なお、導電性ペースト166が半硬化の状態及び半硬化も完全硬化もしていない状態で電子部品172が装着されて、その電子部品172がゴムプレート124により押圧される場合には、ヒータ66による加熱で導電性ペーストが完全に硬化する。 Furthermore, in the above embodiment, the electronic component 172 is mounted with the conductive paste 166 completely cured, and the electronic component 172 is pressed by the rubber plate 124. On the other hand, the electronic component 172 may be mounted with the conductive paste 166 semi-hardened, and the electronic component 172 may be pressed by the rubber plate 124. Alternatively, the electronic component 172 may be mounted with the conductive paste 166 neither semi-cured nor completely cured, and the electronic component 172 may be pressed by the rubber plate 124. Note that when the electronic component 172 is mounted with the conductive paste 166 in a semi-cured state, neither semi-cured nor completely cured, and the electronic component 172 is pressed by the rubber plate 124, heating by the heater 66 is performed. The conductive paste is completely cured.
 また、上記実施例では、配線162と電子部品172の電極178とを電気的に接続する導電性流体として導電性ペースト166が採用されているが、導電性を発揮するものであれば、種々の流体を採用することが可能である。 Further, in the above embodiment, the conductive paste 166 is used as the conductive fluid that electrically connects the wiring 162 and the electrode 178 of the electronic component 172, but various pastes may be used as long as they exhibit conductivity. It is possible to employ fluids.
 また、上記実施形態では、電子部品172を樹脂積層体152に固定するための硬化性樹脂として、熱硬化性樹脂が採用されているが、紫外線硬化樹脂,2液混合型硬化性樹脂,熱可塑性樹脂などを形成することが可能である。また、上記実施例では、樹脂積層体152を形成する樹脂として紫外線硬化樹脂が採用され、電子部品172を固定する樹脂として熱硬化性樹脂が採用されている。つまり、樹脂積層体152を形成する樹脂と、電子部品172を固定する樹脂とが異なる硬化性樹脂とされているが、樹脂積層体152を形成する樹脂と、電子部品172を固定する樹脂とが同じ硬化性樹脂とされてもよい。 Further, in the above embodiment, a thermosetting resin is used as the curable resin for fixing the electronic component 172 to the resin laminate 152, but ultraviolet curable resin, two-component mixed curable resin, thermoplastic resin, etc. It is possible to form resin or the like. Further, in the above embodiment, an ultraviolet curing resin is used as the resin for forming the resin laminate 152, and a thermosetting resin is used as the resin for fixing the electronic component 172. In other words, although the resin forming the resin laminate 152 and the resin fixing the electronic component 172 are different curable resins, the resin forming the resin laminate 152 and the resin fixing the electronic component 172 are different. The same curable resin may be used.
 また、上記実施例では、導電性ペーストは、ディスペンサ106により吐出されているが、転写装置等により転写されてもよい。また、スクリーン印刷により、導電性ペーストが印刷されてもよい。 Furthermore, in the above embodiment, the conductive paste is discharged by the dispenser 106, but it may be transferred by a transfer device or the like. Further, the conductive paste may be printed by screen printing.
 10:回路形成装置(電気回路形成装置)  106:ディスペンサ(第1塗布装置)  116:ディスペンサ(第2塗布装置)  132:装着部(装着装置)  166:導電性ペースト(導電性流体)  170:熱硬化性樹脂(硬化性樹脂)  172:電子部品  176:部品本体  178:電極  220:塗布部(塗布工程)  222:装着部(装着工程) 10: Circuit forming device (electrical circuit forming device) 106: Dispenser (first coating device) 116: Dispenser (second coating device) 132: Mounting part (mounting device) 166: Conductive paste (conductive fluid) 170: Heat Curable resin (curable resin) 172: Electronic component 176: Component body 178: Electrode 220: Coating section (coating process) 222: Mounting section (fitting process)

Claims (7)

  1.  電子部品の電極の装着予定位置から、前記電子部品から離れる方向にズレた位置に導電性ペーストを塗布する第1塗布装置と、
     前記第1塗布装置により塗布された導電性ペーストに前記電極が接触するように前記電子部品を装着する装着装置と、
     を備える回路形成装置。
    a first coating device that applies a conductive paste to a position shifted away from the electronic component from a planned mounting position of the electrode of the electronic component;
    a mounting device for mounting the electronic component so that the electrode contacts the conductive paste applied by the first coating device;
    A circuit forming device comprising:
  2.  前記第1塗布装置は、
     装着予定の電子部品のサイズが所定サイズ未満である場合に、前記電子部品の電極の装着予定位置から、前記電子部品から離れる方向にズレた位置に導電性ペーストを塗布し、装着予定の電子部品のサイズが所定サイズ以上である場合に、前記電子部品の電極の装着予定位置に導電性ペーストを塗布する請求項1に記載の回路形成装置。
    The first coating device includes:
    When the size of the electronic component to be mounted is less than a predetermined size, a conductive paste is applied to a position shifted away from the electronic component from the planned mounting position of the electrode of the electronic component, and the electronic component to be mounted is 2. The circuit forming apparatus according to claim 1, wherein a conductive paste is applied to a position where an electrode of the electronic component is scheduled to be attached when the size of the electronic component is a predetermined size or more.
  3.  前記第1塗布装置は、
     装着予定の電子部品のサイズが所定サイズ未満である場合に、前記導電性ペーストの中央が前記電子部品の電極の装着予定位置の中央から、前記電子部品から離れる方向にズレるように導電性ペーストを塗布し、装着予定の電子部品のサイズが所定サイズ以上である場合に、前記導電性ペーストの中央が前記電子部品の電極の装着予定位置の中央に重なるように導電性ペーストを塗布する請求項2に記載の回路形成装置。
    The first coating device includes:
    When the size of the electronic component to be mounted is less than a predetermined size, the conductive paste is applied so that the center of the conductive paste is shifted away from the center of the planned mounting position of the electrode of the electronic component in a direction away from the electronic component. 2. The conductive paste is applied so that the center of the conductive paste overlaps the center of the planned mounting position of the electrode of the electronic component when the size of the electronic component to be applied and mounted is equal to or larger than a predetermined size. The circuit forming device described in .
  4.  電子部品の部品本体の装着予定位置に硬化性樹脂を塗布する第2塗布装置を備える請求項1ないし請求項3のいずれか1つに記載の回路形成装置。 The circuit forming apparatus according to any one of claims 1 to 3, further comprising a second coating device that applies a curable resin to a scheduled mounting position of a component body of an electronic component.
  5.  前記第1塗布装置は、
     前記電子部品の装着面の面積に対する硬化性樹脂の前記電子部品への接着面積の百分率が40%以上となるように、電子部品の電極の装着予定位置から、前記電子部品から離れる方向にズレた位置に導電性ペーストを塗布する請求項4に記載の回路形成装置。
    The first coating device includes:
    The electrodes of the electronic component are shifted away from the intended mounting position of the electronic component so that the percentage of the adhesive area of the curable resin to the electronic component with respect to the area of the mounting surface of the electronic component is 40% or more. 5. The circuit forming apparatus according to claim 4, wherein a conductive paste is applied to the position.
  6.  前記第1塗布装置は、
     前記電子部品の装着面での電極の面積に対する導電性ペーストの電極への接着面積の百分率が50%以上となるように、前記電子部品の電極の装着予定位置から、前記電子部品から離れる方向にズレた位置に導電性ペーストを塗布する請求項1ないし請求項3のいずれか1つに記載の回路形成装置。
    The first coating device includes:
    from the planned mounting position of the electrode of the electronic component in a direction away from the electronic component so that the percentage of the adhesive area of the conductive paste to the electrode with respect to the area of the electrode on the mounting surface of the electronic component is 50% or more. The circuit forming apparatus according to any one of claims 1 to 3, wherein the conductive paste is applied to the shifted position.
  7.  電子部品の電極の装着予定位置から、前記電子部品から離れる方向にズレた位置に導電性ペーストを塗布する塗布工程と、
     前記塗布工程において塗布された導電性ペーストに前記電極が接触するように前記電子部品を装着する装着工程と、
     を含む回路形成方法。
    a coating step of applying a conductive paste to a position shifted away from the electronic component from the planned mounting position of the electrode of the electronic component;
    a mounting step of mounting the electronic component so that the electrode contacts the conductive paste applied in the coating step;
    A circuit formation method including.
PCT/JP2022/035405 2022-09-22 2022-09-22 Circuit forming device and circuit forming method WO2024062605A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035405 WO2024062605A1 (en) 2022-09-22 2022-09-22 Circuit forming device and circuit forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035405 WO2024062605A1 (en) 2022-09-22 2022-09-22 Circuit forming device and circuit forming method

Publications (1)

Publication Number Publication Date
WO2024062605A1 true WO2024062605A1 (en) 2024-03-28

Family

ID=90454062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035405 WO2024062605A1 (en) 2022-09-22 2022-09-22 Circuit forming device and circuit forming method

Country Status (1)

Country Link
WO (1) WO2024062605A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108966A (en) * 2003-09-29 2005-04-21 Tdk Corp Mounting method of electronic component
WO2022113186A1 (en) * 2020-11-25 2022-06-02 株式会社Fuji Electric circuit forming method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108966A (en) * 2003-09-29 2005-04-21 Tdk Corp Mounting method of electronic component
WO2022113186A1 (en) * 2020-11-25 2022-06-02 株式会社Fuji Electric circuit forming method

Similar Documents

Publication Publication Date Title
WO2020012626A1 (en) Circuit formation method and circuit formation device
JP6811770B2 (en) Circuit formation method
WO2018142577A1 (en) Circuit formation method and circuit formation device
WO2024062605A1 (en) Circuit forming device and circuit forming method
JP7282906B2 (en) Component mounting method and component mounting device
WO2022113186A1 (en) Electric circuit forming method
WO2021214813A1 (en) Circuit forming method and circuit forming device
JP7316742B2 (en) Manufacturing method of mounting board by 3D additive manufacturing
WO2023195175A1 (en) Electrical circuit formation method and electrical circuit formation device
WO2023079607A1 (en) Circuit-forming method and circuit-forming apparatus
WO2022101965A1 (en) Circuit forming method
WO2019186780A1 (en) Circuit formation method and circuit formation device
WO2023119469A1 (en) Electrical circuit forming method and electrical circuit forming apparatus
WO2023157111A1 (en) Electrical circuit formation method, and electrical circuit formation device
WO2023148888A1 (en) Electrical circuit forming method and electrical circuit forming apparatus
JP7411452B2 (en) Circuit formation method
WO2022195800A1 (en) Electronic part mounting method and electronic part mounting device
JP2023166848A (en) Electric circuit forming method and electric circuit forming device
WO2024057475A1 (en) Resin laminate formation device and resin laminate formation method
US11849545B2 (en) Circuit formation method
WO2022201231A1 (en) Determination device, molding method, and molding device
WO2023095184A1 (en) Circuit-forming method and circuit-forming apparatus
JP7230276B2 (en) CIRCUIT-FORMING METHOD AND CIRCUIT-FORMING APPARATUS
WO2024057474A1 (en) Device for forming resin laminate, circuit board, and method for forming circuit board
JP7238206B2 (en) Modeling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959569

Country of ref document: EP

Kind code of ref document: A1