WO2021008628A1 - 飞行器控制方法及飞行器 - Google Patents

飞行器控制方法及飞行器 Download PDF

Info

Publication number
WO2021008628A1
WO2021008628A1 PCT/CN2020/108954 CN2020108954W WO2021008628A1 WO 2021008628 A1 WO2021008628 A1 WO 2021008628A1 CN 2020108954 W CN2020108954 W CN 2020108954W WO 2021008628 A1 WO2021008628 A1 WO 2021008628A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
yaw
control system
pan
tilt
Prior art date
Application number
PCT/CN2020/108954
Other languages
English (en)
French (fr)
Inventor
张添保
陈刚
蒋宪宏
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021008628A1 publication Critical patent/WO2021008628A1/zh
Priority to US17/573,882 priority Critical patent/US20220137643A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • This application relates to the technical field of aerial photography, in particular to an aircraft control method and aircraft.
  • UAV has the advantages of small size, light weight, flexible maneuverability, fast response, unmanned driving, and low operation requirements. It is equipped with multiple types of shooting equipment through the PTZ. It can realize real-time image transmission and detection of high-risk areas, which is a powerful supplement to satellite remote sensing and traditional aerial remote sensing.
  • aerial photography drones include consumer-grade aerial photography drones and professional-grade aerial photography drones. Whether it is a consumer-grade aerial photography drone or a professional-grade aerial photography drone, the quality of aerial photography depends on the quality of the aircraft body and the gimbal. Control effect.
  • the flight control system Fluor Control System, FCS
  • FCS Flight Control System
  • GCS Gimbal Control System
  • GCS and FCS are independent, that is, the pitch and roll channels of GCS do not respond to changes in FCS attitude, and the yaw angle of GCS ensures that the first-order convergence is the yaw of FCS angle.
  • FCS does not have the control authority of GCS, and the gimbal only obtains the yaw angle/yaw rate information of the aircraft without any feedback information and The flight control system interacts in real time; secondly, the yaw control torque of FCS is small, and there is channel coupling between yaw control, pitch control and roll control.
  • FCS yaw channel rotates unevenly, resulting in unsmooth aerial video , Especially at low speeds, the video jam phenomenon is serious; and the control of the gimbal yaw channel is affected by the aircraft yaw angle control, and the advantages of GCS high-precision control are not effectively brought into play, causing FCS control pressure Increase.
  • the embodiments of the invention of the present application provide an aircraft control method and aircraft, which can maximize the high-precision control characteristics of the gimbal control system GCS, solve the problem of aerial video freezing when the yaw channel is low in rotation speed, and ensure the aerial video The stability and fluency.
  • an embodiment of the present invention provides an aircraft control method, which is applied to an aircraft, the aircraft includes a flight control system for controlling the aircraft and a gimbal control system for controlling a pan/tilt, the method includes:
  • the pan/tilt control system obtains the yaw control command input to the aircraft and the attitude angle information output by the pan/tilt;
  • the pan/tilt control system controls the yaw of the pan/tilt based on the yaw control instruction input to the aircraft and the attitude angle information output by the pan/tilt.
  • the acquisition by the pan/tilt control system of the yaw control command input to the aircraft and the attitude angle information output by the pan/tilt includes:
  • the flight control system obtains the speed command and the yaw command generated by the aircraft in the mission flight mode
  • the flight control system obtains the rod value of the remote controller, wherein the remote controller is in communication connection with the aircraft;
  • the flight control system generates the offset input to the aircraft according to the speed command and the yaw command generated by the aircraft in the mission flight mode, and the lever amount of the remote controller.
  • Navigation control instructions ;
  • the flight control system sends the yaw control command input to the aircraft to the pan/tilt control system.
  • the method further includes:
  • the flight control system generates a speed control command and thrust input to the aircraft according to the speed command and the yaw command generated by the aircraft in the mission flight mode, and the lever amount of the remote controller instruction.
  • the method further includes:
  • the flight control system obtains the speed and attitude angle information output by the aircraft
  • the flight control system controls according to the actual yaw information output by the pan/tilt, the speed output by the aircraft, the attitude angle information output by the aircraft, the speed control command input to the aircraft and the thrust command The yaw of the aircraft.
  • acquiring the actual yaw information output by the gimbal by the flight control system includes:
  • the flight control system obtains the actual yaw information output by the gimbal according to the attitude angle information output by the gimbal.
  • the actual yaw information output by the gimbal includes the actual yaw angle and the actual yaw rate of the gimbal.
  • the attitude angle information output by the aircraft includes the actual attitude angle and the attitude angle rate output by the aircraft.
  • the actual attitude angle information output by the aircraft includes the actual attitude angle and the attitude angle rate output by the aircraft.
  • an embodiment of the present invention provides an aircraft, including:
  • An arm connected to the fuselage
  • the power device is arranged on the arm and used to provide power for the aircraft to fly;
  • the pan/tilt is located on the fuselage
  • the flight control system is located on the fuselage;
  • a pan/tilt control system for controlling the pan/tilt and communicating with the flight control system
  • the PTZ control system is used for:
  • the flight control system is used to:
  • the flight control system is also used for:
  • a speed control command and a thrust command input to the aircraft are generated.
  • the flight control system is also used for:
  • the yaw of the aircraft is controlled Voyage.
  • the flight control system is also used for:
  • the actual yaw information output by the gimbal includes the actual yaw angle and the actual yaw rate of the gimbal.
  • the attitude angle information output by the aircraft includes the actual attitude angle and the attitude angle rate output by the aircraft.
  • the attitude angle information output by the pan/tilt includes the attitude angle and the attitude angular rate of the pan/tilt.
  • an embodiment of the present invention provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, when the program When the instructions are executed by a computer, the computer is caused to execute the aircraft control method described in the first aspect above.
  • an embodiment of the present invention provides a non-volatile computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make a computer execute the first The aircraft control method described in the aspect.
  • the embodiments of the present invention provide an aircraft control method and an aircraft.
  • the aircraft control method is applied to the aircraft.
  • the aircraft includes a flight control system for controlling the aircraft and a pan/tilt control system for controlling a pan/tilt.
  • the control system can obtain the yaw control command input to the aircraft and the attitude angle information output by the gimbal, and then control the yaw of the gimbal according to the yaw control command input to the aircraft and the attitude angle information output by the gimbal,
  • high-precision control of the aerial photography of the aircraft is realized, so as to ensure the high quality of the aerial video, and solve the problem of video freezing during low-speed aerial photography.
  • FIG. 1 is a schematic diagram of one application environment of an aircraft control method provided by an embodiment of the present invention
  • Figure 2 is a specific structure diagram of the aircraft in Figure 1;
  • FIG. 3 is a flowchart of an aircraft control method provided by an embodiment of the present invention.
  • FIG. 4 is a sub-flow chart of step 110 in the method shown in FIG. 3;
  • FIG. 5 is another sub-flow chart of step 110 in the method shown in FIG. 3;
  • Figure 6 is a schematic diagram of an aircraft control method provided by an embodiment of the present invention.
  • Fig. 7 is a structural block diagram of an aircraft provided by an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of one of the application environments of the aircraft control method provided by an embodiment of the present invention
  • FIG. 2 is a specific structural diagram of the aircraft 10 in FIG. 1.
  • the aircraft control method of the present invention can be applied to an aircraft system.
  • the aircraft system includes: an aircraft 10 and a remote controller 20, and the aircraft 10 and the remote controller 20 are in communication connection.
  • the aircraft 10 includes a fuselage 11, an arm 12 connected to the fuselage 11, a power device 13 arranged on the arm 12, a pan/tilt 14 arranged on the fuselage 11, and a fuselage 11
  • the flight control system and gimbal control system inside (not shown).
  • the remote controller 20 and the aircraft 10 may be connected through a wired or wireless connection, for example, communication is established through a wireless communication module, so as to realize the data interaction between the remote controller 20 and the aircraft 10.
  • the remote control 20 can be any suitable remote control device.
  • the remote controller 20 is a remote control unit on a ground (ship) surface or an aerial platform, and controls the aircraft 10 by sending control instructions to the flight control system.
  • the remote controller 20 is used to transfer data, information or instructions. For example, after the remote controller 20 receives data or information sent by the aircraft 10 (such as image information taken by a photographing device), it can send the data or information to a display device so as to display the flight information of the aircraft 10 on the display device, and, The image information captured by the aircraft 10 is rendered or displayed.
  • the above-mentioned aircraft 10 can be any type of flying equipment.
  • unmanned aerial vehicles UAV
  • unmanned ships unmanned ships or other movable devices, etc.
  • UAV unmanned aerial vehicles
  • the following description of the present invention uses a drone as an example of an aircraft. It will be obvious to those skilled in the art that other types of aircraft can be used without limitation.
  • the drone can be various types of drones, for example, the drone can be a small drone.
  • the drone may be a rotorcraft, for example, a multi-rotor aircraft propelled by multiple propulsion devices through the air.
  • the drone may also be other Types of drones or mobile devices, such as fixed-wing drones, unmanned airships, para-wing drones, flapping-wing drones, and so on.
  • the aircraft 10 may rotate about one or more rotation axes.
  • the aforementioned rotation axis may include a roll axis, a pan axis, and a pitch axis.
  • the fuselage 11 may include a center frame and one or more arms 12 connected to the center frame, and the one or more arms 12 extend radially from the center frame.
  • the number of the arms 12 is 4, one end of each arm 12 is connected to the center frame, the other end is provided with a power unit 13, and the bottom of the fuselage 11 is installed with a pan/tilt 14 in the cloud.
  • a camera is also installed on the table 14.
  • the number of the arms 12 may be 2, 4, 6, and so on. That is, the number of arms 12 is not limited here.
  • the power device 13 is installed on the machine arm 12.
  • a power device 13 is usually provided on one machine arm 12. In some cases, a plurality of power devices 13 may also be provided on one machine arm 12.
  • the power device 13 usually includes The motor and the propeller connected to the output shaft of the motor.
  • the flight control system can control the power unit 13. Specifically, by sending a control command to the flight control system, the flight control system converts the control command into a corresponding pulse signal and outputs it to the motor to drive the power unit 13.
  • the motor of the power unit 13 may be a brushless motor or a brush motor.
  • the one or more power devices 13 provide power for the flight of the aircraft 10, and the power enables the aircraft 10 to realize one or more degrees of freedom movement, such as forward and backward movement, up and down movement, and so on.
  • the number of the power devices 13 is not limited here.
  • the power device 13 is specifically four propellers, which are respectively arranged on the four arms 12.
  • the number of the power devices 13/propellers may be 2, 4, 6, and so on. That is, the number of the power unit 13/propeller is not limited here.
  • the pan/tilt 14 is a photographing auxiliary device for carrying a camera.
  • a pan-tilt motor is also provided on the pan-tilt 14. Specifically, by sending a control instruction to the pan/tilt control system, the pan/tilt control system converts the control instruction into a corresponding pulse signal and outputs it to the pan/tilt motor to control the movement (such as rotation speed) of the pan/tilt motor, thereby adjusting the aircraft 10 to capture images Angle.
  • the pan/tilt motor can be a brushless motor or a brush motor.
  • the pan-tilt 14 can be located on the top of the fuselage 11 or on the bottom of the fuselage 11.
  • the camera mounted on the pan/tilt 14 may be a device for capturing images, such as a camera, a camera phone, a video recorder, or a video camera, etc.
  • the camera may communicate with the flight control system and shoot under the control of the flight control system.
  • the flight control system controls the shooting frequency of the image taken by the camera, that is, how many times are taken per unit time; or the flight control system controls the angle of the image taken by the camera through the pan/tilt 14.
  • a sensing system may also be provided on the fuselage 11, which is connected to the flight control system.
  • the sensing system is used to measure the position and status information of various parts of the aircraft 10, such as position, angle, speed, Acceleration and angular velocity, flying height, etc.
  • the sensing system may include, for example, at least one of an infrared sensor, an acoustic wave sensor, a gyroscope, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • IMU inertial measurement unit
  • the global navigation satellite system may be a global positioning system (Global Positioning System, GPS).
  • the attitude parameters of the drone 100 during the flight can be measured through the IMU, and the flying height of the aircraft 10 can be measured through the infrared sensor or the acoustic wave sensor.
  • the pan/tilt 14 is controlled by the pan/tilt control system, and the pan/tilt control system communicates with the flight control system to realize the data interaction between the pan/tilt 14 and the flight control system.
  • the flight control system and the pan/tilt control system are the executive bodies that execute the aircraft control method in the embodiments of the present invention.
  • the flight control system can be any suitable chip that can implement the aircraft control method performed by the present invention, such as a micro processor. Controller, micro control unit, single chip microcomputer, controller, etc.
  • the flight control system is at least a chip or device with computing function capable of acquiring data and instructions, processing data and instructions, and sending data and instructions, and can be set according to actual needs.
  • the aircraft 10 is mainly used to complete a designated task by flying, such as a flying task to a designated location, or a shooting task during the flight.
  • a flying task such as a flying task to a designated location, or a shooting task during the flight.
  • the aircraft 10 is required to control the power device 13 and the gimbal 14 so that the aircraft 10 can move forward, backward, left, and right.
  • a slight movement in each direction realizes high-precision control of the flying direction and flying distance of the aircraft 10.
  • the aircraft 10 also needs to move slightly in multiple directions to achieve a stable shooting effect.
  • the flight control system obtains the speed control command input to the aircraft and the actual yaw information output by the gimbal 14, and then according to the speed control command input to the aircraft and the actual yaw information output by the gimbal 14, The yaw of the aircraft is controlled so that the yaw of the aircraft is consistent with the yaw of the gimbal 14.
  • the pan/tilt control system first acquires the yaw control command input to the aircraft and the attitude angle information output by the pan/tilt 14, wherein the attitude angle information output by the pan/tilt 14 includes the actual information of the pan/tilt 14 Attitude angle and attitude angular rate.
  • the gimbal control system outputs the actual yaw information of the gimbal 14 according to the yaw control command input to the aircraft and the attitude angle information output by the gimbal 14, and sends the actual yaw information to the flight control system.
  • the actual yaw information includes the actual yaw angle and the actual yaw rate of the gimbal 14.
  • the speed control command and the yaw control command input to the aircraft are generated by the speed command and yaw command generated by the aircraft in the mission flight mode and the lever value of the remote controller 20 Obtained through command fusion.
  • the yaw control command input to the aircraft is first input to the gimbal control system, and the gimbal control system generates the gimbal motor PWM according to the instruction to adjust the yaw angle of the gimbal, and then outputs the gimbal
  • the actual yaw information is fed back to the flight control system.
  • the flight control system generates the motor PWM of the power unit 13 to control the yaw angle and yaw rate of the aircraft according to the actual yaw information output by the gimbal and the speed control command input to the aircraft.
  • the yaw angle and yaw rate of the aircraft and the yaw angle and yaw rate of the gimbal 14 constant.
  • the yaw control command after the command fusion is directly input to the gimbal control system without receiving noise pollution from the aircraft, so the change curve is very smooth, and the control accuracy of the gimbal control system itself is very high, thus ensuring the stability of the aerial video Sex, there will be no lag phenomenon. But at this time, the aircraft did not receive the yaw rotation command. In order to be consistent with the yaw of the gimbal, the actual yaw angle and yaw rate of the gimbal are fed back to the flight control system to control the yaw of the aircraft. . Therefore, the gimbal control system is the main control and the flight control system is the subordinate control.
  • the priority of the flight control system is lower than that of the gimbal control system.
  • the high-precision control and high sensitivity characteristics of the gimbal are cleverly used to avoid flight control.
  • the vibration and noise signals brought by the system in the aircraft yaw control mechanism solve the problem of freezing of aerial video when rotating the yaw axis at low speed.
  • the embodiment of the present invention provides an aircraft control method. Please refer to FIG. 3, which is a schematic flowchart of an aircraft control method provided by an embodiment of the present invention.
  • the aircraft control method is applied to the aircraft to control the yaw of the aircraft and increase the stability of the aircraft's aerial photography.
  • the aircraft includes a flight control system for controlling the aircraft and a pan/tilt control system for controlling the pan/tilt to achieve high-precision shooting.
  • the aircraft may be various types of aircraft, for example, the aircraft 10 in FIG. 1 and FIG. 2.
  • the aircraft control method includes but is not limited to the following steps:
  • Step 110 The pan/tilt control system acquires the yaw control command input to the aircraft and the attitude angle information output by the pan/tilt.
  • the yaw control command is a yaw control command generated by the flight control system according to the yaw command and the speed command generated by the aircraft in the current flight mission mode, combined with the joystick value of the remote control.
  • the attitude angle information includes an attitude angle and an attitude angular rate
  • the attitude angle information output by the pan/tilt includes the attitude angle and an attitude angular rate of the pan/tilt.
  • the attitude angle that is, the Euler angle
  • the attitude angle is determined by the relative position between the aircraft's body coordinate system and the geographic coordinate system, and three Euler angles of yaw angle, pitch angle and roll angle are used to represent the Attitude angle.
  • the attitude angle indicates the current angular attitude of the pan/tilt head in the air
  • the attitude angular rate indicates the rate of change of the attitude angle of the pan/tilt head in the air during the current flight mission.
  • the posture angle information of the pan/tilt can be measured by a six-axis sensor arranged on the pan/tilt, that is, a three-axis gyroscope and a three-axis sensor.
  • Step 120 The pan/tilt control system controls the yaw of the pan/tilt based on the yaw control command input to the aircraft and the attitude angle information output by the pan/tilt.
  • the pan/tilt control system is an auxiliary shooting system used to improve aerial video.
  • the high frequency vibration of the fuselage is usually isolated by a vibration reduction system, and its control accuracy is much higher than that of the flight control system.
  • the control system is used to specifically control the direction and speed of the yaw of the aircraft's gimbal.
  • the pan/tilt control system should be equipped with a motor, which can obtain the yaw control command and execute the yaw control command, and can also drive the pan/tilt of the aircraft so that the pan/tilt can follow the yaw control command
  • the yaw information carried is yaw.
  • the pan/tilt control system is specifically a control system capable of converting the yaw control command into a corresponding pulse signal to control the yaw of the pan/tilt.
  • the gimbal control system is the master control
  • the flight control system is the slave control
  • the flight control system has a lower priority than the gimbal control system.
  • the gimbal control system controls the gimbal yaw according to the yaw control instruction output by the flight control system and the attitude angle information output by the gimbal.
  • the pan/tilt control system When executing the aircraft control method provided by the present invention, the pan/tilt control system obtains the yaw control command and the attitude angle information output by the pan/tilt, and then executes the yaw control command so that the pan/tilt Yaw control commands yaw. Furthermore, aerial photography can also be carried out.
  • the embodiment of the present invention provides an aircraft control method, the aircraft control method is applied to the aircraft, the aircraft includes a flight control system for controlling the aircraft and a pan/tilt control system for controlling the pan/tilt, the pan/tilt control system It can obtain the yaw control command input to the aircraft and the attitude angle information output by the gimbal, and then control the yaw of the gimbal according to the yaw control command input to the aircraft and the attitude angle information output by the gimbal, thereby achieving
  • the high-precision control of the aerial photography of the aircraft ensures the high quality of the aerial video and solves the problem of video freezing during low-speed aerial photography.
  • FIG. 4 is a sub-flow chart of step 110 in the method described in FIG. 3.
  • the step 110 specifically includes:
  • Step 111 The flight control system obtains the speed command and the yaw command generated by the aircraft in the mission flight mode.
  • the mission flight mode is the working mode of the flight mission currently executed by the aircraft. Specifically, when the aircraft needs to navigate to a target position, the aircraft generates a navigation route from the current position to the target position and generates a corresponding flight mission. The aircraft enters the mission flight mode of the mission, and the flight control system executes the During the flight mission, the corresponding speed command and yaw command are generated to drive the aircraft to the target position.
  • the speed command is a speed command executed by the aircraft in the current mission flight mode, and the speed command controls the aircraft to fly at the current flight speed.
  • the yaw command is a yaw command executed by the aircraft in the current mission flight mode, and the yaw command controls the aircraft to fly at the current yaw angle and yaw rate.
  • the flight control system is the basic premise for ensuring the stable flight of the aircraft, and the flight control system is used to specifically control the speed and direction of the aircraft flying.
  • At least two types of motors should be provided in the flight control system, and the at least two types of motors can respectively obtain the speed command or the yaw command in the current mission flight mode and execute the speed command or the yaw command.
  • Navigation instructions can be provided in the flight control system, and the at least two kinds of motors can also drive the power device of the aircraft, so that the power device navigates according to the flight information carried by the speed command and the yaw command.
  • the flight control system is specifically a control system capable of converting the speed command and the yaw command into corresponding pulse signals to control the aircraft to perform the current flight mission.
  • the flight control system may execute the speed command and the yaw command through a motor to control the yaw of the aircraft.
  • Step 112 The flight control system acquires the rod value of the remote controller, wherein the remote controller is communicatively connected with the aircraft.
  • the aircraft is controlled by a remote controller. Therefore, by changing the lever magnitude of the remote controller, the speed command and the yaw command for controlling the flight speed and yaw can be changed.
  • the stick value of the remote controller includes the stick values of the four direction rockers of a roll stick, a pitch stick, a yaw stick, and a thrust stick. According to the rod value, the flight direction and flight speed of the aircraft are adjusted.
  • the remote controller is communicatively connected with the aircraft to send the rod value to the aircraft.
  • the remote controller and the aircraft may have two-way communication, and the aircraft may send the current real-time flight status of the aircraft to the remote controller.
  • the remote controller is wirelessly connected to the aircraft, so that the aircraft has more free flight space, for example, it can be connected via Bluetooth.
  • Step 113 The flight control system generates the input to the aircraft according to the speed command and the yaw command generated by the aircraft in the mission flight mode, and the lever amount of the remote control The yaw control command.
  • the fusion calculation is used to obtain the yaw control command for inputting the aircraft.
  • the flight control system may read the speed command and the yaw command generated by the flight control system in the current mission flight mode from the flight control system.
  • the aircraft when the aircraft is performing a flight mission, the aircraft will maintain a preset speed and yaw in the current mission flight mode, and the aircraft's flight control system will output speed commands and yaw commands to the power unit to drive the aircraft Sailing. Or, when the aircraft is about to perform a flight task, the flight control system will also output a speed command and a yaw command to the power device to drive the aircraft to sail.
  • the speed command and the yaw command are acquired, and when the remote controller controls the aircraft to change the navigation direction and speed, the lever magnitude of the remote controller is acquired, so as to generate and drive the aircraft to follow the control of the remote controller.
  • Step 114 The flight control system sends the yaw control command input to the aircraft to the gimbal control system.
  • the pan/tilt control system and the flight control system need to be connected in communication.
  • the pan/tilt control system and the flight control system may be connected through wired communication or wireless communication; the pan/tilt control system and the flight control system may be directly connected or may be Indirect connection.
  • the yaw control instruction is sent to the pan/tilt control system.
  • the pan/tilt control system and the flight control system may be directly physically connected through a bus, or a wireless module is provided inside to connect on a certain frequency band. Or, it can be connected through a single chip for data processing and transmission. Then, the flight control system sends the yaw control instruction to the pan/tilt control system through the above physical connection.
  • the connection mode of the pan/tilt control system and the flight control system can be set according to actual needs, and the related electronic components and circuit structure or communication protocol can also be set according to the actual situation, without being bound to the present invention. Limitations of Examples.
  • FIG. 5 is another sub-flow chart of step 110 in the method described in FIG. 3.
  • the step 110 specifically includes:
  • Step 115 The flight control system generates a speed control input to the aircraft according to the speed command and the yaw command generated by the aircraft in the mission flight mode, and the lever value of the remote controller Command and thrust command.
  • the aircraft due to the control of the remote controller, the aircraft will change the flight speed and direction of the aircraft in the current mission flight mode. Therefore, the flight control system needs to combine the speed command generated by the aircraft in the current mission flight mode. And the yaw command and the lever amount of the remote controller to generate a speed control command and a thrust command input to the aircraft.
  • the speed control instruction is specifically the new route and corresponding flight task generated by the flight control system according to the control of the remote controller, the speed control instruction executed by the new flight task, and the speed control instruction is used to control the aircraft The speed of flight.
  • the thrust command is a thrust command generated by the flight control system in combination with the acceleration of the aircraft in the current mission flight mode and the lever value of the remote control, and the thrust command is used to control the direction and acceleration of the aircraft.
  • Step 116 The flight control system obtains the actual yaw information output by the gimbal.
  • the flight control system obtains the actual yaw information output by the gimbal according to the attitude angle information output by the gimbal.
  • the actual yaw information output by the pan/tilt includes the actual yaw angle and the actual yaw rate of the pan/tilt.
  • the aircraft adjusts the yaw angle of the aircraft according to the current attitude angle information of the pan/tilt and the yaw control command input to the aircraft. Then, the actual yaw information of the aircraft is measured by the gyroscope.
  • the yaw angle is one of the three Euler angles representing the attitude angle, and is the angle between the projection of the body axis on the horizontal plane and the earth axis.
  • Step 117 The flight control system obtains the speed and attitude angle information output by the aircraft.
  • the actual speed information output by the aircraft can be detected by a speed sensor, and the output by the aircraft can be measured by a six-axis sensor provided on the aircraft, that is, a three-axis gyroscope and a three-axis sensor.
  • the attitude angle namely the Euler angle, is represented by three Euler angles of yaw angle, pitch angle and roll angle, respectively,
  • the attitude angle information output by the aircraft includes the attitude angle and the attitude angle rate output by the aircraft.
  • the aircraft adjusts according to the speed control instructions input to the aircraft, the current actual yaw information of the gimbal detected by the six-axis sensor set on the gimbal, the current speed information and attitude angle information output by the aircraft
  • the yaw angle and yaw rate of the aircraft control the yaw of the aircraft.
  • Step 118 The flight control system according to the actual yaw information output by the gimbal, the speed output by the aircraft, the attitude angle information output by the aircraft, the speed control command input to the aircraft and the thrust Command to control the yaw of the aircraft.
  • the attitude angle information output by the aircraft includes the actual attitude angle and the attitude angle rate output by the aircraft.
  • the flight control system obtains the actual yaw condition of the current gimbal according to the actual yaw information output by the gimbal, and then obtains the actual yaw condition of the current aircraft according to the speed and attitude angle information output by the aircraft.
  • the flight control system calculates the speed control commands and thrust commands that are finally input to the aircraft and control the yaw of the aircraft.
  • the motor in the flight control system converts the speed control command and the thrust command into corresponding pulse signals to drive the aircraft to fly to control the yaw of the aircraft.
  • FIG. 6 is a schematic diagram of an aircraft control method provided by an embodiment of the present invention. The specific execution flow of the aircraft control method provided by the embodiment of the present invention is described around the schematic diagram.
  • the numbers 100-108 are instructions or data information that need to be transmitted that are involved in controlling the aircraft to execute the above steps 110-120, steps 111-114, and steps 115-118.
  • the FCS in the figure refers to the aforementioned flight control system (Flight Control System, FCS), and a motor for driving mechanical devices is provided in the FCS.
  • the GFS in the figure refers to the aforementioned Gimbal Control System (GCS), and a motor for driving mechanical devices is provided in the GFS.
  • the instructions in the figure refer to the calculation and analysis of the preliminary acquired instructions by the flight control system in the aircraft.
  • the aircraft in the figure refers to a device in the aircraft that controls the flight speed and direction, such as a power device, and the aircraft is in communication with the flight control system.
  • the pan-tilt in the figure refers to the equipment used for auxiliary shooting on the aircraft, and the pan-tilt is in communication with the pan-tilt control system.
  • the 100 is the speed command [v xc_mission , v yc_mission , v zc_mission ], the yaw angle command ⁇ c_mission, and the yaw angle rate command generated by the aircraft performing intelligent flight
  • the 101 is the remote control rod value [R, P, Y, T] (rolling rod, pitching rod, yaw rod, thrust rod).
  • Said 102 is the final synthesized speed command [v xc , v yc , v zc ] and thrust command T.
  • the 103 is the final synthesized yaw angle command ⁇ c and yaw angle rate command
  • the 104 is a PWM (pulse width modulation) signal of the aircraft motor.
  • the 105 is the PWM (pulse width modulation) signal of the pan/tilt motor.
  • the 106 is the actual speed [v x , v y , v z ], attitude angle [ ⁇ , ⁇ , ⁇ ] and angular rate [ ⁇ x , ⁇ y , ⁇ z ] of the aircraft.
  • the 107 is the actual attitude angle of the gimbal [ ⁇ g , ⁇ g , ⁇ g ] and angular rate
  • the 108 is the actual yaw angle ⁇ g and yaw rate of the gimbal
  • the control error e r of the FCS is not considered.
  • the gimbal ⁇ g closely follows the aircraft ⁇ , although the response process is a first-order smooth , But from the perspective of angular rate, the flight control system FCS will bring a larger jitter or error to the gimbal control system GCS, or the yaw axis of the gimbal, on the order of 1-10°/s.
  • the yaw axis of the gimbal is too severely coupled with the yaw axis of the aircraft, and the gimbal is too much affected by the yaw axis of the aircraft, especially when the yaw axis rotates at a low speed, it is easy to cause the aerial video to freeze.
  • the command 102 and the command 103 are usually sent directly to the flight control system FCS and the gimbal control system GCS.
  • the flight control system FCS and the gimbal control system GCS respectively control the aircraft and the gimbal to adjust the attitude.
  • the flight control system FCS first controls the aircraft to adjust its attitude, and then sends the adjusted attitude information of the aircraft to the gimbal control system GCS, and then the gimbal control system GCS performs stable control of the gimbal.
  • the specific work flow and working principle of executing instructions 100-108 are: when the aircraft is flying, because the intelligent flight adjustment program is set inside, the aircraft is performing intelligent flight , There is a speed command 100, and at the same time, when the aircraft is flying intelligently, it will also receive the lever amount information 101 for controlling the remote controller.
  • the aircraft calculates, analyzes and finally synthesizes the speed control command 102 and the yaw control command 103 through command fusion.
  • the finally synthesized speed control command 102 is sent to the flight control system FCS
  • the finally synthesized yaw control command 103 is sent to the gimbal control system GCS.
  • the gimbal control system GCS generates the pulse width modulation signal 105 of the gimbal motor according to the instruction 103, and the gimbal adjusts the flight state after obtaining the signal 105.
  • the actual attitude information 107 of the gimbal is fed back to the flight control system, where the actual yaw information 108 of the gimbal in the actual attitude information 107 is further sent to the flight control system FCS.
  • the flight control system FCS generates the pulse width modulation signal 104 of the aircraft motor according to the actual yaw information 108 and the acquired speed control command 102, and the aircraft adjusts the flight state after acquiring the signal 104.
  • the aircraft first adjusts the yaw angle and yaw rate to be consistent with the yaw angle and yaw rate of the gimbal, and further adjusts the flight state of the aircraft according to the acquired speed control command 102.
  • the yaw control command 103 (including the yaw angle and the yaw angle rate) generated after the command fusion is directly sent to the gimbal control system GCS.
  • the yaw control command 103 executed by the gimbal will not be polluted by aircraft noise, and the change curve of the yaw control command 103 is very smooth.
  • the actual yaw information 108 detected/acquired by the gimbal control system GCS after executing the yaw control instruction 103 is compared with that of the yaw
  • the aviation control command 103 has a small error.
  • the aircraft adjusts its yaw state according to the actual yaw information 108, the flight speed and direction are adjusted.
  • the aerial video obtained after the final shooting will be particularly stable, there will be no stuttering phenomenon, and strong wind resistance.
  • the gimbal control system GCS is the main control
  • the flight control system FCS is the slave control.
  • the priority of the flight control system FCS is lower than the gimbal control system GCS.
  • the aircraft control method adopted by the present invention cleverly uses The features of high-precision control and high sensitivity of the gimbal avoids the vibration and noise signals caused by the flight control system FCS in the yaw control of the aircraft, and mechanically solves the freezing of aerial video when rotating the yaw axis at low speed. problem.
  • a feedback loop from the flight control system FCS to the gimbal control system GCS can also be added.
  • the yaw information of the aircraft is transmitted to the gimbal control system GCS, and the gimbal control system GCS is based on the yaw of the aircraft.
  • the information is tracked and compensated by differential calculation, which enables further monitoring of the yaw status of the flight control system FCS.
  • the actual yaw information 108 of the gimbal may only include the actual yaw angle information of the gimbal or the actual yaw angle rate information of the gimbal. In some other embodiments, the above settings may not be restricted to the limitations of the embodiments of the present invention.
  • the first method After the aircraft is turned on, wait for the gimbal calibration to complete, and then unlock the aircraft to make the motors enter the speed state. If you do not push the throttle lever, the gimbal will swing when the Yaw lever is turned on, indicating that the aircraft is running.
  • the aircraft control method described in the embodiments of the invention can obtain stable captured images.
  • the second method In the case of failure of the first method, remove the aircraft power unit, turn on the aircraft, wait for the gimbal calibration to be completed, unlock the aircraft, make the motors enter the speed state, push the throttle lever, and manually take the aircraft If it is suspended in the air, the pan/tilt will swing with the Yaw stick at this time, indicating that the aircraft is executing the aircraft control method according to the embodiment of the present invention and can obtain stable captured images.
  • the third method when the aircraft is hovering normally, hit the Yaw stick or program control the expected value of the yaw speed is lower than 2°/s, and the video still does not freeze, which means that the aircraft is executing the aircraft described in the embodiment of the present invention
  • the control method can obtain stable captured images.
  • the embodiment of the present invention also provides an aircraft.
  • FIG. 7, is a structural block diagram of an aircraft 200 provided by an embodiment of the present invention.
  • the aircraft 200 includes a fuselage 210, an arm 220, a power unit 230, and a pan/tilt 240. , Flight control system 250 and PTZ control system 260.
  • the arm 220 is connected to the fuselage 210
  • the power device 230 is provided on the arm 220, and is used to provide power for the aircraft 200 to fly
  • the pan/tilt 240 is provided on the aircraft.
  • the flight control system 250 is provided on the fuselage 210
  • the pan/tilt control system 260 is used to control the pan/tilt 240 and is connected to the flight control system 250 in communication.
  • the pan/tilt control system 260 is configured to: obtain the yaw control command input to the aircraft 200 and the attitude angle information output by the pan/tilt 240; according to the input yaw control command of the aircraft 200 and the cloud
  • the attitude angle information output by the platform 240 controls the yaw of the platform 240.
  • the flight control system 250 is used to: obtain the speed command and the yaw command generated by the aircraft 200 in the mission flight mode; obtain the lever value of the remote control, wherein the remote The aircraft 200 is in communication connection; according to the speed command and the yaw command generated by the aircraft 200 in the mission flight mode, and the lever value of the remote control, the input to the aircraft 200 is generated
  • the yaw control instruction; the yaw control instruction input to the aircraft 200 is sent to the pan/tilt control system 260.
  • the flight control system 250 is further configured to: according to the speed command and the yaw command generated by the aircraft 200 in the mission flight mode, and the lever amount of the remote controller , Generate and input the speed control command and thrust command of the aircraft 200.
  • the flight control system 250 is also used to: obtain the actual yaw information output by the gimbal 240; obtain the speed and attitude angle information output by the aircraft 200; The actual yaw information, the speed output by the aircraft 200, the attitude angle information output by the aircraft 200, the speed control command input to the aircraft 200 and the thrust command are used to control the yaw of the aircraft 200.
  • the flight control system 250 is further configured to obtain the actual yaw information output by the gimbal 240 according to the attitude angle information output by the gimbal 240.
  • the actual yaw information output by the gimbal 240 includes the actual yaw angle and the actual yaw rate of the gimbal 240.
  • the actual attitude angle information output by the aircraft 200 includes the actual attitude angle and the attitude angle rate output by the aircraft 200.
  • the attitude angle information output by the pan/tilt 240 includes the attitude angle and the attitude angular rate of the pan/tilt 240.
  • the aircraft 200 can execute any method embodiment, that is, the aircraft control method provided in the first embodiment, and has the corresponding functional modules and beneficial effects for the execution method.
  • the aircraft control method provided in the method embodiment please refer to the aircraft control method provided in the method embodiment, which will not be described in detail here.
  • the embodiment of the present invention provides a computer program product
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium
  • the computer program includes program instructions, when the program instructions are executed by a computer
  • the computer is caused to execute the aircraft control method as described above.
  • the method steps 110-120, 111-114, and 115-118 described above in Figs. 3 to 5 are executed to realize the functions of the modules 210-250 in Fig. 7.
  • An embodiment of the present invention provides a non-volatile computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make a computer execute the aircraft control method described above .
  • the method steps 110-120, 111-114, and 115-118 described above in FIGS. 3 to 7 are executed to realize the functions of the modules 210-250 in FIG. 7.
  • the embodiments of the present invention provide an aircraft control method and an aircraft.
  • the aircraft control method is applied to the aircraft.
  • the aircraft includes a flight control system for controlling the aircraft and a pan/tilt control system for controlling a pan/tilt.
  • the control system can obtain the yaw control command input to the aircraft and the attitude angle information output by the gimbal, and then control the yaw of the gimbal according to the yaw control command input to the aircraft and the attitude angle information output by the gimbal,
  • the control authority of the gimbal control system is higher than that of the flight control system, and the flight control system controls the yaw of the aircraft according to the actual yaw information output by the gimbal control system, thereby realizing the high level of aerial photography of the aircraft. Precision control to ensure the high quality of aerial video and solve the problem of video freezes during low-speed aerial photography.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physically separate. Modules can be located in one place or distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each embodiment can be implemented by software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the method of the embodiments can be implemented by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium, and the program is executed At this time, it may include the flow of the embodiment of each method as described.
  • the storage medium can be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种飞行器控制方法及飞行器,该飞行器控制方法应用于该飞行器(10)中,该飞行器(10)包括用于控制飞行器(10)的飞行控制***和用于控制云台(14)的云台控制***,该云台控制***能够获取输入飞行器的偏航控制指令和云台输出的姿态角信息(110);云台控制***根据输入飞行器的偏航控制指令和云台输出的姿态角信息,控制云台的偏航(120),进而实现对飞行器(10)航拍的高精度控制,从而保证航拍视频的高质量,解决低转速航拍时视频卡顿的问题。

Description

飞行器控制方法及飞行器 技术领域
本申请涉及航拍技术领域,尤其涉及一种飞行器控制方法及飞行器。
背景技术
随着飞行技术的发展,飞行器被广泛应用于各个领域。例如,以无人机为例,其使用范围已经扩宽到军事、科研、民用三大领域,具体在电力通信、气象、农业、海洋、勘探、摄影、搜救、防灾减灾、农作物估产、缉毒缉私、边境巡逻、治安反恐等领域应用甚广。无人机作为一种处在迅速发展中的新概念装备,由于其具有体积小、重量轻、机动灵活、反应快速、无人驾驶、操作要求低等优点,通过云台搭载多类拍摄设备,可以实现影像实时传输、高危地区探测功能,是卫星遥感与传统航空遥感的有力补充。
其中,航拍无人机包括消费级航拍无人机和专业级航拍无人机,无论是消费级航拍无人机还是专业级航拍无人机,其航拍质量均取决于飞机机身和云台的控制效果。飞行控制***(Flight Control System,FCS)是保证飞机稳定飞行的基本前提;云台控制***(Gimbal Control System,GCS)用于改善航拍视频,并且通过其减振***来隔离机身的高频振动,其控制精度远高于FCS的控制精度。通常,现有的航拍无人机中,GCS和FCS是独立的,亦即,GCS的俯仰、滚转通道不响应FCS姿态的变化,且GCS的偏航角保证一阶收敛于FCS的偏航角。
在实现本发明的过程中,发明人发现相关技术中至少存在如下问题:首先,FCS没有GCS的控制权限,云台只获取飞机的偏航角/偏航角速率信息,并且无任何反馈信息与飞控***进行实时交互;其次,FCS的偏航控制力矩小,偏航控制与俯仰控制、滚转控制存在通道耦合,在受到外界干扰时,FCS偏航通道转速不均匀而造成航拍视频不流畅,特别是在低转速时,视频卡顿现象严重;并且,云台偏航通道的控制受到飞机偏航角控制的影响,并没有将GCS的高精度控制优点有效地发挥出来,造成FCS控制压力增大。
发明内容
本申请发明实施例提供一种飞行器控制方法及飞行器,可以最大限度地发挥了云台控制***GCS高精度控制的特点,解决了偏航通道低转速时的航拍视频卡顿问题,保证了航拍视频的稳定性和流畅性。
本发明实施例公开了如下技术方案:
第一方面,本发明实施例提供了一种飞行器控制方法,应用于飞行器,所述飞行器包括用于控制飞行器的飞行控制***和用于控制云台的云台控制***,所述方法包括:
所述云台控制***获取输入所述飞行器的偏航控制指令和所述云台输出的姿态角信息;
所述云台控制***根据所述输入所述飞行器的偏航控制指令和所述云台输出的所述姿态角信息,控制所述云台的偏航。
在一些实施例中,所述云台控制***获取输入所述飞行器的偏航控制指令和所述云台输出的姿态角信息,包括:
所述飞行控制***获取所述飞行器在任务飞行模式下产生的速度指令和偏航指令;
所述飞行控制***获取遥控器的杆量值,其中,所述遥控器与所述飞行器通信连接;
所述飞行控制***根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成所述输入所述飞行器的所述偏航控制指令;
所述飞行控制***将所述输入所述飞行器的所述偏航控制指令发给所述云台控制***。
在一些实施例中,该方法还包括:
所述飞行控制***根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成输入所述飞行器的速度控制指令和推力指令。
在一些实施例中,该方法还包括:
所述飞行控制***获取所述云台输出的实际偏航信息;
所述飞行控制***获取所述飞行器输出的速度以及姿态角信息
所述飞行控制***根据所述云台输出的实际偏航信息、所述飞行器输出的速度、所述飞行器输出的姿态角信息、所述输入所述飞行器的速度控制指令和所述推力指令,控制所述飞行器的偏航。
在一些实施例中,所述飞行控制***获取所述云台输出的实际偏航信息,包括:
所述飞行控制***根据所述云台输出的姿态角信息,获取所述云台输出的实际偏航信息。
在一些实施例中,所述云台输出的所述实际偏航信息包括所述云台的实际偏航角和实际偏航角速率。
在一些实施例中,所述飞行器输出的姿态角信息包括所述飞行器输出的实际的姿态角及姿态角速率。
在一些实施例中,所述飞行器输出的实际的姿态角信息包括所述飞行器输出的实际的姿态角及姿态角速率。
第二方面,本发明实施例提供了一种飞行器,包括:
机身;
机臂,与所述机身相连;
动力装置,设于所述机臂,用于为所述飞行器提供飞行的动力;
云台,设于所述机身;
飞行控制***,设于所述机身;以及
云台控制***,用于控制所述云台,且与所述飞行控制***通信连接;
所述云台控制***用于:
获取输入所述飞行器的偏航控制指令和所述云台输出的姿态角信息;
根据所述输入所述飞行器的偏航控制指令和所述云台输出的所述姿态角信息,控制所述云台的偏航。
在一些实施例中,所述飞行控制***用于:
获取所述飞行器在任务飞行模式下产生的速度指令和偏航指令;
获取遥控器的杆量值,其中,所述遥控器与所述飞行器通信连接;
根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成所述输入所述飞行器的所述偏航控制指令;
将所述输入所述飞行器的所述偏航控制指令发给所述云台控制***。
在一些实施例中,所述飞行控制***还用于:
根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成输入所述飞行器的速度控制指令和推力指令。
在一些实施例中,所述飞行控制***还用于:
获取所述云台输出的实际偏航信息;
获取所述飞行器输出的速度以及姿态角信息;
根据所述云台输出的实际偏航信息、所述飞行器输出的速度、所述飞行器输出的姿态角信息、所述输入所述飞行器的速度控制指令和所述推力指令,控制所述飞行器的偏航。
在一些实施例中,所述飞行控制***还用于:
根据所述云台输出的姿态角信息,获取所述云台输出的实际偏航信息。
在一些实施例中,所述云台输出的所述实际偏航信息包括所述云台的实际偏航角和实际偏航角速率。
在一些实施例中,所述飞行器输出的姿态角信息包括所述飞行器输出的实际的姿态角及姿态角速率。
在一些实施例中,所述云台输出的所述姿态角信息包括所述云台的姿态角和姿态角速率。
第三方面,本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行如上第一方面所述的飞行器控制方法。
第四方面,本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上第一方 面所述的飞行器控制方法。
本发明实施例提供了一种飞行器控制方法及飞行器,该飞行器控制方法应用于该飞行器中,该飞行器包括用于控制飞行器的飞行控制***和用于控制云台的云台控制***,该云台控制***能够获取输入飞行器的偏航控制指令和云台输出的姿态角信息,然后根据该输入飞行器的偏航控制指令和云台输出的所述姿态角信息,控制所述云台的偏航,进而实现对飞行器航拍的高精度控制,从而保证航拍视频的高质量,解决低转速航拍时视频卡顿的问题。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的飞行器控制方法的其中一种应用环境的示意图;
图2为图1中飞行器的具体结构图;
图3为本发明实施例提供的一种飞行器控制方法的流程图;
图4为图3所示方法中步骤110的一子流程图;
图5为图3所示方法中步骤110的另一子流程图;
图6为本发明实施例提供的一种飞行器控制方法的原理图;
图7为本发明实施例提供的一种飞行器的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本申请的保护范围之内。另外,虽然在装置/结构示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置/结构中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的 技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1为本发明实施例提供的飞行器控制方法的其中一种应用环境的示意图,图2为图1中飞行器10的具体结构图。本发明的飞行器控制方法可被应用于一种飞行器***。其中,其中,该飞行器***包括:飞行器10和遥控器20,飞行器10与遥控器20通讯连接。该飞行器10包括机身11、与所述机身11相连的机臂12、设于所述机臂12的动力装置13、设于所述机身11的云台14、以及设置于机身11内的飞行控制***和云台控制***(图未示)。
遥控器20与飞行器10可以通过有线或无线连接,例如,通过无线通信模块建立通信,以实现遥控器20与飞行器10的数据交互。
其中,该遥控器20可以是任何合适的遥控装置。遥控器20为受地(舰)面或空中平台上的遥控单元,通过发送控制指令给飞行控制***以控制飞行器10。该遥控器20用于进行数据、信息或指令的中转。例如,遥控器20接收飞行器10发送的数据或信息(如拍摄装置所拍摄的图像信息)后,可以将该数据或信息发送给显示设备,以便在显示设备上显示飞行器10的飞行信息,以及,将飞行器10所拍摄的图像信息进行渲染或显示。
其中,上述飞行器10可以为任何类型的飞行设备。例如,无人机(Unmanned Aerial Vehicle,UAV)、无人船或其它可移动装置等等。以下对本发明的描述使用无人机作为飞行器的示例。对于本领域技术人员将会显而易见的是,可以不受限制地使用其他类型的飞行器。其中,该无人机可以为各种类型的无人机,例如,无人机可以是小型的无人机。在某些实施例中,无人机可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此,无人机也可以是其它类型的无人机或可移动装置,如固定翼无人机、无人飞艇、伞翼无人机、扑翼无人机等等。在一些实施例中,飞行器10可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、平移轴和俯仰轴。
所述机身11可以包括中心架以及与中心架连接的一个或多个机臂12,一个或多个机臂12呈辐射状从中心架延伸出。在本发明实施例中,该机臂12的数量为4个,每个机臂12的一端连接至中心架,另一端上设置有动力装置13,机身11底部安装有云台14,在云台14上还安装有摄像头。在其他的一些实施例中,所述机臂12的数量可以为2个、4个、6个等等。也即,机臂12的数量在此不受限制。
所述动力装置13安装于机臂12上,一个机臂12上通常设置一个动力装置13,在有的情况下,一个机臂12上也可以设置有多个动力装置13,动力装置13通常包括电机和与 电机的输出轴相连的螺旋桨。飞行控制***可以控制动力装置13,具体的,通过发送控制指令至飞行控制***,飞行控制***将控制指令转化为相应的脉冲信号输出至电机,以驱动所述动力装置13。其中,动力装置13的电机可以是无刷电机,也可以有刷电机。所述一个或多个动力装置13为该飞行器10的飞行提供动力,该动力使得该飞行器10能够实现一个或多个自由度的运动,如前后运动、上下运动等等。该动力装置13的数量在此也不作限制。此外,在图2所示飞行器10中,所述动力装置13具体为四个螺旋桨,分别设置在四个机臂12上。在其他的一些实施例中,所述动力装置13/螺旋桨的数量可以为2个、4个、6个等等。也即,所述动力装置13/螺旋桨的数量在此不受限制。
所述云台14为一种拍摄辅助设备,用于搭载摄像机。云台14上也设置有云台电机。具体的,通过发送控制指令至云台控制***,云台控制***将控制指令转化为相应的脉冲信号输出至云台电机,以控制云台电机的运动(如转速),从而调节飞行器10拍摄图像的角度。其中,云台电机可以是无刷电机,也可以有刷电机。云台14可以位于机身11的顶部,也可以位于机身11的底部。云台14搭载的摄像机可以是照相机、拍摄手机、录像机或摄像机等用于采集图像的装置,摄像头可以与飞行控制***通信,并在飞行控制***的控制下进行拍摄。例如,飞行控制***控制摄像头拍摄图像的拍摄频率,也即每单位时间内拍摄多少次;或者,飞行控制***通过云台14控制摄像头的拍摄图像的角度等。并且,摄像头可以为若干个,如1个、2个、3个4个等。
此外,在机身11上还可以设置有传感***,传感***连接至飞行控制***,该传感***用于测量飞行器10各个部件的位置和状态信息等等,如位置、角度、速度、加速度和角速度、飞行高度等等。例如,在飞行器10飞行时,可以通过传感***实时获取飞行器当前的飞行信息,以便实时确定飞行器所处的飞行状态。传感***例如可以包括红外传感器、声波传感器、陀螺仪、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星***和气压计等传感器中的至少一种。例如,全球导航卫星***可以是全球定位***(Global Positioning System,GPS)。通过IMU可以测量无人机100的飞行过程中的姿态参数,通过红外传感器或声波传感器可以测量飞行器10的飞行高度等等。
云台14由云台控制***控制,云台控制***与飞行控制***通信连接,以实现云台14与飞行控制***之间的数据交互。
飞行控制***和云台控制***(图未示)为本发明实施例中执行飞行器控制方法的执行主体,飞行控制***可以为任何合适的能实现本发明执行的飞行器控制方法的芯片,如微处理器、微控制单元、单片机、控制器等。具体地,该飞行控制***至少是能够获取数据及指令、处理数据及指令、发送数据及指令的具有计算功能的芯片或装置,可以根据实际需要进行设置。
飞行器10作为一种飞行载具,主要用于通过飞行完成指定任务,如飞往指定地点的飞 行任务,或者在飞行过程中进行拍摄的拍摄任务等。在飞行器10进行航拍时,通常为了使得用户能够看到想要看到的目标区域的图像,得到更好的拍摄效果,需要飞行器10控制动力装置13和云台14使得飞行器10能够在前后左右多个方向上进行轻微的移动,实现对飞行器10的飞行方向和飞行距离的高精度控制。或者在有风的情况下,同样也需要飞行器10在多个方向上进行轻微的移动,从而达到稳定拍摄的效果。
例如,在飞行器10悬停状态下,绕偏航轴低速转动,或者在飞行器10正常运动模式下,绕偏航轴低速转动,或者在极端操作情况下绕偏航轴低速转动时,或者在有风或无风环境下飞行时,需要保证在飞行偏航通道低转速的情况下云台14偏航通道转速的均匀性,从而保证航拍图像或视频的高质量,解决低转速航拍时视频卡顿的问题。为此,需要对航拍进行高精度的控制,提高航拍增稳的效果。
基于此,在本发明实施例中,飞行控制***获取输入飞行器的速度控制指令和云台14输出的实际偏航信息,然后根据输入飞行器的速度控制指令和云台14输出的实际偏航信息,控制飞行器的偏航,以使得飞行器的偏航与云台14的偏航保持一致。
在本发明的一实施例中,云台控制***首先获取输入飞行器的偏航控制指令和云台14输出的姿态角信息,其中,所述云台14输出的姿态角信息包括云台14实际的姿态角及姿态角速率。云台控制***根据输入所述飞行器的偏航控制指令和云台14输出的姿态角信息,输出云台14的实际偏航信息,并将该实际偏航信息发送给飞行控制***。在本发明的一实施例中,所述实际偏航信息包括云台14的实际偏航角和实际偏航角速率。
在本发明的一实施例中,所述输入飞行器的速度控制指令和所述输入飞行器的偏航控制指令由飞行器在任务飞行模式下产生的速度指令和偏航指令以及遥控器20的杆量值通过指令融合获得。
在本发明的实施例中,首先将输入飞行器的偏航控制指令输入云台控制***,云台控制***根据指令生成云台电机PWM用于调整云台的偏航角,然后再将云台输出的实际偏航信息反馈给飞行控制***,飞行控制***根据云台输出的实际偏航信息和输入飞行器的速度控制指令,生成动力装置13的电机PWM控制飞行器的偏航角及偏航角速率,以使得飞行器的偏航角及偏航角速率与云台14的偏航角及偏航角速率保值一直。通过指令融合后的偏航控制指令直接输入云台控制***,没有收到飞行器的噪声污染,因此变化曲线十分光滑,而云台控制***本身的控制精度又很高,因此保证了航拍视频的稳定性,不会出现卡顿现象。但此时,飞行器并未接收到偏航转动地指令,为了和云台的偏航保持一致,因此将云台的实际偏航角及偏航角速率反馈给飞行控制***,控制飞行器的偏航。因此,云台控制***为主控制、飞行控制***为从控制,飞行控制***的优先级低于云台控制***,巧妙地利用了云台高精度控制、高灵敏度的特性,避开了飞行控制***在飞机偏航控制中所带来的振动及噪声信号,从机理上解决了低转速转动偏航轴时航拍视频的卡顿问题。
具体地,下面结合附图,对本发明实施例作进一步阐述。
实施例一
本发明实施例提供了一种飞行器控制方法,请参见图3,为本发明实施例提供的一种飞行器控制方法的流程示意图。所述飞行器控制方法应用于飞行器,以控制飞行器的偏航,增加飞行器航拍的稳定性。所述飞行器包括用于控制飞行器的飞行控制***和用于控制云台的云台控制***,以实现高精度拍摄。其中,该飞行器可以为各种类型的飞行器,例如,图1和图2中的飞行器10。
请参考图3,所述飞行器控制方法包括但不限于以下步骤:
步骤110:所述云台控制***获取输入所述飞行器的偏航控制指令和所述云台输出的姿态角信息。
所述偏航控制指令,为飞行控制***根据当前飞行任务模式下飞行器生成的偏航指令和速度指令,结合遥控器的摇杆值,进行指令融合后产生的偏航控制指令。
所述姿态角信息包括姿态角和姿态角速率,所述云台输出的所述姿态角信息包括所述云台的姿态角和姿态角速率。所述姿态角,即欧拉角,由所述飞行器的机体坐标系与地理坐标系之间的相对位置来确定,分别用偏航角、俯仰角和滚转角三个欧拉角来表示所述姿态角。所述姿态角表示当前所述云台的呈何种角度姿态位于空中,所述姿态角速率表示当前飞行任务下所述云台在空中进行姿态改变时姿态角的变化速率。具体地,可以通过设置在所述云台上的六轴传感器,即三轴陀螺仪和三轴传感器测量所述云台的姿态角信息。
步骤120:所述云台控制***根据所述输入所述飞行器的偏航控制指令和所述云台输出的所述姿态角信息,控制所述云台的偏航。
所述云台控制***是一种辅助拍摄***,用于改善航拍视频,通常通过减振***来隔离机身的高频振动,其控制精度远高于飞行控制***的控制精度,所述云台控制***用于具体控制飞行器云台的偏航的方向和速度。所述云台控制***内应该设置有电机,能够获取所述偏航控制指令并执行所述偏航控制指令,并且,还能够驱动飞行器的云台,使云台能够按照所述偏航控制指令所携带的偏航信息进行偏航。所述云台控制***具体为能够将所述偏航控制指令转化为相应的脉冲信号以控制云台偏航的控制***。
在本发明实施例中,所述云台控制***为主控制,所述飞行控制***为从控制,所述飞行控制***的优先级低于所述云台控制***。所述云台控制***根据所述飞行控制***输出的偏航控制指令、以及云台输出的姿态角信息控制云台偏航。
在执行本发明提供的飞行器控制方法时,所述云台控制***获取偏航控制指令和所述云台输出的所述姿态角信息后,执行所述偏航控制指令,使得云台按所述偏航控制指令偏航。进一步地,还可以进行航拍工作。
本发明实施例提供了一种飞行器控制方法,该飞行器控制方法应用于该飞行器中,该飞行器包括用于控制飞行器的飞行控制***和用于控制云台的云台控制***,该云台控制 ***能够获取输入飞行器的偏航控制指令和云台输出的姿态角信息,然后根据该输入飞行器的偏航控制指令和云台输出的所述姿态角信息,控制所述云台的偏航,进而实现对飞行器航拍的高精度控制,从而保证航拍视频的高质量,解决低转速航拍时视频卡顿的问题。
在一些实施例中,请参见图4,图4为图3所述方法中步骤110的一子流程图,所述步骤110具体包括:
步骤111:所述飞行控制***获取所述飞行器在任务飞行模式下产生的速度指令和偏航指令。
所述任务飞行模式为当前飞行器所执行的飞行任务所处的工作模式。具体地,飞行器在需要航行至一目标位置时,飞行器生成从当前位置到目标位置的航行线路并生成相应的飞行任务,所述飞行器进入该飞行任务的任务飞行模式,所述飞行控制***执行该飞行任务时,生成相应的速度指令和偏航指令,以驱使飞行器飞行至目标位置。
所述速度指令,为当前的任务飞行模式下飞行器所执行的速度指令,该速度指令控制飞行器保持当前的飞行速度飞行。所述偏航指令,为当前的任务飞行模式下飞行器所执行的偏航指令,该偏航指令控制飞行器保持当前的偏航角和偏航角速率飞行。
在本发明实施例中,所述飞行控制***是保证飞行器稳定飞行的基本前提,所述飞行控制***用于具体控制飞行器飞行的速度和方向。所述飞行控制***内应该设置有至少两种电机,所述至少两种电机分别能够获取当前的任务飞行模式下的所述速度指令或所述偏航指令并执行所述速度指令或所述偏航指令。并且,所述至少两种电机还能够驱动飞行器的动力装置,以使所述动力装置按照所述速度指令和所述偏航指令所携带的飞行信息进行航行。所述飞行控制***具体为能够将所述速度指令和所述偏航指令转化为相应的脉冲信号以控制飞行器执行当前飞行任务的控制***。所述飞行控制***可以通过电机执行所述速度指令和所述偏航指令,以控制飞行器的偏航。
步骤112:所述飞行控制***获取遥控器的杆量值,其中,所述遥控器与所述飞行器通信连接。
在本发明实施例中,所述飞行器是受遥控器控制的,因此,通过改变所述遥控器的杆量值,能够改变控制所述飞行速度和偏航的速度指令和偏航指令。所述遥控器的杆量值包括滚转杆、俯仰杆、偏航杆、推力杆四个方向摇杆的杆量值。根据所述杆量值,调整飞行器的飞行方向和飞行速度。
所述遥控器与所述飞行器通信连接,以发送所述杆量值至所述飞行器。所述遥控器与所述飞行器可以是双向通信,所述飞行器可以发送当前飞行器的实时飞行状态至所述遥控器。一般情况下,所述遥控器与所述飞行器无线连接,以使所述飞行器有更自由的飞行空间,例如,可以通过蓝牙连接。
步骤113:所述飞行控制***根据所述飞行器在所述任务飞行模式下产生的所述速度 指令和所述偏航指令,以及所述遥控器的杆量值,生成所述输入所述飞行器的所述偏航控制指令。
飞行控制***获取到当前的任务飞行模式下的速度指令和偏航指令、及遥控器的杆量值后,融合计算得到用于输入飞行器的偏航控制指令。所述飞行控制***可以通过从飞行控制***中读取当前的任务飞行模式下所述飞行控制***所产生的所述速度指令和所述偏航指令。
具体地,首先,飞行器在执行飞行任务时,在当前任务飞行模式下飞行器会保持预设的速度和偏航航行,飞行器的飞行控制***会输出速度指令和偏航指令至动力装置,以驱动飞行器航行。或者,在所述飞行器将要执行飞行任务时,飞行控制***也会输出速度指令和偏航指令至动力装置,以驱动飞行器航行。
因此,获取所述速度指令和偏航指令,且在遥控器控制所述飞行器改变航行方向和速度时,获取所述遥控器的杆量值,从而能够生成驱使所述飞行器按照遥控器的控制进行航行的偏航控制指令。进一步地,将所述偏航控制指令输入至所述飞行器以驱动所述云台的偏航和所述飞行器的偏航。
步骤114:所述飞行控制***将所述输入所述飞行器的所述偏航控制指令发给所述云台控制***。
在本发明实施例中,需要将所述云台控制***与所述飞行控制***进行通讯连接。具体的,所述云台控制***与所述飞行控制***可以是通过有线通信连接,也可以是通过无线通信连接;所述云台控制***与所述飞行控制***可以是直接连接,也可以是间接连接。进一步地,将所述偏航控制指令发送至所述云台控制***。
例如,所述云台控制***与所述飞行控制***可以是通过总线直接物理连接,或者内部设置有无线模块在一定的频段上进行连接。再或者,也可以是通过单独一块用于数据处理及传输的芯片连接。然后,所述飞行控制***通过上述物理连接将所述偏航控制指令发送至所述云台控制***。具体地,所述云台控制***与所述飞行控制***的连接方式可根据实际需要进行设置,涉及的电子元件及电路结构或通讯协议等也可以根据实际情况进行设置,不需要拘泥于本发明实施例的限定。
在一些实施例中,请参见图5,图5为图3所述方法中步骤110的另一子流程图,所述步骤110具体包括:
步骤115:所述飞行控制***根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成输入所述飞行器的速度控制指令和推力指令。
在本发明实施例中,由于遥控器的控制,飞行器在当前任务飞行模式下,会改变器飞行速度和飞行方向,因此,飞行控制***需要结合飞行器在当前任务飞行模式下产生的所 述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成输入所述飞行器的速度控制指令和推力指令。
所述速度控制指令,具体为,飞行控制***根据遥控器的控制所生成的新的航线及相应的飞行任务,该新的飞行任务所执行的速度控制指令,所述速度控制指令用于控制飞行器飞行的速度。所述推力指令,为所述飞行控制***结合飞行器当前任务飞行模式下的加速度,以及遥控器的杆量值,所生成的推力指令,所述推力指令用于控制飞行器飞行的方向及加速度。
步骤116:所述飞行控制***获取所述云台输出的实际偏航信息。
所述飞行控制***根据所述云台输出的姿态角信息,获取所述云台输出的实际偏航信息。在本发明实施例中,所述云台输出的所述实际偏航信息包括所述云台的实际偏航角和实际偏航角速率。所述飞行器根据当前所述云台的姿态角信息,以及输入至所述飞行器的偏航控制指令,调整所述飞行器的偏航角。然后,通过陀螺仪测量所述飞行器的实际偏航信息。所述偏航角为表示所述姿态角的三个欧拉角之一,为机体轴在水平面上的投影与地轴之间的夹角。
步骤117:所述飞行控制***获取所述飞行器输出的速度以及姿态角信息。
在本发明实施例中,可以通过速度传感器检测所述飞行器输出的实际的速度信息,可以通过设置在所述飞行器上的六轴传感器,即三轴陀螺仪和三轴传感器测量所述飞行器输出的姿态角信息。所述姿态角,即欧拉角,分别用偏航角、俯仰角和滚转角三个欧拉角来表示所述姿态角,
在本发明实施例中,所述飞行器输出的姿态角信息包括所述飞行器输出的姿态角及姿态角速率。所述飞行器根据输入至飞行器的速度控制指令、由设置在云台上的六轴传感器检测到的当前所述云台的实际偏航信息、当前所述飞行器输出的速度信息和姿态角信息,调整所述飞行器的偏航角及偏航角速率,控制所述飞行器的偏航。
步骤118:所述飞行控制***根据所述云台输出的实际偏航信息、所述飞行器输出的速度、所述飞行器输出的姿态角信息、所述输入所述飞行器的速度控制指令和所述推力指令,控制所述飞行器的偏航。
在本发明实施例中,所述飞行器输出的姿态角信息包括所述飞行器输出的实际的姿态角及姿态角速率。所述飞行控制***根据云台输出的实际偏航信息,得到当前云台的实际偏航情况,然后根据飞行器输出的速度和姿态角信息,得到当前飞行器的实际偏航情况。结合当前云台和飞行器的实际偏航情况,并根据遥控器输入的杆量值,飞行控制***计算得到最终用于输入至飞行器、控制飞行器偏航的速度控制指令和推力指令。最后,飞行控制***内的电机,将所述速度控制指令和所述推力指令转化为相应的脉冲信号,驱动飞行器飞行,以控制所述飞行器的偏航。
请参见图6,为本发明实施例提供的一种飞行器控制方法的原理图,具体围绕该原理 图阐述本发明实施例提供的飞行器控制方法的具体执行流程。
在图6中,编号100-108为控制飞行器执行上述步骤110-120、步骤111-114、步骤115-118所涉及的需要进行传输的指令或数据信息。且图中的FCS指的是上述的飞行控制***(Flight Control System,FCS),所述FCS内设置有用于驱动机械装置的电机。图中的GFS指的是上述的云台控制***(Gimbal Control System,GCS),所述GFS内设置有用于驱动机械装置的电机。图中的指令任何指的是飞行器内飞行控制***对于初步获取的指令的计算分析。图中的飞机指的是飞行器内控制飞行速度及其方向的装置,如动力装置,且飞机与所述飞行控制***通讯连接。图中的云台指的是飞行器上用于辅助拍摄的设备,且云台与所述云台控制***通讯连接。
具体地,所述100为飞机执行智能飞行所产生的速度指令[v xc_mission,v yc_mission,v zc_mission]、偏航角指令ψ c_mission及偏航角速率指令
Figure PCTCN2020108954-appb-000001
所述101为遥控器杆量值[R,P,Y,T](滚转杆、俯仰杆、偏航杆、推力杆)。所述102为最终合成的速度指令[v xc,v yc,v zc]、推力指令T。所述103为最终合成的偏航角指令ψ c及偏航角速率指令
Figure PCTCN2020108954-appb-000002
所述104为飞机电机的pwm(脉冲宽度调制)信号。所述105为云台电机的pwm(脉冲宽度调制)信号。所述106为飞机实际的速度[v x,v y,v z]、姿态角[φ,θ,ψ]及角速率[ω x,ω y,ω z]。所述107为云台实际的姿态角度[φ g,θ g,ψ g]及角速率
Figure PCTCN2020108954-appb-000003
所述108为云台实际的偏航角ψ g及偏航角速率
Figure PCTCN2020108954-appb-000004
通常飞行控制***FCS中姿态控制存在误差,设误差
Figure PCTCN2020108954-appb-000005
由于云台对e φ、e θ、e p和e q的敏感度不高,换言之,e φ、e θ、e p和e q对云台的影响不大,而e r对云台的影响较大。一般情况下,e r的量级为°/s,而云台的控制精度一般为10 -2°/s这个量级的,因此,飞行控制***FCS的这个控制精度远远是不如云台的控制精度。在传统的云台控制中,由于云台控制***GCS和飞行控制***FCS控制分离,不考虑FCS的控制误差e r,云台ψ g紧跟飞机的ψ,虽然响应过程是一个一阶平滑的,但从角速率上来看,飞行控制***FCS会给云台控制***GCS、或者说云台的偏航轴带来一个较大 的抖动或误差,量级为1~10°/s。云台的偏航轴与飞机偏航轴耦合太严重,云台受到飞机偏航轴的影响太大,特别是在偏航轴低转速的情况下,容易造成航拍视频卡顿。
在传统的飞行器控制中,通常是直接将指令102和指令103同时分别发送至飞行控制***FCS和云台控制***GCS,飞行控制***FCS和云台控制***GCS分别控制飞机和云台调整姿态。或者飞行控制***FCS先控制飞机调整姿态,再将飞机调整后的姿态信息发送给云台控制***GCS,然后云台控制***GCS再对云台进行稳定控制。这两类传统的调整并稳定飞行器姿态的方式,由于飞行控制***FCS的精度限制,飞行的偏航角及其角速率并不光滑,会造成低转速转动偏航轴时,航拍视频的严重卡顿现象。
而在本发明实施例中,请继续参见图6,执行指令100-108的具体工作流程及其工作原理是:飞行器在飞行时,由于内部设置有智能飞行调整程序,因此飞行器在执行智能飞行时,存在速度指令100,同时,飞行器智能飞行时,还会受到来自用于操控遥控器的杆量信息101。飞行器通过指令融合的方式,计算分析并最终合成速度控制指令102,以及偏航控制指令103。并且,将最终合成的速度控制指令102发送至飞行控制***FCS,将终合成的偏航控制指令103发送至云台控制***GCS。然后,云台控制***GCS根据指令103生成云台电机的脉冲宽度调制信号105,云台获取到信号105后调整飞行状态。然后将云台的实际姿态信息107反馈给飞控***,其中,实际姿态信息107中的云台的实际偏航信息108进一步发送给飞行控制***FCS。飞行控制***FCS根据实际偏航信息108,以及已获取到的速度控制指令102,生成飞机电机的脉冲宽度调制信号104,飞机获取到信号104后调整飞行状态。具体地,飞机首先调整偏航角及偏航角速率与云台的偏航角及偏航角速率保持一致,进一步根据以获取到的速度控制指令102调整飞行器的飞行状态。
在本发明实施例中,指令融合后产生的偏航控制指令103(包括偏航角及偏航角速率)直接发送至云台控制***GCS。区别于传统先发送至飞行控制***FCS的方式,本发明实施例中,云台执行的偏航控制指令103不会收到飞机噪声的污染,偏航控制指令103的变化曲线十分光滑。且由于云台控制***GCS本身的控制精度远高于飞行控制***FCS,因此,云台控制***GCS执行偏航控制指令103后检测/获取到的云台的实际偏航信息108相比于偏航控制指令103误差较小。飞机根据实际偏航信息108对其偏航状态进行调整后,再进行飞行速度及方向的调整。最后进行拍摄后得到的航拍视频就会特别稳定,不会出现卡顿现象,且抗风能力强。在本发明实施例中,云台控制***GCS为主控制,飞行控制***FCS为从控制,飞行控制***FCS的优先级低于云台控制***GCS,本发明采用的飞行器控制方法巧妙地利用了云台高精度控制、高灵敏度的特征,避开了飞行控制***FCS在飞机偏航控制中所带来的振动及噪声信号,从机理上解决了低转速转动偏航轴时航拍视频的卡顿问题。
此外,在本发明实施例中,还可以增加飞行控制***FCS到云台控制***GCS的反馈回路,飞机的将偏航信息传递至云台控制***GCS,云台控制***GCS根据飞机的偏航信 息通过微分运算进行跟踪补偿,使得能够进一步监控飞行控制***FCS的偏航状态。在本发明实施例中,所述云台的实际偏航信息108可以仅包括云台实际的偏航角信息或者云台实际的偏航角速率信息。在其他的一些实施例中,上述设置可以不需要拘泥于本发明实施例的限定。
本发明实施例还提供了三种验证是否采用了本发明提供的飞行器控制方法的验证方法:
第一种方法:飞机开机后,等待云台校准完成,然后将飞机开锁,使电机进入带速状态,若不推动油门杆时,打开Yaw杆云台会随着摆动,则说明飞行器执行着本发明实施例所述的飞行器控制方法,能够得到稳定的拍摄图像。
第二种方法:在第一种方法失效的情况下,将飞机动力装置摘除,飞机开机,等待云台校准完成后,将飞机解锁,使电机进入带速状态,推动油门杆,手动将飞机拿起使其悬空,此时打Yaw杆云台会随着摆动,则说明飞行器执行着本发明实施例所述的飞行器控制方法,能够得到稳定的拍摄图像。
第三种方法:在飞机正常悬停时,打Yaw杆或程序控制偏航转速期望值低于2°/s时,拍摄视频仍然不卡顿,则说明飞行器执行着本发明实施例所述的飞行器控制方法,能够得到稳定的拍摄图像。
实施例二
本发明实施例还提供了一种飞行器,请参见图7,为本发明实施例提供的一种飞行器200的结构框图,该飞行器200包括机身210、机臂220、动力装置230、云台240、飞行控制***250和云台控制***260。其中,所述机臂220与所述机身210相连,所述动力装置230设于所述机臂220,用于为所述飞行器200提供飞行的动力,所述云台240设于所述机身210,所述飞行控制***250设于所述机身210,所述云台控制***260用于控制所述云台240,且与所述飞行控制***250通信连接。
所述云台控制***260用于:获取输入所述飞行器200的偏航控制指令和所述云台240输出的姿态角信息;根据所述输入所述飞行器200的偏航控制指令和所述云台240输出的所述姿态角信息,控制所述云台240的偏航。
在一些实施例中,所述飞行控制***250用于:获取所述飞行器200在任务飞行模式下产生的速度指令和偏航指令;获取遥控器的杆量值,其中,所述遥控器与所述飞行器200通信连接;根据所述飞行器200在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成所述输入所述飞行器200的所述偏航控制指令;将所述输入所述飞行器200的所述偏航控制指令发给所述云台控制***260。
在一些实施例中,所述飞行控制***250还用于:根据所述飞行器200在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成输入所述 飞行器200的速度控制指令和推力指令。
在一些实施例中,所述飞行控制***250还用于:获取所述云台240输出的实际偏航信息;获取所述飞行器200输出的速度以及姿态角信息;根据所述云台240输出的实际偏航信息、所述飞行器200输出的速度、所述飞行器200输出的姿态角信息、所述输入所述飞行器200的速度控制指令和所述推力指令,控制所述飞行器200的偏航。
在一些实施例中,所述飞行控制***250还用于:根据所述云台240输出的姿态角信息,获取所述云台240输出的实际偏航信息。
在一些实施例中,所述云台240输出的所述实际偏航信息包括所述云台240的实际偏航角和实际偏航角速率。
在一些实施例中,所述飞行器200输出的实际的姿态角信息包括所述飞行器200输出的实际的姿态角及姿态角速率。
在一些实施例中,所述云台240输出的所述姿态角信息包括所述云台240的姿态角和姿态角速率。
还需要说明的是,在本发明实施例中,所述飞行器200可执行任意方法实施例,即实施例一所提供的飞行器控制方法,具备执行方法相应的功能模块和有益效果。未在飞行器200的实施例中详尽描述的技术细节,可参见方法实施例所提供的飞行器控制方法,此处不再详述。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行如上所述的飞行器控制方法。例如,执行以上描述的图3至图5中的方法步骤110-120、步骤111-114、以及步骤115-118,实现图7中的模块210-250的功能。
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上所述的飞行器控制方法。例如,执行以上描述的图3至图7中的方法步骤110-120、步骤111-114、以及步骤115-118,实现图7中的模块210-250的功能。
本发明实施例提供了一种飞行器控制方法及飞行器,该飞行器控制方法应用于该飞行器中,该飞行器包括用于控制飞行器的飞行控制***和用于控制云台的云台控制***,该云台控制***能够获取输入飞行器的偏航控制指令和云台输出的姿态角信息,然后根据该输入飞行器的偏航控制指令和云台输出的所述姿态角信息,控制所述云台的偏航,,在本发明实施例中,云台控制***的控制权限高于飞行控制***,飞行控制***根据云台控制 ***输出的实际偏航信息对飞行器的偏航进行控制,进而实现对飞行器航拍的高精度控制,从而保证航拍视频的高质量,解决低转速航拍时视频卡顿的问题。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现所述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如所述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种飞行器控制方法,应用于飞行器,所述飞行器包括用于控制飞行器的飞行控制***和用于控制云台的云台控制***,其特征在于,所述方法包括:
    所述云台控制***获取输入所述飞行器的偏航控制指令和所述云台输出的姿态角信息;
    所述云台控制***根据所述输入所述飞行器的偏航控制指令和所述云台输出的所述姿态角信息,控制所述云台的偏航。
  2. 根据权利要求1所述的方法,其特征在于,所述云台控制***获取输入所述飞行器的偏航控制指令和所述云台输出的姿态角信息,包括:
    所述飞行控制***获取所述飞行器在任务飞行模式下产生的速度指令和偏航指令;
    所述飞行控制***获取遥控器的杆量值,其中,所述遥控器与所述飞行器通信连接;
    所述飞行控制***根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成所述输入所述飞行器的所述偏航控制指令;
    所述飞行控制***将所述输入所述飞行器的所述偏航控制指令发给所述云台控制***。
  3. 根据权利要求2所述的方法,其特征在于,该方法还包括:
    所述飞行控制***根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成输入所述飞行器的速度控制指令和推力指令。
  4. 根据权利要求3所述的方法,其特征在于,该方法还包括:
    所述飞行控制***获取所述云台输出的实际偏航信息;
    所述飞行控制***获取所述飞行器输出的速度以及姿态角信息;
    所述飞行控制***根据所述云台输出的实际偏航信息、所述飞行器输出的速度、所述飞行器输出的姿态角信息、所述输入所述飞行器的速度控制指令和所述推力指令,控制所述飞行器的偏航。
  5. 根据权利要求4所述的方法,其特征在于,所述飞行控制***获取所述云台输出的实际偏航信息,包括:
    所述飞行控制***根据所述云台输出的姿态角信息,获取所述云台输出的实际偏航信息。
  6. 根据权利要求5所述的方法,其特征在于,所述云台输出的所述实际偏航信息包括所述云台的实际偏航角和实际偏航角速率。
  7. 根据权利要求4-6中任一项所述的方法,其特征在于,所述飞行器输出的姿态角信息包括所述飞行器输出的实际的姿态角及姿态角速率。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述云台输出的所述姿态角信息包括所述云台的姿态角和姿态角速率。
  9. 一种飞行器,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂,用于为所述飞行器提供飞行的动力;
    云台,设于所述机身;
    飞行控制***,设于所述机身;以及
    云台控制***,用于控制所述云台,且与所述飞行控制***通信连接;
    所述云台控制***用于:
    获取输入所述飞行器的偏航控制指令和所述云台输出的姿态角信息;
    根据所述输入所述飞行器的偏航控制指令和所述云台输出的所述姿态角信息,控制所述云台的偏航。
  10. 根据权利要求9所述的飞行器,其特征在于,所述飞行控制***用于:
    获取所述飞行器在任务飞行模式下产生的速度指令和偏航指令;
    获取遥控器的杆量值,其中,所述遥控器与所述飞行器通信连接;
    根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成所述输入所述飞行器的所述偏航控制指令;
    将所述输入所述飞行器的所述偏航控制指令发给所述云台控制***。
  11. 根据权利要求10所述的飞行器,其特征在于,所述飞行控制***还用于:
    根据所述飞行器在所述任务飞行模式下产生的所述速度指令和所述偏航指令,以及所述遥控器的杆量值,生成输入所述飞行器的速度控制指令和推力指令。
  12. 根据权利要求11所述的飞行器,其特征在于,所述飞行控制***还用于:
    获取所述云台输出的实际偏航信息;
    获取所述飞行器输出的速度以及姿态角信息;
    根据所述云台输出的实际偏航信息、所述飞行器输出的速度、所述飞行器输出的姿态角信息、所述输入所述飞行器的速度控制指令和所述推力指令,控制所述飞行器的偏航。
  13. 根据权利要求12所述的飞行器,其特征在于,所述飞行控制***还用于:
    根据所述云台输出的姿态角信息,获取所述云台输出的实际偏航信息。
  14. 根据权利要求13所述的飞行器,其特征在于,所述云台输出的所述实际偏航信息包括所述云台的实际偏航角和实际偏航角速率。
  15. 根据权利要求12-14中任一项所述的飞行器,其特征在于,所述飞行器输出的姿态角信息包括所述飞行器输出的实际的姿态角及姿态角速率。
  16. 根据权利要求9-15中任一项所述的飞行器,其特征在于,所述云台输出的所述姿态角信息包括所述云台的姿态角和姿态角速率。
PCT/CN2020/108954 2019-07-12 2020-08-13 飞行器控制方法及飞行器 WO2021008628A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/573,882 US20220137643A1 (en) 2019-07-12 2022-01-12 Aircraft control method and aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910630915.3A CN110347171B (zh) 2019-07-12 2019-07-12 一种飞行器控制方法及飞行器
CN201910630915.3 2019-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/573,882 Continuation US20220137643A1 (en) 2019-07-12 2022-01-12 Aircraft control method and aircraft

Publications (1)

Publication Number Publication Date
WO2021008628A1 true WO2021008628A1 (zh) 2021-01-21

Family

ID=68175206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108954 WO2021008628A1 (zh) 2019-07-12 2020-08-13 飞行器控制方法及飞行器

Country Status (3)

Country Link
US (1) US20220137643A1 (zh)
CN (2) CN114967737A (zh)
WO (1) WO2021008628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114218686A (zh) * 2022-02-21 2022-03-22 中国人民解放军国防科技大学 一种用于飞行器的多精度数据光滑标度近似建模方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967737A (zh) * 2019-07-12 2022-08-30 深圳市道通智能航空技术股份有限公司 一种飞行器控制方法及飞行器
CN110963064B (zh) * 2019-11-05 2022-06-24 深圳市道通智能航空技术股份有限公司 镜头模组的控制方法、装置、飞行器、飞行***及介质
CN113079698A (zh) * 2019-11-05 2021-07-06 乐天株式会社 进行航空器的飞行控制的控制装置、及控制方法
CN112292650A (zh) * 2019-11-28 2021-01-29 深圳市大疆创新科技有限公司 一种云台控制方法、控制装置及控制***
CN113050676B (zh) * 2019-12-26 2022-11-22 中国航空工业集团公司西安飞机设计研究所 一种飞机偏航阻尼控制指令的监控方法
WO2021189215A1 (zh) * 2020-03-23 2021-09-30 深圳市大疆创新科技有限公司 可移动平台的控制方法、装置、可移动平台及存储介质
CN112180962A (zh) * 2020-09-30 2021-01-05 苏州臻迪智能科技有限公司 无人机的飞行控制方法及装置、电子设备、存储介质
WO2022193081A1 (zh) * 2021-03-15 2022-09-22 深圳市大疆创新科技有限公司 无人机的控制方法、装置及无人机
CN114625159B (zh) * 2022-01-21 2023-07-28 中国空气动力研究与发展中心计算空气动力研究所 一种基于被控变量的结冰飞机控制方法
WO2023184099A1 (zh) * 2022-03-28 2023-10-05 深圳市大疆创新科技有限公司 控制方法、装置、无人飞行器、控制***及存储介质
CN114967723B (zh) * 2022-06-15 2023-09-15 哈尔滨工业大学 一种超空泡外形航行体高精度姿态控制方法
CN115767288A (zh) * 2022-12-02 2023-03-07 亿航智能设备(广州)有限公司 一种航拍数据处理方法、航拍相机、飞行器及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067432A2 (en) * 2003-01-17 2004-08-12 The Insitu Group Method and apparatus for stabilizing payloads, including airborne cameras
KR20150098732A (ko) * 2014-02-21 2015-08-31 한국항공우주산업 주식회사 무인항공기용 영상감지기 거치장치
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN109753076A (zh) * 2017-11-03 2019-05-14 南京奇蛙智能科技有限公司 一种无人机视觉追踪实现方法
CN110347171A (zh) * 2019-07-12 2019-10-18 深圳市道通智能航空技术有限公司 一种飞行器控制方法及飞行器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808674A (zh) * 2015-03-03 2015-07-29 广州亿航智能技术有限公司 多旋翼飞行器的控制***、终端及机载飞控***
WO2017088130A1 (zh) * 2015-11-25 2017-06-01 深圳市大疆创新科技有限公司 航拍跟焦控制***、航拍跟焦控制方法及飞行器
CN105549605B (zh) * 2015-12-16 2018-08-17 深圳市中航佳智能科技有限公司 一种实现无人机盯飞的方法
CN105857595A (zh) * 2016-04-23 2016-08-17 北京工业大学 一种基于云台的小型飞行器***
CN108351650B (zh) * 2016-10-17 2021-01-12 深圳市大疆创新科技有限公司 一种对飞行器的飞行控制方法、装置及飞行器
CN108475074A (zh) * 2017-04-10 2018-08-31 深圳市大疆创新科技有限公司 云台随动控制方法及控制设备
WO2018214068A1 (zh) * 2017-05-24 2018-11-29 深圳市大疆创新科技有限公司 飞行控制方法、设备、机器可读存储介质以及***
WO2019100249A1 (zh) * 2017-11-22 2019-05-31 深圳市大疆创新科技有限公司 云台的控制方法、云台以及无人飞行器
WO2019104641A1 (zh) * 2017-11-30 2019-06-06 深圳市大疆创新科技有限公司 无人机、其控制方法以及记录介质
CN108780331B (zh) * 2017-12-21 2021-02-05 深圳市大疆创新科技有限公司 云台控制方法和设备、云台以及无人机
WO2019127027A1 (zh) * 2017-12-26 2019-07-04 深圳市大疆创新科技有限公司 无人机拍摄视频的处理方法、拍摄相机和遥控器
CN108319292A (zh) * 2017-12-29 2018-07-24 深圳创动科技有限公司 一种无人飞行器的控制方法、控制台、飞行器及控制***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004067432A2 (en) * 2003-01-17 2004-08-12 The Insitu Group Method and apparatus for stabilizing payloads, including airborne cameras
KR20150098732A (ko) * 2014-02-21 2015-08-31 한국항공우주산업 주식회사 무인항공기용 영상감지기 거치장치
CN107074348A (zh) * 2016-12-30 2017-08-18 深圳市大疆创新科技有限公司 控制方法、装置、设备及无人飞行器
CN109753076A (zh) * 2017-11-03 2019-05-14 南京奇蛙智能科技有限公司 一种无人机视觉追踪实现方法
CN110347171A (zh) * 2019-07-12 2019-10-18 深圳市道通智能航空技术有限公司 一种飞行器控制方法及飞行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114218686A (zh) * 2022-02-21 2022-03-22 中国人民解放军国防科技大学 一种用于飞行器的多精度数据光滑标度近似建模方法
CN114218686B (zh) * 2022-02-21 2022-05-10 中国人民解放军国防科技大学 一种用于飞行器的多精度数据光滑标度近似建模方法

Also Published As

Publication number Publication date
CN114967737A (zh) 2022-08-30
US20220137643A1 (en) 2022-05-05
CN110347171A (zh) 2019-10-18
CN110347171B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2021008628A1 (zh) 飞行器控制方法及飞行器
US10447912B2 (en) Systems, methods, and devices for setting camera parameters
US9522732B1 (en) Unmanned aerial vehicle perching maneuver
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
US20200319642A1 (en) Gimbal control method and device, gimbal, and unmanned aerial vehicle
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
WO2018053877A1 (zh) 控制方法、控制设备和运载***
CN110733624A (zh) 无人驾驶飞行***和用于无人驾驶飞行***的控制***
KR101574601B1 (ko) 비전센서가 결합된 다중회전익 무인비행체 및 다중회전익 무인비행체의 자율비행 제어방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
WO2020143677A1 (zh) 一种飞行控制方法及飞行控制***
JP2013144539A (ja) 遠隔制御装置によって無人機を直観的に操縦するための方法
JP2011511736A (ja) 自動ホバリング飛行安定化を備えた回転翼無人機を操縦する方法
US11958604B2 (en) Unmanned aerial vehicle and method for controlling gimbal thereof
WO2021259252A1 (zh) 飞行模拟方法、装置、电子设备及无人机
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
WO2018040006A1 (zh) 控制方法、装置和***、飞行器、载体及操纵装置
CN108780321B (zh) 用于设备姿态调整的方法、设备、***和计算机可读存储介质
CN109606674A (zh) 尾坐式垂直起降无人机及其控制***与控制方法
CN107624171A (zh) 无人机及控制无人机姿态的控制方法、控制装置
WO2018011402A1 (en) Unmanned aerial or submarine vehicle
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
WO2018059295A1 (zh) 多旋翼飞行器的控制方法、装置和***
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制***
CN110568860A (zh) 一种无人飞行器的返航方法、装置及无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840078

Country of ref document: EP

Kind code of ref document: A1