WO2019223270A1 - 云台电机角度和角速度估算方法、装置、云台及飞行器 - Google Patents

云台电机角度和角速度估算方法、装置、云台及飞行器 Download PDF

Info

Publication number
WO2019223270A1
WO2019223270A1 PCT/CN2018/116716 CN2018116716W WO2019223270A1 WO 2019223270 A1 WO2019223270 A1 WO 2019223270A1 CN 2018116716 W CN2018116716 W CN 2018116716W WO 2019223270 A1 WO2019223270 A1 WO 2019223270A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
angular velocity
angle
measurement value
transformation matrix
Prior art date
Application number
PCT/CN2018/116716
Other languages
English (en)
French (fr)
Inventor
徐运扬
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019223270A1 publication Critical patent/WO2019223270A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement

Definitions

  • Embodiments of the present invention relate to the technical field of aircraft, and in particular, to a method for estimating the angle and angular velocity of a gimbal motor, a device for estimating the angle and angular velocity of a gimbal motor, a gimbal, a camera module having the gimbal, and an aircraft having the camera component .
  • UAVs such as Unmanned Aerial Vehicles (UAVs)
  • UAV Unmanned Aerial Vehicles
  • UAV is a new concept equipment under rapid development. It has the advantages of small size, light weight, flexible maneuverability, fast response, unmanned driving, and low operating requirements.
  • UAVs are equipped with various types of shooting devices, such as cameras and video cameras, through the gimbal, which can realize real-time image transmission and high-risk area detection. It is a powerful complement to satellite remote sensing and traditional aerial remote sensing. In recent years, drones have been widely used in disaster investigation and rescue, aerial monitoring, transmission line inspection, aerial photography, aerial survey, and military fields.
  • the gimbal is the core device for realizing the stabilization of the shooting picture in the aerial photography of the drone. It uses the active rotation of the motor to cancel the disturbance of the shooting device in real time, prevent the shaking of the shooting device, and ensure the stability of the shooting picture.
  • the pan / tilt heads on the market are equipped with angle sensors, such as potentiometers, magnetic encoders, etc., whose main function is to obtain the collected measurement information in real time, so that the controller of the pan / tilt head can obtain the angle of the motor through the measurement information, which increases the stability of the pan / tilt
  • the control provides the necessary motor angular information.
  • the inventors found that there are at least the following problems in the related technology: 1. There is a significant cost disadvantage in using an angle sensor. Because the UAV's gimbal is usually a multi-axis gimbal, for multiple motors in a multi-axis gimbal, multiple angle sensors need to be configured to obtain the corresponding motor's angle and angular velocity, which increases the cost of the collected measurement information. 2.
  • the type of data provided by the angle sensor is single. Based on the data provided by the angle sensor, the accurate angular velocity of the motor cannot be obtained.
  • the angle sensor can only provide the angular data of the motor. It cannot directly provide the accurate angular velocity data of the motor, and the accurate angular velocity of the motor. The data is of great significance to improve the stability control effect of the gimbal. Based on the data provided by the angle sensor, the accurate angular velocity of the motor cannot be obtained, which will affect the stability of the shooting picture and affect the user's visual experience.
  • Embodiments of the present invention provide a method and device for estimating the angle and angular velocity of a gimbal motor, a gimbal and an aircraft, which can reduce the cost of obtaining the angle and angular velocity of the gimbal motor and effectively improve the accuracy of estimating the angle and angular velocity of the gimbal motor .
  • the PTZ includes a base, a motor connected to the base, and a photographing device connected to the motor.
  • the photographing device is provided with a first inertial measurement unit.
  • the base is provided with a second inertial measurement unit, and the method includes:
  • An angular velocity of the motor is determined according to the angle of the motor, the first angular velocity measurement value, and the second angular velocity measurement value.
  • determining the angular velocity of the motor according to the angle of the motor, the first angular velocity measurement value, and the second angular velocity measurement value includes:
  • first rotation transformation matrix is a rotation matrix of a base coordinate system to a camera coordinate system
  • second rotation transformation matrix Rotation matrix from base coordinate system to motor coordinate system
  • the calculation formula of the angular velocity of the motor is:
  • R zxy ( ⁇ , ⁇ , ⁇ ) is expressed as the first rotation transformation matrix
  • D is the second rotation transformation matrix
  • D -1 is the inverse matrix of the second rotation transformation matrix
  • is expressed as the angular velocity of the motor.
  • a calculation formula of the first rotation transformation matrix is:
  • R zxy ( ⁇ , ⁇ , ⁇ ) is expressed as the first rotation transformation matrix; ( ⁇ , ⁇ , ⁇ ) is expressed as the angle of the motor, ⁇ is expressed as the rotation angle of the tumble shaft of the motor, ⁇ Expressed as the rotation angle of the pitch axis of the motor, ⁇ is expressed as the rotation angle of the yaw axis of the motor.
  • the calculation formula of the second rotation transformation matrix is:
  • D is the second rotation transformation matrix
  • ( ⁇ , ⁇ , ⁇ ) is the angle of the motor
  • is the rotation angle of the roll axis of the motor
  • is the pitch axis of the motor
  • the rotation angle, ⁇ is expressed as the rotation angle of the yaw axis of the motor.
  • determining the angle of the motor according to the first angular velocity measurement value and the second angular velocity measurement value includes:
  • An angle of the motor is obtained according to the third attitude quaternion.
  • the first attitude quaternion is obtained according to the first angular velocity measurement value, wherein the first attitude quaternion is used to represent the attitude of the photographing device relative to the inertial system. Corner, including:
  • a first attitude quaternion is calculated through a quaternion differential equation.
  • the second attitude quaternion is obtained according to the second angular velocity measurement value, wherein the second attitude quaternion is used to represent the relative position of the base with respect to the inertial system.
  • Attitude angle including:
  • a second attitude quaternion is calculated through a quaternion differential equation.
  • the calculation formula for the third attitude quaternion is:
  • q ic is represented as the first attitude quaternion
  • q ib is represented as the second attitude quaternion
  • q bc is represented as the third attitude quaternion
  • the obtaining the angle of the motor according to the third attitude quaternion includes:
  • An angle of the motor is obtained according to the third rotation transformation matrix.
  • an expression of the third rotation transformation matrix is:
  • ( ⁇ , ⁇ , ⁇ ) is the angle of the motor
  • is the rotation angle of the tumble axis of the motor
  • is the rotation angle of the pitch axis of the motor
  • is the Rotation angle of the yaw axis.
  • the present invention also provides a device for estimating the angle and angular velocity of a pan / tilt motor.
  • the pan / tilt head includes a base, a motor connected to the base, and a photographing device connected to the motor.
  • the photographing device is provided with a first inertial measurement unit
  • the base is provided with a second inertial measurement unit, and the device includes:
  • a measurement value acquisition module configured to acquire a first angular velocity measurement value collected by the first inertial measurement unit and a second angular velocity measurement value collected by the second inertial measurement unit;
  • An angle determining module configured to determine an angle of the motor according to the first angular velocity measurement value and the second angular velocity measurement value;
  • An angular velocity determining module is configured to determine an angular velocity of the motor according to an angle of the motor, the first angular velocity measurement value, and the second angular velocity measurement value.
  • the angular velocity determination module includes:
  • a rotation transformation matrix determining module is configured to determine a first rotation transformation matrix and a second rotation transformation matrix according to an angle of the motor, wherein the first rotation transformation matrix is a rotation matrix from a base coordinate system to a camera coordinate system.
  • the second rotation transformation matrix is a rotation matrix of a base coordinate system to a motor coordinate system;
  • the angular velocity calculation module is configured to calculate the angular velocity of the motor according to the first rotation transformation matrix, the second rotation transformation matrix, the first angular velocity measurement value, and the second angular velocity measurement value.
  • the calculation formula of the angular velocity of the motor is:
  • R zxy ( ⁇ , ⁇ , ⁇ ) is expressed as the first rotation transformation matrix
  • D is the second rotation transformation matrix
  • D -1 is the inverse matrix of the second rotation transformation matrix
  • is expressed as the angular velocity of the motor.
  • a calculation formula of the first rotation transformation matrix is:
  • R zxy ( ⁇ , ⁇ , ⁇ ) is expressed as the first rotation transformation matrix; ( ⁇ , ⁇ , ⁇ ) is expressed as the angle of the motor, ⁇ is expressed as the rotation angle of the tumble shaft of the motor, ⁇ Is expressed as the rotation angle of the motor's pitch axis, and ⁇ is expressed as the rotation angle of the motor's yaw axis.
  • the calculation formula of the second rotation transformation matrix is:
  • D is the second rotation transformation matrix
  • ( ⁇ , ⁇ , ⁇ ) is the angle of the motor
  • is the rotation angle of the roll axis of the motor
  • is the pitch axis of the motor
  • the rotation angle, ⁇ is expressed as the rotation angle of the yaw axis of the motor.
  • the angle determination module is specifically configured to:
  • An angle of the motor is obtained according to the third attitude quaternion.
  • the angle determining module is configured to take the first angular velocity measurement value as an input, and obtain a first attitude quaternion through a quaternion differential equation.
  • the angle determination module is further configured to use the second angular velocity measurement value as an input to calculate a second attitude quaternion through a quaternion differential equation.
  • the calculation formula for the third attitude quaternion is:
  • q ic is represented as the first attitude quaternion
  • q ib is represented as the second attitude quaternion
  • q bc is represented as the third attitude quaternion
  • the angle determination module is specifically configured to:
  • An angle of the motor is obtained according to the third rotation transformation matrix.
  • the present invention also provides a pan / tilt head.
  • the pan / tilt head includes a base, a motor connected to the base, and a photographing device connected to the motor.
  • the photographing device is provided with a first An inertial measurement unit
  • the base is provided with a second inertial measurement unit
  • the gimbal further includes: at least one processor; and
  • a memory connected in communication with the at least one processor
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the method as described above.
  • the present invention also provides an aircraft, including:
  • a machine arm connected to the fuselage
  • a power unit provided on said arm
  • the gimbal is mounted on the fuselage.
  • the angle of the motor is determined based on the first angular velocity measurement value collected by the first inertial measurement unit provided on the photographing device and the second angular velocity measurement value collected by the second inertial measurement unit provided on the gimbal base, and based on the motor Angle, the first angular velocity measurement and the second angular velocity measurement to determine the angular velocity of the motor.
  • a low-cost inertial measurement unit is used instead of a high-cost angle sensor to collect measurement data, especially for multi-axis gimbals.
  • the cost is effectively reduced; on the other hand, since the angle of the obtained motor is an estimated value, there is a certain relationship between the angle of the motor and the actual angle of the motor no matter how it is estimated.
  • the error is based on the estimated motor angle, the first angular velocity measurement value and the second angular velocity measurement value to determine the angular velocity of the motor. Compared with the direct estimation based on the estimated motor angle to obtain the angular velocity of the motor, the cumulative error results in a higher error. Calculate the accuracy to get the angular velocity of the motor with higher accuracy.
  • FIG. 1 is a schematic flowchart of a method for estimating the angle and angular velocity of a gimbal motor according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a position setting of a first inertial measurement unit and a second inertial measurement unit according to an embodiment of the present invention
  • FIG. 3 is a specific flowchart for determining an angle of a motor according to an embodiment of the present invention.
  • FIG. 4 is a specific flowchart for determining an angular velocity of a motor according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a gimbal motor angle and angular velocity estimation device according to an embodiment of the present invention.
  • FIG. 6 is a connection block diagram of a pan / tilt according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a connection relationship between a processor and a memory in FIG. 6;
  • FIG. 8 is a schematic diagram of a camera module according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an aircraft provided by an embodiment of the present invention.
  • the method for estimating the angle and angular velocity of the pan / tilt motor can be applied to various photographing equipment using the pan / tilt as an auxiliary device for photographing, such as a handheld photographing equipment, an aircraft, an unmanned ship, or an unmanned vehicle.
  • an aircraft such as an unmanned aerial vehicle (UAV)
  • UAV unmanned aerial vehicle
  • the UAV's gimbal can be equipped with a shooting device and installed on the UAV's fuselage for aerial photography.
  • the hand-held shooting device is provided with a pan / tilt and a shooting device, and the hand-held shooting device can also be equipped with a shooting device and mounted on a handle to enable the hand-held shooting device to perform photographing, video recording, and the like.
  • the UAV includes a fuselage, a boom connected to the fuselage, a power unit provided on the boom, and a head connected to the fuselage.
  • the gimbal is mounted on the fuselage.
  • An unmanned aerial vehicle may include one or more arms that extend radially from the fuselage.
  • the connection between the arm and the fuselage may be an integral connection or a fixed connection.
  • the gimbal includes: a base connected to the body, a motor connected to the base, a camera device connected to the motor, a controller provided on the base, and an ESC provided in the arm.
  • the controller is connected to the ESC, the ESC is electrically connected to the motor, and the electricity is called to control the motor.
  • the controller is configured to execute the method for estimating the angle and angular velocity of the pan / tilt motor to obtain the motor angle and angular velocity, generate a control instruction according to the motor angle and angular velocity, and send the control instruction to the ESC, and the ESC controls the motor through the control instruction .
  • the controller is configured to perform the above-mentioned gimbal motor angle and angular velocity estimation to obtain the motor angle and angular velocity, and send the motor angle and angular velocity to the ESC.
  • the ESC generates a control instruction according to the motor angle and angular velocity, and controls the motor through the control instruction .
  • the ESC is not a necessary part of the PTZ.
  • the controller is directly connected to the motor, and the motor is controlled by the control instruction.
  • the shooting device includes, but is not limited to, a camera, a video camera, a camera, a scanner, a camera phone, and the like.
  • the pan / tilt is used to fix the photographing device, or adjust the posture of the photographing device (for example, change the height, inclination, and / or direction of the photographing device), and keep the photographing device in a set posture.
  • the pan / tilt is mainly used to keep the shooting device in a set posture stably, prevent the shooting screen of the shooting device from shaking, and ensure the stability of the shooting screen.
  • the photographing device is provided with a first inertial measurement unit, so as to collect attitude information of the photographing device, such as acquiring the angular velocity of the photographing device through the first inertial measurement unit.
  • the motor is respectively connected to the base and the photographing device.
  • the gimbal can be a multi-axis gimbal, with which there are multiple motors, that is, one motor is provided for each axis.
  • the motor can drive the rotation of the shooting device, so as to meet the adjustment of the horizontal rotation and tilting angle of the shooting shaft.
  • the rotation of the motor By manually controlling the rotation of the motor remotely or using a program to make the motor rotate automatically, it can achieve all-round scanning monitoring.
  • the disturbance of the shooting device is cancelled in real time by the rotation of the motor, which prevents the shooting device from shaking and ensures the stability of the shooting picture.
  • the controller is configured to perform the above-mentioned gimbal motor angle and angular velocity estimation to obtain the motor angle and angular velocity, and may generate a control instruction based on the motor angle and angular velocity, and send the control instruction to the ESC, so that the ESC controls the motor through the control instruction.
  • the controller is a device with certain logic processing capabilities, such as a control chip, a single-chip microcomputer, and a Microcontroller Unit (MCU).
  • MCU Microcontroller Unit
  • the ESC the full name of the electronic governor, is connected to the controller and the motor, respectively, and adjusts the motor of the UAV according to the control instructions to ensure the stability of the shooting screen of the shooting device.
  • the principle of the ESC control motor is roughly: the motor is an open-loop control component that converts electrical pulse signals into angular displacement or linear displacement. Under non-overload conditions, the speed and stop position of the motor only depend on the frequency and number of pulse signals, and are not affected by the load change.
  • the driver receives a pulse signal, it drives the motor in the set direction Rotating at a fixed angle, its rotation runs at a fixed angle. Therefore, the ESC can control the angular displacement by controlling the number of pulses to achieve accurate positioning; at the same time, the speed and acceleration of the motor can be controlled by controlling the pulse frequency to achieve the purpose of speed regulation.
  • an angle sensor is usually used to obtain the angle of the motor.
  • the angle sensor collects measurement information and sends the measurement information to the PTZ controller.
  • the PTZ controller calculates the motor based on the measurement information collected by the angle sensor.
  • the commonly used angle sensors include potentiometers and magnetic encoders, but since each motor needs an angle sensor, for the control of multiple motors in a multi-axis head, multiple angle sensors need to be configured. On the one hand, it will increase the acquisition The cost of measurement information increases the cost of motor control; on the other hand, the more angle sensors, the more complicated the control scheme.
  • the type of data provided by the angle sensor is single: only the motor's angle data can be provided, and the accurate motor angular velocity data cannot be directly provided, and the accurate motor angular velocity data is of great significance to further improve the stability control effect of the gimbal. Because when the angular velocity feedback is introduced, an angle-angular velocity cascade control system can be formed, which has stronger anti-interference ability than the traditional angle-only controller.
  • the main objective of the embodiments of the present invention is to provide a method and device for estimating the angle and angular velocity of a gimbal motor, a device, a gimbal, a camera component, and an aircraft, which can reduce the cost of obtaining the angle and angular velocity of the gimbal motor, Effectively improve the accuracy of calculating the angle and angular velocity of the gimbal motor, and provide a more accurate angle and angular velocity of the gimbal motor for the stability control of the gimbal. Due to the accurate acquisition and introduction of the angle and angular velocity of the gimbal motor, it can constitute an angle-angular velocity cascade control system. Compared with the traditional angle-based control system, it greatly improves the anti-interference ability and stabilization effect of the gimbal. The aerial image of the camera is always clear and stable.
  • the idea of the present invention is: first, a first inertial measurement unit (Inertial measurement unit, IMU) is set on the photographing device, and a second inertial measurement unit is set on the base of the gimbal; then, the first inertial measurement unit Collect the first angular velocity measurement value, and send the first angular velocity measurement value to the controller of the PTZ. The second inertial measurement unit collects the second angular velocity measurement value, and send the second angular velocity measurement value to the controller of the PTZ.
  • IMU Inertial measurement unit
  • the controller of the gimbal determines the angle of the motor according to the obtained first angular velocity measurement value and the second angular velocity measurement value, and according to the motor angle, the first angular velocity measurement value, and the second angular velocity The measured value determines the angular velocity of the motor.
  • the angle of the motor is determined based on the first angular velocity measurement value collected by the first inertial measurement unit provided on the photographing device and the second angular velocity measurement value collected by the second inertial measurement unit provided on the gimbal base, and based on the motor Angle, the first angular velocity measurement and the second angular velocity measurement to determine the angular velocity of the motor.
  • a low-cost inertial measurement unit is used instead of a high-cost angle sensor to collect measurement data, especially for multi-axis gimbals.
  • the cost is effectively reduced; on the other hand, determining the angle of the motor through the first angular velocity measurement value and the second angular velocity measurement value can improve the accuracy of calculating the motor angle, and it can also Angle, the first angular velocity measurement value and the second angular velocity measurement value to obtain the angular velocity of the motor with higher accuracy. Due to the estimation and introduction of the angle and angular velocity of the motor with higher accuracy, an angle-angular velocity cascade control system can be formed. Compared with the traditional angle-based control system, it greatly improves the anti-interference ability and stability of the gimbal. Effect to ensure that the aerial image of the camera is always clear and stable, and improve the user's visual experience.
  • FIG. 1 is a schematic flowchart of a method for estimating the angle and angular velocity of a gimbal motor according to an embodiment of the present invention.
  • the angle and angular velocity estimation method of the pan / tilt motor can be executed by various controllers with a certain logic processing capability, such as a pan / tilt controller.
  • the PTZ controller can be applied to an aircraft, for example, to an unmanned aerial vehicle.
  • the controller that executes the method of estimating the angle and angular velocity of the gimbal motor will be described with the gimbal controller as an example, and the drone as an example.
  • the drone includes a camera component, and the camera component includes a gimbal and a shooting device mounted on the gimbal.
  • the gimbal includes a base, a motor, a gimbal controller and an ESC.
  • the gimbal controller is connected to the ESC.
  • the regulator is electrically connected to the motor, and the electricity is called to control the motor.
  • the imaging device and the base are connected by a motor.
  • the imaging device is provided with a first inertial measurement unit, and the base is provided with a second inertial measurement unit.
  • the gimbal can be a multi-axis gimbal, such as a two-axis gimbal and a three-axis gimbal. The following three-axis gimbal is used as an example for illustration.
  • the method for estimating the angle and angular velocity of the gimbal motor includes:
  • Obtaining the first angular velocity measurement value and the second angular velocity measurement value by the PTZ controller specifically includes: first acquiring the first angular velocity measurement value by a first inertial measurement unit provided on the photographing device, and sending the first angular velocity measurement value to The gimbal controller, so that the gimbal controller obtains the first angular velocity measurement value; similarly, the second inertial measurement unit provided on the base of the gimbal acquires a second angular velocity measurement value, and The two angular velocity measurement value is sent to the PTZ controller, so that the PTZ controller obtains the second angular velocity measurement value.
  • the photographing device may be a camera, a video camera, a camera, a scanner, a camera phone, or the like.
  • FIG. 2 includes three coordinate systems: a camera coordinate system, a motor coordinate system, and a base coordinate system.
  • the top of the head is the base of the gimbal, and the bottom is the camera. They are connected by a three-axis motor in the ZXY Euler angle sequence, that is, the yaw axis Yaw from top to bottom.
  • Z axis Z axis
  • Roll axis X axis
  • Pitch axis Y axis
  • the Inertial Measurement Unit is a device that measures the three-axis attitude angle (or angular rate) and acceleration of an object.
  • IMU has six-axis IMU and nine-axis IMU.
  • one IMU contains three single-axis accelerometers and three single-axis gyroscopes.
  • the accelerometer detects the acceleration signals of the object in the carrier coordinate system independently of the three axes
  • the gyroscope detects the relative Navigating the angular velocity signal of the coordinate system, measuring the angular velocity and acceleration of the object in three-dimensional space, and using this solution to calculate the attitude of the object.
  • one IMU contains three single-axis accelerometers, three single-axis gyroscopes, and three single-axis geomagnetometers.
  • the nine-axis IMU's accelerometer is similar to the gyroscope, and the nine-axis IMU
  • the geomagnetic meter is used to detect the component of the geomagnetic field on the horizontal plane in the inertial system, the direction of this component always points to the north pole.
  • the six-axis IMU or nine-axis IMU can detect its own attitude information in the inertial system.
  • the first inertial measurement unit provided on the photographing device collects a first angular velocity measurement value, and the first angular velocity measurement value is available vector Indicates, that is, the first angular velocity measurement value Represented as the coordinate vector of the angular velocity of the camera relative to the inertial system in the coordinate system of the camera;
  • the second inertial measurement unit set on the base of the gimbal acquires a second angular velocity measurement value, and the second angular velocity measurement value is available as a vector Means the second angular velocity measurement Expressed as the coordinate vector of the angular velocity of the base relative to the inertial system in the base coordinate system.
  • the inertial system also known as the inertial coordinate system, inertial reference system, geodetic coordinate system or world coordinate system, because the drone can be placed at any position, a reference coordinate is selected in the environment to describe the The position of each part and use it to describe the position of any object in the environment.
  • the quaternion is used to describe the attitude of the UAV and its various components.
  • the root cause of the universal joint lock phenomenon is that the rotation matrix is sequentially performed. It is assumed that the rotation is about the x-axis, then the y-axis, and finally the z-axis. This causes the object to actually rotate around its own coordinate system.
  • the x-axis rotation is not the x-axis rotation of the inertial frame.
  • the performance is that under an Euler angle (x1, y1, z1), changing the value of x1, the object will rotate around the x-axis of the object's own coordinate system, instead of the x-axis of the world's inertial system. Finally, when the x-axis of the object is rotated to coincide with the z-axis of the inertial system, the x1 and z1 rotation results of the Euler angle are the same, and one dimension is lost. This is the universal joint lock phenomenon.
  • determining the angle of the motor according to the first angular velocity measurement value and the second angular velocity measurement value includes: obtaining a first attitude quaternion according to the first angular velocity measurement value, and The second angular velocity measurement value obtains a second attitude quaternion, wherein the first attitude quaternion is used to represent the attitude angle of the photographing device relative to the inertial system, and the second attitude quaternion is used to represent The attitude angle of the base relative to the inertial system; a third attitude quaternion is obtained according to the first attitude quaternion and the second attitude quaternion, and the third attitude quaternion is used for Represents the rotation attitude angle of the motor; and obtains the angle of the motor according to the third attitude quaternion.
  • FIG. 3 is a specific flowchart for determining the angle of the motor. The following specifically describes the determination of the angle of the motor according to the first angular velocity measurement value and the second angular velocity measurement value with reference to FIG. 3.
  • the measured value according to the first angular velocity Obtain the first attitude quaternion q ic
  • the second angular velocity measurement value Obtaining a second attitude quaternion q ib , including: taking the first angular velocity measurement value As an input, a first attitude quaternion q ic is calculated through a quaternion differential equation; and the second angular velocity measurement value is obtained As an input, the second attitude quaternion q ib is calculated through the quaternion differential equation.
  • ⁇ t is a sampling time interval of the first inertial measurement unit provided on the photographing device.
  • ⁇ t is a sampling time interval of the second inertial measurement unit provided on the base.
  • the third attitude quaternion represents the rotation attitude angle of the motor, and the result of the rotation makes the attitude of the base of the gimbal to the attitude of the photographing device differ by one rotation transformation. Therefore, the first attitude quaternion And the second attitude quaternion satisfy the following quaternion multiplication relationship:
  • a calculation formula for obtaining a third attitude quaternion according to the first attitude quaternion and the second attitude quaternion is:
  • q ic is represented as the first attitude quaternion
  • q ib is represented as the second attitude quaternion
  • q bc is represented as the third attitude quaternion
  • the angle ( ⁇ , ⁇ , ⁇ ) of the motor is obtained according to the third attitude quaternion q bc .
  • a third rotation transformation matrix R is obtained according to the third attitude quaternion q bc , and the third rotation transformation matrix R is used to represent a rotation transformation of the attitude of the base to the attitude of the photographing device Obtaining an angle ( ⁇ , ⁇ , ⁇ ) of the motor according to the third rotation transformation matrix R.
  • the angle of the motor is expressed by Euler angle, that is, the angle of the motor is described by the Euler angle ( ⁇ , ⁇ , ⁇ ) of the motor.
  • ( ⁇ , ⁇ , ⁇ ) is the angle of the motor, specifically the Euler angle of the motor
  • is the rotation angle of the tumble axis of the motor
  • is the rotation angle of the pitch axis of the motor
  • is the rotation angle of the yaw axis of the motor.
  • the range of the angle is: ⁇ [- ⁇ / 2, ⁇ / 2], ⁇ [- ⁇ , ⁇ ], ⁇ [- ⁇ , ⁇ ].
  • the gimbal controller determines the angular velocity of the motor according to the angle of the motor, the first angular velocity measurement value, and the second angular velocity measurement value, and specifically includes: determining a first rotation transformation matrix and a first rotation velocity according to the angle of the motor.
  • Two rotation transformation matrices the first rotation transformation matrix is a rotation matrix of a base coordinate system to a camera coordinate system, and the second rotation transformation matrix is a rotation matrix of a base coordinate system to a motor coordinate system; according to the first A rotation transformation matrix, the second rotation transformation matrix, the first angular velocity measurement value and the second angular velocity measurement value are calculated to obtain the angular velocity of the motor.
  • FIG. 4 is a specific flowchart for determining the angular velocity of the motor. The following specifically describes the determination of the angular velocity of the motor according to the angle of the motor, the first angular velocity measurement value, and the second angular velocity measurement value with reference to FIG. 4.
  • a first rotation transformation matrix R zxy ( ⁇ , ⁇ , ⁇ ) and a second rotation transformation matrix D are determined.
  • i c , j c , and k c be unit vectors on the X, Y, and Z axes of the camera coordinate system
  • i b , j b , and k b be on the X, Y, and Z axes of the base coordinate system, respectively.
  • R z ( ⁇ ), R x ( ⁇ ), R y ( ⁇ ) respectively around the Z, X, Y axis rotation unit rotation matrix, based on the basic principle of inertial navigation which R z ( ⁇ ), R
  • the values of x ( ⁇ ) and R y ( ⁇ ) are as follows:
  • R zxy ( ⁇ , ⁇ , ⁇ ) is expressed as a first rotation transformation matrix; ( ⁇ , ⁇ , ⁇ ) is expressed as an angle of the motor.
  • D is represented as a second rotation transformation matrix; ( ⁇ , ⁇ , ⁇ ) is represented as an angle of the motor.
  • the angular velocity ⁇ of the motor is calculated.
  • the calculation formula of the angular velocity of the motor is:
  • R zxy ( ⁇ , ⁇ , ⁇ ) is expressed as a first rotation transformation matrix
  • D is a second rotation transformation matrix
  • D -1 is an inverse matrix of the second rotation transformation matrix
  • is expressed as the angular velocity of the motor.
  • the angle of the motor is determined by the first angular velocity measurement value collected by the first inertial measurement unit provided on the photographing device and the second angular velocity measurement value collected by the second inertial measurement unit provided on the gimbal base.
  • the angular velocity of the motor is determined based on the motor's angle, the first angular velocity measurement and the second angular velocity measurement.
  • a low-cost inertial measurement unit is used instead of a high-cost angle sensor to collect measurement data, especially for multi-axis clouds
  • the cost is effectively reduced; on the other hand, because the angle of the obtained motor is an estimated value, the angle of the motor is estimated to be between the actual angle of the motor no matter how it is estimated. There is a certain error.
  • the angular velocity of the motor is determined based on the estimated motor angle, the first angular velocity measurement value, and the second angular velocity measurement value. Compared with the direct estimation based on the estimated motor angle, the angular velocity of the motor results in a cumulative error. The higher the calculation accuracy, the more accurate the angular velocity of the motor.
  • FIG. 5 is a schematic diagram of a device for estimating the angle and angular velocity of a gimbal motor according to an embodiment of the present invention.
  • the angle and angular velocity estimation device 50 of the pan / tilt motor can be configured in various controllers with a certain logic processing capability, such as a pan / tilt controller.
  • the PTZ controller can be applied to an aircraft, for example, to an unmanned aerial vehicle. The following description is based on an example where the gimbal motor angle and angular velocity estimation device 50 is configured in a gimbal controller, and the aircraft is a drone as an example. Among them, the drone includes a camera component, and the camera component includes a gimbal and a shooting device mounted on the gimbal.
  • the gimbal includes a base, a motor, a gimbal controller and an ESC.
  • the gimbal controller is connected to the ESC.
  • the regulator is electrically connected to the motor, and the electricity is called to control the motor.
  • the imaging device and the base are connected by a motor.
  • the imaging device is provided with a first inertial measurement unit, and the base is provided with a second inertial measurement unit.
  • the gimbal can be a multi-axis gimbal, such as a two-axis gimbal and a three-axis gimbal. The following three-axis gimbal is used as an example for illustration.
  • the gimbal motor angle and angular velocity estimation device 50 includes:
  • a measurement value acquisition module 501 is configured to acquire a first angular velocity measurement value collected by the first inertial measurement unit, and acquire a second angular velocity measurement value collected by the second inertial measurement unit.
  • An angle determination module 502 is configured to determine an angle of the motor according to the first angular velocity measurement value and the second angular velocity measurement value.
  • the quaternion is used to describe the attitude of the UAV and its various components.
  • the angle determining module 502 is specifically configured to: obtain a first attitude quaternion according to the first angular velocity measurement value, and obtain a second attitude quaternion according to the second angular velocity measurement value, where the first The attitude quaternion is used to represent the attitude angle of the photographing device relative to the inertial system, and the second attitude quaternion is used to represent the attitude angle of the base with respect to the inertial system; A quaternion and the second attitude quaternion to obtain a third attitude quaternion, and the third attitude quaternion is used to represent a rotation attitude angle of the motor; according to the third attitude quaternion, to obtain The angle of the motor.
  • the angle determination module 502 converts the first angular velocity measurement value Converted to the first attitude quaternion q ic and measured the second angular velocity Convert to the second pose quaternion q ib .
  • the angle determination module 502 is based on the first angular velocity measurement value.
  • Obtain the first attitude quaternion q ic and according to the second angular velocity measurement value
  • Obtaining a second attitude quaternion q ib including: taking the first angular velocity measurement value As an input, a first attitude quaternion q ic is calculated through a quaternion differential equation; and the second angular velocity measurement value is obtained As an input, the second attitude quaternion q ib is calculated through the quaternion differential equation.
  • ⁇ t is a sampling time interval of the first inertial measurement unit provided on the photographing device.
  • ⁇ t is a sampling time interval of the second inertial measurement unit provided on the base.
  • the angle determining module 502 obtains the third attitude quaternion according to the calculation formula for calculating the third attitude quaternion according to the first attitude quaternion and the second attitude quaternion.
  • the third attitude quaternion represents the rotation attitude angle of the motor, and the result of the rotation makes the attitude of the base of the gimbal to the attitude of the photographing device differ by one rotation transformation. Therefore, the first attitude quaternion And the second attitude quaternion satisfy the following quaternion multiplication relationship:
  • the calculation formula for the angle determination module 502 to obtain the third attitude quaternion based on the first attitude quaternion and the second attitude quaternion is:
  • q ic is represented as the first attitude quaternion
  • q ib is represented as the second attitude quaternion
  • q bc is represented as the third attitude quaternion
  • the angle determination module 502 obtains the angle ( ⁇ , ⁇ , ⁇ ) of the motor according to the third attitude quaternion q bc .
  • the angle determination module 502 obtains a third rotation transformation matrix R according to the third attitude quaternion q bc , and the third rotation transformation matrix R is used to represent the attitude of the base to the shooting device. Rotation transformation of the attitude; according to the third rotation transformation matrix R, an angle ( ⁇ , ⁇ , ⁇ ) of the motor is obtained.
  • the angle of the motor is expressed by Euler angle, that is, the angle of the motor is described by Euler angle ( ⁇ , ⁇ , ⁇ ) of the motor.
  • ( ⁇ , ⁇ , ⁇ ) is the angle of the motor, specifically the Euler angle of the motor
  • is the rotation angle of the tumble axis of the motor
  • is the rotation angle of the pitch axis of the motor
  • is the rotation angle of the yaw axis of the motor.
  • the range of the angle is: ⁇ [- ⁇ / 2, ⁇ / 2], ⁇ [- ⁇ , ⁇ ], ⁇ [- ⁇ , ⁇ ].
  • the angular velocity determining module 503 is configured to determine the angular velocity of the motor according to the angle of the motor, the first angular velocity measurement value, and the second angular velocity measurement value.
  • the angular velocity determination module 503 includes: a rotation transformation matrix determination module 5031, configured to determine a first rotation transformation matrix and a second rotation transformation matrix according to the angle of the motor, where the first rotation transformation matrix is a base coordinate system to the photographing device A rotation matrix of a coordinate system, the second rotation transformation matrix is a rotation matrix of a base coordinate system to a motor coordinate system; an angular velocity calculation module 5032 is configured to, according to the first rotation transformation matrix, the second rotation transformation matrix, The first angular velocity measurement value and the second angular velocity measurement value are calculated to obtain an angular velocity of the motor.
  • the rotation transformation matrix determination module 5031 determines a first rotation transformation matrix R zxy ( ⁇ , ⁇ , ⁇ ) and a second rotation transformation matrix D according to the angle ( ⁇ , ⁇ , ⁇ ) of the motor. Specifically, let i c , j c , and k c be unit vectors on the X, Y, and Z axes of the camera coordinate system, and i b , j b , and k b be on the X, Y, and Z axes of the base coordinate system, respectively.
  • R z ( ⁇ ), R x ( ⁇ ), R y ( ⁇ ) respectively around the Z, X, Y axis rotation unit rotation matrix, based on the basic principle of inertial navigation which R z ( ⁇ ), R
  • the values of x ( ⁇ ) and R y ( ⁇ ) are as follows:
  • the calculation formula for the rotation transformation matrix determining module 5031 to determine the first rotation transformation matrix according to the angle of the motor is:
  • R zxy ( ⁇ , ⁇ , ⁇ ) is expressed as a first rotation transformation matrix; ( ⁇ , ⁇ , ⁇ ) is expressed as an angle of the motor.
  • the rotation transformation matrix determination module 5031 obtains a calculation formula for determining the second rotation transformation matrix D according to the angle of the motor as:
  • D is represented as a second rotation transformation matrix; ( ⁇ , ⁇ , ⁇ ) is represented as an angle of the motor.
  • the angular velocity calculation module 5032 is based on the first rotation transformation matrix R zxy ( ⁇ , ⁇ , ⁇ ), the second rotation transformation matrix D, and the first angular velocity measurement value. And said second angular velocity measurement The angular velocity ⁇ of the motor is calculated. Specifically, the angular velocity calculation module 5032 calculates the calculation formula of the angular velocity of the motor as:
  • R zxy ( ⁇ , ⁇ , ⁇ ) is expressed as a first rotation transformation matrix
  • D is a second rotation transformation matrix
  • D -1 is an inverse matrix of the second rotation transformation matrix
  • is expressed as the angular velocity of the motor.
  • the gimbal motor angle and angular velocity estimation device 50 can execute the gimbal motor angle and angular velocity estimation method provided in Embodiment 1 of the present invention, and is provided with corresponding function modules of the execution method and Beneficial effect.
  • the gimbal motor angle and angular velocity estimation device 50 can execute the gimbal motor angle and angular velocity estimation method provided in Embodiment 1 of the present invention, and is provided with corresponding function modules of the execution method and Beneficial effect.
  • FIG. 6 is a PTZ provided by an embodiment of the present invention.
  • the pan / tilt 60 is used to carry a photographing device.
  • the pan / tilt 60 includes a base 601 and a motor 602.
  • the photographing device is connected to the base 601 through the motor 602.
  • the photographing device is provided with a first An inertial measurement unit.
  • the base 601 is provided with a second inertial measurement unit.
  • the PTZ 60 further includes: at least one processor 603 and a memory 604 communicatively connected with the at least one processor 603. Among them, at least one processor 603 is connected to the motor 602. One processor 603 is taken as an example in FIG. 7.
  • the processor 603 and the memory 604 may be connected through a bus or other methods.
  • the connection through the bus is taken as an example.
  • the memory 604 is a non-volatile computer-readable storage medium, and can be used to store non-volatile software programs, non-volatile computer executable programs, and modules, such as the angle and angular velocity estimation of the PTZ motor in the embodiment of the present invention.
  • Program instructions / modules corresponding to the method for example, the measurement value acquisition module 501, the angle determination module 502, and the angular velocity determination module 503 shown in FIG. 5).
  • the processor 603 executes various functional applications and data processing of the PTZ by running non-volatile software programs, instructions, and units stored in the memory 604, that is, the angle and angular velocity estimation of the PTZ motor that implements the method embodiment method.
  • the memory 604 may include a storage program area and a storage data area, where the storage program area may store an operating system and applications required for at least one function; the storage data area may store data created according to the use of the PTZ, and the like.
  • the memory 604 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 604 may optionally include a memory remotely set relative to the processor 603, and these remote memories may be connected to the PTZ through a network. Examples of the network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more units are stored in the memory 604, and when executed by the one or more processors 603, execute the method of estimating the angle and angular velocity of the gimbal motor in the method embodiment, for example, executing the above
  • the described method steps 101 to 103 in FIG. 1 implement the functions of the 501-503 modules in FIG. 5.
  • the pan / tilt head 60 can execute the method for estimating the angle and angular velocity of the pan / tilt motor provided in Embodiment 1 of the present invention, and has corresponding function modules and beneficial effects of the execution method.
  • the pan / tilt head 60 can execute the method for estimating the angle and angular velocity of the pan / tilt motor provided in Embodiment 1 of the present invention, and has corresponding function modules and beneficial effects of the execution method.
  • An embodiment of the present invention provides a computer program product.
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions.
  • the program instructions are executed by a computer, At that time, the computer is caused to execute the method of estimating the angle and angular velocity of the gimbal motor as described above. For example, the method steps 101 to 103 in FIG. 1 described above are performed to implement the functions of the modules 501-503 in FIG. 5.
  • An embodiment of the present invention provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the PTZ motor as described above.
  • Angle and angular velocity estimation methods For example, the method steps 101 to 103 in FIG. 1 described above are performed to implement the functions of the modules 501-503 in FIG. 5.
  • FIG. 8 is a camera module according to an embodiment of the present invention.
  • the camera module 80 includes a photographing device 801 and the PTZ 60 described above, and the photographing device 801 is mounted on the PTZ 60.
  • the photographing device 801 is provided with a first inertial measurement unit.
  • the pan / tilt 60 is used for fixing the photographing device 801, or adjusting the posture of the photographing device 801 at random (for example, changing the height, inclination, and / or direction of the photographing device) and stably maintaining the photographing device 801 in a set posture.
  • the pan / tilt 60 is mainly used for stably maintaining the photographing device 801 in a set posture, preventing the photographing device 801 from flickering, and ensuring the stability of the photographing image.
  • FIG. 9 is an aircraft provided by an embodiment of the present invention.
  • the aircraft 90 includes: a fuselage 901 and the camera component 80 described above.
  • the camera module 80 is mounted on the body 901 to perform aerial photography, video recording, and the like.
  • the device embodiments described above are only schematic, and the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical Modules can be located in one place or distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the embodiments can be implemented by means of software plus a general hardware platform, and of course, also by hardware.
  • the program can be stored in a computer-readable storage medium, and the program is being executed. In this case, the process of the embodiment of each method may be included.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random, Access Memory, RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种云台电机角度和角速度估算方法、装置、云台及飞行器,涉及飞行器技术领域。其中,云台包括基座、与基座相连的电机和与电机相连的拍摄装置。拍摄装置设置有第一惯性测量单元,基座设置有第二惯性测量单元。包括:获取第一惯性测量单元采集的第一角速度测量值和第二惯性测量单元采集的第二角速度测量值(101);根据第一角速度测量值及第二角速度测量值,确定电机的角度(102);根据电机的角度、第一角速度测量值及第二角速度测量值,确定电机的角速度(103)。通过云台电机角度和角速度估算方法,可以降低得到云台电机角度和角速度的成本,有效的提高估算云台电机角度和角速度估算的准确性。

Description

云台电机角度和角速度估算方法、装置、云台及飞行器
相关申请的交叉引用
本申请要求申请号为201810502724.4,申请日为2018年5月23日申请的中国专利申请的优先权,其全部内容通过引用结合于本文。
技术领域
本发明实施例涉及飞行器技术领域,尤其涉及一种云台电机角度和角速度估算方法、云台电机角度和角速度估算装置、云台,以及具有该云台的摄像组件,及具有该摄像组件的飞行器。
背景技术
目前飞行器,例如,无人飞行器(Unmanned Aerial Vehicle,UAV),也称无人机得到了越来越广泛的应用。无人机是一种处在迅速发展中的新概念装备,其具有体积小、重量轻、机动灵活、反应快速、无人驾驶、操作要求低的优点。无人机通过云台搭载多类拍摄装置,如相机、摄影机等,可以实现影像实时传输、高危地区探测功能,是卫星遥感与传统航空遥感的有力补充。近年来,无人机在灾情调查和救援、空中监控、输电线路巡检、航拍、航测以及军事领域有着广泛的应用前景。
其中,云台是无人机航拍中实现拍摄画面增稳的核心器件,其利用电机的主动转动实时抵消拍摄装置受到的扰动,防止拍摄装置的抖动,保证拍摄画面的稳定。目前市面上云台均配有角度传感器,如电位器、磁编等,其主要作用是实时获取采集的测量信息,以便云台的控制器通过测量信息得到电机的角度,为云台的增稳控制提供必要的电机的角度信息。
在实现本发明过程中,发明人发现相关技术中至少存在如下问题: 1、采用角度传感器存在明显的成本劣势。由于通常无人机的云台为多轴云台,而对于多轴云台中的多个电机,需要配置多个角度传感器以获取对应的电机的角度和角速度,增加采集的测量信息的成本。2、采用角度传感器提供的数据类型单一,基于角度传感器提供的数据无法获得准确的电机的角速度:角度传感器只能提供电机的角度数据,无法直接提供准确的电机角速度数据,而准确的电机的角速度数据对提高云台的增稳控制效果有着十分重要的意义,基于角度传感器提供的数据无法获得准确的电机的角速度,进而会影响拍摄画面的稳定性,影响用户的视觉体验。
发明内容
本发明实施例提供一种云台电机角度和角速度估算方法、装置、云台及飞行器,可以降低得到云台电机角度和角速度的成本,并且有效的提高估算云台电机角度和角速度估算的准确性。
本发明实施例公开了如下技术方案:
一种云台电机角度和角速度估算方法,所述云台包括基座、与所述基座相连的电机和与所述电机相连的拍摄装置,所述拍摄装置设置有第一惯性测量单元,所述基座设置有第二惯性测量单元,所述方法包括:
获取所述第一惯性测量单元采集的第一角速度测量值和所述第二惯性测量单元采集的第二角速度测量值;
根据所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角度;
根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度。
在本发明的一实施例中,所述根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度,包括:
根据所述电机的角度,确定第一旋转变换矩阵及第二旋转变换矩阵, 其中,所述第一旋转变换矩阵为基座坐标系到拍摄装置坐标系的旋转矩阵,所述第二旋转变换矩阵为基座坐标系到电机坐标系的旋转矩阵;
根据所述第一旋转变换矩阵、所述第二旋转变换矩阵、所述第一角速度测量值及所述第二角速度测量值,计算得到所述电机的角速度。
在本发明的一实施例中,所述电机的角速度的计算公式为:
Figure PCTCN2018116716-appb-000001
其中,R zxy(φ,θ,ψ)表示为所述第一旋转变换矩阵;D表示为所述第二旋转变换矩阵;D -1表示为所述第二旋转变换矩阵的逆矩阵;
Figure PCTCN2018116716-appb-000002
表示为所述第一角速度测量值;
Figure PCTCN2018116716-appb-000003
表示为所述第二角速度测量值;ω表示为所述电机的角速度。
在本发明的一实施例中,所述第一旋转变换矩阵的计算公式为:
Figure PCTCN2018116716-appb-000004
其中,R zxy(φ,θ,ψ)表示为所述第一旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
在本发明的一实施例中,所述第二旋转变换矩阵的计算公式为:
Figure PCTCN2018116716-appb-000005
其中,D表示为所述第二旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
在本发明的一实施例中,所述根据所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角度,包括:
根据所述第一角速度测量值得到第一姿态四元数,其中,所述第一姿态四元数用于表示所述拍摄装置相对于惯性系的姿态角;
根据所述第二角速度测量值得到第二姿态四元数,其中,所述第二姿态四元数用于表示所述基座相对所述惯性系的姿态角;
根据所述第一姿态四元数与所述第二姿态四元数,得到第三姿态四元数,其中,所述第三姿态四元数用于表示所述电机的旋转姿态角;
根据所述第三姿态四元数,得到所述电机的角度。
在本发明的一实施例中,所述根据所述第一角速度测量值得到第一姿态四元数,其中,所述第一姿态四元数用于表示所述拍摄装置相对于惯性系的姿态角,包括:
以所述第一角速度测量值作为输入,通过四元数微分方程,计算得到第一姿态四元数。
在本发明的一实施例中,所述根据所述第二角速度测量值得到第二姿态四元数,其中,所述第二姿态四元数用于表示所述基座相对所述惯性系的姿态角,包括:
以所述第二角速度测量值作为输入,通过四元数微分方程,计算得到第二姿态四元数。
在本发明的一实施例中,所述第三姿态四元数的计算公式为:
Figure PCTCN2018116716-appb-000006
其中,q ic表示为第一姿态四元数;q ib表示为第二姿态四元数;
Figure PCTCN2018116716-appb-000007
表示为q ib的逆矩阵;q bc表示为第三姿态四元数;
Figure PCTCN2018116716-appb-000008
表示四元数乘法。
在本发明的一实施例中,所述根据所述第三姿态四元数,得到所述电机的角度,包括:
根据所述第三姿态四元数,得到第三旋转变换矩阵,其中,所述第三旋转变换矩阵用于表示所述基座的姿态到所述拍摄装置的姿态的旋转变换;
根据所述第三旋转变换矩阵,得到所述电机的角度。
在本发明的一实施例中,所述第三旋转变换矩阵的表达式为:
Figure PCTCN2018116716-appb-000009
其中,q bc=[q bc0 q bc1 q bc2 q bc3] T表示为第三姿态四元数;R表示第三旋转变换矩阵;
则,所述电机的角度的表达式为:
Figure PCTCN2018116716-appb-000010
其中,(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
为解决其技术问题,本发明还提供了一种云台电机角度和角速度估算装置,所述云台包括基座、与所述基座相连的电机和与所述电机相连的拍摄装置,所述拍摄装置设置有第一惯性测量单元,所述基座设置有第二惯性测量单元,所述装置包括:
测量值获取模块,用于获取所述第一惯性测量单元采集的第一角速度测量值和所述第二惯性测量单元采集的第二角速度测量值;
角度确定模块,用于根据所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角度;
角速度确定模块,用于根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度。
在本发明的一实施例中,所述角速度确定模块包括:
旋转变换矩阵确定模块,用于根据所述电机的角度,确定第一旋转变换矩阵及第二旋转变换矩阵,其中,所述第一旋转变换矩阵为基座坐标系到拍摄装置坐标系的旋转矩阵,所述第二旋转变换矩阵为基座坐标系到电机坐标系的旋转矩阵;
角速度计算模块,用于根据所述第一旋转变换矩阵、所述第二旋转变换矩阵、所述第一角速度测量值及所述第二角速度测量值,计算得到所述电机的角速度。
在本发明的一实施例中,所述电机的角速度的计算公式为:
Figure PCTCN2018116716-appb-000011
其中,R zxy(φ,θ,ψ)表示为所述第一旋转变换矩阵;D表示为所述第二旋转变换矩阵;D -1表示为所述第二旋转变换矩阵的逆矩阵;
Figure PCTCN2018116716-appb-000012
表示为所述第一角速度测量值;
Figure PCTCN2018116716-appb-000013
表示为所述第二角速度测量值;ω表示为所述电机的角速度。
在本发明的一实施例中,所述第一旋转变换矩阵的计算公式为:
Figure PCTCN2018116716-appb-000014
其中,R zxy(φ,θ,ψ)表示为所述第一旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
在本发明的一实施例中,所述第二旋转变换矩阵的计算公式为:
Figure PCTCN2018116716-appb-000015
其中,D表示为所述第二旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
在本发明的一实施例中,所述角度确定模块具体用于:
根据所述第一角速度测量值得到第一姿态四元数,其中,所述第一姿态四元数用于表示所述拍摄装置相对于惯性系的姿态角;
根据所述第二角速度测量值得到第二姿态四元数,其中,所述第二姿态四元数用于表示所述基座相对所述惯性系的姿态角;
根据所述第一姿态四元数与所述第二姿态四元数,得到第三姿态四元数,其中,所述第三姿态四元数用于表示所述电机的旋转姿态角;
根据所述第三姿态四元数,得到所述电机的角度。
在本发明的一实施例中,所述角度确定模块用于以所述第一角速度测量值作为输入,通过四元数微分方程,计算得到第一姿态四元数。
在本发明的一实施例中,所述角度确定模块还用于以所述第二角速度测量值作为输入,通过四元数微分方程,计算得到第二姿态四元数。
在本发明的一实施例中,所述第三姿态四元数的计算公式为:
Figure PCTCN2018116716-appb-000016
其中,q ic表示为第一姿态四元数;q ib表示为第二姿态四元数;
Figure PCTCN2018116716-appb-000017
表示为q ib的逆矩阵;q bc表示为第三姿态四元数;
Figure PCTCN2018116716-appb-000018
表示四元数乘法。
在本发明的一实施例中,所述角度确定模块具体用于:
根据所述第三姿态四元数,得到第三旋转变换矩阵,其中,所述第三旋转变换矩阵用于表示所述基座的姿态到所述拍摄装置的姿态的旋转变换;
根据所述第三旋转变换矩阵,得到所述电机的角度。
为解决其技术问题,本发明还提供了一种云台,所述云台包括基座、与所述基座相连的电机和与所述电机相连的拍摄装置,所述拍摄装置设置有第一惯性测量单元,所述基座设置有第二惯性测量单元,所述云台还包括:至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上述所述的方法。
为解决其技术问题,本发明还提供了一种飞行器,包括:
机身;
机臂,与所述机身相连;
动力装置,设于所述机臂;以及
如上述所述的云台,所述云台安装于所述机身。
本发明实施例通过设置于拍摄装置的第一惯性测量单元采集的第一角速度测量值及设置于云台基座的第二惯性测量单元采集第二角速度测量值来确定电机的角度,并基于电机的角度、第一角速度测量值及第二角速度测量值来确定电机的角速度,一方面,使用低成本的惯性测量单元代替高成本的角度传感器以采集测量数据,特别是对多轴云台的多个电机的角度信息来说,有效的降低了成本;另一方面,由于得到的电机的角度是估算值,不管通过何种方式估算电机的角度均会与实际的电机的角度之间存在一定的误差,通过基于估算的电机的角度、第一角速度测量值及第二角速度测量值来确定电机的角速度,相对于直接基于估算的电机的角度进行微分得到电机的角速度导致累计误差,具有更高的计算精度,得到准确度较高的电机的角速度。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种云台电机角度和角速度估算方法的流程示意图;
图2是本发明实施例提供的第一惯性测量单元及第二惯性测量单元的位置设置示意图;
图3是本发明实施例提供的确定电机的角度的具体流程图;
图4是本发明实施例提供的确定电机的角速度的具体流程图;
图5是本发明实施例提供的云台电机角度和角速度估算装置的示意图;
图6是本发明实施例提供的云台的连接框图;
图7是图6中的处理器和存储器的连接关系示意图;
图8是本发明实施例提供的摄像组件的示意图;
图9是本发明实施例提供的飞行器的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例提供的云台电机角度和角速度估算方法可以应用到各种利用云台作为拍摄的辅助装置的拍摄设备上,如手持拍摄设备、飞行器、无人船或者无人车等设备中。例如,飞行器,如无人机(unmanned aerial vehicle,UAV)设置有云台及拍摄装置,UAV的云台可搭载拍摄装置,并安装于UAV的机身上,以进行航拍工作。或者,手持拍摄设备设置有云台及拍摄装置,手持拍摄设备的云台也可搭载拍摄装置并安装于一手柄上以使手持拍摄设备进行拍照、录像等工作。
下面以UAV为例进行具体说明。
UAV包括:机身、与机身相连的机臂、设于机臂的动力装置及与机身相连的云台。其中,云台安装于机身上。
无人飞行器可以包括一个或多个机臂,一个或多个机臂呈辐射状从机身延伸出。机臂与机身的连接可以是一体连接或者固定连接。
云台包括:与机身相连的基座、与所述基座相连的电机、与所述电机相连的摄像装置、设于基座的控制器及设于机臂内的电调。其中,控制器与电调连接,电调与电机电连接,电调用于控制电机。具体的,控制器用于执行上述云台电机角度和角速度估算方法以得到电机角度和角速度,根据电机角度和角速度生成控制指令,并将该控制指令发送给电调,电调通过该控制指令控制电机。或者,控制器用于执行上述云台电机角度和角速度估算以得到电机角度和角速度,并将电机角度和角速度发送至电调,电调根据电机角度和角速度生成控制指令,并通过该控制指令控制电机。
需要说明的是,在一些实施例中,电调不是云台的必要部件,当云台不包括电调时,控制器直接与电机连接,通过控制指令控制电机。
所述拍摄装置包括但不限于:相机、摄影机、摄像头、扫描仪、拍照手机等。云台用于实现拍摄装置的固定、或随意调节拍摄装置的姿态(例如,改变拍摄装置的高度、倾角和/或方向)以及使所述拍摄装置稳定保持在设定的姿态上。例如,当UAV进行航拍时,云台主要用于使所述拍摄装置稳定保持在设定的姿态上,防止拍摄装置拍摄画面抖动,保证拍摄画面的稳定。
拍摄装置上设置有第一惯性测量单元,以便采集拍摄装置的姿态信息,如通过该第一惯性测量单元采集拍摄装置的角速度等。
电机分别与基座及拍摄装置连接。该云台可以为多轴云台,与之适应的,电机为多个,也即每个轴设置有一个电机。电机一方面可带动拍摄装置的转动,从而满足拍摄转轴的水平旋转和俯仰角度的调节,通过手动远程控制电机旋转或利用程序让电机自动旋转,从而达到全方位扫描监控的作用;另一方面,在UAV进行航拍的过程中,通过电机的转动实时抵消拍摄装置受到的扰动,防止拍摄装置抖动,保证拍摄画面的稳定。
控制器用于执行上述云台电机角度和角速度估算以得到电机角度 和角速度,并可基于电机角度和角速度生成控制指令,并将该控制指令发送给电调,以便电调通过该控制指令控制电机。控制器为具有一定逻辑处理能力的器件,如控制芯片、单片机、微控制单元(Microcontroller Unit,MCU)等。
电调,全称电子调速器,分别与控制器及电机连接,根据控制指令调节UAV的电机,以保证拍摄装置的拍摄画面的稳定。电调控制电机的原理大致为:电机是将电脉冲信号转变为角位移或线位移的开环控制元器件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当驱动器接收到一个脉冲信号,它就驱动电机按设定的方向转动一个固定的角度,它的旋转是以固定的角度运行的。因此,电调可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在控制电机的过程中,通常需要基于电机的角度信息,如电机的角速度和电机的角度,来控制电机。通过实时获取电机的角度信息,为云台的增稳控制提供必要的电机角度信息。
而目前通常是采用角度传感器来获取电机的角度,具体的,角度传感器采集测量信息,并将测量信息发送至云台的控制器,云台的控制器基于角度传感器采集的测量信息计算得到电机的角度。其中,常用的角度传感器有电位器、磁编码器等,但是由于每个电机都需要有角度传感器,对于多轴云台中的多个电机的控制则需要配置多个角度传感器,一方面会增加采集的测量信息的成本,进而增加电机控制的成本;另一方面角度传感器越多控制方案越复杂。并且,角度传感器提供的数据类型单一:只能提供电机的角度数据,无法直接提供准确的电机角速度数据,而准确的电机的角速度数据对进一步提高云台的增稳控制效果有着十分重要的意义,因为当引入角速度反馈时,可构成角度-角速度串级控制***,这比传统的只利用角度的控制器具有更强的抗干扰能力。
因此,基于上述问题,本发明实施例主要目的在于提供一种云台电机角度和角速度估算方法、装置、云台、摄像组件及飞行器,可以减低为获取得到云台电机角度和角速度的成本,并且有效的提高计算云台电机角度和角速度的准确度,为云台的增稳控制提供更加准确的云台电机角度和角速度。由于准确的云台电机角度和角速度的获取与引入,可构成角度-角速度串级控制***,相比传统的只基于角度的控制***,大幅提升了云台的抗干扰能力和增稳效果,确保拍摄装置航拍画面始终保持清晰与稳定。
其中,本发明的思路是:首先,在拍摄装置设置上第一惯性测量单元(Inertial measurement unit,IMU),并在云台的基座设置上第二惯性测量单元;然后,第一惯性测量单元采集得到第一角速度测量值,并将第一角速度测量值发送给云台的控制器,第二惯性测量单元采集得到第二角速度测量值,并将第二角速度测量值发送给云台的控制器;接着,云台的控制器根据获取得到的第一角速度测量值及获取得到所述第二角速度测量值,确定所述电机的角度,并根据电机的角度、第一角速度测量值及第二角速度测量值,确定所述电机的角速度。
本发明实施例通过设置于拍摄装置的第一惯性测量单元采集的第一角速度测量值及设置于云台基座的第二惯性测量单元采集第二角速度测量值来确定电机的角度,并基于电机的角度、第一角速度测量值及第二角速度测量值来确定电机的角速度,一方面,使用低成本的惯性测量单元代替高成本的角度传感器以采集测量数据,特别是对多轴云台的多个电机的角度信息来说,有效的降低了成本;另一方面,通过第一角速度测量值及第二角速度测量值来确定电机的角度可以提高计算电机角度的准确性,并且,还可以通过电机的角度、第一角速度测量值及第二角速度测量值来得到准确度较高的电机的角速度。由于准确度较高的电机的角度和角速度的估算与引入,进而可构成角度-角速度串级控制***,相比传统的只基于角度的控制***,大幅提升了云台的抗干扰能 力和增稳效果,确保拍摄装置航拍画面始终保持清晰与稳定,提高用户的视觉体验。
下面结合附图,对本发明实施例作进一步阐述。
实施例1:
图1为本发明实施例提供的一种云台电机角度和角速度估算方法的流程示意图。其中,该云台电机角度和角速度估算方法可由各种具有一定逻辑处理能力的控制器执行,如云台控制器等。所述云台控制器可以应用于飞行器上,例如,应用于无人机。以下执行云台电机角度和角速度估算方法的控制器以云台控制器为例、飞行器以无人机为例进行说明。其中,无人机包括摄像组件,摄像组件包括云台及搭载于云台上的拍摄装置,云台包括基座、电机、云台控制器及电调,云台控制器与电调连接,电调与电机电连接,电调用于控制电机。并且,拍摄装置与基座通过电机进行连接,拍摄装置设置有第一惯性测量单元,基座设置有第二惯性测量单元。其中,云台可以为多轴云台,如两轴云台、三轴云台,以下三轴云台为例进行说明。
请参照图1,所述云台电机角度和角速度估算方法包括:
101:获取所述第一惯性测量单元采集的第一角速度测量值,和所述第二惯性测量单元采集的第二角速度测量值。
云台控制器获取第一角速度测量值及第二角速度测量值具体包括:首先由设置于拍摄装置上的第一惯性测量单元采集得到第一角速度测量值,并将该第一角速度测量值发送至云台控制器,以使云台控制器获取得到该第一角速度测量值;类似的,由设置于云台的基座上的第二惯性测量单元采集得到第二角速度测量值,并将该第二角速度测量值发送至云台控制器,以使云台控制器获取得到该第二角速度测量值。其中,拍摄装置可为相机、摄影机、摄像头、扫描仪、拍照手机等。其中,第一惯性测量单元及第二惯性测量单元的具体设置位置可参考图2所示。 其中,图2中包括有3个坐标系:拍摄装置坐标系、电机坐标系及基座坐标系。在图2中,处于最上端的是云台的基座,最下端的是拍摄装置,它们之间通过Z-X-Y欧拉角轴序的三轴电机相连,即从上到下依次是偏航轴Yaw(Z轴)、翻滚轴Roll(X轴)、俯仰轴Pitch(Y轴)三个电机轴。
其中,惯性测量单元(Inertial measurement unit,IMU)为一种测量物体三轴姿态角(或角速率)以及加速度的装置。通常的,IMU有六轴的IMU和九轴的IMU。其中,六轴的IMU中,一个IMU包含了三个单轴的加速度计和三个单轴的陀螺仪,加速度计检测物体在载体坐标***独立三轴的加速度信号,而陀螺仪检测载体相对于导航坐标系的角速度信号,测量物体在三维空间中的角速度和加速度,并以此解算出物体的姿态。九轴的IMU中,一个IMU包含了三个单轴的加速度计、三个单轴的陀螺仪和三个单轴的地磁计,九轴的IMU的加速度计与陀螺仪类似,九轴的IMU的地磁计用于检测地磁场在惯性系中水平面上的分量,该分量的方向始终指向北极。
通过六轴的IMU或九轴的IMU可以检测自身在惯性系中的姿态信息,具体的,设置于拍摄装置上的第一惯性测量单元采集得到第一角速度测量值,该第一角速度测量值可用向量
Figure PCTCN2018116716-appb-000019
表示,也即该第一角速度测量值
Figure PCTCN2018116716-appb-000020
表示为拍摄装置相对于惯性系的角速度在拍摄装置坐标系下的坐标向量;设置于云台的基座上的第二惯性测量单元采集得到第二角速度测量值,该第二角速度测量值可用向量
Figure PCTCN2018116716-appb-000021
表示,也即该第二角速度测量值
Figure PCTCN2018116716-appb-000022
表示为基座相对于惯性系的角速度在基座坐标系下的坐标向量。其中,惯性系,又称惯性坐标系、惯性参照系、大地坐标系或世界坐标系,由于无人机可安放在任意位置,在环境中选择一个基准坐标来描述无人机及无人机的各个部件的位置,并用它描述环境中任何物体的位置,该坐标系称为惯性系。
102:根据所述第一角速度测量值及所述第二角速度测量值,确定 所述电机的角度。
为了避免电机角度求解过程中出现万向节锁现象,采用四元数描述无人机及其各个部件的姿态。其中,产生万向节锁现象的根本原因是,旋转矩阵是依次进行的,假设先围绕x轴旋转,再围绕y轴旋转,最后围绕z轴旋转,这就导致物体其实是围绕自己的坐标系的x轴旋转,而不是惯性系的x轴旋转。表现就是,在一个欧拉角(x1,y1,z1)下,改变x1的值,物体会围绕物体自己的坐标系的x轴进行旋转,而不是世界惯性系的x轴进行旋转,最后,当把物体的x轴旋转到与惯性系的z轴重合时,欧垃角的x1和z1旋转结果就都一样了,也就丢失了一个维度,这便是万向节锁现象。概括起来可以这么说,绕着物体坐标系中某一个轴,比如y轴的+(-)90度的某次旋转,使得这次旋转的前一次绕物体坐标系x轴的旋转和这次旋转的后一次绕物体坐标系z轴的旋转的两个旋转轴是一样(一样的意思是指在惯性系中,两次旋转轴是共轴的但方向相反),从而造成一个旋转自由度丢失,也就是万向节锁现象。
使用三个量来表示三维空间的朝向的***都会出现万向节锁现象这个问题,而通过四元数进行描述可以有效的避免万向节锁现象。具体的,所述根据所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角度,包括:根据所述第一角速度测量值得到第一姿态四元数,并根据所述第二角速度测量值得到第二姿态四元数,其中,所述第一姿态四元数用于表示所述拍摄装置相对于惯性系的姿态角,所述第二姿态四元数用于表示所述基座相对所述惯性系的姿态角;根据所述第一姿态四元数与所述第二姿态四元数,得到第三姿态四元数,所述第三姿态四元数用于表示所述电机的旋转姿态角;根据所述第三姿态四元数,得到所述电机的角度。
其中,图3为确定电机的角度的具体流程图。下面结合图3对根据第一角速度测量值及第二角速度测量值确定电机的角度进行具体描述。
首先,将第一角速度测量值
Figure PCTCN2018116716-appb-000023
转换为第一姿态四元数q ic,并将第 二角速度测量值
Figure PCTCN2018116716-appb-000024
转换为第二姿态四元数q ib
具体的,所述根据所述第一角速度测量值
Figure PCTCN2018116716-appb-000025
得到第一姿态四元数q ic,并根据所述第二角速度测量值
Figure PCTCN2018116716-appb-000026
得到第二姿态四元数q ib,包括:以所述第一角速度测量值
Figure PCTCN2018116716-appb-000027
作为输入,通过四元数微分方程,计算得到第一姿态四元数q ic;以所述第二角速度测量值
Figure PCTCN2018116716-appb-000028
作为输入,通过四元数微分方程,计算得到第二姿态四元数q ib
其中,第一姿态四元数q ic的导数满足如下四元数微分方程:
Figure PCTCN2018116716-appb-000029
其中,
Figure PCTCN2018116716-appb-000030
是第一姿态四元数q ic的导数;
Figure PCTCN2018116716-appb-000031
是相对于当前t时刻的上一个采样周期的第一姿态四元数q ic的估计值;
Figure PCTCN2018116716-appb-000032
是当前t时刻设置于拍摄装置上的第一惯性测量单元的陀螺仪的第一角速度测量值,于是t时刻的拍摄装置的第一姿态四元数q ic为:
Figure PCTCN2018116716-appb-000033
其中,Δt是设置于拍摄装置上的第一惯性测量单元的采样时间间隔。
类似的,第二姿态四元数q ib的导数满足如下四元数微分方程:
Figure PCTCN2018116716-appb-000034
其中,
Figure PCTCN2018116716-appb-000035
是第二姿态四元数q ib的导数;
Figure PCTCN2018116716-appb-000036
是相对于当前t时刻的上一个采样周期的第二姿态四元数q ib的估计值;
Figure PCTCN2018116716-appb-000037
是当前t时刻设置于云台的基座上的第二惯性测量单元的陀螺仪的第二角速度测量值,于是t时刻的云台的基座的第二姿态四元数q ib为:
Figure PCTCN2018116716-appb-000038
其中,Δt是设置于基座上的第二惯性测量单元的采样时间间隔。
然后,根据第一姿态四元数与第二姿态四元数,并结合计算第三姿态四元数的计算公式,得到第三姿态四元数。具体的,所述第三姿态四元数表示了所述电机的旋转姿态角,旋转的结果使得云台的基座的姿态到拍摄装置的姿态相差一次旋转变换,因此,第一姿态四元数和第二姿态四元数满足以下四元数乘法关系:
Figure PCTCN2018116716-appb-000039
基于上述公式,根据所述第一姿态四元数与所述第二姿态四元数得到第三姿态四元数的计算公式为:
Figure PCTCN2018116716-appb-000040
其中,q ic表示为第一姿态四元数;q ib表示为第二姿态四元数;
Figure PCTCN2018116716-appb-000041
表示为q ib的逆矩阵;q bc表示为第三姿态四元数;
Figure PCTCN2018116716-appb-000042
表示四元数乘法。
最后,根据所述第三姿态四元数q bc得到所述电机的角度(φ,θ,ψ)。具体的,根据所述第三姿态四元数q bc,得到第三旋转变换矩阵R,所述第三旋转变换矩阵R用于表示所述基座的姿态到所述拍摄装置的姿态的旋转变换;根据所述第三旋转变换矩阵R,得到所述电机的角度(φ,θ,ψ)。所述电机的角度用欧拉角表示,也即通过电机的欧拉角(φ,θ,ψ)描述电机的角度。
其中,根据所述第三姿态四元数得到所述第三旋转变换矩阵的表达式为:
Figure PCTCN2018116716-appb-000043
其中,q bc=[q bc0 q bc1 q bc2 q bc3] T表示为第三姿态四元数;R表示第三旋转变换矩阵。
根据所述第三旋转变换矩阵得到所述电机的角度的表达式为:
Figure PCTCN2018116716-appb-000044
其中,(φ,θ,ψ)表示为所述电机的角度,具体为电机的欧拉角,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。并且,角度的值域为:φ∈[-π/2,π/2],θ∈[-π,π],ψ∈[-π,π]。
103:根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度。
云台控制器根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度,具体包括:根据电机的角度,确定第一旋转变换矩阵及第二旋转变换矩阵,所述第一旋转变换矩阵为基座坐标系到拍摄装置坐标系的旋转矩阵,所述第二旋转变换矩阵为基座坐标系到电机坐标系的旋转矩阵;根据所述第一旋转变换矩阵、所述第二旋转变换矩阵、所述第一角速度测量值及所述第二角速度测量值,计算得到所述电机的角速度。
其中,图4为确定电机的角速度的具体流程图。下面结合图4对根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值确定所述电机的角速度进行具体描述。
首先,根据电机的角度(φ,θ,ψ),确定第一旋转变换矩阵R zxy(φ,θ,ψ)及第二旋转变换矩阵D。具体的,设i c、j c、k c分别为拍摄装置坐标系X、Y、Z轴上的单位向量,i b、j b、k b分别为基座坐标系X、Y、Z轴上的单位向量,R z(ψ)、R x(φ)、R y(θ)分别是绕Z、X、Y轴旋转的单位旋转阵,依据惯性导航基本原理,其R z(ψ)、R x(φ)、R y(θ)的值分别如下:
Figure PCTCN2018116716-appb-000045
Figure PCTCN2018116716-appb-000046
Figure PCTCN2018116716-appb-000047
基于上述表达式,根据电机的角度确定第一旋转变换矩阵的计算公式为:
Figure PCTCN2018116716-appb-000048
其中,R zxy(φ,θ,ψ)表示为第一旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度。
拍摄装置的角速度、电机的角速度与云台的基座的角速度三者之间的联系可用如下姿态动力学方程描述:
Figure PCTCN2018116716-appb-000049
基于上述等式,得到根据电机的角度确定第二旋转变换矩阵D的计算公式为:
Figure PCTCN2018116716-appb-000050
其中,D表示为第二旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度。
然后,根据所述第一旋转变换矩阵R zxy(φ,θ,ψ)、所述第二旋转变换矩阵D、所述第一角速度测量值
Figure PCTCN2018116716-appb-000051
及所述第二角速度测量值
Figure PCTCN2018116716-appb-000052
计算得到所述电机的角速度ω。具体的,计算得到所述电机的角速度的计算公式为:
Figure PCTCN2018116716-appb-000053
其中,R zxy(φ,θ,ψ)表示为第一旋转变换矩阵;D表示为第二旋转变换矩阵;D -1表示为第二旋转变换矩阵的逆矩阵;
Figure PCTCN2018116716-appb-000054
表示为第一角速度测量值;
Figure PCTCN2018116716-appb-000055
表示为第二角速度测量值;ω表示为所述电机的角速度。
在本发明实施例中,通过设置于拍摄装置的第一惯性测量单元采集的第一角速度测量值及设置于云台基座的第二惯性测量单元采集第二角速度测量值来确定电机的角度,并基于电机的角度、第一角速度测量值及第二角速度测量值来确定电机的角速度,一方面,使用低成本的惯性测量单元代替高成本的角度传感器以采集测量数据,特别是对多轴云台的多个电机的角度信息来说,有效的降低了成本;另一方面,由于得到的电机的角度是估算值,不管通过何种方式估算电机的角度均会与实际的电机的角度之间存在一定的误差,通过基于估算的电机的角度、第一角速度测量值及第二角速度测量值来确定电机的角速度,相对于直接基于估算的电机的角度进行微分得到电机的角速度导致累计误差,具有更高的计算精度,得到准确度较高的电机的角速度。
实施例2:
图5为本发明实施例提供的一种云台电机角度和角速度估算装置示意图。其中,所述云台电机角度和角速度估算装置50可配置于各种具有一定逻辑处理能力的控制器中,如云台控制器等。所述云台控制器可以应用于飞行器上,例如,应用于无人机。以下以云台电机角度和角速度估算装置50配置于云台控制器为例、飞行器以无人机为例进行说明。其中,无人机包括摄像组件,摄像组件包括云台及搭载于云台上的拍摄装置,云台包括基座、电机、云台控制器及电调,云台控制器与电调连接,电调与电机电连接,电调用于控制电机。并且,拍摄装置与基座通过电机进行连接,拍摄装置设置有第一惯性测量单元,基座设置有第二惯性测量单元。其中,云台可以为多轴云台,如两轴云台、三轴云台,以下三轴云台为例进行说明。
请参照图5,所述云台电机角度和角速度估算装置50包括:
测量值获取模块501,用于获取所述第一惯性测量单元采集的第一角速度测量值,并获取所述第二惯性测量单元采集的第二角速度测量值。
角度确定模块502,用于根据所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角度。
为了避免电机角度求解过程中出现万向节锁现象,采用四元数描述无人机及其各个部件的姿态。具体的,角度确定模块502具体用于:根据所述第一角速度测量值得到第一姿态四元数,并根据所述第二角速度测量值得到第二姿态四元数,其中,所述第一姿态四元数用于表示所述拍摄装置相对于惯性系的姿态角,所述第二姿态四元数用于表示所述基座相对所述惯性系的姿态角;根据所述第一姿态四元数与所述第二姿态四元数,得到第三姿态四元数,所述第三姿态四元数用于表示所述电机的旋转姿态角;根据所述第三姿态四元数,得到所述电机的角度。
首先,角度确定模块502将第一角速度测量值
Figure PCTCN2018116716-appb-000056
转换为第一姿态四元数q ic,并将第二角速度测量值
Figure PCTCN2018116716-appb-000057
转换为第二姿态四元数q ib
具体的,角度确定模块502根据所述第一角速度测量值
Figure PCTCN2018116716-appb-000058
得到第一姿态四元数q ic,并根据所述第二角速度测量值
Figure PCTCN2018116716-appb-000059
得到第二姿态四元数q ib,包括:以所述第一角速度测量值
Figure PCTCN2018116716-appb-000060
作为输入,通过四元数微分方程,计算得到第一姿态四元数q ic;以所述第二角速度测量值
Figure PCTCN2018116716-appb-000061
作为输入,通过四元数微分方程,计算得到第二姿态四元数q ib
其中,第一姿态四元数q ic的导数满足如下四元数微分方程:
Figure PCTCN2018116716-appb-000062
其中,
Figure PCTCN2018116716-appb-000063
是第一姿态四元数q ic的导数;
Figure PCTCN2018116716-appb-000064
是相对于当前t时刻的上一个采样周期的第一姿态四元数q ic的估计值;
Figure PCTCN2018116716-appb-000065
是当前t时刻设置于拍摄装置上的第一惯性测量单 元的陀螺仪的第一角速度测量值,于是t时刻的拍摄装置的第一姿态四元数q ic为:
Figure PCTCN2018116716-appb-000066
其中,Δt是设置于拍摄装置上的第一惯性测量单元的采样时间间隔。
类似的,第二姿态四元数q ib的导数满足如下四元数微分方程:
Figure PCTCN2018116716-appb-000067
其中,
Figure PCTCN2018116716-appb-000068
是第二姿态四元数q ib的导数;
Figure PCTCN2018116716-appb-000069
是相对于当前t时刻的上一个采样周期的第二姿态四元数q ib的估计值;
Figure PCTCN2018116716-appb-000070
是当前t时刻设置于云台的基座上的第二惯性测量单元的陀螺仪的第二角速度测量值,于是t时刻的云台的基座的第二姿态四元数q ib为:
Figure PCTCN2018116716-appb-000071
其中,Δt是设置于基座上的第二惯性测量单元的采样时间间隔。
然后,角度确定模块502根据第一姿态四元数与第二姿态四元数,并结合计算第三姿态四元数的计算公式,得到第三姿态四元数。具体的,所述第三姿态四元数表示了所述电机的旋转姿态角,旋转的结果使得云台的基座的姿态到拍摄装置的姿态相差一次旋转变换,因此,第一姿态四元数和第二姿态四元数满足以下四元数乘法关系:
Figure PCTCN2018116716-appb-000072
基于上述公式,角度确定模块502根据所述第一姿态四元数与所述第二姿态四元数得到第三姿态四元数的计算公式为:
Figure PCTCN2018116716-appb-000073
其中,q ic表示为第一姿态四元数;q ib表示为第二姿态四元数;
Figure PCTCN2018116716-appb-000074
表示为q ib的逆矩阵;q bc表示为第三姿态四元数;
Figure PCTCN2018116716-appb-000075
表示四元数乘法。
最后,角度确定模块502根据所述第三姿态四元数q bc得到所述电机的角度(φ,θ,ψ)。具体的,角度确定模块502根据所述第三姿态四元数q bc, 得到第三旋转变换矩阵R,所述第三旋转变换矩阵R用于表示所述基座的姿态到所述拍摄装置的姿态的旋转变换;根据所述第三旋转变换矩阵R,得到所述电机的角度(φ,θ,ψ)。所述电机的角度用欧拉角表示,也即通过电机的欧拉角(φ,θ,ψ)描述电机的角度。
其中,角度确定模块502根据所述第三姿态四元数得到所述第三旋转变换矩阵的表达式为:
Figure PCTCN2018116716-appb-000076
其中,q bc=[q bc0 q bc1 q bc2 q bc3] T表示为第三姿态四元数;R表示第三旋转变换矩阵。
角度确定模块502根据所述第三旋转变换矩阵得到所述电机的角度的表达式为:
Figure PCTCN2018116716-appb-000077
其中,(φ,θ,ψ)表示为所述电机的角度,具体为电机的欧拉角,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。并且,角度的值域为:φ∈[-π/2,π/2],θ∈[-π,π],ψ∈[-π,π]。
角速度确定模块503,用于根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度。
其中,角速度确定模块503包括:旋转变换矩阵确定模块5031,用于根据电机的角度,确定第一旋转变换矩阵及第二旋转变换矩阵,所述第一旋转变换矩阵为基座坐标系到拍摄装置坐标系的旋转矩阵,所述第二旋转变换矩阵为基座坐标系到电机坐标系的旋转矩阵;角速度计算模块5032,用于根据所述第一旋转变换矩阵、所述第二旋转变换矩阵、所述第一角速度测量值及所述第二角速度测量值,计算得到所述电机的角 速度。
首先,旋转变换矩阵确定模块5031根据电机的角度(φ,θ,ψ),确定第一旋转变换矩阵R zxy(φ,θ,ψ)及第二旋转变换矩阵D。具体的,设i c、j c、k c分别为拍摄装置坐标系X、Y、Z轴上的单位向量,i b、j b、k b分别为基座坐标系X、Y、Z轴上的单位向量,R z(ψ)、R x(φ)、R y(θ)分别是绕Z、X、Y轴旋转的单位旋转阵,依据惯性导航基本原理,其R z(ψ)、R x(φ)、R y(θ)的值分别如下:
Figure PCTCN2018116716-appb-000078
Figure PCTCN2018116716-appb-000079
Figure PCTCN2018116716-appb-000080
基于上述表达式,旋转变换矩阵确定模块5031根据电机的角度确定第一旋转变换矩阵的计算公式为:
Figure PCTCN2018116716-appb-000081
其中,R zxy(φ,θ,ψ)表示为第一旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度。
拍摄装置的角速度、电机的角速度与云台的基座的角速度三者之间的联系可用如下姿态动力学方程描述:
Figure PCTCN2018116716-appb-000082
基于上述等式,旋转变换矩阵确定模块5031得到根据电机的角度 确定第二旋转变换矩阵D的计算公式为:
Figure PCTCN2018116716-appb-000083
其中,D表示为第二旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度。
然后,角速度计算模块5032根据所述第一旋转变换矩阵R zxy(φ,θ,ψ)、所述第二旋转变换矩阵D、所述第一角速度测量值
Figure PCTCN2018116716-appb-000084
及所述第二角速度测量值
Figure PCTCN2018116716-appb-000085
计算得到所述电机的角速度ω。具体的,角速度计算模块5032计算得到所述电机的角速度的计算公式为:
Figure PCTCN2018116716-appb-000086
其中,R zxy(φ,θ,ψ)表示为第一旋转变换矩阵;D表示为第二旋转变换矩阵;D -1表示为第二旋转变换矩阵的逆矩阵;
Figure PCTCN2018116716-appb-000087
表示为第一角速度测量值;
Figure PCTCN2018116716-appb-000088
表示为第二角速度测量值;ω表示为所述电机的角速度。
需要说明的是,在本发明实施例中,所述云台电机角度和角速度估算装置50可执行本发明实施例1所提供的云台电机角度和角速度估算方法,具备执行方法相应的功能模块和有益效果。未在云台电机角度和角速度估算装置50的实施例中详尽描述的技术细节,可参见本发明实施例1所提供的云台电机角度和角速度估算方法。
实施例3:
图6为本发明实施例提供的一种云台。所述云台60用于搭载拍摄装置,所述云台60包括:基座601及电机602,所述拍摄装置与所述基座601通过所述电机602进行连接,所述拍摄装置设置有第一惯性测量单元,所述基座601设置有第二惯性测量单元。
所述云台60还包括:至少一个处理器603以及与所述至少一个处理器603通信连接的存储器604。其中,至少一个处理器603与电机602连接。图7中以一个处理器603为例。
处理器603和存储器604可以通过总线或者其他方式连接,图7中 以通过总线连接为例。
存储器604作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的云台电机角度和角速度估算方法对应的程序指令/模块(例如,附图5所示的测量值获取模块501、角度确定模块502以及角速度确定模块503)。处理器603通过运行存储在存储器604中的非易失性软件程序、指令以及单元,从而执行云台的各种功能应用以及数据处理,即实现所述方法实施例的云台电机角度和角速度估算方法。
存储器604可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据云台使用所创建的数据等。此外,存储器604可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器604可选包括相对于处理器603远程设置的存储器,这些远程存储器可以通过网络连接至云台。所述网络的实施例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个单元存储在所述存储器604中,当被所述一个或者多个处理器603执行时,执行所述方法实施例中的云台电机角度和角速度估算方法,例如,执行以上描述的图1中的方法步骤101至步骤103,实现图5中的501-503模块的功能。
所述云台60可执行本发明实施例1所提供的云台电机角度和角速度估算方法,具备执行方法相应的功能模块和有益效果。未在云台实施例中详尽描述的技术细节,可参见本发明实施例1所提供的云台电机角度和角速度估算方法。
本发明实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使计算机执行如上 所述的云台电机角度和角速度估算方法。例如,执行以上描述的图1中的方法步骤101至步骤103,实现图5中的501-503模块的功能。
本发明实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上所述的云台电机角度和角速度估算方法。例如,执行以上描述的图1中的方法步骤101至步骤103,实现图5中的501-503模块的功能。
实施例4:
图8为本发明实施例提供的一种摄像组件。其中,所述摄像组件80包括:拍摄装置801及如上所述的云台60,所述拍摄装置801搭载于所述云台60上。所述拍摄装置801上设置有第一惯性测量单元。云台60为实现拍摄装置801的固定、或随意调节拍摄装置801的姿态(例如,改变拍摄装置的高度、倾角和/或方向)以及使所述拍摄装置801稳定保持在设定的姿态上。例如,当摄像组件80进行航拍时,云台60主要用于使所述拍摄装置801稳定保持在设定的姿态上,防止拍摄装置801拍摄画面抖动,保证拍摄画面的稳定。
实施例5:
图9为本发明实施例提供的飞行器,所述飞行器90包括:机身901及如上所述的摄像组件80。摄像组件80安装于所述机身901,以进行航拍、录像等工作。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部 分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现所述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如所述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种云台电机角度和角速度估算方法,其特征在于,所述云台包括基座、与所述基座相连的电机和与所述电机相连的拍摄装置,所述拍摄装置设置有第一惯性测量单元,所述基座设置有第二惯性测量单元,所述方法包括:
    获取所述第一惯性测量单元采集的第一角速度测量值和所述第二惯性测量单元采集的第二角速度测量值;
    根据所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角度;
    根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度,包括:
    根据所述电机的角度,确定第一旋转变换矩阵及第二旋转变换矩阵,其中,所述第一旋转变换矩阵为基座坐标系到拍摄装置坐标系的旋转矩阵,所述第二旋转变换矩阵为基座坐标系到电机坐标系的旋转矩阵;
    根据所述第一旋转变换矩阵、所述第二旋转变换矩阵、所述第一角速度测量值及所述第二角速度测量值,计算得到所述电机的角速度。
  3. 根据权利要求2所述的方法,其特征在于,所述电机的角速度的计算公式为:
    Figure PCTCN2018116716-appb-100001
    其中,R zxy(φ,θ,ψ)表示为所述第一旋转变换矩阵;D表示为所述第二旋转变换矩阵;D -1表示为所述第二旋转变换矩阵的逆矩阵;
    Figure PCTCN2018116716-appb-100002
    表示为 所述第一角速度测量值;
    Figure PCTCN2018116716-appb-100003
    表示为所述第二角速度测量值;ω表示为所述电机的角速度。
  4. 根据权利要求3所述的方法,其特征在于,所述第一旋转变换矩阵的计算公式为:
    Figure PCTCN2018116716-appb-100004
    其中,R zxy(φ,θ,ψ)表示为所述第一旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二旋转变换矩阵的计算公式为:
    Figure PCTCN2018116716-appb-100005
    其中,D表示为所述第二旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角度,包括:
    根据所述第一角速度测量值得到第一姿态四元数,其中,所述第一姿态四元数用于表示所述拍摄装置相对于惯性系的姿态角;
    根据所述第二角速度测量值得到第二姿态四元数,其中,所述第二姿态四元数用于表示所述基座相对所述惯性系的姿态角;
    根据所述第一姿态四元数与所述第二姿态四元数,得到第三姿态四元数,其中,所述第三姿态四元数用于表示所述电机的旋转姿态角;
    根据所述第三姿态四元数,得到所述电机的角度。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一角速度测量值得到第一姿态四元数,其中,所述第一姿态四元数用于表示所述拍摄装置相对于惯性系的姿态角,包括:
    以所述第一角速度测量值作为输入,通过四元数微分方程,计算得到第一姿态四元数。
  8. 根据权利要求6或7所述的方法,其特征在于,所述根据所述第二角速度测量值得到第二姿态四元数,其中,所述第二姿态四元数用于表示所述基座相对所述惯性系的姿态角,包括:
    以所述第二角速度测量值作为输入,通过四元数微分方程,计算得到第二姿态四元数。
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,所述第三姿态四元数的计算公式为:
    Figure PCTCN2018116716-appb-100006
    其中,q ic表示为第一姿态四元数;q ib表示为第二姿态四元数;
    Figure PCTCN2018116716-appb-100007
    表示为q ib的逆矩阵;q bc表示为第三姿态四元数;
    Figure PCTCN2018116716-appb-100008
    表示四元数乘法。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述根据所述第三姿态四元数,得到所述电机的角度,包括:
    根据所述第三姿态四元数,得到第三旋转变换矩阵,其中,所述第三旋转变换矩阵用于表示所述基座的姿态到所述拍摄装置的姿态的旋转变换;
    根据所述第三旋转变换矩阵,得到所述电机的角度。
  11. 根据权利要求10所述的方法,其特征在于,所述第三旋转变换矩阵的表达式为:
    Figure PCTCN2018116716-appb-100009
    其中,q bc=[q bc0 q bc1 q bc2 q bc3] T表示为第三姿态四元数;R表示第三旋转变换矩阵;
    则,所述电机的角度的表达式为:
    Figure PCTCN2018116716-appb-100010
    其中,(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
  12. 一种云台电机角度和角速度估算装置,其特征在于,所述云台包括基座、与所述基座相连的电机和与所述电机相连的拍摄装置,所述拍摄装置设置有第一惯性测量单元,所述基座设置有第二惯性测量单元,所述装置包括:
    测量值获取模块,用于获取所述第一惯性测量单元采集的第一角速度测量值和所述第二惯性测量单元采集的第二角速度测量值;
    角度确定模块,用于根据所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角度;
    角速度确定模块,用于根据所述电机的角度、所述第一角速度测量值及所述第二角速度测量值,确定所述电机的角速度。
  13. 根据权利要求12所述的装置,其特征在于,所述角速度确定 模块包括:
    旋转变换矩阵确定模块,用于根据所述电机的角度,确定第一旋转变换矩阵及第二旋转变换矩阵,其中,所述第一旋转变换矩阵为基座坐标系到拍摄装置坐标系的旋转矩阵,所述第二旋转变换矩阵为基座坐标系到电机坐标系的旋转矩阵;
    角速度计算模块,用于根据所述第一旋转变换矩阵、所述第二旋转变换矩阵、所述第一角速度测量值及所述第二角速度测量值,计算得到所述电机的角速度。
  14. 根据权利要求13所述的装置,其特征在于,所述电机的角速度的计算公式为:
    Figure PCTCN2018116716-appb-100011
    其中,R zxy(φ,θ,ψ)表示为所述第一旋转变换矩阵;D表示为所述第二旋转变换矩阵;D -1表示为所述第二旋转变换矩阵的逆矩阵;
    Figure PCTCN2018116716-appb-100012
    表示为所述第一角速度测量值;
    Figure PCTCN2018116716-appb-100013
    表示为所述第二角速度测量值;ω表示为所述电机的角速度。
  15. 根据权利要求14所述的装置,其特征在于,所述第一旋转变换矩阵的计算公式为:
    Figure PCTCN2018116716-appb-100014
    其中,R zxy(φ,θ,ψ)表示为所述第一旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第二旋 转变换矩阵的计算公式为:
    Figure PCTCN2018116716-appb-100015
    其中,D表示为所述第二旋转变换矩阵;(φ,θ,ψ)表示为所述电机的角度,φ表示为所述电机的翻滚轴的转动角度,θ表示为所述电机的俯仰轴的转动角度,ψ表示为所述电机的偏航轴的转动角度。
  17. 根据权利要求12-16中任一项所述的装置,其特征在于,所述角度确定模块具体用于:
    根据所述第一角速度测量值得到第一姿态四元数,其中,所述第一姿态四元数用于表示所述拍摄装置相对于惯性系的姿态角;
    根据所述第二角速度测量值得到第二姿态四元数,其中,所述第二姿态四元数用于表示所述基座相对所述惯性系的姿态角;
    根据所述第一姿态四元数与所述第二姿态四元数,得到第三姿态四元数,其中,所述第三姿态四元数用于表示所述电机的旋转姿态角;
    根据所述第三姿态四元数,得到所述电机的角度。
  18. 根据权利要求17所述的装置,其特征在于,所述角度确定模块用于以所述第一角速度测量值作为输入,通过四元数微分方程,计算得到第一姿态四元数。
  19. 根据权利要求17或18所述的装置,其特征在于,所述角度确定模块还用于以所述第二角速度测量值作为输入,通过四元数微分方程,计算得到第二姿态四元数。
  20. 根据权利要求17-19中任一项所述的装置,其特征在于,
    所述第三姿态四元数的计算公式为:
    Figure PCTCN2018116716-appb-100016
    其中,q ic表示为第一姿态四元数;q ib表示为第二姿态四元数;
    Figure PCTCN2018116716-appb-100017
    表示为q ib的逆矩阵;q bc表示为第三姿态四元数;
    Figure PCTCN2018116716-appb-100018
    表示四元数乘法。
  21. 根据权利要求17-20中任一项所述的装置,其特征在于,
    所述角度确定模块具体用于:
    根据所述第三姿态四元数,得到第三旋转变换矩阵,其中,所述第三旋转变换矩阵用于表示所述基座的姿态到所述拍摄装置的姿态的旋转变换;
    根据所述第三旋转变换矩阵,得到所述电机的角度。
  22. 一种云台,其特征在于,所述云台包括基座、与所述基座相连的电机和与所述电机相连的拍摄装置,所述拍摄装置设置有第一惯性测量单元,所述基座设置有第二惯性测量单元,所述云台还包括:至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-11中任一项所述的方法。
  23. 一种飞行器,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂;以及
    如权利要求22所述的云台,所述云台安装于所述机身。
PCT/CN2018/116716 2018-05-23 2018-11-21 云台电机角度和角速度估算方法、装置、云台及飞行器 WO2019223270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810502724.4A CN108762324A (zh) 2018-05-23 2018-05-23 云台电机角度和角速度估算方法、装置、云台及飞行器
CN201810502724.4 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019223270A1 true WO2019223270A1 (zh) 2019-11-28

Family

ID=64005134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116716 WO2019223270A1 (zh) 2018-05-23 2018-11-21 云台电机角度和角速度估算方法、装置、云台及飞行器

Country Status (2)

Country Link
CN (1) CN108762324A (zh)
WO (1) WO2019223270A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108762324A (zh) * 2018-05-23 2018-11-06 深圳市道通智能航空技术有限公司 云台电机角度和角速度估算方法、装置、云台及飞行器
EP3882736A4 (en) * 2018-11-15 2022-06-15 SZ DJI Technology Co., Ltd. METHOD OF CONTROLLING A HANDHELD GIMBAL AND HANDHELD GIMBAL
CN109741381B (zh) * 2019-01-23 2020-07-03 张过 基于平行观测的星载推扫式光学传感器高频误差消除方法
CN111750850B (zh) * 2019-03-27 2021-12-14 杭州海康威视数字技术股份有限公司 角度信息获取方法、装置和***
CN110260888B (zh) * 2019-06-06 2021-10-15 航天科工仿真技术有限责任公司 一种摆动角测量方法、装置及***
CN111007889A (zh) * 2019-11-04 2020-04-14 普宙飞行器科技(深圳)有限公司 云台电机轴旋转框架角度获取方法、装置、存储介质、电子设备及无人机
US11407098B2 (en) * 2019-11-26 2022-08-09 Stmicroelectronics S.R.L. Smart push button device utilizing MEMS sensors
CN112544065A (zh) * 2019-12-31 2021-03-23 深圳市大疆创新科技有限公司 云台的控制方法和云台
WO2021217371A1 (zh) * 2020-04-27 2021-11-04 深圳市大疆创新科技有限公司 可移动平台的控制方法和装置
IT202000009937A1 (it) 2020-05-05 2021-11-05 St Microelectronics Srl Metodo di controllo di un apparecchio elettronico eseguito tramite il calcolo di un angolo di apertura, relativo apparecchio elettronico e prodotto software
CN113608576B (zh) 2020-05-05 2024-06-25 意法半导体股份有限公司 电子装置控制方法、其电子装置和软件产品
CN111649743B (zh) * 2020-05-08 2022-03-22 武汉高德红外股份有限公司 一种基于光电转塔的目标角速度解算方法及装置
CN111770270B (zh) * 2020-06-24 2021-06-25 杭州海康威视数字技术股份有限公司 一种相机姿态的校正方法、摄像机
CN111654634B (zh) * 2020-06-24 2022-02-08 杭州海康威视数字技术股份有限公司 确定摄像机中机芯组件和云台组件倾斜的方法、摄像机
WO2022040883A1 (zh) * 2020-08-24 2022-03-03 深圳市大疆创新科技有限公司 云台控制方法、云台控制装置、云台和存储介质
CN113928581B (zh) * 2021-09-30 2022-08-23 北京远度互联科技有限公司 吊舱控制方法、装置、吊舱、无人机及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060015248A1 (en) * 2004-07-16 2006-01-19 Huddle James R Transfer alignment of navigation systems
JP2008230579A (ja) * 2007-03-23 2008-10-02 Nec Corp 姿勢検出装置および方法
CN106200692A (zh) * 2016-08-11 2016-12-07 零度智控(北京)智能科技有限公司 地面云台控制方法、装置及地面云台
CN106953553A (zh) * 2017-03-12 2017-07-14 纳恩博(北京)科技有限公司 一种云台、及云台电机的控制方法和装置
CN106959110A (zh) * 2017-04-06 2017-07-18 亿航智能设备(广州)有限公司 一种云台姿态检测方法及装置
CN107817823A (zh) * 2017-11-24 2018-03-20 深圳禾苗通信科技有限公司 云台及云台关机方法
CN108762324A (zh) * 2018-05-23 2018-11-06 深圳市道通智能航空技术有限公司 云台电机角度和角速度估算方法、装置、云台及飞行器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105116926B (zh) * 2015-08-20 2018-05-04 深圳一电航空技术有限公司 云台控制方法和装置
CN107817821A (zh) * 2017-10-27 2018-03-20 成都鼎信精控科技有限公司 一种基于mems陀螺仪组合的稳定云台及控制方法
CN107872180B (zh) * 2017-12-22 2022-03-29 深圳市道通智能航空技术股份有限公司 一种检测电机转子位置的方法、装置及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060015248A1 (en) * 2004-07-16 2006-01-19 Huddle James R Transfer alignment of navigation systems
JP2008230579A (ja) * 2007-03-23 2008-10-02 Nec Corp 姿勢検出装置および方法
CN106200692A (zh) * 2016-08-11 2016-12-07 零度智控(北京)智能科技有限公司 地面云台控制方法、装置及地面云台
CN106953553A (zh) * 2017-03-12 2017-07-14 纳恩博(北京)科技有限公司 一种云台、及云台电机的控制方法和装置
CN106959110A (zh) * 2017-04-06 2017-07-18 亿航智能设备(广州)有限公司 一种云台姿态检测方法及装置
CN107817823A (zh) * 2017-11-24 2018-03-20 深圳禾苗通信科技有限公司 云台及云台关机方法
CN108762324A (zh) * 2018-05-23 2018-11-06 深圳市道通智能航空技术有限公司 云台电机角度和角速度估算方法、装置、云台及飞行器

Also Published As

Publication number Publication date
CN108762324A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
CN109000612B (zh) 设备的角度估算方法、装置、摄像组件及飞行器
WO2021027638A1 (zh) 一种偏航角的融合方法、装置及飞行器
US20220137643A1 (en) Aircraft control method and aircraft
WO2018053877A1 (zh) 控制方法、控制设备和运载***
US11156905B2 (en) Control method for gimbal, controller, and gimbal
WO2018120059A1 (zh) 用于云台的控制方法、控制***、云台和无人飞行器
CN108780331B (zh) 云台控制方法和设备、云台以及无人机
WO2021052334A1 (zh) 一种无人飞行器的返航方法、装置及无人飞行器
WO2021037047A1 (zh) 一种飞行器的偏航角修正方法、装置及飞行器
CN109254587B (zh) 在无线充电条件下稳定悬停的小型无人机及其控制方法
WO2019134154A1 (zh) 非正交云台的控制方法及其云台和存储装置
WO2020103049A1 (zh) 旋转微波雷达的地形预测方法、装置、***和无人机
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2021032201A1 (zh) 一种偏航角的融合方法、装置及飞行器
WO2021168819A1 (zh) 无人机的返航控制方法和设备
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制***
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
CN111977006B (zh) 一种关节角的初始化方法、装置及飞行器
WO2020019260A1 (zh) 磁传感器校准方法、控制终端以及可移动平台
WO2020062089A1 (zh) 磁传感器校准方法以及可移动平台
WO2019183789A1 (zh) 无人机的控制方法、装置和无人机
WO2020062356A1 (zh) 控制方法、控制装置、无人飞行器的控制终端
WO2020019175A1 (zh) 图像处理方法和设备、摄像装置以及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919893

Country of ref document: EP

Kind code of ref document: A1