WO2020262674A1 - ミラー装着部材、これを使用した位置計測用ミラー、および露光装置 - Google Patents

ミラー装着部材、これを使用した位置計測用ミラー、および露光装置 Download PDF

Info

Publication number
WO2020262674A1
WO2020262674A1 PCT/JP2020/025391 JP2020025391W WO2020262674A1 WO 2020262674 A1 WO2020262674 A1 WO 2020262674A1 JP 2020025391 W JP2020025391 W JP 2020025391W WO 2020262674 A1 WO2020262674 A1 WO 2020262674A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
mounting member
grooves
member according
mirror mounting
Prior art date
Application number
PCT/JP2020/025391
Other languages
English (en)
French (fr)
Inventor
徹彌 井上
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP20831467.4A priority Critical patent/EP3992716A4/en
Priority to JP2021528283A priority patent/JP7261298B2/ja
Priority to US17/621,962 priority patent/US20220269040A1/en
Priority to CN202080043907.XA priority patent/CN113994267B/zh
Priority to KR1020217041608A priority patent/KR20220011153A/ko
Publication of WO2020262674A1 publication Critical patent/WO2020262674A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only

Definitions

  • the present disclosure relates to, for example, a mirror mounting member for mounting a reflective film used for measuring the position of a substrate stage in an exposure apparatus, a position measuring mirror using the mirror mounting member, and an exposure apparatus.
  • an exposure apparatus such as an immersion exposure apparatus (Patent Document 1).
  • an exposure apparatus includes a substrate stage 100 having a substrate chuck (not shown) for holding the substrate 101 and a surrounding member 102 surrounding the substrate 101.
  • the substrate stage 100 is movable within an exposure region for exposing the substrate 101 via a projection optical system and a measurement region for measuring the substrate 101, and the drive is controlled by a control means.
  • Patent Document 1 proposes an immersion exposure apparatus in which the slope mirror 103 is attached to a mirror 104 mounted on the side surface of the substrate stage 100. That is, the optical axis irradiated by the interferometer (not shown) is guided to the upper part of the substrate stage 100 by the slope mirror 103, reflected by the reference mirror (not shown) fixed above the substrate stage 100, and folded back from the reference mirror. The light axis is reflected by the slope mirror 103, returns to the interferometer, interferes with the reference light, the amount of change in the substrate stage 100 in a predetermined direction is measured, and the position from the reference position is calculated.
  • the mirror mounting member of the present disclosure comprises a prismatic or square tubular structure, and has a mirror having a joint surface for joining to the joint surface and a slope inclined with respect to the joint surface as an outer surface. It is a mounting member, the slope is a mounting surface for mounting a reflective film for reflecting the light emitted from the light source, and the joint surface is a plurality of first grooves extending in the longitudinal direction of the structure and the said A plurality of second grooves intersecting with the first groove are provided, both ends of the first groove are open, and the second groove is sealed at an end located on the side where light is reflected by the reflective film. Become.
  • the position measurement mirror of the present disclosure is formed by mounting a reflective film on a slope of the mirror mounting member.
  • the exposure apparatus of the present disclosure includes a substrate stage to which a position measurement mirror is joined.
  • (A) is a schematic perspective view of the mirror mounting member according to the embodiment of the present disclosure as viewed from the slope side
  • (b) is a schematic perspective view of the mirror mounting member as viewed from the joint surface side
  • (c) is a side view.
  • It is a front view which shows the joint surface in one Embodiment of this disclosure.
  • It is an enlarged view of the part A of FIG.
  • It is a schematic diagram which enlarged the cross section of the inner peripheral surface surrounding the through hole of the structure shown in FIG.
  • It is a schematic perspective view which shows an example of a substrate stage.
  • the mirror mounting member 1 is composed of a square tubular structure 2, and has a joint surface 3 for joining to the surface to be joined and a joint surface as an outer surface. It is provided with a slope 4 that is inclined with respect to the slope 4.
  • the surface to be joined refers to, for example, the mirror 104 surface mounted on the side surface of the substrate stage 100 shown in FIG.
  • the angle formed by the slope 4 with respect to the joint surface 3 is, for example, 44.8 ° to 45.2 °.
  • the flatness of the slope 4 is, for example, 316.4 nm or less.
  • the structure 2 has a through hole 8 along the longitudinal direction, and the cross section of the through hole 8 perpendicular to the longitudinal direction has a circular shape.
  • the diameter of the through hole 8 is, for example, 6 mm or more and 10 mm or less.
  • the average linear expansion coefficient at 40 ° C to 400 ° C is within ⁇ 2 ⁇ 10 -6 / K.
  • Certain ceramics, glass, etc. can be used. Examples of such ceramics include ceramics containing cordierite, lithium aluminosilicate, potassium zirconium phosphate or mullite as a main component. Ceramics containing cordierite as the main component include Ca of 0.4% by mass or more and 0.6% by mass or less in terms of CaO, Al of 2.3% by mass or more and 3.5% by mass or less in terms of Al2O3, and Mn and Cr.
  • Ceramics containing lithium aluminosilicate as a main component may contain 20% by mass or less of silicon carbide.
  • glass containing titanium silicic acid as a main component can be mentioned. If a member made of ceramics or glass having a small average coefficient of linear expansion is used, the change in shape is small even when exposed to a large temperature change, so that the structure has high reliability.
  • the average coefficient of linear expansion may be obtained in accordance with JIS R 1618: 2002.
  • the average coefficient of linear expansion may be obtained in accordance with JIS R 3251: 1995.
  • the measurement may be performed using an optical heterodyne method 1 optical path interferometer.
  • the principal component in ceramics refers to a component that accounts for 60% by mass or more of the total 100% by mass of the components constituting the ceramic of interest.
  • the main component is preferably a component that accounts for 95% by mass or more of the total 100% by mass of the components constituting the ceramic of interest.
  • the components constituting the ceramics may be obtained by using an X-ray diffractometer (XRD).
  • XRD X-ray diffractometer
  • the content of each component can be determined by determining the content of the elements constituting the component using a fluorescent X-ray analyzer (XRF) or an ICP emission spectroscopic analyzer after identifying the component and converting it into the identified component. Good. The same applies to glass.
  • the shape of the structure 2 is not particularly limited as long as it has a joint surface 3 and a slope 4, and may be a prismatic shape in addition to the above-mentioned square tubular shape, and is particularly shown in FIG. 1 (c). As described above, it is preferably substantially triangular tubular or substantially triangular columnar.
  • the slope 4 is a mounting surface for mounting a reflective film (not shown) for reflecting the optical axis emitted from the light source for position measurement.
  • a reflective film include a metal film made of aluminum, gold, silver and the like.
  • the joint surface 3 includes a plurality of first grooves 5 extending in the longitudinal direction of the structure 2 and a plurality of second grooves 6 intersecting the first groove 5.
  • the second groove 6 extends in a direction orthogonal to the first groove 5, that is, in a lateral direction orthogonal to the longitudinal direction of the structure 2.
  • three first grooves 5 are formed, but the present invention is not limited to this, and the first groove 5 can be formed in the range of 3 to 6.
  • the second groove 6 can also be formed in the range of 6 to 12.
  • the first groove 5 has both ends 51 and 52 open.
  • the second groove 6 is sealed by abutting and communicating with the first grooves 5b and 5c located at both ends in the lateral direction of the structure 2. Therefore, it is possible to prevent the adhesive from squeezing out from the adhesive coating portion 7 through the second groove 6, and the bonding efficiency is improved.
  • both ends of the second groove 6 are sealed, but the end portion located on the side where the light is reflected by the reflective film (that is, the direction in which the reference mirror is located as shown in FIG. 5). It suffices if the end portion 105) at is sealed.
  • the width w1 of the first groove 5a located in the central portion of the structure 2 in the lateral direction is narrower than the width w2 of the other first grooves 5b and 5c located on both sides of the central portion. It has become. Therefore, the rigidity of the structure 2 is less likely to be impaired and the change in the flatness of the mounting surface for mounting the reflective film can be suppressed as compared with the case where the widths of the plurality of first grooves 5 are all the same. .. Further, since the other first grooves 5b and 5c located on both sides are the adhesive coating portion 7, a sufficiently wide width is required, whereas the first groove 5a located in the central portion will be described later.
  • the groove width is sufficient for air discharge at the time of applying the adhesive to the first grooves 5b and 5c and at the time of joining, and a wide width is not required.
  • the air discharge path By providing the air discharge path in this way, it is possible to prevent the adhesive from squeezing out from the joint surface 3.
  • the width w1 is 1.7 mm or more and 2.3 mm or less
  • the width w2 is 2.7 mm or more and 3.3 mm or less.
  • the plurality of first grooves 5 are the center line in the longitudinal direction of the joint surface 3, that is, the line extending in the longitudinal direction at a position of 1/2 the total length in the lateral direction of the joint surface 3, FIG.
  • the first groove 5a is arranged symmetrically with respect to the center line.
  • the plurality of first grooves 5 are preferably arranged at equal intervals in the lateral direction of the structure 2.
  • the equidistant arrangement of the first grooves 5 means a state in which the intervals of the center lines of the first grooves 5 are equal.
  • the plurality of second grooves 6 are for the center line in the lateral direction of the joint surface 3, that is, the line extending in the lateral direction at a position of 1/2 the total length in the longitudinal direction of the joint surface 3. It is better to arrange them mirror-symmetrically. Further, the plurality of second grooves 6 are preferably arranged at equal intervals in the longitudinal direction of the joint surface 3. As a result, a partial change in the longitudinal direction of the joint surface 3 can be suppressed, so that a change in the flatness of the mounting surface is suppressed.
  • the equidistant arrangement of the second grooves 6 means a state in which the intervals of the center lines of the second grooves 6 are equal.
  • the adhesive coating portion 7 preferably has a groove width larger than the groove depth.
  • the first bottom surface 5x of the first groove 5 may be a blasted surface or a laser processed surface. Regardless of whether the first bottom surface 5x of the first groove 5 is a blasted surface or a laser-machined surface, the arithmetic mean roughness (Ra) is likely to be larger than that of the ground surface, so that in the bonding process to the member to be joined. A high anchoring effect is obtained, and the reliability of the joint is maintained even when vibration is applied.
  • the second bottom surface 6x of the second groove 6 may be a blasted surface or a laser processed surface.
  • the slope 4 which is the mounting surface of the reflective film preferably has an arithmetic mean roughness Ra of 0.01 ⁇ m or more and 0.5 ⁇ m or less.
  • Ra arithmetic average roughness
  • an appropriate anchor effect can be obtained when a reflective film is formed by the vapor deposition method, and when the arithmetic average roughness Ra is 0.5 ⁇ m or less, deep scratches can be obtained. Is relatively small on the slope 4, so that coarse suspended particles are less likely to adhere to the inside of the scratch.
  • the arithmetic mean roughness Ra is in the above range, the bonding strength of the reflective film is improved and the flatness of the surface of the reflective film is also suppressed.
  • the arithmetic mean roughness Ra of the slope 4 is obtained in accordance with JIS B0601: 2001.
  • a surface roughness measuring machine (surf coder) SE500 manufactured by Kosaka Laboratory Co., Ltd. is used, and the measurement condition is that of a stylus.
  • the radius may be 5 ⁇ m, the measurement length may be 2.5 mm, and the cutoff value may be 0.8 mm.
  • FIG. 4 is a schematic view of an enlarged cross section of the inner peripheral surface surrounding the through hole 8 of the structure 2 shown in FIGS. 1 (a) to 1 (c), and is cut along a plane including the center line of the through hole 8. It is a figure which shows an example of the cross section.
  • the inner peripheral surface surrounding the through hole 8 of the structure 2 may have crystal particles 9 protruding from the exposed portion 10a of the grain boundary phase 10 existing between the crystal particles. With such a configuration, the grain boundary phase 10 is positioned in a state of being recessed from the crystal particles 9. Therefore, the contact angle with pure water, ultrapure water, or the like is reduced, and the hydrophilicity (wetting property) is further improved, so that the cleaning efficiency is increased.
  • the position measurement mirror is provided with a base layer (not shown) between the slope 4 and the reflective film, and the base layers are chromium, chromium oxide, yttrium oxide, lanthanum oxide, silicon oxide, titanium oxide, aluminum oxide and aluminum. It may consist of at least one of magnesium acetate.
  • the base layer composed of these components can enhance the adhesion between the slope 4 and the reflective film, and can suppress corrosion of water vapor contained in the pores opened on the slope 4 due to contact with the reflective film.
  • composition formulas of chromium oxide, yttrium oxide, lanthanum oxide, silicon oxide, titanium oxide, aluminum oxide and magnesium aluminate are, for example, CrO, Cr 2 O 3 , Y 2 O 3 , LaTIO 3 , La 2 Ti 3 O. 8 , SiO 2 , TiO 2 , Al 2 O 3 and Mg Al 2 O 4 .
  • the thickness of the base layer is, for example, preferably 10 to 200 nm, particularly 30 to 80 nm.
  • the position measurement mirror includes a reflective film (not shown) on the surface of the reflective film, and the reflective film is at least one of yttrium oxide, magnesium fluoride, lanthanum titanate, silicon oxide, titanium oxide, and aluminum oxide. It may consist of.
  • the reflective film can increase the reflectance due to the interference effect of light.
  • the hyperreflective film composed of these components can increase the reflectance and suppress the corrosion of water vapor contained in the air due to contact with the reflective film.
  • the hyperrefractive film may include a plurality of laminates composed of a low refractive index layer and a high refractive index layer having a different thickness from the low refractive index layer.
  • the laminate has, for example, a low refractive index layer composed of SiO 2 or MgF and a high refractive index layer composed of Nb 2 O 5, TiO 2 or HfO 2 , and the difference in thickness (physical layer thickness) is 1 nm or more and 50 nm or less.
  • the number of laminated bodies is 20 or more (the number of layers is 40 or more).
  • the total thickness of the laminate is, for example, 400 nm or more and 3000 nm or less.
  • the mirror mounting member 1 of the present disclosure includes a plurality of first grooves 5 in which the joint surface 3 extends in the longitudinal direction of the structure 2, and a plurality of second grooves 6 intersecting the first groove 5.
  • first grooves 5 in which the joint surface 3 extends in the longitudinal direction of the structure 2, and a plurality of second grooves 6 intersecting the first groove 5.
  • both ends are open, and the second groove 6 is attached to the side surface of the substrate stage 100 using an adhesive because the end portion located on the side where light is reflected by the reflective film is sealed. Even so, the reflective film, the base layer, and the hyperreflective film are less susceptible to the shrinkage of the adhesive, and the position of the substrate stage can be accurately measured.
  • the mirror mounting member 1 of the present disclosure can be used as a position measurement mirror with a reflective film mounted on the slope 4. That is, in the same manner as the slope mirror 104 shown in FIG. 5, the position can be measured by joining to the side surface of the substrate stage 100 or the like. At that time, since the flatness of the reflective film mounted on the slope 4 of the mirror mounting member 1 of the present disclosure is suppressed, accurate position measurement of the substrate stage 100 and the like becomes possible.
  • the present disclosure is suitably applicable to an exposure apparatus provided with a substrate stage to which a position measurement mirror is joined. Further, the position measurement mirror of the present disclosure can be applied not only to an exposure apparatus but also to an application requiring accurate position measurement.
  • a synthetic cordierite powder prepared by calcining and crushing a mixed powder prepared so that each powder of magnesium carbonate, aluminum oxide, and silicon oxide has a predetermined ratio, aluminum oxide powder, and calcium carbonate powder is used. Weigh at a predetermined ratio and use as the primary raw material.
  • the content of aluminum oxide powder contained in a total of 100% by mass of the primary raw materials is 3% by mass or more, and the content of calcium carbonate powder in terms of CaO is 0.4% by mass or more and 0.6% by mass.
  • the synthetic corderite powder may be 95% by mass or more. With such a ratio, the absolute value of the average coefficient of linear expansion from 40 ° C to 400 ° C is 0.03 ppm / ° C or less, the specific rigidity is 57 GPa ⁇ cm 3 / g or more, and the 4-point bending strength is high. Ceramics of 250 MPa or more can be used. In order to improve the mechanical strength and chemical resistance of the ceramics, zirconium oxide powder may be contained in an amount of 3% by mass or less in a total of 100% by mass of the primary raw materials. Then, after wet mixing the primary raw materials, a binder is added to obtain a slurry.
  • the slurry is sprayed and dried by a spray granulation method (spray drying method) to obtain granules.
  • Granules are filled in a molding die and molded by a hydrostatic pressure press molding (rubber press) method or a powder press molding method to obtain a prismatic molded body.
  • a prismatic or prismatic structure can be obtained by forming through holes by cutting and then firing at a maximum temperature of 1400 ° C. or higher and 1450 ° C. or lower in the air atmosphere. .. Further, after firing, the pressure is set to 100 to 200 MPa and the temperature is set to 1000 to 1350 ° C., and hot isotropic pressure pressing is performed to further densify.
  • a mask may be applied to the portion of the fired surface to be the joint surface after polishing that is not processed, and in that state, a groove may be formed by blasting or laser processing. After forming the groove, the mask is removed, and at least the first fired surface which becomes a slope after polishing and the second fired surface which becomes a joint surface are polished to obtain the mirror mounting member of the present disclosure.
  • polishing for example, first, using abrasive grains of aluminum oxide having an average particle size of 1 ⁇ m, polishing is performed on a polyurethane pad for 2 to 10 hours.
  • a slope and a joint surface can be obtained by polishing on a polyurethane pad for about 2 to 10 hours using cerium oxide abrasive grains having an average particle size of 1 ⁇ m.
  • cerium oxide abrasive grains having an average particle size of 1 ⁇ m.
  • at least one of the third firing surface connecting the first firing surface and the second firing surface and the end faces located at both ends in the longitudinal direction of the structure is polished. May be good.
  • the position measurement mirror provided with the base layer, the reflective film, the hyperreflective film and the like can be formed by, for example, a vapor deposition method such as vacuum vapor deposition or ion-assisted vapor deposition, sputtering or ion plating.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

角柱状または角筒状のセラミック構造体からなり、外側面として、被接合面に接合するための接合面と、被接合面に対して傾斜した斜面とを備えたミラー装着部材であり、斜面は、光源から出射された光を反射するための反射膜を装着するための装着面であり、接合面は、構造体の長手方向に延びる複数の第1溝と、該第1溝と交差する複数の第2溝とを備える。第1溝は、両端が開口しており、第2溝は光が前記反射膜で反射する側に位置する端部が封止されてなる。

Description

ミラー装着部材、これを使用した位置計測用ミラー、および露光装置
 本開示は、例えば、露光装置において基板ステージの位置計測に用いる反射膜を装着するためのミラー装着部材、これを使用した位置計測用ミラー、および露光装置に関する。
 従来、レーザー干渉計および反射鏡を用いて、基板を搭載するステージの位置を計測する方法が液浸露光装置等の電子ビーム露光装置で用いられている(特許文献1)。
 このような露光装置では、図5に示すように、基板101を保持する基板チャック(不図示)と、基板101を取り囲む取り囲み部材102とを有する基板ステージ100を備える。基板ステージ100は、投影光学系を介して基板101を露光する露光領域および基板101を計測する計測領域を含む領域内で移動可能であり、駆動を制御手段によって制御するようにしている。
 基板ステージ100の位置を正確に計測するために、特許文献1には、斜面ミラー103を基板ステージ100の側面に装着されたミラー104に取り付けた液浸露光装置が提案されている。すなわち、図示しない干渉計より照射された光軸は斜面ミラー103により基板ステージ100上部に導かれ、基板ステージ100の上方に固定されている基準ミラー(図示せず)で反射し、基準ミラーより折り返された光軸は、斜面ミラー103で反射して干渉計に戻り基準光と干渉し、基板ステージ100の所定方向における変化量が計測され、基準位置からの位置が算出される。
特開2008-124219号公報
 本開示のミラー装着部材は、角柱状または角筒状の構造体からなり、外側面として、被接合面に接合するための接合面と、被接合面に対して傾斜した斜面とを備えたミラー装着部材であり、斜面は、光源から出射された光を反射するための反射膜を装着するための装着面であり、接合面は、構造体の長手方向に延びる複数の第1溝と、該第1溝と交差する複数の第2溝とを備え、第1溝は、両端が開口しており、第2溝は光が前記反射膜で反射する側に位置する端部が封止されてなる。
 本開示の位置計測用ミラーは、上記ミラー装着部材における斜面に反射膜を装着してなる。本開示の露光装置は、位置計測用ミラーが接合された基板ステージを備える。
(a)は本開示の一実施形態に係るミラー装着部材を斜面側から見た概略斜視図、(b)は同ミラー装着部材を接合面側から見た概略斜視図、(c)は側面図である。 本開示の一実施形態における接合面を示す正面図である。 図2のA部分の拡大図である。 図1に示す構造体の貫通孔を囲繞する内周面の断面を拡大した模式図である。 基板ステージの一例を示す概略斜視図である。
 以下、本開示の一実施形態に係るミラー装着部材を、図面を参照して説明する。図1(a)~(c)は、本実施形態のミラー装着部材1を示している。同図(a)~(c)に示すように、ミラー装着部材1は、角筒状の構造体2からなり、外側面として、被接合面に接合するための接合面3と、接合面に対して傾斜した斜面4とを備える。被接合面とは、例えば、図5に示した基板ステージ100の側面に装着されたミラー104面をいう。
 接合面3に対する斜面4のなす角度は、例えば、44.8°~45.2°である。斜面4の平面度は、例えば、316.4nm以下である。
 構造体2は、長手方向に沿って貫通孔8を有しており、貫通孔8の長手方向に垂直な断面の形状は円状である。貫通孔8の直径は、例えば、6mm以上10mm以下である。 
 構造体2の材質としては、高い寸法安定性、耐熱性、耐熱変形性などが要求されることから、40℃~400℃における平均線膨張率がいずれも±2×10-6/K以内であるセラミックスやガラス等が使用可能である。
 このようなセラミックスの例として、コージェライト、リチウムアルミノシリケート、リン酸ジルコニウムカリウムまたはムライトを主成分とするセラミックスが挙げられる。 コージェライトが主成分であるセラミックスは、CaがCaO換算で0.4質量%以上0.6質量%以下、AlがAl2O3換算で2.3質量%以上3.5質量%以下ならびにMnおよびCrがMnCr2O4換算で0.6質量%以上0.7質量%以下含んでいてもよい。このセラミックスは、平均線膨張率を±20×10-9/K以内にすることができる。
 リチウムアルミノシリケートが主成分であるセラミックスは、炭化珪素を20質量%以下含んでいてもよい。
 また、ガラスの例として、チタニウムケイ酸を主成分とするガラスが挙げられる。平均線膨張率が小さいセラミックスまたはガラスからなる部材を用いれば、大きな温度変化に曝されても形状の変化が小さいため、構造体は高い信頼性を有する。
 ここで、構造体2がセラミックスからなる場合、JIS R 1618:2002に準拠して、平均線膨張率を求めればよい。
 構造体2がガラスからなる場合、JIS R 3251:1995に準拠して、平均線膨張率を求めればよい。
 なお、構造体2の平均線膨張率が±1×10-6/K以内である場合には、光ヘテロダイン法1光路干渉計を用いて測定すればよい。
 セラミックスにおける主成分とは、着目するセラミックスを構成する成分の合計100質量%のうち、60質量%以上を占める成分をいう。特に、主成分は、着目するセラミックスを構成する成分の合計100質量%のうち、95質量%以上を占める成分であるとよい。セラミックスを構成する成分は、X線回折装置(XRD)を用いて求めればよい。各成分の含有量は、成分を同定した後、蛍光X線分析装置(XRF)またはICP発光分光分析装置を用いて、成分を構成する元素の含有量を求め、同定された成分に換算すればよい。ガラスについても同様である。
 構造体2の形状は、接合面3と斜面4とを備える形状であれば特に制限はなく、前記した角筒状の他、角柱状であってもよく、特に、図1(c)に示すように、略三角筒状または略三角柱状であるのが好ましい。
 斜面4は、位置計測用の光源から出射された光軸を反射するための反射膜(図示せず)を装着するための装着面である。反射膜としては、例えばアルミニウム、金、銀等からなる金属膜が挙げられる。
 接合面3は、図1(b)に示すように、構造体2の長手方向に延びる複数の第1溝5と、第1溝5と交差する複数の第2溝6とを備える。具体的には、図2に示すように、第2溝6は第1溝5と直交する方向、すなわち構造体2の長手方向に直交する短手方向に延びている。
 なお、本実施形態では、3本の第1溝5が形成されているが、これに限定されるものではなく、第1溝5を3~6本の範囲で形成することができる。第2溝6についても、6~12本の範囲で形成することができる。
 第1溝5は、図2に示すように、両端51,52が開口している。これは、図2のA部分を拡大した図3に矢印で示すように、接合面3の短手方向の両側に位置する第1溝5b、5cを、接着剤を塗布・充填する接着剤塗布部7(便宜上、接着剤塗布部をハッチングで示している。)としたとき、第1溝5b、5cへの接着剤塗布時および被接合面への接着時に空気の排出路となるからである。
 一方、第2溝6は、両端が構造体2の短手方向両端に位置する第1溝5b、5cに当接し連通することによって封止されている。そのため、接着剤塗布部7から接着剤が第2溝6を通って外部にはみ出すのを抑制することができ、接合効率が向上する。なお、図3では、第2溝6の両端を封止しているが、光が前記反射膜で反射する側に位置する端部(すなわち、図5に示すように、基準ミラーが位置する方向にある端部105)が封止されていればよい。
 図3に示すように、構造体2の短手方向の中央部に位置する第1溝5aの幅w1は、中央部の両側に位置する他の第1溝5b、5cの幅w2よりも狭くなっている。そのため、複数の第1溝5の幅がすべて同じである場合よりも、構造体2の剛性が損なわれにくくなり、反射膜を装着するための装着面の平面度の変化を抑制することができる。また、両側に位置する他の第1溝5b、5cが接着剤塗布部7であるため、十分に広い幅を必要とするのに対して、中央部に位置する第1溝5aは後述するように、第1溝5b、5cへの接着剤塗布時および接合時に空気の排出に十分な溝幅であればよく、広い幅を必要としないからである。このように空気の排出路を設けることにより、接着剤の接合面3からのはみ出しを抑制することができる。例えば、幅w1は、1.7mm以上2.3mm以下であり、幅w2は、2.7mm以上3.3mm以下である。
 複数の第1溝5は、接合面3の長手方向の中心線、すなわち接合面3の短手方向の全長に対して1/2の長さの位置にある長手方向に延びる線、図3の実施形態では第1溝5aの中心線、に対して鏡面対称に配置されているのがよい。また、複数の第1溝5は、構造体2の短手方向に等間隔で配置されているのがよい。これにより、接合面3の短手方向における部分的な変化を抑制することができるので、装着面の平面度の変化が抑制される。ここで、第1溝5の等間隔の配置とは、第1溝5のそれぞれの中心線の間隔が等しくなっている状態を言う。
 複数の第2溝6は、接合面3の短手方向の中心線、すなわち接合面3の長手方向の全長に対して1/2の長さの位置にある短手方向に延びる線に対して鏡面対称に配置されているのがよい。また、複数の第2溝6は、接合面3の長手方向に等間隔で配置されているのがよい。これにより、接合面3の長手方向における部分的な変化を抑制することができるので、装着面の平面度の変化が抑制される。ここで、第2溝6の等間隔の配置とは、第2溝6のそれぞれの中心線の間隔が等しくなっている状態を言う。
 複数の第1溝5および複数の第2溝6のうち、少なくとも接着剤塗布部7は、溝深さよりも溝幅が大きいのがよい。これにより、構造体2の剛性を維持しつつ、接着面積が大きくなるので、基板ステージ等の被接合部材に対する接着強度を高くすることができる。
 第1溝5の第1底面5xは、ブラスト加工面またはレーザー加工面であるとよい。第1溝5の第1底面5xが、ブラスト加工面およびレーザー加工面のいずれであっても、研削面に比べ、算術平均粗さ(Ra)を大きくしやすいので、被接合部材に対する接着工程で高いアンカー効果が得られ、振動が与えられても、接合の信頼性は維持される。
 同様に、第2溝6の第2底面6xは、ブラスト加工面またはレーザー加工面であるとよい。
 反射膜の装着面である斜面4は、算術平均粗さRaが0.01μm以上0.5μm以下あるのがよい。算術平均粗さRaが0.01μm以上であると、蒸着法で反射膜を形成する場合、適切なアンカー効果を得ることができ、算術平均粗さRaが0.5μm以下であると、深い傷が斜面4に相対的に少なくなるので、傷の内部に粗大な浮遊粒子が付着しにくくなる。算術平均粗さRaが上記範囲であると、反射膜の接合強度が向上すると共に、反射膜の表面の平面度も抑制されたものになる。
 斜面4の算術平均粗さRaは、JIS B0601:2001に準拠して求め、例えば、 (株)小坂研究所製 表面粗さ測定機(サーフコーダ)SE500を用い、測定条件としては、触針の半径を5μm、測定長さを2.5mm、カットオフ値を0.8mmとすればよい。
 図4は、図1(a)~(c)に示す構造体2の貫通孔8を囲繞する内周面の断面を拡大した模式図であり、貫通孔8の中心線を含む平面で切断した断面の一例を示す図である。
 構造体2の貫通孔8を囲繞する内周面は、結晶粒子間に存在する粒界相10の露出部10aよりも突出している結晶粒子9を有していてもよい。
 このような構成であると、粒界相10が結晶粒子9から凹んだ状態で位置することになる。そのため、純水、超純水等との接触角が小さくなって親水性(濡れ性)がより向上するので、洗浄効率が高くなる。
 位置計測用ミラーは、斜面4と反射膜との間に下地層(図示しない)を備え、下地層は、クロム、酸化クロム、酸化イットリウム、チタン酸ランタン、酸化珪素、酸化チタン、酸化アルミニウムおよびアルミン酸マグネシウムの少なくともいずれかからなっていてもよい。
 これらの成分からなる下地層は斜面4と反射膜との密着性を高めるとともに、斜面4上で開口する気孔内に含まれる水蒸気の反射膜への接触による腐食を抑制することができる。
 酸化クロム、酸化イットリウム、チタン酸ランタン、酸化珪素、酸化チタン、酸化アルミニウムおよびアルミン酸マグネシウムの各組成式は、例えば、CrO、Cr、Y、LaTiO、LaTi、SiO、TiO、AlおよびMgAlである。
 下地層の厚さは、例えば、10~200nm、特に、30~80nmであるとよい。
 位置計測用ミラーは、反射膜の表面上に増反射膜(図示しない)を備え、増反射膜は、酸化イットリウム、フッ化マグネシウム、チタン酸ランタン、酸化珪素、酸化チタンおよび酸化アルミニウムの少なくともいずれかからなっていてもよい。
 増反射膜は、光の干渉効果により反射率を高くすることができる。
 これらの成分からなる増反射膜は、反射率を高くすることができるとともに、空気中に含まれる水蒸気の反射膜への接触による腐食を抑制することができる。
 酸化イットリウム、フッ化マグネシウム、チタン酸ランタン、酸化珪素、酸化チタンおよび酸化アルミニウムの各組成式は、例えば、Y、MgF、LaTiO、LaTi、SiO、TiO、Alである。
 また、増反射膜は、低屈折率層と、低屈折率層と厚みの異なる高屈折率層とからなる積層体を複数備えていてもよい。
 このような構成にすることで、広い波長域で高い反射率を得ることができる。
 積層体は、例えば、低屈折率層がSiOまたはMgF、高屈折率層がNb5、TiOまたはHfOからなり、厚み(物理層厚)の差は、1nm以上50nm以下であり、積層体の個数は20個以上(層数は40層以上)である。積層体の厚みの合計は、例えば、400nm以上3000nm以下である。
 本開示のミラー装着部材1は、接合面3が構造体2の長手方向に延びる複数の第1溝5と、該第1溝5と交差する複数の第2溝6とを備え、第1溝5は、両端が開口しており、第2溝6は、光が反射膜で反射する側に位置する端部が封止されてなることから、接着剤を用いて基板ステージ100の側面に装着しても、反射膜、下地層および増反射膜は接着剤の収縮による影響を受けにくくなり、基板ステージの位置を正確に計測することができる。
 本開示のミラー装着部材1は、斜面4に反射膜を装着した状態で位置計測用ミラーとして使用可能である。すなわち、図5に示す斜面ミラー104と同様にして、基板ステージ100等の側面に接合して、位置を計測することができる。その際、本開示のミラー装着部材1は、斜面4に装着した反射膜の平面度が抑制されるので、基板ステージ100等の正確な位置計測が可能となる。
 従って、本開示は、位置計測用ミラーが接合された基板ステージを備えた露光装置に好適に適用可能である。また、本開示の位置計測用ミラーは、露光装置だけでなく、正確な位置計測が要求される用途にも適用可能である。
 次に、本開示のミラー装着部材の製造方法の一例について説明する。構造体がコージェライトを主成分とするセラミックスからなる場合について説明する。
 まず、炭酸マグネシウム、酸化アルミニウム、酸化珪素の各粉末が所定割合となるように調合した混合粉末を仮焼し、粉砕した合成コージェライト粉末と、酸化アルミニウム粉末と、炭酸カルシウム粉末とを用いて、所定の割合で秤量して1次原料とする。
 ここで、例えば、1次原料の合計100質量%に含まれる酸化アルミニウム粉末の含有量は3質量%以上、炭酸カルシウム粉末はCaO換算での含有量が0.4質量%以上0.6質量%以下と、合成コージェライト粉末は95質量%以上となるようにすればよい。
 このような比率にすることで、40℃~400℃における平均線膨張率の絶対値が0.03ppm/℃以下であり、比剛性が57GPa・cm/g以上であり、4点曲げ強度が250MPa以上のセラミックスとすることができる。
 セラミックスの機械的強度をおよび耐薬品性を向上させるために、1次原料の合計100質量%中、酸化ジルコニウムの粉末を3質量%以下含んでいてもよい。
 そして、この1次原料を湿式混合した後、バインダを加えてスラリーを得る。そして、噴霧造粒法(スプレードライ法)にてスラリーを噴霧、乾燥して顆粒を得る。顆粒を成形型に充填して静水圧プレス成形(ラバープレス)法や粉末プレス成形法にて成形し角柱状の成形体を得る。必要に応じて、切削加工により、貫通孔を形成した後、大気雰囲気中1400℃を超えて1450℃以下の最高温度で焼成することにより、角柱状または角筒状の構造体を得ることができる。
 さらに、焼成後に圧力を100~200MPa、温度を1000~1350℃として熱間等方加圧プレスすることにより、より緻密化させることができる。
 そして、研磨後に接合面となる焼成面のうち、加工を施さない部分にマスクを施し、その状態で、ブラスト加工またはレーザー加工で溝を形成すればよい。
 溝を形成した後、マスクを取り外し、少なくとも研磨後に斜面となる第1焼成面および接合面となる第2焼成面を研磨することで、本開示のミラー装着部材を得ることができる。
 研磨の詳細については、例えば、まず、平均粒径が1μmの酸化アルミニウムの砥粒を用い、ポリウレタンパッド上で2~10時間研磨する。次いで、平均粒径が1μmの酸化セリウム砥粒を使用し、ポリウレタンパッド上で2~10時間程度研磨することで、斜面および接合面を得ることができる。
 焼成で生じた残留応力を低減する等の目的で、第1焼成面と第2焼成面とを接続する第3焼成面および構造体の長手方向両端に位置する端面の少なくともいずれかを研磨してもよい。
 そして、下地層、反射膜、増反射膜等を備えた位置計測用ミラーは、例えば、真空蒸着、イオンアシスト蒸着等の蒸着法、スパッタリングあるいはイオンプレーティングによって形成することができる。
1 ミラー装着部材
2 構造体
3 接合面
4 斜面
5、5a、5b、5c 第1溝
5x 第1底面
6 第2溝
6x 第2底面
7 接着剤塗布部
8 貫通孔
9 結晶粒子
10  粒界相
10a 露出部
100 基板ステージ
101 基板
102 囲み部材
103 斜面ミラー
104 ミラー
105 端部
 

Claims (18)

  1.  角柱状または角筒状の構造体からなり、外側面として、被接合面に接合するための接合面と、前記接合面に対して傾斜した斜面とを備え、
     前記斜面は、光源から出射された光を反射するための反射膜を装着するための装着面であり、
     前記接合面は、前記構造体の長手方向に延びる複数の第1溝と、該第1溝と交差する複数の第2溝と、を備え、
     前記第1溝は、両端が開口しており、前記第2溝は、少なくとも、光が前記反射膜で反射する側に位置する端部が封止されてなる、ことを特徴とするミラー装着部材。
  2.  前記構造体は、40℃~400℃における平均線膨張率がいずれも±2×10-6/K以内であるセラミックスまたはガラスからなる、請求項1に記載のミラー装着部材。
  3.  前記第2溝は、両端が封止されてなる、請求項1または請求項2に記載のミラー装着部材。
  4.  前記接合面において、前記構造体の長手方向に交差する短手方向の中央部に位置する前記第1溝の幅は、前記中央部の両側に位置する他の前記第1溝の幅よりも狭い、請求項1乃至請求項3のいずれかに記載のミラー装着部材。
  5.  複数の前記第1溝は、前記接合面の長手方向の中心線に対して鏡面対称に配置されてなる、請求項1乃至請求項4のいずれかに記載のミラー装着部材。
  6.  複数の前記第1溝は、前記接合面の短手方向に等間隔で配置されてなる、請求項1乃至請求項5のいずれかに記載のミラー装着部材。
  7.  複数の前記第2溝は、前記接合面の短手方向の中心線に対して鏡面対称に配置されてなる、請求項1乃至請求項6のいずれかに記載のミラー装着部材。
  8.  複数の前記第2溝は、前記接合面の長手方向に等間隔で配置されてなる、請求項1乃至請求項7のいずれかに記載のミラー装着部材。
  9.  複数の前記第1溝および複数の前記第2溝のうち、少なくとも接着剤塗布部は、溝深さよりも溝幅が大きい、請求項1乃至請求項8のいずれかに記載のミラー装着部材。
  10.  複数の前記第1溝の第1底面は、ブラスト加工面またはレーザー加工面である、請求項1乃至請求項9のいずれかに記載のミラー装着部材。
  11.  複数の前記第2溝の第2底面は、ブラスト加工面またはレーザー加工面である、請求項1乃至請求項10のいずれかに記載のミラー装着部材。
  12.  前記斜面の算術平均粗さRaは、0.01μm以上0.5μm以下である、請求項1乃至請求項11のいずれかに記載のミラー装着部材。
  13.  前記構造体は前記長手方向に沿って貫通孔を有し、該貫通孔を囲繞する内周面は、結晶粒子間に存在する粒界相の露出部よりも突出している結晶粒子を有する、請求項1乃至請求項12のいずれかに記載のミラー装着部材。
  14.  請求項1乃至請求項13のいずれかに記載のミラー装着部材における前記斜面に反射膜を装着してなる位置計測用ミラー。
  15.  前記斜面と前記反射膜との間に下地層を備え、該下地層は、クロム、酸化クロム、酸化イットリウム、チタン酸ランタン、酸化珪素、酸化チタン、酸化アルミニウムおよびアルミン酸マグネシウムから選ばれる少なくとも1種からなる、請求項14に記載の位置計測用ミラー。
  16.  前記反射膜の表面上に増反射膜を備え、該増反射膜は、酸化イットリウム、フッ化マグネシウム、チタン酸ランタン、酸化珪素、酸化チタンおよび酸化アルミニウムから選ばれる少なくとも1種からなる、請求項15に記載の位置計測用ミラー。
  17.  前記反射膜の表面上に増反射膜を備え、該増反射膜は、低屈折率層と、該低屈折率層と厚みの異なる高屈折率層とからなる積層体を複数備えている、請求項15に記載の位置計測用ミラー。
  18.  請求項14~17のいずれかに記載の位置計測用ミラーが接合された基板ステージを備えた露光装置。
     
PCT/JP2020/025391 2019-06-28 2020-06-26 ミラー装着部材、これを使用した位置計測用ミラー、および露光装置 WO2020262674A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20831467.4A EP3992716A4 (en) 2019-06-28 2020-06-26 MIRROR MOUNT, POSITION MEASUREMENT MIRROR USING THE SAME, AND EXPOSURE DEVICE
JP2021528283A JP7261298B2 (ja) 2019-06-28 2020-06-26 ミラー装着部材、これを使用した位置計測用ミラー、および露光装置
US17/621,962 US20220269040A1 (en) 2019-06-28 2020-06-26 Mirror mounting member, position measuring mirror using same, and exposure apparatus
CN202080043907.XA CN113994267B (zh) 2019-06-28 2020-06-26 镜装配构件、使用它的位置计测用镜和曝光装置
KR1020217041608A KR20220011153A (ko) 2019-06-28 2020-06-26 미러 장착 부재, 이것을 사용한 위치 계측용 미러, 및 노광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-122425 2019-06-28
JP2019122425 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262674A1 true WO2020262674A1 (ja) 2020-12-30

Family

ID=74061283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025391 WO2020262674A1 (ja) 2019-06-28 2020-06-26 ミラー装着部材、これを使用した位置計測用ミラー、および露光装置

Country Status (6)

Country Link
US (1) US20220269040A1 (ja)
EP (1) EP3992716A4 (ja)
JP (1) JP7261298B2 (ja)
KR (1) KR20220011153A (ja)
CN (1) CN113994267B (ja)
WO (1) WO2020262674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145470A1 (ja) * 2020-12-28 2022-07-07 京セラ株式会社 構造体、これを使用した位置計測用ミラーおよび露光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277782A (ja) * 2001-03-16 2002-09-25 Sharp Corp 光学部品の取付構造
JP2004163491A (ja) * 2002-11-11 2004-06-10 Nippon Sheet Glass Co Ltd 光学素子及びその製造方法
JP2004177331A (ja) * 2002-11-28 2004-06-24 Taiheiyo Cement Corp 位置測定用ミラーおよびミラー用部材
JP2004309733A (ja) * 2003-04-04 2004-11-04 Seiko Epson Corp 凹部付き基材の製造方法、凹部付き基材、マイクロレンズ用凹部付き基材、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2008124219A (ja) 2006-11-10 2008-05-29 Canon Inc 液浸露光装置
JP2008191592A (ja) * 2007-02-07 2008-08-21 Hitachi Ltd 光学部材
JP2018004956A (ja) * 2016-07-01 2018-01-11 恵和株式会社 光学ユニット及び光学ユニットの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373906U (ja) * 1989-11-22 1991-07-25
JP3799228B2 (ja) * 2000-12-14 2006-07-19 アルプス電気株式会社 樹脂成形光学部品及びそれを備えた光ピックアップ装置
JP3795869B2 (ja) * 2003-02-18 2006-07-12 株式会社東芝 光モジュール
JP2012203371A (ja) * 2011-03-28 2012-10-22 Nippon Shokubai Co Ltd 金属膜を用いた光導波路のミラー部の製造方法、及び光導波路
JP6301067B2 (ja) * 2013-04-26 2018-03-28 富士通コンポーネント株式会社 光学部材、光モジュール
CN105589170A (zh) * 2016-01-28 2016-05-18 中国华能集团清洁能源技术研究院有限公司 一种桁架式线性菲涅尔太阳能反射镜框架
CN105652393B (zh) * 2016-03-18 2018-01-05 武汉华工正源光子技术有限公司 基于光学基座的单纤双向器件的封装结构及封装方法
KR102354871B1 (ko) * 2016-12-21 2022-01-21 니치아 카가쿠 고교 가부시키가이샤 발광 장치의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277782A (ja) * 2001-03-16 2002-09-25 Sharp Corp 光学部品の取付構造
JP2004163491A (ja) * 2002-11-11 2004-06-10 Nippon Sheet Glass Co Ltd 光学素子及びその製造方法
JP2004177331A (ja) * 2002-11-28 2004-06-24 Taiheiyo Cement Corp 位置測定用ミラーおよびミラー用部材
JP2004309733A (ja) * 2003-04-04 2004-11-04 Seiko Epson Corp 凹部付き基材の製造方法、凹部付き基材、マイクロレンズ用凹部付き基材、マイクロレンズ基板、透過型スクリーンおよびリア型プロジェクタ
JP2008124219A (ja) 2006-11-10 2008-05-29 Canon Inc 液浸露光装置
JP2008191592A (ja) * 2007-02-07 2008-08-21 Hitachi Ltd 光学部材
JP2018004956A (ja) * 2016-07-01 2018-01-11 恵和株式会社 光学ユニット及び光学ユニットの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992716A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145470A1 (ja) * 2020-12-28 2022-07-07 京セラ株式会社 構造体、これを使用した位置計測用ミラーおよび露光装置

Also Published As

Publication number Publication date
JP7261298B2 (ja) 2023-04-19
KR20220011153A (ko) 2022-01-27
JPWO2020262674A1 (ja) 2020-12-30
US20220269040A1 (en) 2022-08-25
CN113994267A (zh) 2022-01-28
EP3992716A1 (en) 2022-05-04
CN113994267B (zh) 2024-01-19
EP3992716A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
US10365553B1 (en) Projector-use luminescent wheel and manufacturing method therefor, and projector-use light emitting device
US8279523B2 (en) Polarization conversion element and method for manufacturing the same
US9791662B2 (en) Lightweight carrier structure, particularly for optical components, and method for its production
WO2020262674A1 (ja) ミラー装着部材、これを使用した位置計測用ミラー、および露光装置
JPS61151501A (ja) 精密光学部品に使用するに特に適したミラー用基板とその製法
JP4637653B2 (ja) プリズムの製造方法
JP2023505682A (ja) 保護コーティングを有する光学素子、その製造方法及び光学装置
JP2008109060A (ja) Euvリソグラフィ用反射型マスクブランクの多層反射膜を成膜する方法、ならびにeuvリソグラフィ用反射型マスクブランクの製造方法
KR102288420B1 (ko) 고 강성 기판을 갖는 반사 광학 소자
JP2019513241A5 (ja)
WO2022145470A1 (ja) 構造体、これを使用した位置計測用ミラーおよび露光装置
US11226438B2 (en) Reflective optical element
JP2005234344A (ja) 天体望遠鏡用ミラー
JP2017219817A (ja) 光学部品
KR100609794B1 (ko) 큐브 및 그 제조 방법
JP7321366B2 (ja) ミラー装着部材、これを用いた位置計測用ミラー、露光装置および荷電粒子線装置
JP5945214B2 (ja) 光学部品
JPWO2020262674A5 (ja)
JP2004177331A (ja) 位置測定用ミラーおよびミラー用部材
JPWO2019146500A1 (ja) 光学部品及びレーザ加工機
JP6715616B2 (ja) 位置決めステージ用のテーブルおよびこれを用いた位置決め方法
JP2007298368A (ja) 光ファイバ圧力センサ
JPS60186444A (ja) 光学的接着方法
KR20230095824A (ko) 고체-상태 레이저 시스템용 레이저 증폭 모듈 및 그의 제조 방법
JPH09292505A (ja) 高エネルギ光線用反射鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528283

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217041608

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020831467

Country of ref document: EP