WO2020262084A1 - 漏電検出装置、車両用電源システム - Google Patents

漏電検出装置、車両用電源システム Download PDF

Info

Publication number
WO2020262084A1
WO2020262084A1 PCT/JP2020/023448 JP2020023448W WO2020262084A1 WO 2020262084 A1 WO2020262084 A1 WO 2020262084A1 JP 2020023448 W JP2020023448 W JP 2020023448W WO 2020262084 A1 WO2020262084 A1 WO 2020262084A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak value
voltage
measured
peak
time
Prior art date
Application number
PCT/JP2020/023448
Other languages
English (en)
French (fr)
Inventor
中山 正人
泰輔 濱田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN202080047587.5A priority Critical patent/CN114144687A/zh
Priority to US17/621,177 priority patent/US20220357408A1/en
Priority to JP2021528229A priority patent/JPWO2020262084A1/ja
Publication of WO2020262084A1 publication Critical patent/WO2020262084A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an earth leakage detection device for detecting an earth leakage of a load insulated from the ground, and a vehicle power supply system.
  • HVs hybrid vehicles
  • PSVs plug-in hybrid vehicles
  • EVs electric vehicles
  • traction battery auxiliary battery
  • auxiliary battery generally a 12V output lead battery
  • a high-voltage circuit including a high-voltage drive battery, an inverter, and a traveling motor is insulated from the vehicle body (chassis ground).
  • a Y capacitor is inserted between the positive wiring on the vehicle side of the high-voltage circuit and the chassis ground, and between the negative wiring on the vehicle side of the high-voltage circuit and the chassis ground, and is supplied to the load on the vehicle side from the high-voltage drive battery.
  • the power supply is stabilized.
  • An earth leakage detection device that monitors the insulation resistance between the high-power circuit and the chassis ground to detect an earth leakage is installed.
  • a pulse voltage is applied to the positive electrode terminal or the negative electrode terminal of the drive battery via a resistor and a coupling capacitor, and the voltage at the connection point between the resistor and the coupling capacitor is measured. Detects the presence or absence of electric leakage (see, for example, Patent Document 1).
  • the voltage at the measurement point may deviate from the measurement range when the leakage state suddenly changes, such as when the main relay (contactor) connected between the battery side and the vehicle side is opened and closed.
  • the main relay contactor
  • a period in which the voltage waveform of the measurement point rises / falls at a constant speed occurs.
  • the peak peak value between the upper peak value and the lower peak value of the voltage waveform at the measurement point expands and contracts regardless of the influence of noise, and stable leakage detection becomes difficult.
  • an object of the present invention is a technique for enabling highly accurate leakage detection even when the voltage waveform at a measurement point is generally rising / falling in the leakage detection device. Is to provide.
  • the leakage detection device of one aspect of the present disclosure includes a coupling capacitor whose one end is connected to the current path of the power storage unit connected to the load in a state of being insulated from the ground, and a period.
  • a voltage output unit that generates a periodic voltage that changes in a rhythmic manner and applies it to the other end of the coupling capacitor via an impedance element, and measures the voltage at a connection point between the coupling capacitor and the impedance element. Presence or absence of leakage between the current path of the capacitor unit and the ground based on the peak value between the voltage measuring unit and the upper peak value and the lower peak value of the voltage waveform measured by the voltage measuring unit. It is provided with a leakage determination unit for determining.
  • the earth leakage determination unit estimates at least one of the upper peak value and the lower peak value at a certain time, and determines the peak peak value between the upper peak value and the lower peak value whose time axes are virtually aligned. calculate.
  • the leakage detection device in the leakage detection device, highly accurate leakage detection is possible even when the voltage waveform at the measurement point rises / falls as a whole.
  • FIG. 2 (a)-(b) are diagrams for explaining the difference in the calculation method of the peak peak value of the measured voltage waveform between the comparative example and the control example 1. It is a figure which shows an example of the measured voltage waveform when the main relay is turned on. 4 (a)-(b) are diagrams for explaining the behavior of the peak peak value when the measured voltage waveform is rising at a constant speed in Comparative Example and Control Example 1. 5 (a)-(b) is a diagram for explaining a specific example of reliability evaluation of leakage determination using two adjacent peak peak values.
  • 6 (a)-(b) are diagrams for explaining the difference in the calculation method of the peak peak value of the measured voltage waveform between the control example 1 and the control example 2.
  • 7 (a)-(b) are waveform diagrams showing an example of the peak peak value with respect to the frequency of the measured voltage in the control example 1 and the control example 2.
  • 8 (a)-(b) are graphs showing an example of the gain characteristic with respect to the frequency of the measured voltage in the control example 1 and the control example 2.
  • FIG. 1 is a diagram for explaining the configuration of the power supply system 5 including the earth leakage detection device 10 according to the embodiment.
  • the power supply system 5 is mounted on an electric vehicle.
  • the power supply system 5 is provided separately from the auxiliary battery (usually, a lead battery having a 12V output is used) in the electric vehicle.
  • the power supply system 5 includes a high-voltage power storage unit 20 and an earth leakage detection device 10.
  • the power storage unit 20 includes a plurality of cells E1-En connected in series.
  • As the cell a lithium ion battery cell, a nickel hydrogen battery cell, a lead battery cell, an electric double layer capacitor cell, a lithium ion capacitor cell, or the like can be used.
  • a lithium ion battery cell nominal voltage: 3.6-3.7 V
  • the electric vehicle is equipped with an inverter 2 and a motor 3 as a high voltage load.
  • the positive electrode of the power storage unit 20 and one end of the inverter 2 are connected by the positive wiring Lp, and the negative electrode of the power storage unit 20 and the other end of the inverter 2 are connected by the negative wiring Lm.
  • the positive main relay MRp is inserted into the positive wiring Lp, and the negative main relay MRm is inserted into the negative wiring Lm.
  • the positive side main relay MRp and the negative side main relay MRm function as contactors for controlling conduction / disconnection between the power storage unit 20 and the high voltage load in the electric vehicle. It is also possible to use a semiconductor switch with high withstand voltage and high insulation instead of the relay.
  • the inverter 2 is a bidirectional inverter connected between the power storage unit 20 and the motor 3.
  • the inverter 2 converts the DC power supplied from the power storage unit 20 into AC power and supplies it to the motor 3.
  • the AC power supplied from the motor 3 is converted into DC power and supplied to the power storage unit 20.
  • the motor 3 for example, a three-phase AC motor is used.
  • the motor 3 rotates according to the AC power supplied from the inverter 2.
  • the rotational energy due to deceleration is converted into AC power and supplied to the inverter 2.
  • the power storage unit 20 is mounted on the electric vehicle in a state of being insulated from the chassis ground of the electric vehicle.
  • the auxiliary battery is mounted on the electric vehicle with the negative electrode conducting with the chassis ground.
  • From the positive main relay MRp the positive wiring Lp on the inverter 2 side and the chassis ground are connected via the positive Y capacitor Cp.
  • the negative wiring Lm on the inverter 2 side and the chassis ground are connected via the negative side Y capacitor Cm.
  • the positive Y capacitor Cp and the negative Y capacitor Cm insulate the positive wiring Lp and the chassis ground and between the negative wiring Lm and the chassis ground in a DC manner, and stabilize the voltages of the positive wiring Lp and the negative wiring Lm, respectively. Has the effect of causing.
  • the intermediate potential of the power storage unit 20 is maintained near the potential of the chassis ground.
  • the positive electrode potential of the power storage unit 20 is maintained at around + 125V
  • the negative electrode potential is maintained at around -125V.
  • the leakage detection device 10 includes a coupling capacitor Cc, a first resistor R1, an AND gate G1, a first Zener diode ZD1, a second resistor R2, a first operational amplifier OP1, a second Zener diode ZD2, and a control unit 11.
  • the control unit 11 includes an oscillation unit 11a, a voltage measurement unit 11b, and an earth leakage determination unit 11c.
  • the control unit 11 can be composed of, for example, a microcomputer and a non-volatile memory (for example, EEPROM, flash memory).
  • One end of the coupling capacitor Cc is connected to the current path of the power storage unit 20.
  • one end of the coupling capacitor Cc is connected to the negative electrode of the power storage unit 20.
  • One end of the coupling capacitor Cc may be connected to the positive electrode of the power storage unit 20, or may be connected to any node of a plurality of cells E1-En in the power storage unit 20.
  • the other end of the coupling capacitor Cc is connected to the output end of the voltage output unit via the first resistor R1.
  • the connection point between the other end of the coupling capacitor Cc and the first resistor R1 is the measurement point A.
  • another impedance element may be used instead of the 1st resistor R1.
  • an aluminum electrolytic capacitor that can increase the capacity at a relatively low cost is used for the coupling capacitor Cc.
  • the aluminum electrolytic capacitor has polarity, and in FIG. 1, the positive electrode of the aluminum electrolytic capacitor is connected to the measurement point A, and the negative electrode of the aluminum electrolytic capacitor is connected to the negative electrode of the power storage unit 20.
  • the coupling capacitor Cc may be configured by connecting a plurality of aluminum electrolytic capacitors in series. In this case, even if one capacitor is short-circuited, DC insulation can be maintained by the remaining capacitors.
  • the voltage output unit generates a periodic voltage that changes periodically, and applies the generated periodic voltage to the other end of the coupling capacitor Cc via the first resistor R1.
  • a periodic voltage that changes periodically, and applies the generated periodic voltage to the other end of the coupling capacitor Cc via the first resistor R1.
  • the voltage output unit includes an oscillation unit 11a and an AND gate G1.
  • the oscillating unit 11a includes a multivibrator and a local oscillator, and generates a rectangular wave having a preset frequency.
  • the rectangular wave voltage generated by the oscillating unit 11a is input to the first input terminal of the AND gate G1.
  • the second input terminal of the AND gate G1 is connected to the power supply potential Vcc.
  • the AND gate G1 outputs a high level (power supply potential Vcc) when the rectangular wave voltage input to the first input terminal is high level, and when the rectangular wave voltage input to the first input terminal is low level, Outputs low level (ground potential).
  • the ground potential is connected to the chassis ground.
  • the power supply potential Vcc is 5 V and the ground potential is 0 V is assumed.
  • the AND gate G1 functions as a buffer that separates the control unit 11 and the measurement point A.
  • the AND gate G1 is an example of a buffer.
  • an OR gate or a voltage follower may be used instead of the AND gate.
  • a ground potential is connected to the second input terminal of the OR gate.
  • the first Zener diode ZD1 is connected between the connection point between the output terminal of the AND gate G1 and the first resistor R1 and the chassis ground.
  • the measurement point A is connected to the non-inverting input terminal of the first operational amplifier OP1 via the second resistor R2.
  • the inverting input terminal and the output terminal of the first operational amplifier OP1 are connected.
  • the first operational amplifier OP1 functions as a voltage follower having an amplification factor of 1 and performing only impedance conversion.
  • the first operational amplifier OP1 outputs the voltage at the measurement point A to the voltage measuring unit 11b.
  • a second Zener diode ZD2 is connected between the connection point between the non-inverting input terminal of the first operational amplifier OP1 and the second resistor R2 and the chassis ground.
  • the voltage measuring unit 11b measures the voltage at the measuring point A.
  • the voltage measuring unit 11b includes an A / D converter, and the A / D converter includes an analog voltage at the measurement point A at a timing synchronized with the timing of the rising edge and the falling edge of the rectangular wave voltage generated by the oscillating unit 11a. Is sampled and the sampled analog voltage is converted to a digital value.
  • the voltage sampled at the timing of the rising edge of the square wave voltage corresponds to the lower peak value of the measured voltage waveform, and the voltage sampled at the timing of the falling edge of the square wave voltage is the measured voltage waveform. Corresponds to the upper peak value of.
  • the timing at which the lower peak value should be sampled and the timing at which the upper peak value should be sampled may be adjusted.
  • the A / D converter outputs a digital value obtained by converting the analog voltage of the measurement point A to the leakage determination unit 11c.
  • the leakage determination unit 11c determines whether or not there is an electric leakage between the current path of the power storage unit 20 and the chassis ground based on the voltage at the measurement point A measured by the voltage measurement unit 11b. If the peak peak value indicated by the difference between the upper peak value and the lower peak value is smaller than the set value, the electric leakage determination unit 11c determines that an electric leakage has occurred between the current path of the power storage unit 20 and the chassis ground. To do.
  • the set value is determined based on the peak value of the measured voltage waveform at the time of leakage, which is derived in advance by an experiment or simulation by the designer.
  • the earth leakage determination unit 11c estimates at least one of the upper peak value and the lower peak value at a certain time, and is between the upper peak value and the lower peak value whose time axes are virtually aligned. Calculate the peak peak value.
  • Control example 1 In control example 1, the leakage determination unit 11c measures the voltage value measured at a time that should be measured one time before the specific upper peak value and one time after the specific upper peak value.
  • the virtual lower peak value is calculated by averaging the voltage values measured at the time when it should be done.
  • the earth leakage determination unit 11c calculates the peak peak value between the specific upper peak value and the virtual lower peak value.
  • the leakage determination unit 11c measures the voltage value measured at a time that should be measured one time before the specific lower peak value and one time after the specific lower peak value.
  • the virtual upper peak value is calculated by averaging the voltage values measured at the appropriate time.
  • the earth leakage determination unit 11c calculates the peak peak value between the specific lower peak value and the virtual upper peak value.
  • FIG. 2 (a)-(b) are diagrams for explaining the difference in the calculation method of the peak peak value of the measured voltage waveform between the comparative example and the control example 1.
  • FIG. 2A shows a method of calculating the peak peak value of the measured voltage waveform in the comparative example
  • FIG. 2B shows a method of calculating the peak peak value of the measured voltage waveform in the control example 1.
  • the difference between the two measured time-adjacent upper peak values V H 1 and the lower peak value V L 2 is defined as the peak peak value Vpp.
  • Vpp the control example 1 shown in FIG.
  • the measured upper peak value V H 1 and the two lower peak values V L 1 and the lower peak value V L 2 sandwiching the upper peak value V H 1 are sandwiched.
  • the difference from the lower peak average value VL ⁇ obtained by averaging is defined as the peak peak value Vpp.
  • the timings of the upper peak value V H 1 and the lower peak value V L 2 do not correspond, but in the latter, the timings of the upper peak value V H 1 and the lower peak mean value V L ⁇ correspond.
  • FIG. 3 is a diagram showing an example of the measured voltage waveform when the main relays MRp and MRm are turned on.
  • the voltage of the power storage unit 20 fluctuates greatly, and accordingly, a charging current flows from the voltage output unit to the coupling capacitor Cc via the first resistor R1.
  • the voltage at the measurement point A drops significantly and deviates significantly below the input voltage range (0 to 5V) of the first operational amplifier OP1 that defines the measurement range of the voltage measuring unit 11b.
  • the voltage waveform at the measurement point A rises from outside the measurement range as the charging current of the coupling capacitor Cc decreases. It rises sharply at the beginning and then slowly rises at a constant speed from the middle.
  • the center voltage of the measurement point A returns to the intermediate potential (2.5V) of the measurement range.
  • the leakage resistance Rlp is large, it may take 30 seconds or more for the entire voltage waveform at the measurement point A to return to the measurement range (0 to 5V).
  • the voltage at measurement point A may deviate above the measurement range.
  • the main relays MRp and MRm are turned on or off while the coupling capacitor Cc is charged for some reason, a discharge current flows from the coupling capacitor Cc through the first resistor R1 in the direction of the voltage output unit.
  • the voltage at the measurement point A rises significantly and deviates significantly above the measurement range.
  • the voltage waveform at the measurement point A decreases from outside the measurement range as the discharge current of the coupling capacitor Cc decreases. It descends steeply at the beginning, and then slowly descends at a constant speed from the middle.
  • the center voltage of the measurement point A returns to the intermediate potential (2.5V) of the measurement range.
  • FIGS. 4 (a)-(b) are diagrams for explaining the behavior of the peak peak value when the measured voltage waveform is rising at a constant speed in Comparative Example and Control Example 1.
  • FIG. 4A shows the behavior of the peak peak value in the comparative example
  • FIG. 4B shows the behavior of the peak peak value in the control example 1.
  • the amplitude of the peak peak value Vpp expands or contracts in the process of increasing the measured voltage waveform.
  • the first peak peak value Vpp1 defined by the difference between the first upper peak value V H1 and the first lower peak value V L 1 is the second upper peak value V H 2. If it is set to a value smaller than the second peak-to-peak value Vpp2 defined by a first difference between the lower peak value V L 1.
  • the second peak peak value Vpp 2 is larger than the third peak peak value Vpp 3 defined by the difference between the second upper peak value V H 2 and the second lower peak value V L 2.
  • the amplitude of the peak peak value Vpp alternately repeats expansion and contraction, and the entire measured voltage waveform rises. The expansion and contraction of the amplitude of this peak peak value Vpp occurs regardless of the influence of noise.
  • the amplitude of the peak peak value Vpp is kept constant in the process of increasing the measured voltage waveform.
  • the first peak-to-peak value which is defined by the difference between the first upper peak value V H 1 and the first lower peak average value V L ⁇ 1 Vpp1, first upper peak average value V H
  • the second peak peak value Vpp2 defined by the difference between ⁇ 1 and the second lower peak value V L2, and the difference between the second upper peak value VH 2 and the second lower peak mean value V L ⁇ 2.
  • the amplitudes of the third peak peak value Vpp3 are substantially equal.
  • the entire measured voltage waveform rises while the amplitude of the peak peak value Vpp is kept constant.
  • the earth leakage determination unit 11c can evaluate the reliability of the earth leakage determination by comparing two adjacent peak peak values Vpp with each other.
  • the earth leakage determination unit 11c enables the earth leakage determination when two adjacent peak peak values Vpp correspond, and invalidates the earth leakage determination when the two adjacent peak peak values Vpp do not correspond.
  • the voltage at the measurement point A is an ideal voltage that is not affected by noise
  • the two adjacent peak peak values Vpp should be substantially equal.
  • the leakage determination based on the voltage at the measurement point A, which is greatly affected by noise has low reliability. Therefore, the result of the earth leakage determination executed in such a low reliability state is treated as invalid.
  • the leakage determination itself is stopped.
  • FIG. 5 (a)-(b) are diagrams for explaining a specific example of reliability evaluation of electric leakage determination using two adjacent peak peak values Vpp.
  • FIG. 5A shows the measured voltage waveform when noise is not superimposed.
  • adjacent first peak peak value Vpp1 and second peak peak value Vpp2, adjacent second peak peak value Vpp2 and third peak peak value Vpp3, and adjacent third peak peak value Vpp3 and third The four peaks and peak values Vpp4 are substantially the same. It should be noted that even when the entire measured voltage waveform fluctuates at a constant speed (that is, fluctuates in a sufficiently long period) as shown in FIG.
  • FIG. 5B shows a measured voltage waveform when noise is superimposed.
  • regenerative power generation by the motor 3 occurs near the timing at which the second lower peak value VL 2 is measured, and the second lower peak value VL 2 is affected by noise. It is detected as a value higher than the original value.
  • the second peak-to-peak value using a second lower peak value V L 2 Vpp2 has become smaller than the first peak peak Vpp1 or third peak to peak value Vpp3 adjacent.
  • the electric leakage determination using the second peak peak value Vpp2 there is a possibility that it is erroneously determined that the electric leakage has occurred even though the electric leakage has not occurred.
  • the leakage determination is invalid, so that an erroneous determination can be avoided.
  • the peak value without averaging is used for one peak value of the peak peak value Vpp, and the peak value before and after the peak value without averaging is used for the other peak value.
  • one peak value of the peak peak value Vpp and the other peak value can be approximately set as voltage values acquired at the same time.
  • the peak peak value Vpp based on the upper peak value and the lower peak value acquired at this virtually the same time even when the voltage waveform at the measurement point A rises / falls at a constant speed as a whole. , Stable leakage detection is possible.
  • the entire measurement voltage waveform returns to the state within the measurement range, and the voltage fluctuates in a sufficiently long cycle so as not to affect the leakage determination.
  • Highly accurate leakage determination can be performed from the stage before the central potential of the measurement voltage returns to the intermediate potential (2.5V) of the measurement range. Therefore, it is possible to shorten the period during which the leakage determination cannot be performed.
  • the two adjacent peaks and peak values Vpp substantially match. From this property, it is possible to determine the presence or absence of the influence of noise by comparing two adjacent peak peak values Vpp.
  • the leakage determination unit 11c calculates the virtual upper peak value by weight-averaging a plurality of voltage values measured at a plurality of times when the upper peak value should be measured, and the lower peak value is measured. A plurality of voltage values measured at a plurality of times to be measured are weighted and averaged to calculate a virtual lower peak value in which the virtual upper peak value and the time axis are aligned. The earth leakage determination unit 11c calculates the peak peak value Vpp between the calculated virtual upper peak value and the lower virtual peak value.
  • FIG. 6 (a)-(b) are diagrams for explaining the difference in the calculation method of the peak peak value of the measured voltage waveform between the control example 1 and the control example 2.
  • FIG. 6A shows a method of calculating the peak peak value of the measured voltage waveform in Control Example 1
  • FIG. 6B shows a method of calculating the peak peak value of the measured voltage waveform in Control Example 2.
  • the upper peak value V H 1 is derived without averaging
  • the lower peak value VL ⁇ is averaging two points sandwiching the upper peak value V H 1. Derived.
  • V H ⁇ (V H 1 ⁇ 3/4) + (V H 2 ⁇ 1/4) ⁇ ⁇ ⁇ (Equation 1)
  • VL ⁇ ( VL 1 ⁇ 1/4) + ( VL 2 ⁇ 3/4) ⁇ ⁇ ⁇ (Equation 2)
  • FIGS. 7 (a)-(b) are waveform diagrams showing an example of the peak peak value with respect to the frequency of the measured voltage in the control example 1 and the control example 2.
  • 8 (a)-(b) are graphs showing an example of the gain characteristic with respect to the frequency of the measured voltage in the control example 1 and the control example 2.
  • the thick dotted line shows an ideal voltage waveform on which noise is not superimposed.
  • the thick solid line shows the actually measured voltage waveform on which noise is superimposed.
  • FIGS. 8A to 8B the dotted line shows the gain characteristic of the upper peak value, and the solid line shows the gain characteristic of the lower peak value.
  • Control Example 1 As shown in FIGS. 7 (a) and 8 (a), the lower peak value V L ⁇ is averaged, but the upper peak value V H 1 is not averaged. Since the lower peak value VL ⁇ is averaged, noise is reduced around a frequency that is half the reference frequency. On the other hand, the upper peak value VH 1 does not reduce noise.
  • FIG. 8A the difference between the dotted line and the solid line in the vertical direction is an error. In the examples shown in FIGS. 7A and 8A, the error is maximum when the frequency is 0.5 Hz.
  • the upper peak value and the lower peak value of the peak peak value Vpp are calculated by weighted averaging as if they were virtually acquired at the same time.
  • the gain characteristic with respect to the frequency can be matched, and the noise immunity can be improved.
  • the upper peak value and / or the lower peak value may be calculated by filtering at three or more points. In either case, it is sufficient that the time axes of the upper peak value and the lower peak value are aligned.
  • the leakage can be detected earliest. The more sample points used for filtering, the better the reliability.
  • the leakage determination unit 11c can specify the reference potential, the upper peak value, and the lower peak value from the voltage at the measurement point A, and determine the presence or absence of leakage as in the embodiment.
  • the earth leakage detection device 10 can be applied to applications other than in-vehicle applications.
  • the load may be any load as long as the power storage unit 20 and the load receiving power from the power storage unit 20 are insulated from the ground.
  • it may be a load used in a railroad vehicle.
  • the embodiment may be specified by the following items.
  • a coupling capacitor (Cc) whose one end is connected to the current path of the power storage unit (20) connected to the load (2) while being insulated from the ground.
  • a voltage output unit (11a, G1) that generates a periodic voltage that changes periodically and applies it to the other end of the coupling capacitor (Cc) via an impedance element (R1).
  • a voltage measuring unit (11b) for measuring the voltage at the connection point between the coupling capacitor (Cc) and the impedance element (R1), and Based on the peak peak value between the upper peak value and the lower peak value of the voltage waveform measured by the voltage measuring unit (11b), the leakage between the current path of the power storage unit (20) and the ground
  • a leakage determination unit (11c) for determining the presence or absence is provided.
  • the earth leakage determination unit (11c) estimates at least one of the upper peak value and the lower peak value at a certain time, and the peak between the upper peak value and the lower peak value whose time axes are virtually aligned.
  • An earth leakage detection device (10) characterized in that a peak value is calculated. According to this, even when the voltage waveform at the measurement point rises / falls as a whole, highly accurate leakage detection becomes possible.
  • the earth leakage determination unit (11c) measures the voltage value measured at a time that should be measured one time before the specific upper peak value and one time after the specific upper peak value.
  • a virtual lower peak value is calculated by averaging the voltage values measured at an appropriate time, and a peak peak value between the specific upper peak value and the virtual lower peak value is calculated.
  • the leakage detection device (10) according to item 1. According to this, when the voltage waveform of the measurement point rises / falls as a whole, low-delay leakage detection becomes possible.
  • the earth leakage determination unit (11c) has a voltage value measured at a time that should be measured one time before the specific lower peak value and one time after the specific lower peak value.
  • the feature is that the virtual upper peak value is calculated by averaging the voltage values measured at the time to be measured, and the peak peak value between the specific lower peak value and the virtual upper peak value is calculated.
  • the leakage detection device (10) according to item 1. According to this, when the voltage waveform of the measurement point rises / falls as a whole, low-delay leakage detection becomes possible.
  • the earth leakage determination unit (11c) calculates a virtual upper peak value by weighted averaging a plurality of voltage values measured at a plurality of times when the upper peak value should be measured, and measures the lower peak value. A plurality of voltage values measured at a plurality of times should be weighted and averaged to calculate a virtual lower peak value in which the virtual upper peak value and the time axis are aligned, and the virtual upper peak value and the virtual lower peak are calculated.
  • the leakage detection device (10) according to item 1 wherein a peak value between the value and the value is calculated. According to this, when the voltage waveform at the measurement point rises / falls as a whole, leakage detection with high noise immunity becomes possible.
  • the earth leakage determination unit (11c) compares two adjacent peak peak values and evaluates the reliability of the earth leakage determination of the current path of the power storage unit (20).
  • a power storage unit (20) that is mounted in a state of being insulated from the chassis ground of the vehicle and supplies electric power to the load (2) in the vehicle.
  • the earth leakage detection device (10) according to any one of items 1 to 5 and A vehicle power supply system (5), which comprises. According to this, even when the voltage waveform of the measurement point rises / falls as a whole, it is possible to realize a vehicle power supply system (5) equipped with a leakage detection device (10) capable of highly accurate leakage detection. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

漏電検出装置(10)において、測定点の電圧波形が全体的に上昇/下降している場合でも、高精度な漏電検出を可能とするために、カップリングコンデンサ(Cc)は、アースと絶縁された状態で、負荷(2)に接続されている蓄電部(20)の電流経路に一端が接続される。電圧出力部(11a、G1)は、周期的に変化する周期電圧を生成して、カップリングコンデンサ(Cc)の他端にインピーダンス素子(R1)を介して印加する。電圧出力部(11b)は、カップリングコンデンサ(Cc)とインピーダンス素子(R1)との間の接続点の電圧を測定する。漏電判定部(11c)は、ある時刻の上側ピーク値と下側ピーク値の少なくとも一方を推定して、時間軸が仮想的に揃っている上側ピーク値と下側ピーク値との間のピークピーク値を算出し、蓄電部(20)の電流経路とアース間の漏電の有無を判定する。

Description

漏電検出装置、車両用電源システム
 本発明は、アースから絶縁された負荷の漏電を検出する漏電検出装置、車両用電源システムに関する。
 近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの電動車両には、補機電池(一般的に12V出力の鉛電池)と別に高電圧の駆動用電池(トラクションバッテリ)が搭載される。感電を防止するために、高電圧の駆動用電池、インバータ、走行用モータを含む強電回路と、車両のボディ(シャーシアース)間は絶縁される。
 強電回路の車両側のプラス配線とシャーシアース間、及び強電回路の車両側のマイナス配線とシャーシアース間には、それぞれYコンデンサが挿入され、高電圧の駆動用電池から車両側の負荷に供給される電源が安定化されている。強電回路とシャーシアース間の絶縁抵抗を監視して漏電を検出する漏電検出装置が搭載される。
 AC方式の漏電検出装置では、駆動用電池の正極端子または負極端子に、抵抗とカップリングコンデンサを介してパルス電圧を印加し、当該抵抗と当該カップリングコンデンサとの接続点の電圧を測定し、漏電の有無を検出する(例えば、特許文献1参照)。
特開2010-178422号公報
 AC方式における上記構成では、電池側と車両側の間に接続されるメインリレー(コンタクタ)の開閉時などの漏電状態の急変時に、上記測定点の電圧が測定レンジから外れることがある。上記測定点の電圧が測定レンジに戻る過程では、上記測定点の電圧波形が一定速度で上昇/下降する期間が発生する。この期間には、上記測定点の電圧波形の上側ピーク値と下側ピーク値との間のピークピーク値が、ノイズの影響と無関係に伸縮し、安定した漏電検出が難しくなる。
 本開示はこうした状況に鑑みなされたものであり、その目的は、漏電検出装置において、測定点の電圧波形が全体的に上昇/下降している場合でも、高精度な漏電検出を可能とする技術を提供することにある。
 上記課題を解決するために、本開示のある態様の漏電検出装置は、アースと絶縁された状態で、負荷に接続されている蓄電部の電流経路に一端が接続されるカップリングコンデンサと、周期的に変化する周期電圧を生成して、前記カップリングコンデンサの他端にインピーダンス素子を介して印加する電圧出力部と、前記カップリングコンデンサと前記インピーダンス素子との間の接続点の電圧を測定する電圧測定部と、前記電圧測定部により測定された電圧波形の上側ピーク値と下側ピーク値との間のピークピーク値をもとに、前記蓄電部の電流経路と前記アース間の漏電の有無を判定する漏電判定部と、を備える。前記漏電判定部は、ある時刻の上側ピーク値と下側ピーク値の少なくとも一方を推定して、時間軸が仮想的に揃っている上側ピーク値と下側ピーク値との間のピークピーク値を算出する。
 本開示によれば、漏電検出装置において、測定点の電圧波形が全体的に上昇/下降している場合でも、高精度な漏電検出が可能となる。
実施の形態に係る漏電検出装置を備える電源システムの構成を説明するための図である。 図2(a)-(b)は、比較例と制御例1における、測定電圧波形のピークピーク値の算出方法の違いを説明するための図である。 メインリレーがオンしたときの測定電圧波形の一例を示す図である。 図4(a)-(b)は、比較例と制御例1における、測定電圧波形が一定速度で上昇している際のピークピーク値の挙動を説明するための図である。 図5(a)-(b)は、隣接する2つのピークピーク値を使用した漏電判定の信頼性評価の具体例を説明するための図である。 図6(a)-(b)は、制御例1と制御例2における、測定電圧波形のピークピーク値の算出方法の違いを説明するための図である。 図7(a)-(b)は、制御例1と制御例2における、測定電圧の周波数に対するピークピーク値の一例を示した波形図である。 図8(a)-(b)は、制御例1と制御例2における、測定電圧の周波数に対するゲイン特性の一例を示したグラフである。
 図1は、実施の形態に係る漏電検出装置10を備える電源システム5の構成を説明するための図である。電源システム5は電動車両に搭載される。電源システム5は電動車両内において、補機電池(通常、12V出力の鉛電池が使用される)と別に設けられる。電源システム5は、高電圧の蓄電部20、及び漏電検出装置10を含む。蓄電部20は、直列接続された複数のセルE1-Enを含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。
 電動車両は高電圧の負荷として、インバータ2及びモータ3を備える。蓄電部20の正極とインバータ2の一端がプラス配線Lpで接続され、蓄電部20の負極とインバータ2の他端がマイナス配線Lmで接続される。プラス配線Lpに正側メインリレーMRpが挿入され、マイナス配線Lmに負側メインリレーMRmが挿入される。正側メインリレーMRpと負側メインリレーMRmは、蓄電部20と電動車両内の高電圧の負荷との間の導通/遮断を制御するコンタクタとして機能する。なおリレーの代わりに、高耐圧・高絶縁の半導体スイッチを使用することも可能である。
 インバータ2は、蓄電部20とモータ3の間に接続される双方向インバータである。インバータ2は力行時、蓄電部20から供給される直流電力を交流電力に変換してモータ3に供給する。回生時、モータ3から供給される交流電力を直流電力に変換して蓄電部20に供給する。モータ3には例えば、三相交流モータが使用される。モータ3は力行時、インバータ2から供給される交流電力に応じて回転する。回生時、減速による回転エネルギーを交流電力に変換してインバータ2に供給する。
 蓄電部20は、電動車両のシャーシアースと絶縁された状態で電動車両に搭載される。補機電池は、負極がシャーシアースと導通した状態で電動車両に搭載される。なお、正側メインリレーMRpよりインバータ2側のプラス配線Lpとシャーシアース間が正側YコンデンサCpを介して接続される。また、負側メインリレーMRmよりインバータ2側のマイナス配線Lmとシャーシアース間が負側YコンデンサCmを介して接続される。正側YコンデンサCp及び負側YコンデンサCmは、プラス配線Lpとシャーシアース間、及びマイナス配線Lmとシャーシアース間をそれぞれ直流的に絶縁するとともに、プラス配線Lp及びマイナス配線Lmの電圧を安定化させる作用を有する。
 蓄電部20がシャーシアースから理想的に絶縁されている場合、蓄電部20の中間電位がシャーシアースの電位近辺に維持される。例えば、蓄電部20の両端電圧が250Vの場合、蓄電部20の正極電位が+125V近辺、負極電位が-125V近辺に維持される。高電圧の蓄電部20とシャーシアース間が導通した状態で、人間が電動車両の露出した導電部に触れると感電する危険がある。そこで高電圧の蓄電部20を搭載した電動車両では、漏電検出装置10を搭載して、高電圧の車両負荷に接続されている蓄電部20の電流経路とシャーシアース間の絶縁状態を監視する必要がある。図1では、プラス配線Lpとシャーシアース間の絶縁状態を正側漏電抵抗Rlp、マイナス配線Lmとシャーシアース間の絶縁状態を負側漏電抵抗Rlmと表している。
 漏電検出装置10は、カップリングコンデンサCc、第1抵抗R1、ANDゲートG1、第1ツェナーダイオードZD1、第2抵抗R2、第1オペアンプOP1、第2ツェナーダイオードZD2及び制御部11を含む。制御部11は、発振部11a、電圧測定部11b及び漏電判定部11cを含む。制御部11は例えば、マイクロコンピュータ及び不揮発メモリ(例えば、EEPROM、フラッシュメモリ)により構成することができる。
 カップリングコンデンサCcは、蓄電部20の電流経路に一端が接続される。図1に示す例では蓄電部20の負極にカップリングコンデンサCcの一端が接続されている。なお、カップリングコンデンサCcの一端は、蓄電部20の正極に接続されてもよいし、蓄電部20内の複数のセルE1-Enのいずれかのノードに接続されてもよい。カップリングコンデンサCcの他端は、第1抵抗R1を介して電圧出力部の出力端に接続される。カップリングコンデンサCcの他端と第1抵抗R1との間の接続点が測定点Aとなる。なお、第1抵抗R1の代わりに他のインピーダンス素子を使用してもよい。
 図1ではカップリングコンデンサCcに、比較的安価に大容量化することができるアルミ電解コンデンサが使用されている。アルミ電解コンデンサは極性を有しており、図1ではアルミ電解コンデンサの正極が測定点Aに接続され、アルミ電解コンデンサの負極が蓄電部20の負極に接続されている。カップリングコンデンサCcは、複数のアルミ電解コンデンサが直列に接続されて構成されていてもよい。この場合、1つのコンデンサがショート故障しても、残りのコンデンサにより直流的な絶縁を維持することができる。
 上記の電圧出力部は、周期的に変化する周期電圧を生成して、生成した周期電圧をカップリングコンデンサCcの他端に第1抵抗R1を介して印加する。以下、本明細書では周期電圧として矩形波電圧を使用する例を想定する。
 電圧出力部は、発振部11a及びANDゲートG1を含む。発振部11aは、マルチバイブレータや局部発振器を含み、予め設定された周波数の矩形波を発生させる。発振部11aにより生成された矩形波電圧は、ANDゲートG1の第1入力端子に入力される。ANDゲートG1の第2入力端子は、電源電位Vccに接続される。ANDゲートG1は、第1入力端子に入力される矩形波電圧がハイレベルのとき、ハイレベル(電源電位Vcc)を出力し、第1入力端子に入力される矩形波電圧がローレベルのとき、ローレベル(グラウンド電位)を出力する。グラウンド電位は、シャーシアースに接続されている。以下、電源電位Vccが5V、グラウンド電位が0Vの例を想定する。
 ANDゲートG1は、制御部11と測定点Aを分離するバッファとして機能する。ANDゲートG1はバッファの一例である。例えば、ANDゲートの代わりに、ORゲートやボルテージフォロワを使用してもよい。ORゲートを使用する場合、ORゲートの第2入力端子にはグラウンド電位が接続される。
 ANDゲートG1の出力端子と第1抵抗R1との間の接続点と、シャーシアース間に第1ツェナーダイオードZD1が接続される。
 測定点Aは、第2抵抗R2を介して第1オペアンプOP1の非反転入力端子に接続される。第1オペアンプOP1の反転入力端子と出力端子が接続される。第1オペアンプOP1は、増幅率が1倍でインピーダンス変換だけを行うボルテージフォロアとして機能する。第1オペアンプOP1は、測定点Aの電圧を電圧測定部11bに出力する。第1オペアンプOP1の非反転入力端子と第2抵抗R2との間の接続点と、シャーシアース間に第2ツェナーダイオードZD2が接続される。
 上述した第1ツェナーダイオードZD1又は第2ツェナーダイオードZD2は、メインリレーMRp、MRmの開閉や電源システム5の負荷変動に起因して、ANDゲートG1又は第1オペアンプOP11に過電圧が印加されることを防止する。
 電圧測定部11bは測定点Aの電圧を測定する。電圧測定部11bはA/Dコンバータを含み、当該A/Dコンバータは、発振部11aにより生成される矩形波電圧の立ち上がりエッジと立ち下がりエッジのタイミングに同期したタイミングで、測定点Aのアナログ電圧をサンプリングし、サンプリングしたアナログ電圧をデジタル値に変換する。矩形波電圧の立ち上がりエッジのタイミングでサンプリングされた電圧は、測定された電圧波形の下側ピーク値に相当し、矩形波電圧の立ち下がりエッジのタイミングでサンプリングされた電圧は、測定された電圧波形の上側ピーク値に相当する。なお、矩形波電圧の鈍りを考慮して、下側ピーク値をサンプリングすべきタイミングと、上側ピーク値をサンプリングすべきタイミングが調整されていてもよい。当該A/Dコンバータは、測定点Aのアナログ電圧を変換したデジタル値を漏電判定部11cに出力する。
 漏電判定部11cは、電圧測定部11bにより測定された測定点Aの電圧をもとに、蓄電部20の電流経路とシャーシアース間の漏電の有無を判定する。漏電判定部11cは、上側ピーク値と下側ピーク値との差分で示されるピークピーク値が、設定値より小さい場合、蓄電部20の電流経路とシャーシアース間に漏電が発生していると判定する。当該設定値は、設計者による実験やシミュレーションにより予め導出された漏電発生時の測定電圧波形のピークピーク値をもとに決定される。蓄電部20の電流経路とシャーシアース間に漏電が発生している場合、ANDゲートG1から、検出抵抗として作用している第1抵抗R1を介してカップリングコンデンサCcに交流電流が流れる。第1抵抗R1に電流が流れると、電圧降下により測定点Aの電圧振幅が縮小する。
 実施の形態では漏電判定部11cは、ある時刻の上側ピーク値と下側ピーク値の少なくとも一方を推定して、時間軸が仮想的に揃っている上側ピーク値と下側ピーク値との間のピークピーク値を算出する。
(制御例1)
 制御例1では漏電判定部11cは、特定の上側ピーク値より時間的に一つ前に測定されるべき時刻に測定された電圧値と、当該特定の上側ピーク値より時間的に一つ後に測定されるべき時刻に測定された電圧値を平均化して仮想下側ピーク値を算出する。漏電判定部11cは、特定の上側ピーク値と仮想下側ピーク値との間のピークピーク値を算出する。
 また漏電判定部11cは、特定の下側ピーク値より時間的に一つ前に測定されるべき時刻に測定された電圧値と、特定の下側ピーク値より時間的に一つ後に測定されるべき時刻に測定された電圧値を平均化して仮想上側ピーク値を算出する。漏電判定部11cは、特定の下側ピーク値と仮想上側ピーク値との間のピークピーク値を算出する。
 図2(a)-(b)は、比較例と制御例1における、測定電圧波形のピークピーク値の算出方法の違いを説明するための図である。図2(a)は、比較例における測定電圧波形のピークピーク値の算出方法を示し、図2(b)は、制御例1における測定電圧波形のピークピーク値の算出方法を示している。図2(a)に示す比較例では、測定された時間的に隣接する2つの上側ピーク値V1と下側ピーク値V2との差分をピークピーク値Vppとしている。図2(b)に示す制御例1では、測定された上側ピーク値V1と、当該上側ピーク値V1を挟んだ2つの下側ピーク値V1と下側ピーク値V2を平均化した下側ピーク平均値Vμとの差分をピークピーク値Vppとしている。前者では上側ピーク値V1と下側ピーク値V2のタイミングが対応していないが、後者では上側ピーク値V1と下側ピーク平均値Vμのタイミングが対応している。
 図3は、メインリレーMRp、MRmがオンしたときの測定電圧波形の一例を示す図である。メインリレーMRp、MRmがオンすると蓄電部20の電圧が大きく変動し、それに伴い、電圧出力部から第1抵抗R1を介してカップリングコンデンサCcに充電電流が流れる。この場合、測定点Aの電圧が大きく低下し、電圧測定部11bの測定レンジを規定する、第1オペアンプOP1の入力電圧範囲(0~5V)の下に大きく外れる。測定点Aの電圧波形は測定レンジ外から、カップリングコンデンサCcの充電電流の減少に伴って上昇する。はじめは急峻に上昇し、途中から一定速度で緩やかに上昇する。カップリングコンデンサCcの充電が完了すると、測定点Aの中心電圧が測定レンジの中間電位(2.5V)に復帰する。漏電抵抗Rlpが大きい場合、測定点Aの電圧波形の全体が測定レンジ(0~5V)に戻るまでに30秒以上を要する場合もある。
 なお、測定点Aの電圧が測定レンジの上に外れる場合もある。何らかの要因でカップリングコンデンサCcが充電された状態において、メインリレーMRp、MRmがオン又はオフすると、カップリングコンデンサCcから第1抵抗R1を介して電圧出力部の方向へ放電電流が流れる。この場合、測定点Aの電圧が大きく上昇し、測定レンジの上に大きく外れる。測定点Aの電圧波形は測定レンジ外から、カップリングコンデンサCcの放電電流の減少に伴って下降する。はじめは急峻に下降し、途中から一定速度で緩やかに下降する。カップリングコンデンサCcの放電が完了すると、測定点Aの中心電圧が測定レンジの中間電位(2.5V)に復帰する。
 図4(a)-(b)は、比較例と制御例1における、測定電圧波形が一定速度で上昇している際のピークピーク値の挙動を説明するための図である。図4(a)は比較例におけるピークピーク値の挙動を示し、図4(b)は制御例1におけるピークピーク値の挙動を示している。
 比較例では、測定電圧波形の上昇の過程で、ピークピーク値Vppの振幅が拡大したり縮小したりする。図4(a)に示す例では、第1上側ピーク値V1と第1下側ピーク値V1の差分で規定される第1ピークピーク値Vpp1は、第2上側ピーク値V2と第1下側ピーク値V1の差分で規定される第2ピークピーク値Vpp2より小さな値になっている。当該第2ピークピーク値Vpp2は、第2上側ピーク値V2と第2下側ピーク値V2の差分で規定される第3ピークピーク値Vpp3より大きな値になっている。このように比較例では、ピークピーク値Vppの振幅が拡大と縮小を交互に繰り返しながら、測定電圧波形の全体が上昇していく。このピークピーク値Vppの振幅の拡大と縮小は、ノイズの影響と無関係に発生する。
 制御例1では、測定電圧波形の上昇の過程で、ピークピーク値Vppの振幅は一定に保たれる。図4(b)に示す例では、第1上側ピーク値V1と第1下側ピーク平均値Vμ1の差分で規定される第1ピークピーク値Vpp1、第1上側ピーク平均値Vμ1と第2下側ピーク値V2の差分で規定される第2ピークピーク値Vpp2、及び第2上側ピーク値V2と第2下側ピーク平均値Vμ2の差分で規定される第3ピークピーク値Vpp3の振幅は、実質的に等しい。このように制御例1では、ピークピーク値Vppの振幅が一定に保たれながら、測定電圧波形の全体が上昇していく。
 制御例1では漏電判定部11cは、隣接する2つのピークピーク値Vpp同士を比較して、漏電判定の信頼性を評価することができる。漏電判定部11cは、隣接する2つのピークピーク値Vppが対応するとき漏電判定を有効とし、隣接する2つのピークピーク値Vppが対応しないとき漏電判定を無効とする。制御例1において、測定点Aの電圧が、ノイズの影響を受けていない理想的な電圧であれば、隣接する2つのピークピーク値Vppは実質的に等しくなるはずである。逆に言えば、隣接する2つのピークピーク値Vppが実質的に一致しない場合、測定点Aの電圧がノイズの影響を大きく受けているといえる。ノイズの影響を大きく受けている測定点Aの電圧に基づく漏電判定は、信頼性が低いといえる。従って、そのような信頼性が低い状態で実行された漏電判定の結果は無効として扱う。または、信頼性が低い状態では漏電判定自体を停止する。
 図5(a)-(b)は、隣接する2つのピークピーク値Vppを使用した漏電判定の信頼性評価の具体例を説明するための図である。電動車両内のモータ3が回生発電を開始すると、モータ3により発電された電力により、蓄電部20の電圧が瞬間的に上昇する。また、電動車両が加速するとモータ3の回転数が上がり、モータ3に供給される電力上昇により、蓄電部20の電圧が瞬間的に低下する。このような蓄電部20の瞬間的な電圧変動は、車両ノイズとしてカップリングコンデンサCcを通過し、測定点Aの電圧に重畳される。
 図5(a)は、ノイズが重畳されていない場合の測定電圧波形を示している。図5(a)では、隣接する第1ピークピーク値Vpp1と第2ピークピーク値Vpp2、隣接する第2ピークピーク値Vpp2と第3ピークピーク値Vpp3、及び隣接する第3ピークピーク値Vpp3と第4ピークピーク値Vpp4がそれぞれ実質的に一致している。なお、図4(b)に示したように測定電圧波形の全体が一定速度で変動(即ち、十分に長周期で変動)している場合も、それぞれ一致する。
 図5(b)は、ノイズが重畳されている場合の測定電圧波形を示している。図5(b)では、第2下側ピーク値V2が測定されたタイミングの近辺で、モータ3による回生発電が発生し、第2下側ピーク値V2がノイズの影響を受けて本来の値より高い値として検出されている。この場合、第2下側ピーク値V2を使用した第2ピークピーク値Vpp2が、隣接する第1ピークピークVpp1又は第3ピークピーク値Vpp3より小さな値になっている。第2ピークピーク値Vpp2を用いた漏電判定では、漏電が発生していないにも関わらず漏電が発生していると誤判定する可能性がある。制御例1では、隣接するピークピークVppが実質的に一致しない場合、漏電判定が無効となるため、誤判定を回避することができる。
 以上説明したように制御例1によれば、ピークピーク値Vppの一方のピーク値に平均処理なしのピーク値を使用し、他方のピーク値に、当該平均処理なしのピーク値の前後のピーク値を平均処理したピーク値を使用する。これにより、近似的にピークピーク値Vppの一方のピーク値と他方のピーク値を同じ時刻に取得した電圧値とすることができる。この仮想的に同じ時刻に取得した上側ピーク値と下側ピーク値に基づくピークピーク値Vppを使用することにより、測定点Aの電圧波形が全体的に一定速度で上昇/下降している場合でも、安定した漏電検出が可能となる。
 従って、測定点Aの電圧が測定レンジから外れた後、測定電圧波形の全体が測定レンジに収まる状態に戻り、かつ漏電判定に影響を及ぼさない程度に十分な長周期で変動していれば、測定電圧の中心電位が測定レンジの中間電位(2.5V)に復帰する前の段階から、高精度な漏電判定を行うことができる。よって、漏電判定ができない期間を短くすることができる。
 また、測定電圧が十分に長周期で変動している場合、隣接する2つのピークピーク値Vppが実質的に一致する。この性質から、隣接する2つのピークピーク値Vppを比較することにより、ノイズの影響の有無を判定することができる。
(制御例2)
 制御例2では漏電判定部11cは、上側ピーク値が測定されるべき複数の時刻に測定された複数の電圧値を加重平均して仮想上側ピーク値を算出し、下側ピーク値が測定されるべき複数の時刻に測定された複数の電圧値を加重平均して、当該仮想上側ピーク値と時間軸が揃っている仮想下側ピーク値を算出する。漏電判定部11cは、算出した仮想上側ピーク値と下側仮想ピーク値との間のピークピーク値Vppを算出する。
 図6(a)-(b)は、制御例1と制御例2における、測定電圧波形のピークピーク値の算出方法の違いを説明するための図である。図6(a)は、制御例1における測定電圧波形のピークピーク値の算出方法を示し、図6(b)は、制御例2における測定電圧波形のピークピーク値の算出方法を示している。図6(a)に示す制御例1では、上側ピーク値V1は平均処理なしで導出され、下側ピーク値Vμは、上側ピーク値V1を挟んだ2点の平均処理により導出される。
 図6(b)に示す制御例2では、上側ピーク値Vμと下側ピーク値Vμの時間軸が合うように、それぞれ加重平均して上側ピーク値Vμと下側ピーク値Vμが導出される。例えば漏電判定部11cは、FIR (Finite Impulse Response) フィルタを使用して、仮想的に同じ時刻に取得される上側ピーク値Vμと下側ピーク値Vμを導出する。例えば下記(式1)、(式2)を算出して上側ピーク値Vμと下側ピーク値Vμを導出する。
 Vμ=(V1×3/4)+(V2×1/4) ・・・(式1)
 Vμ=(V1×1/4)+(V2×3/4) ・・・(式2)
 図7(a)-(b)は、制御例1と制御例2における、測定電圧の周波数に対するピークピーク値の一例を示した波形図である。図8(a)-(b)は、制御例1と制御例2における、測定電圧の周波数に対するゲイン特性の一例を示したグラフである。図7(a)-(b)において、太点線はノイズが重畳されていない理想的な電圧波形を示している。太実線はノイズが重畳されている実際に測定された電圧波形を示している。図8(a)-(b)において、点線は上側ピーク値のゲイン特性を示し、実線は下側ピーク値のゲイン特性を示している。
 制御例1では、図7(a)、図8(a)に示すように下側ピーク値Vμは平均処理されているが、上側ピーク値V1は平均処理されていない。下側ピーク値Vμは平均処理されているため、基準周波数の半分の周波数を中心にノイズが低減される。一方、上側ピーク値V1はノイズが低減されない。図8(a)では、点線と実線との上下方向の差異が誤差となる。図7(a)、図8(a)に示す例では周波数が0.5Hzのときの誤差が最大となる。
 制御例2では、図7(b)、図8(b)に示すように、上側ピーク値Vμと下側ピーク値Vμの両方にFIRフィルタをかけている。従って、上側ピーク値Vμと下側ピーク値Vμとの間で、位相特性に加えて、周波数に対するゲイン特性も合わせることができる。よって、ノイズの影響を低減することができる。図7(a)と図7(b)を比較すると、図7(b)に示す太実線のピークピーク値Vppの方が、理想的な電圧波形のピークピーク値に近いことが分かる。
 以上説明したように制御例2によれば、ピークピーク値Vppの上側ピーク値と下側ピーク値を、仮想的に同じ時刻に取得したように加重平均して算出する。これにより、周波数に対するゲイン特性も合わせることができ、ノイズ耐性を向上させることができる。なお時間軸を合わせずに、単純にそれぞれ平均処理した上側ピーク値と下側ピーク値に基づくピークピーク値を使用した場合、図4(a)に示したように、測定電圧波形が全体的に一定速度で上昇/下降している場合に、安定した漏電検出ができなくなる。
 以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 上述の制御例1、2では、2点のフィルタ処理により上側ピーク値および/または下側ピーク値を算出する例を説明した。この点、3点以上のフィルタ処理により上側ピーク値および/または下側ピーク値を算出してもよい。いずれの場合も、上側ピーク値と下側ピーク値の時間軸が揃っていればよい。なお、2点のフィルタ処理により上側ピーク値および/または下側ピーク値を算出する例が、漏電を最も早く検出することができる。フィルタ処理に使用するサンプル点を多くするほど基本的に信頼性が向上する。
 上述の実施の形態では、電圧出力部から第1抵抗R1を介してカップリングコンデンサCcに矩形波電圧を印加する例を説明した。この点、正弦波電圧をカップリングコンデンサCcに印加してもよい。この場合も漏電判定部11cは、測定点Aの電圧から基準電位、上側ピーク値、下側ピーク値を特定し、実施の形態と同様に漏電の有無を判定することができる。
 上述の実施の形態では、漏電検出装置10を電動車両に搭載して使用する例を説明した。この点、実施の形態に係る漏電検出装置10は車載用途以外の用途にも適用できる。蓄電部20、及び蓄電部20から電力供給を受ける負荷がアースから絶縁されている構成であれば、負荷はどのような負荷であってもよい。例えば、鉄道車両内で使用される負荷であってもよい。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 アースと絶縁された状態で、負荷(2)に接続されている蓄電部(20)の電流経路に一端が接続されるカップリングコンデンサ(Cc)と、
 周期的に変化する周期電圧を生成して、前記カップリングコンデンサ(Cc)の他端にインピーダンス素子(R1)を介して印加する電圧出力部(11a、G1)と、
 前記カップリングコンデンサ(Cc)と前記インピーダンス素子(R1)との間の接続点の電圧を測定する電圧測定部(11b)と、
 前記電圧測定部(11b)により測定された電圧波形の上側ピーク値と下側ピーク値との間のピークピーク値をもとに、前記蓄電部(20)の電流経路と前記アース間の漏電の有無を判定する漏電判定部(11c)と、を備え、
 前記漏電判定部(11c)は、ある時刻の上側ピーク値と下側ピーク値の少なくとも一方を推定して、時間軸が仮想的に揃っている上側ピーク値と下側ピーク値との間のピークピーク値を算出することを特徴とする漏電検出装置(10)。
 これによれば、測定点の電圧波形が全体的に上昇/下降している場合でも、高精度な漏電検出が可能となる。
[項目2]
 前記漏電判定部(11c)は、特定の上側ピーク値より時間的に一つ前に測定されるべき時刻に測定された電圧値と、前記特定の上側ピーク値より時間的に一つ後に測定されるべき時刻に測定された電圧値を平均化して仮想下側ピーク値を算出し、前記特定の上側ピーク値と前記仮想下側ピーク値との間のピークピーク値を算出することを特徴とする項目1に記載の漏電検出装置(10)。
 これによれば、測定点の電圧波形が全体的に上昇/下降している場合において、低遅延な漏電検出が可能となる。
[項目3]
 前記漏電判定部(11c)は、特定の下側ピーク値より時間的に一つ前に測定されるべき時刻に測定された電圧値と、前記特定の下側ピーク値より時間的に一つ後に測定されるべき時刻に測定された電圧値とを平均化して仮想上側ピーク値を算出し、前記特定の下側ピーク値と前記仮想上側ピーク値との間のピークピーク値を算出することを特徴とする項目1に記載の漏電検出装置(10)。
 これによれば、測定点の電圧波形が全体的に上昇/下降している場合において、低遅延な漏電検出が可能となる。
[項目4]
 前記漏電判定部(11c)は、上側ピーク値が測定されるべき複数の時刻に測定された複数の電圧値を加重平均して仮想上側ピーク値を算出するとともに、下側ピーク値が測定されるべき複数の時刻に測定された複数の電圧値を加重平均して、前記仮想上側ピーク値と時間軸が揃っている仮想下側ピーク値を算出し、前記仮想上側ピーク値と前記仮想下側ピーク値との間のピークピーク値を算出することを特徴とする項目1に記載の漏電検出装置(10)。
 これによれば、測定点の電圧波形が全体的に上昇/下降している場合において、ノイズ耐性が高い漏電検出が可能となる。
[項目5]
 前記漏電判定部(11c)は、隣接する2つのピークピーク値を比較して、前記蓄電部(20)の電流経路の漏電判定の信頼性を評価することを特徴とする項目1から4のいずれか1項に記載の漏電検出装置(10)。
 これによれば、ノイズの影響を確認することができる。
[項目6]
 車両のシャーシアースと絶縁された状態で搭載され、前記車両内の負荷(2)に電力を供給する蓄電部(20)と、
 項目1から5のいずれか1項に記載の漏電検出装置(10)と、
 を備えることを特徴とする車両用電源システム(5)。
 これによれば、測定点の電圧波形が全体的に上昇/下降している場合でも、高精度な漏電検出が可能漏電検出装置(10)を備える車両用電源システム(5)を実現することができる。
 2 インバータ、 3 モータ、 Lp プラス配線、 Lm マイナス配線、 Cp 正側Yコンデンサ、 Cm 負側Yコンデンサ、 Rlp 正側漏電抵抗、 Rlm 負側漏電抵抗、 5 電源システム、 20 蓄電部、 E1~En セル、 10 漏電検出装置、 11 制御部、 11a 発振部、 11b 電圧測定部、 11c 漏電判定部、 Cc カップリングコンデンサ、 R1 第1抵抗、 R2 第2抵抗、 OP1 第1オペアンプ、 G1 ANDゲート、 ZD1 第1ツェナーダイオード、 ZD2 第2ツェナーダイオード。

Claims (6)

  1.  アースと絶縁された状態で、負荷に接続されている蓄電部の電流経路に一端が接続されるカップリングコンデンサと、
     周期的に変化する周期電圧を生成して、前記カップリングコンデンサの他端にインピーダンス素子を介して印加する電圧出力部と、
     前記カップリングコンデンサと前記インピーダンス素子との間の接続点の電圧を測定する電圧測定部と、
     前記電圧測定部により測定された電圧波形の上側ピーク値と下側ピーク値との間のピークピーク値をもとに、前記蓄電部の電流経路と前記アース間の漏電の有無を判定する漏電判定部と、を備え、
     前記漏電判定部は、ある時刻の上側ピーク値と下側ピーク値の少なくとも一方を推定して、時間軸が仮想的に揃っている上側ピーク値と下側ピーク値との間のピークピーク値を算出することを特徴とする漏電検出装置。
  2.  前記漏電判定部は、特定の上側ピーク値より時間的に一つ前に測定されるべき時刻に測定された電圧値と、前記特定の上側ピーク値より時間的に一つ後に測定されるべき時刻に測定された電圧値を平均化して仮想下側ピーク値を算出し、前記特定の上側ピーク値と前記仮想下側ピーク値との間のピークピーク値を算出することを特徴とする請求項1に記載の漏電検出装置。
  3.  前記漏電判定部は、特定の下側ピーク値より時間的に一つ前に測定されるべき時刻に測定された電圧値と、前記特定の下側ピーク値より時間的に一つ後に測定されるべき時刻に測定された電圧値とを平均化して仮想上側ピーク値を算出し、前記特定の下側ピーク値と前記仮想上側ピーク値との間のピークピーク値を算出することを特徴とする請求項1に記載の漏電検出装置。
  4.  前記漏電判定部は、上側ピーク値が測定されるべき複数の時刻に測定された複数の電圧値を加重平均して仮想上側ピーク値を算出するとともに、下側ピーク値が測定されるべき複数の時刻に測定された複数の電圧値を加重平均して、前記仮想上側ピーク値と時間軸が揃っている仮想下側ピーク値を算出し、前記仮想上側ピーク値と前記仮想下側ピーク値との間のピークピーク値を算出することを特徴とする請求項1に記載の漏電検出装置。
  5.  前記漏電判定部は、隣接する2つのピークピーク値を比較して、前記蓄電部の電流経路の漏電判定の信頼性を評価することを特徴とする請求項1から4のいずれか1項に記載の漏電検出装置。
  6.  車両のシャーシアースと絶縁された状態で搭載され、前記車両内の負荷に電力を供給する蓄電部と、
     請求項1から5のいずれか1項に記載の漏電検出装置と、
     を備えることを特徴とする車両用電源システム。
PCT/JP2020/023448 2019-06-28 2020-06-15 漏電検出装置、車両用電源システム WO2020262084A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080047587.5A CN114144687A (zh) 2019-06-28 2020-06-15 漏电检测装置、车辆用电源***
US17/621,177 US20220357408A1 (en) 2019-06-28 2020-06-15 Leakage detection device and power system for vehicle
JP2021528229A JPWO2020262084A1 (ja) 2019-06-28 2020-06-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-121505 2019-06-28
JP2019121505 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262084A1 true WO2020262084A1 (ja) 2020-12-30

Family

ID=74061960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023448 WO2020262084A1 (ja) 2019-06-28 2020-06-15 漏電検出装置、車両用電源システム

Country Status (4)

Country Link
US (1) US20220357408A1 (ja)
JP (1) JPWO2020262084A1 (ja)
CN (1) CN114144687A (ja)
WO (1) WO2020262084A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002505A (zh) * 2021-10-29 2022-02-01 广东浦尔顿科技有限公司 充电桩接地检测方法和***
US20220357408A1 (en) * 2019-06-28 2022-11-10 Sanyo Electric Co., Ltd. Leakage detection device and power system for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6986004B2 (ja) * 2018-12-03 2021-12-22 株式会社デンソー 絶縁抵抗検出装置
JP7438213B2 (ja) * 2019-06-28 2024-02-26 三洋電機株式会社 漏電検出装置、車両用電源システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209331A (ja) * 2001-01-11 2002-07-26 Nissan Motor Co Ltd 電気車両の地絡検出装置
JP2004104923A (ja) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd 絶縁抵抗検出方法および装置
JP2005233822A (ja) * 2004-02-20 2005-09-02 Denso Corp 地絡検出装置
JP2007163291A (ja) * 2005-12-14 2007-06-28 Denso Corp 車両用対地絶縁回路の絶縁性能診断装置
JP2009287983A (ja) * 2008-05-28 2009-12-10 Daihatsu Motor Co Ltd 車両用絶縁抵抗測定装置
JP2010249766A (ja) * 2009-04-20 2010-11-04 Hitachi Ltd 車両用漏電検出装置
JP2013140074A (ja) * 2012-01-04 2013-07-18 Denso Corp 漏電検出装置
JP2016166770A (ja) * 2015-03-09 2016-09-15 パナソニックIpマネジメント株式会社 漏電検出装置
WO2017073031A1 (ja) * 2015-10-30 2017-05-04 パナソニックIpマネジメント株式会社 漏電検出装置および漏電検出方法
WO2018074394A1 (ja) * 2016-10-21 2018-04-26 パナソニックIpマネジメント株式会社 地絡検出装置、及び蓄電システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1314352B1 (it) * 1999-12-30 2002-12-09 Abb Ricerca Spa Dispositivo elettronico di protezione da una corrente di dispersioneverso terra
JP4875257B2 (ja) * 2000-07-17 2012-02-15 パナソニック株式会社 漏電検出装置
JP2007089277A (ja) * 2005-09-21 2007-04-05 Hitachi Vehicle Energy Ltd 電気自動車のリーク検出装置
JP4882336B2 (ja) * 2005-10-14 2012-02-22 日産自動車株式会社 漏電検知装置
JP5072727B2 (ja) * 2008-06-17 2012-11-14 株式会社日本自動車部品総合研究所 絶縁抵抗検出装置および絶縁抵抗検出方法
JP5401250B2 (ja) * 2009-10-06 2014-01-29 日立オートモティブシステムズ株式会社 地絡検出装置
JP5871160B2 (ja) * 2012-01-12 2016-03-01 株式会社デンソー 漏電検出装置
JP2015087217A (ja) * 2013-10-30 2015-05-07 オムロンオートモーティブエレクトロニクス株式会社 漏電検出装置
JP6361575B2 (ja) * 2015-05-15 2018-07-25 株式会社デンソー 漏電検出装置
JPWO2017159053A1 (ja) * 2016-03-15 2019-01-17 パナソニックIpマネジメント株式会社 異常検出装置
WO2020170557A1 (ja) * 2019-02-19 2020-08-27 三洋電機株式会社 漏電検出装置、車両用電源システム
JP7438213B2 (ja) * 2019-06-28 2024-02-26 三洋電機株式会社 漏電検出装置、車両用電源システム
WO2020262082A1 (ja) * 2019-06-28 2020-12-30 三洋電機株式会社 漏電検出装置、車両用電源システム
WO2020262084A1 (ja) * 2019-06-28 2020-12-30 三洋電機株式会社 漏電検出装置、車両用電源システム
JPWO2021106285A1 (ja) * 2019-11-26 2021-06-03
EP4068544A4 (en) * 2019-11-26 2023-01-18 SANYO Electric Co., Ltd. EARTH LEAKAGE DETECTION DEVICE AND VEHICLE POWER SUPPLY SYSTEM

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209331A (ja) * 2001-01-11 2002-07-26 Nissan Motor Co Ltd 電気車両の地絡検出装置
JP2004104923A (ja) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd 絶縁抵抗検出方法および装置
JP2005233822A (ja) * 2004-02-20 2005-09-02 Denso Corp 地絡検出装置
JP2007163291A (ja) * 2005-12-14 2007-06-28 Denso Corp 車両用対地絶縁回路の絶縁性能診断装置
JP2009287983A (ja) * 2008-05-28 2009-12-10 Daihatsu Motor Co Ltd 車両用絶縁抵抗測定装置
JP2010249766A (ja) * 2009-04-20 2010-11-04 Hitachi Ltd 車両用漏電検出装置
JP2013140074A (ja) * 2012-01-04 2013-07-18 Denso Corp 漏電検出装置
JP2016166770A (ja) * 2015-03-09 2016-09-15 パナソニックIpマネジメント株式会社 漏電検出装置
WO2017073031A1 (ja) * 2015-10-30 2017-05-04 パナソニックIpマネジメント株式会社 漏電検出装置および漏電検出方法
WO2018074394A1 (ja) * 2016-10-21 2018-04-26 パナソニックIpマネジメント株式会社 地絡検出装置、及び蓄電システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220357408A1 (en) * 2019-06-28 2022-11-10 Sanyo Electric Co., Ltd. Leakage detection device and power system for vehicle
CN114002505A (zh) * 2021-10-29 2022-02-01 广东浦尔顿科技有限公司 充电桩接地检测方法和***

Also Published As

Publication number Publication date
JPWO2020262084A1 (ja) 2020-12-30
CN114144687A (zh) 2022-03-04
US20220357408A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2020262084A1 (ja) 漏電検出装置、車両用電源システム
WO2020262083A1 (ja) 漏電検出装置、車両用電源システム
US9255957B2 (en) Earth fault detection circuit and power source device
JP7001970B2 (ja) 地絡検出装置、及び蓄電システム
JP5926677B2 (ja) 地絡検知装置
JP7431212B2 (ja) 漏電検出装置、車両用電源システム
JPWO2011040128A1 (ja) 地絡検出回路および電源装置
US20130175988A1 (en) Vehicle interface with non-local return to ground
JP7498164B2 (ja) 車両用電源システム
WO2020262082A1 (ja) 漏電検出装置、車両用電源システム
WO2019176173A1 (ja) 漏電検出回路、車両用電源システム
WO2021106285A1 (ja) 漏電検出装置、車両用電源システム
WO2021106284A1 (ja) 漏電検出装置、車両用電源システム
WO2021199490A1 (ja) 漏電検出装置、車両用電源システム
CN114371378A (zh) 逆变器及绝缘检测电路
KR101619467B1 (ko) 적분을 이용한 절연 저항 측정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832172

Country of ref document: EP

Kind code of ref document: A1